Menuju Kebumen Siaga Tsunami

Bagian pertama dari dua tulisan

Peristiwanya sudah berlalu satu dasawarsa. Bekas-bekasnya pun sebagian besar sudah tak ada. Kota-kota yang dulu begitu merana dibuatnya, kini menggeliat kembali dalam rutinitas sehari-hari layaknya sedia kala. Bencana dahsyat itu seperti telah lenyap ditelan masa. Hanya di sejumlah lokasi saja jejak-jejak kedahsyatannya masih tersisa. Namun tidak demikian di sanubari dan benak sebagian besar insan Indonesia. Bencana itu masih demikian membekas, seakan baru terjadi kemarin sore saja.

Minggu 26 Desember 2004 Tarikh Umum (TU) awalnya mungkin dianggap bakal menjadi sebuah hari Minggu biasa saja bagi Indonesia. Di benak banyak orang mungkin bakal ada sedikit kemeriahan. Tahun 2014 TU bakal segera tutup buku. Tahun dimana Indonesia menjalani pemilu yang menentukan, namun terlaksana tanpa huru-hara seperti ramalan sejumlah orang. Terkecuali bagi ujung utara pulau Sumatra. Keributan masih terjadi di sini, sering masih berlakunya status darurat militer. Aparat militer masih terus mencoba menekan dan menghimpit anasir-anasir separatis hingga ke tubir kemampuannya. Baku tembak kerap terjadi diberbagai tempat. Namun secara umum Indonesia relatif tenang, aman dan bersiap menyongsong masa depan.

Semua berubah drastis semenjak pukul 07:59 WIB. Pada jam itu, ujung utara pulau Sumatra bergetar. Gempa bumi tektonik melanda. Sejatinya gempa tektonik bukanlah hal yang aneh bagi kawasan ini. Di dasar samudera lepas pantai barat pulau ini terdapat zona subduksi dimana lempeng India dan Australia melekuk ke bawah lempeng Eurasia. Palung laut yang panjang membentang dari barat laut ke tenggara merupakan wujud fisiknya. Sementara di darat, sebuah sistem patahan besar membentang dari Banda Aceh di utara hingga Selat Sunda di selatan, yang menampakkan dirinya sebagai lembah-lembah lurus panjang di sela-sela Pegunungan Bukit Barisan. Itulah sistem patahan besar Sumatra yang legendaris. Baik zona subduksi maupun sistem patahan besar Sumatra adalah generator tektonik yang produktif.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Tapi gempa ini bukanlah gempa biasa. Di ujung utara pulau Sumatra itu, tanah bergetar keras dan berayun-ayun laksana lautan yang sedang bergelora. Orang-orang yang merasakannya tak kuasa berdiri tegak. Banyak benda berjatuhan. Beberapa bangunan di kota-kota seperti Banda Aceh, Calang dan Meulaboh runtuh. Getaran bahkan masih sanggup meretakkan kaca-kaca bangunan di Medan, kota yang di pantai timur Sumatra. Getaran itu berlangsung cukup lama. Orang-orang merasakannya lebih dari 10 menit. Sementara instrumen pencatat gempa (seismometer) mencatatnya dengan riuh selama 15 menit lebih, menjadikannya durasi gempa terlama yang pernah tercatat sepanjang sejarah ilmu kegempaan (seismologi) modern. Magnitud (kekuatan)-nya juga luar biasa. Dengan getaran yang luar biasa keras, satuan pengukuran standar gempa bumi yang kita kenal sebagai skala Richter (SR) pun tersaturasi dan tak dapat digunakan dengan baik. Sehingga satuan pengukuran yang lebih spesifik pun digunakan, yakni skala Magnitudo (SM). Gempa bumi 26 Desember 2014 TU di ujung utara pulau Sumatra itu ternyata memiliki magnitud 9,3 SM. Inilah gempa terbesar nomor dua yang pernah tercatat sepanjang sejarah seismologi modern setelah Gempa Chile 1960.

Dengan magnitud-nya yang demikian besar, ilmu kegempaan modern menggolongkan getaran tak biasa di ujung utara pulau Sumatra sebagai gempa akbar (megathrust). Ini jenis gempa yang langka karena melibatkan pematahan kerak bumi dalam luasan yang sangat besar hingga puluhan ribu kilometer persegi. Pematahan ini disertai pergeseran (pelentingan) massa batuan yang terpatahkan dengan jarak yang fantastis, hingga puluhan meter. Gempa jenis ini selalu terjadi di zona subduksi. Semenjak seismologi modern bersemi di dekade 1930-an TU, umat manusia baru menyaksikan enam peristiwa gempa akbar. Dan getaran tak biasa di ujung utara pulau Sumatra itu adalah gempa akbar ketujuh, yang kemudian dikenal sebagai Gempa akbar Sumatra-Andaman 26 Desember 2004 atau disebut juga gempa akbar Sumatra-Andaman 2004.

Begitu menyadari sebuah gempa akbar telah terjadi di Samudera Indonesia di Minggu pagi 26 Desember 2014 TU itu, Pacific Tsunami Warning Center (PTWC) yang berkedudukan di Hawaii (Amerika Serikat) segera melakukan simulasi dan hasilnya segera disebar. Sebab pasca sebuah gempa akbar, akan ada bencana lain yang menyusul dengan skala yang tak kalah dahsyatnya. Namun tiadanya infrastruktur sistem peringatan dini di sekujur pesisir Samudera Indonesia membuat peringatan itu tak dapat disalurkan hingga ke masyarakat akar rumput yang berpotensi terdampak.

Bencana pun terjadilah tanpa bisa dihindari. Dalam waktu sejam pasca gempa, kota Banda Aceh dilimbur gelora dari arah samudera. Itulah tsunami. Tingginya tak kepalang tanggung, hingga 20 meter dan bahkan lebih. Air bah menginvasi daratan hingga sejauh 4 kilometer dari garis pantai. Tak hanya Banda Aceh. Kota-kota lain di pesisir barat propinsi Aceh pun tak luput dari terjangan seperti Meulaboh dan Calang. Di Lhoknga, tsunami bahkan menggempur sebagai gelora setinggi bukit. Tinggi gelombangnya mencapai 50 meter! Begitu memasuki kota, air bah tsunami melanda dan menggerus apa saja yang dilaluinya, kecuali bangunan berkualitas baik. Jaringan jalan raya berkualitas baik di Banda Aceh justru menjadi jalan bebas hambatan bagi tsunami untuk menginvasi daratan lebih jauh lagi. Jika kecepatan tsunami saat tiba di pesisir umumnya berkisar 20 hingga 30 kilometer/jam, saat menggempur daratan melalui jalan raya Banda Aceh justru ia melejit hingga secepat 60 kilometer/jam !

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Tsunami dahsyat tak hanya menyerbu Indonesia. Segenap negara yang pesisirnya berhadapan dengan Samudera Indonesia turut merasakannya seperti Thailand, Malaysia, Myanmar, Sri Lanka, India, Bangladesh, Maladewa, Yaman dan bahkan hingga ke benua Afrika meliputi Somalia, Tanzania, Afrika Selatan, Kenya dan Madagaskar. Lebih dari seperempat juta jiwa, tepatnya 280.000 orang, terbunuh oleh terjangan tsunami ini. Ini menjadikannya bencana tsunami paling mematikan semenjak awal peradaban manusia, melampaui rekor yang semula dipegang tsunami produk Gempa Messina 1908 (Italia) yang menewaskan 123.000 orang. Dari 280.000 korban, sekitar 200.000 diantaranya adalah orang Indonesia khususnya penduduk yang bermukim di sepanjang pesisir barat dan utara propinsi Aceh. Bersama dengannya 1,74 juta orang dipaksa mengungsi dengan lebih dari setengah juta diantaranya berasal dari Indonesia. Massifnya skala bencana tsunami ini membuat tsunami produk Letusan Krakatau 1883 yang merenggut nyawa 36.417 jiwa (angka resmi) atau 120.000 jiwa (angka perkiraan) terasa kecil. Bencana ini pun membuat tsunami paling mematikan di Indonesia dalam abad ke-20, yakni tsunami produk Gempa Flores 1992 yang menelan korban 2.500 jiwa, menjadi terasa demikian kerdil.

Raksasa Pembangkit Gelora

Dahsyatnya bencana tsunami dalam Gempa akbar Sumatra-Andaman 2004 sontak mengejutkan dunia. Berbagai anggapan yang aneh-aneh tentang penyebab bencana pun diapungkan. Satu yang sempat menarik perhatian adalah anggapan bencana itu bagian dari konspirasi. Gempa akbar tersebut dan tsunami yang menyertainya dianggap terjadi akibat diledakkannya bom termonuklir di dasar Samudera Indonesia yang kemudian memicu rentetan bencana. Anggapan serupa masih tetap muncul tujuh tahun kemudian, tatkala gempa akbar berikutnya yakni Gempa akbar Tohoku (Jepang) 2011 datang mengguncang. Gempa akbar Tohoku 2011 juga menerbitkan tsunami, yang menjalar hingga sekujur pesisir Samudera Pasifik dengan korban jiwa pun cukup besar. Kali ini yang dituding bukan lagi bom termonuklir, melainkan fasilitas riset pemantauan ionosfer di bawah tajuk HAARP (High-frequency Active Auroral Research Program).

Tanpa harus menelaah jauh-jauh, tak sulit untuk mementahkan anggapan konspirasi ini. Jika bom termonuklir memicu rentetan bencana di ujung utara pulau Sumatra, kemana semua sampah radioaktif yang khas produk ledakan nuklirnya? Padahal salah satu ciri khas tsunami adalah ia mengaduk-aduk dasar samudera demikian rupa sehingga sedimen/endapan yang semula teronggok di dasar laut pun akan diangkutnya dan diendapkan di daratan yang diserbunya. Selain itu bagaimana peristiwa serupa pernah terjadi di sini dalam 600 hingga 700, 1.200 hingga 1.400 dan 1.800 hingga 2.100 tahun silam seperti ditemukan para ahli kegempaan belakangan? Di atas semua itu, anggapan konspirasi hanyalah mencoba mencari kambing hitam atas suatu bencana sehingga tak bermanfaat untuk mengantisipasi bencana sejenis di kelak kemudian hari.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Dalam pandangan seismologi modern, peristiwa gempa akbar dan tsunami yang menyertainya lebih merupakan akibat dari interaksi konvergen (saling bertemu) antara dua lempeng tektonik di zona subduksinya. Dalam kasus Gempa akbar Sumatra-Andaman 2004 itu dua lempeng tektonik yang saling bertemu adalah lempeng India yang oseanik (lempeng samudera) dan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental (lempeng benua). Karena berat jenisnya lebih tinggi, maka saat lempeng India bertemu dengan mikrolempeng Burma, ia melekuk dan selanjutnya menyelusup kebawahnya dengan sudut tertentu hingga akhirnya memasuki lapisan selubung atas (asthenosfer).

Mulai dari titik pelekukan, bagian atas lempeng India bersentuhan dengan bagian bawah mikrolempeng Burma, membentuk zona subduksi. Jalur dimana lempeng India melekuk secara kasat mata terlihat sebagai palung laut. Sementara mikrolempeng Burma mengelembung dan menyembul ke atas paras laut sebagai bagian dari daratan Aceh sebelah barat. Lempeng India bergerak relatif ke utara-timur laut dengan kecepatan 53 mm/tahun, sementara mikrolempeng Burma relatif tak bergerak. Posisi pulau Sumatra yang melintang membuat palung lautnya pun turut melintang, sehingga pergerakan lempeng India relatif terhadap zona subduksinya bersifat miring (oblique). Di lepas pantai barat ujung utara pulau Sumatra, kecepatan pergerakan itu 30 mm/tahun relatif terhadap zona subduksi. Sementara di sebelah utaranya, yakni di Kepulauan Andaman dan Nicobar, kecepatan relatifnya bahkan mendekati nol.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Idealnya pergerakan lempeng India dalam zona subduksinya dengan mikrolempeng Burma tidak terganggu. Namun dalam realitanya tidak demikian. Karena gaya gesek antar batuan dalam dua lempeng yang berbeda tersebut, pergerakan lempeng India terhalangi oleh gesekannya dengan mikrolempeng Burma. Mikrolempeng tersebut bahkan dapat terkunci ke lempeng India. Sehingga selagi lempeng India terus bergerak ke utara-barat laut, zona subduksinya (beserta palung laut dan pulau-pulau kecil didekatnya) pun turut bergeser ke arah yang sama, lebih mendekat ke pulau Sumatra. Ibarat pegas raksasa, mikrolempeng Burma jadi terdesak dan mulai memendek. Namun pemendekan ini memiliki batas maksimum. Saat tegangan batuan telah melampaui daya ikat antar batuan di zona kuncian, maka kunciannya itu pun terpatahkan. Mikrolempeng Burma spontan melenting kembali sehingga palung laut pun kembali menjauhi pulau Sumatra. Pematahan diikuti pelentingan inilah yang menghasilkan gempa bumi tektonik dan kemudian tsunami. Dalam gempa akbar, pematahan yang terjadi melibatkan luasan sangat besar dengan pelentingan yang tak kalah fantastisnya.

Gempa akbar Sumatra-Andaman 2004 melibatkan pematahan sepanjang 1.600 kilometer di zona subduksi lepas pantai barat Sumatra dan kepulauan Andaman-Nicobar, mulai dari pulau Simeulue di selatan hingga pulau Preparis di utara. Lebar pematahannya 150 kilometer. Sehingga area yang terpatahkan mencapai 1.600 x 150 kilometer persegi atau setara dengan separuh luas pulau Sumatra! Pelentingan yang terjadi bervariasi antara 10 meter hingga 30 meter. Akibat pelentingan ini maka palung laut di sepanjang pulau Simeulue hingga ke pulau Preparis mengalami pengangkatan vertikal yang bervariasi antara 1 hingga 5 meter. Dengan kata lain, dasar samudera di atas sumber gempa terdongkrak naik. Inilah yang membuat massa air laut diatasnya turut terangkat hingga ke permukaan samudera. Usikan dahsyat inilah yang menerbitkan tsunami dahsyat yang amat mematikan.

Tsunami bukanlah gelombang laut biasa. Ia memiliki periode yang cukup lama, yakni antara beberapa menit hingga 30 menit. Sementara periode ombak akibat hembusan angin hanya berkisar beberapa detik hingga 20 detik saja. Panjang gelombangnya pun sangat besar, puluhan hingga hingga 200 kilometer. Sementara panjang ombak produk hembusan angin hanyalah antara 60 hingga 150 meter. Dengan panjang gelombang yang jauh melebihi kedalaman samudera dimanapun, tsunami memiliki karakteristik mengaduk-aduk lautan yang dilewatinya hingga ke dasar. Sementara ombak produk hembusan angin hanya berefek di paras/permukaan laut saja. Kecepatannya pun berbeda jauh. Di tengah samudera, sebuah tsunami bisa melaju secepat 700 kilometer/jam atau sama cepatnya dengan pesawat jumbo jet komersial! Bandingkan dengan ombak produk hembusan angin yang hanya melaju pada kecepatan antara 30 hingga 60 kilometer/jam saja.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Kala tiba di pesisir, baik tsunami maupun ombak akan sedikit berubah perilakunya. Namun perbedaannya dramatis. Bagi ombak, ia akan melambat dan terpecah saat mendekati pesisir sehingga hanya mengguyur garis pantai. Tsunami pun melambat pula jelang tiba di pesisir, dengan kecepatan merosot drastis hingga hanya antara 20 sampai 30 kilometer/jam. Tapi karena panjang gelombangnya amat sangat besar bila dibandingkan dengan ombak, maka tsunami tak terpecah. Sebaliknya ketinggiannya justru kian meningkat akibat efek akumulasi tatkala bagian tsunami yang lebih cepat mendesak bagian tsunami yang sudah melambat. Karena itu bila di tengah-tengah samudera ketinggian tsunami hanyalah berkisar setengah meter atau kurang, jelang tiba di pesisir ia bisa berlipat kali lebih besar hingga beberapa meter atau bahkan belasan/puluhan meter. Fenomena ini disebut run-up. Karena itu saat menerjang garis pantai, tsunami lebih mirip dengan gelombang pasang sehingga ia melanda/menginvasi daratan hingga jarak cukup jauh, bergantung pada run-up-nya. Bedanya, jika penjalaran gelombang pasang biasa berlangsung cukup lambat (dalam hitungan jam), tsunami menyerbu cukup cepat (hanya dalam hitungan menit pasca tiba di garis pantai). Karena itu daya rusaknya jauh lebih besar.

Tsunami di Pesisir Selatan Jawa

Di Indonesia, zona subduksi tak hanya dijumpai di lepas pantai ujung utara pulau Sumatra saja. Namun juga di tempat-tempat lain di sekujur tanah Nusantara ini. Dapat dikatakan separuh dari garis pantai kepulauan ini berhadapan dengan zona subduksi. Termasuk segenap pesisir selatan pulau Jawa.

Sebelum 2004 TU, para ahli kegempaan bersilang pendapat mengenai potensi zona-zona subduksi di Indonesia dalam menghasilkan gempa akbar. Pada umumnya mereka sepakat bahwa potensi gempa akbar jauh lebih tinggi bagi kawasan pesisir Samudera Pasifik, dimanapun berada. Sebab di sini zona subduksinya berumur relatif muda secara geologis, yakni 20 juta tahun di selatan (Chile) dan 40 juta tahun di utara (Alaska). Zona subduksi yang muda ini dianggap kurang padat sehingga lebih mudah terpatahkan. Sebaliknya zona subduksi di Samudera Indonesia, khususnya di sepanjang kepulauan Indonesia, relatif lebih tua. Di sekitar pulau Simeulue umurnya 55 juta tahun. Sementara di Kepulauan Andaman-Nicobar umurnya jauh lebih tua yakni hampir 90 juta tahun. Terdapat hubungan antara umur zona subduksi dan kecepatan lempeng samudera relatif terhadap zona subduksi dengan magnitud maksimum gempa tektonik yang bisa dibangkitkannya. Untuk zona subduksi lempeng India dengan mikrolempeng Burma, magnitud maksimum itu berkisar antara 8 hingga 8,2 skala Magnitudo. Anggapan ini berantakan setelah Gempa akbar Sumatra-Andaman 2004 meletup, yang berkekuatan hingga 9,3 skala Magnitudo.

Pasca 2004 TU, kini para ahli kegempaan menyepakati seluruh zona subduksi yang ada dimanapun harus dipandang memiliki potensi serupa Sumatra-Andaman. Termasuk zona subduksi di lepas pantai pesisir selatan Pulau Jawa. Di zona subduksi ini lempeng Australia yang oseanik bersubduksi dengan lempeng Eurasia yang kontinental. Lempeng Australia bergerak ke utara-timur laut pada kecepatan 67 mm/tahun sementara lempeng Eurasia (yang menjadi landasan pulau Jawa) relatif stabil. Subduksi telah berumur 130 juta tahun dan menghasilkan zona subduksi yang hampir tepat tegaklurus terhadap arah gerak lempeng Australia (head-on). Sebelum 2004 TU, magnitud maksimum gempa tektonik yang bisa dibangkitkan zona subduksi ini diperkirakan hanya sekitar 7,7 skala Magnitudo. Namun pasca 2004 TU, perkiraannya berubah dramatis. Sejumlah ahli kegempaan bahkan berpendapat gempa akbar dengan magnitud hingga 9 skala Magnitudo berpotensi terjadi di sini. Sumber gempanya bisa di sisi selatan Selat Sunda, atau di lepas pantai selatan Jawa Tengah. Jika gempa akbar sebesar ini terjadi, tsunami dahsyat bakal menggempur pesisir selatan pulau Jawa dengan ketinggian bisa mencapai 10 meter atau bahkan lebih.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Salah satu kesulitan dalam mengidentifikasi apakah sebuah gempa akbar bisa terjadi di zona subduksi terletak pada minimnya data. Pada umumnya gempa tektonik, termasuk gempa akbar, selalu berulang di sumber yang sama. Namun periode ulangnya sangat lama, hingga beberapa ratus tahun untuk gempa akbar. Sementara seismologi modern dengan instrumen seismometernya baru berjalan kurang dari seabad ini. Apalagi pencatatan pergerakan lempeng tektonik di suatu daerah, itu baru berlangsung semenjak dekade 1980-an saja. Maka untuk mengetahui potensi gempa akbar di suatu tempat, para ahli kegempaan memanfaatkan pendekatan tak langsung. Baik dengan jalan menyelidiki naik-turunnya daratan melalui naik-turunnya karang di pulau-pulau kecil tepat di sebelah sebuah palung laut (seperti dilakukan di pulau Sumatra) maupun dengan menyelidiki lapisan-lapisan endapan takbiasa yang diproduksi sebuah tsunami di sepanjang pesisir.

Lewat analisis karang, kita mengetahui salah satu sumber gempa akbar di pulau Sumatra ada di segmen Kepulauan Mentawai. Gempa akbar di sini terjadi pada sekitar tahun 1370, 1600 serta yang terakhir pada 1797 dan 1833 TU. Dengan demikian gempa akbar dan tsunami besarnya di segmen Kepulauan Mentawai terjadi setiap 200 hingga 230 tahun sekali. Sementara sedimen pesisir di Thailand dan Simeule memperlihatkan gempa akbar dan tsunami besar di segmen Simeulue-Andaman-Nicobar berulang jauh lebih lama, yakni setiap 600 hingga 700 tahun sekali.

Bagaimana dengan pesisir selatan Pulau Jawa?

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Pesisir selatan Jawa Timur dilimbur tsunami produk gempa besar Banyuwangi 3 Juni 1994 (7,8 skala Magnitudo). Tinggi maksimum tsunaminya mencapai 15 meter dan menginvasi daratan hingga sejauh 400 meter. Korban jiwa yang direnggutnya tercatat 238 orang. Sementara pesisir selatan Jawa Barat dan sebagian Jawa Tengah dihantam tsunami dari gempa besar Pangandaran 17 Juli 2006 (7,7 skala Magnitudo). Tsunaminya menghantam pesisir mulai dari pantai Pangandaran (Jawa Barat) hingga pantai Parangtritis (DI Yogyakarta) dengan tinggi maksimum 21 meter di pulau Nusakambangan. Tsunami ini menelan korban jiwa hingga lebih dari 700 orang. Baik gempa besar Banyuwangi 1994 maupun Pangandaran 2006 merupakan gempa pembangkit tsunami yang takbiasa. Mereka terjadi tepat di sisi utara palung laut dengan getaran yang cukup lama, sehingga disebut sebagai gempa-lambat atau gempa-ayun (slow earthquake) yang getarannya tak begitu dirasakan di daratan pulau Jawa. Di lokasi sumber gempanya, getaran gempa menyebabkan tebing-tebing curam di sisi utara palung runtuh, menciptakan longsoran bawah laut yang massif. Kombinasi pengangkatan dasar laut di lokasi sumber gempa dan longsoran massif ini membangkitkan tsunami yang tak biasa. Meski bersifat lokal, namun ketinggiannya di pesisir dan invasinya ke daratan amat sangat besar dibanding tsunami yang hanya disebabkan oleh gempa saja.

Sebelum kedua peristiwa tersebut, pesisir selatan Pulau Jawa antara pantai Pangandaran hingga Parangtritis juga pernah diterpa tsunami pada 1921 TU. Tsunami ini produk gempa besar (7,5 skala Richter) di seberang zona subduksi, namun tinggi gelombangnya kecil sehingga tidak menghasilkan kerusakan dan korban jiwa berarti. Sebelum itu tsunami lokal tercatat juga terjadi pada 1840 dan 1859 TU. Keduanya menerpa pesisir selatan pulau Jawa di antara Kebumen (Jawa Tengah) hingga Pacitan (Jawa Timur).

Tsunami yang lebih besar namun tak begitu tercatat dalam sejarah nampaknya terjadi empat abad silam, atau di abad ke-16 TU. Jejaknya ditemukan sebagai lapisan endapan takbiasa khas tsunami di dekat muara sungai Cikembulan, Pangandaran (Jawa Barat) oleh tim LIPI (Lembaga Ilmu Pengetahuan Indonesia). Endapan ini lebih tebal ketimbang endapan tsunami 2006 sehingga mungkin berasal dari gempa besar berskala 8 skala Magnitudo atau lebih. Peristiwa tersebut nampaknya dicatat oleh pujangga kerajaan Mataram Islam di zaman pemerintahan Sultan Agung pada Babad ing Sangkala. Peristiwa tersebut nampaknya terjadi pada tahun 1618 atau 1619 TU, sepuluh tahun jelang agresi Mataram ke kedudukan VOC Belanda di Batavia (kini Jakarta). Tsunami tersebut nampaknya berdampak signifikan dan mungkin melahirkan legenda Nyi Roro Kidul (Ratu Kidul). Legenda sejenis, meski kalah populer, juga dijumpai di tempat-tempat lain mulai dari masyarakat Mentawai di sebelah barat hingga ke masyarakat Flores di sebelah timur.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Berapa tahun sekali periode ulang gempa besar/akbar dan tsunami yang menyertainya di lepas pantai pesisir selatan pulau Jawa memang belum diketahui hingga kini. Namun jelas bahwa di masa silam hal itu pernah terjadi. Dan kelak juga pasti akan terjadi lagi. Ini hanya soal kapan waktunya dan seberapa besar magnitudonya. Maka suka tak suka, pesisir selatan pulau Jawa memang harus berbenah dan bersiap untuk menghadapinya. Termasuk Kabupaten Kebumen di propinsi Jawa Tengah, yang memiliki garis pantai unik sepanjang 58 kilometer. Ada lebih dari 220 ribu jiwa yang hidup di sepanjang pesisir Kabupaten Kebumen yang berpotensi terdampak jika bencana tsunami tersebut benar-benar terjadi, apalagi jika sekelas tsunami produk gempa akbar Sumatra-Andaman 2004.

Bagaimana Kabupaten Kebumen menyiagakan diri mengantisipasi ancaman tsunami ini? Simak di bagian kedua dari tulisan ini.

Referensi :

Yulianto dkk. 2010. Where the First Wave Arrives in Minutes, Indonesian Lessons on Surviving Tsunamis Near Their Sources. Intergovernmental Oceanographic Commission, United Nations Educational Scientific and Cultural Organisation, IOC-Brochure 2010-4.

BNPB. 2012. Masterplan Pengurangan Risiko Bencana Tsunami. Badan Nasional Penanggulangan Bencana, Juni 2012.

Natawidjaja. 2007. Tectonic Setting Indonesia dan Pemodelan Gempa dan Tsunami. Pelatihan Pemodelan Tsunami Run-up, Kementerian Negara Riset dan Teknologi RI, 20 Agustus 2007.

Memandang Longsor Dahsyat Jemblung dari Ketinggian Udara dan Satelit

Beberapa hari pasca bencana longsor dahsyat yang meluluhlantakkan dusun Jemblung, desa Sampang Banjarnegara, bagaimana luasnya skala bencana tersebut mulai terkuak. Khususnya setelah dua tim yang berbeda melaksanakan pemotretan (pencitraan) di atas lokasi bencana. Pencitraan pertama dikerjakan oleh tim KataDesa (Banjarnegara) bekerjasama dengan BukaPeta (Jakarta) dengan menggunakan pesawat udara nir-awak (PUNA) atau drone tepat di atas lokasi longsor pada Rabu 17 Desember 2014 Tarikh Umum (TU) lalu. Kedua relawan lembaga nirlaba tersebut melakukan pemotretan udara (pencitraan aerial) selama tiga hari penuh hingga 20 Desember 2014 TU, yang menghasilkan sejumlah data dalam bentuk rekaman-rekaman foto dan video. Sejumlah citra foto dan videonya telah dipublikasikan semenjak awal. Sementara pencitraan kedua dilaksanakan oleh tim respon cepat bencana LAPAN (Lembaga Penerbangan dan Antariksa Nasional) pada saat yang hampir sama. Memanfaatkan satelit penginderaan jauh Pleiades milik badan antariksa Perancis yang melintas jauh di atas lokasi bencana pada 16 Desember 2014 TU, tim LAPAN mencitra dan mengolah datanya dalam kanal cahaya tampak (visual) untuk kemudian memublikasikan hasilnya per 19 Desember 2014 TU. Hasil kerja dua tim yang berbeda tersebut saling melengkapi sehingga memberikan perspektif baru dalam upaya kita memahami bencana tanah longsor dahsyat Jemblung (Sampang) 2014 ini.

Gambar 1. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dan Gunung Telagalele pasca bencana longsor dahsyat 12 Desember 2014. Dibuat dalam peta Google Earth yang dilapisi (overlay) citra satelit Pleiades dalam kanal cahaya tampak. Nampak lereng utara Gunung Telagalele yang longsor, dengan mahkota longsor di elevasi 1.060 meter dpl. Nampak pula lembah miring dimana dusun Jemblung semula berada, dengan ujung timur lembah 30 meter lebih tinggi dari ujung baratnya. Sumber: Sudibyo, 2014 berbasis Google Earth dan LAPAN, 2014.

Gambar 1. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dan Gunung Telagalele pasca bencana longsor dahsyat 12 Desember 2014. Dibuat dalam peta Google Earth yang dilapisi (overlay) citra satelit Pleiades dalam kanal cahaya tampak. Nampak lereng utara Gunung Telagalele yang longsor, dengan mahkota longsor di elevasi 1.060 meter dpl. Nampak pula lembah miring dimana dusun Jemblung semula berada, dengan ujung timur lembah 30 meter lebih tinggi dari ujung baratnya. Sumber: Sudibyo, 2014 berbasis Google Earth dan LAPAN, 2014.

Citra aerial dan citra satelit tersebut menyajikan batas-batas longsor dan beberapa perspektif tiga dimensi sektor longsor tertentu. Tatkala batas-batas tersebut dimasukkan ke dalam program pemetaan seperti Google Earth, diperoleh bahwa longsor dahsyat Jemblung (Sampang) 2014 mencakup area seluas hampir 18 hektar. Dari area seluas itu sekitar 2,2 % di antaranya, yakni hampir 4.000 meter persegi, merupakan bagian yang tak terjamah aliran maupun timbunan tanah dalam bencana ini, yang mencakup sebuah rumah berdinding putih dan kebun jagung.

Dua Luncuran

Selamatnya rumah dan kebun jagung ini dari terjangan tanah longsor telah mengundang decak kagum. Banyak yang menyebutnya sebuah keajaiban. Cerita-cerita yang tersebar luas tak berkeruncingan di media sosial menuturkan rumah itu adalah milik kiai kampung yang rajin berdakwah kepada penduduk sekitar. Namun penelusuran lebih lanjut menunjukkan pemilik rumah tersebut adalah seorang petani yang tinggal bersama istri, anak, menantu dan cucunya. Meski rumah tersebut selamat dari terjangan tanah, namun tidak demikian dengan penguninya. Hanya sang menantu yang sedang hamil 9 bulan dan satu keponakannya yang luput dari maut meski sempat tertimbun tanah setebal 1 meter. Sementara petani, istri, anak dan seorang cucunya lagi menjadi korban bencana dahsyat ini.

Gambar 2. Citra satelit Pleiades lokasi bencana longsor dahsyat Jemblung (Sampang) 2014 beserta lokasi luncuran tanah utama yang berskala besar dan dua luncuran tanah berskala kecil yang menduluinya. Sumber: LAPAN, 2014.

Gambar 2. Citra satelit Pleiades lokasi bencana longsor dahsyat Jemblung (Sampang) 2014 beserta lokasi luncuran tanah utama yang berskala besar dan dua luncuran tanah berskala kecil yang menduluinya. Sumber: LAPAN, 2014.

Citra aerial dipadukan dengan citra satelit menempatkan rumah dan kebun yang selamat itu dalam perspektif baru pada bencana longsor dahsyat ini. Dalam analisa sementara penulis, rumah dan kebun yang selamat beserta sepenggal tanah sempit di atasnya merupakan pembatas bagi sekurangnya dua kejadian luncuran tanah yang berbeda namun berlangsung dalam waktu yang sama atau hampir bersamaan yang sebelah menyebelah. Yakni luncuran tanah sisi timur (arah Dieng) dan luncuran tanah sisi barat (arah Banjarnegara). Dua luncuran tanah ini ternyata senada dengan hasil analisis sementara BNPB (Badan Nasional Penanggulangan Bencana) seperti yang dipaparkan Kepala Pusdatin (pusat data dan informasi) BNPB Sutopo Purwo Nugroho pada 15 Desember 2014 TU lalu. Arah gerak kedua luncuran tanah tersebut pun terlihat berbeda. Namun pada akhirnya kedua luncuran tanah itu saling berkoalisi hingga menghasilkan kerusakan cukup besar dan luas.

Google Earth memperlihatkan dusun Jemblung secara topografis terletak di sebuah lembah berarah barat-timur yang dipagari dua buah gunung (bukit), masing-masing di sisi selatan dan utaranya. Bukit di sisi selatan dikenal sebagai Gunung Telagalele. Lembah ini tidak rata melainkan berhias sejumlah gundukan. Di sela-selanya mengalir sungai Petir, sebuah sungai kecil yang bermuara ke sungai Merawu. Sungai Merawu sendiri merupakan salah satu anak sungai utama dari sungai Serayu yang besar. Sehingga sungai Petir dan seluruh dusun Jemblung pada dasarnya merupakan bagian dari DAS (Daerah Aliran Sungai) Serayu. Lembah dimana dusun Jemblung berada juga bukanlah lembah datar ataupun landai, karena ujung timurnya 30 meter lebih tinggi ketimbang ujung baratnya. Selain lebih rendah, ujung barat lembah dimana dusun Jemblung berada juga tepat bersisian dengan sungai Petir. Berbeda dengan ujung timurnya. Faktor ini yang nampaknya berperan penting terhadap aliran tanah pada bencana longsor dahsyat 12 Desember 2014 TU.

Sebelum luncuran tanah terjadi, dusun Jemblung telah lebih dulu dikejutkan oleh dua peristiwa luncuran tanah dalam skala kecil yang mengambil lokasi di dusun Jemblung sebelah barat. Apakah masih berkaitan ataukah tidak, apakah salah satu atau kedua longsor kecil itu menyebabkan gangguan stabilitas lereng utara Gunung Telagalele ataukah tidak, yang jelas ia segera diikuti luncuran tanah yang jauh lebih besar. Luncuran tanah terakhir ini secara umum dapat dibedakan menjadi luncuran tanah sisi timur dan luncuran tanah sisi barat.

Gambar 3. Perkiraan batas luncuran tanah sisi timur dalam bencana longsor dahsyat Jemblung (Sampang) 2014 (garis kuning putus-putus) dalam citra satelit Pleiades pada kanal cahaya tampak (kiri) dan citra aerial PUNA/drone (kanan). Selain batas luncuran tanah, beberapa ciri khas tanah longsor dapat dikenali khususnya dalam citra aerial. Sumber: LAPAN, 2014 & KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Gambar 3. Perkiraan batas luncuran tanah sisi timur dalam bencana longsor dahsyat Jemblung (Sampang) 2014 (garis kuning putus-putus) dalam citra satelit Pleiades pada kanal cahaya tampak (kiri) dan citra aerial PUNA/drone (kanan). Selain batas luncuran tanah, beberapa ciri khas tanah longsor dapat dikenali khususnya dalam citra aerial. Sumber: LAPAN, 2014 & KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Luncuran tanah sisi timur melaju tepat ke utara, menuju dusun Jemblung sebelah timur yang ada di kakinya. Namun volume tanah dalam luncuran tanah sisi timur ini mungkin lebih kecil ketimbang luncuran tanah sisi barat. Sehingga energinya pun mungkin lebih kecil yang membuatnya sebatas menimbuni jalan raya Banjarnegara-Dieng/Banjarnegara-Pekalongan dan bentang lahan di sisi selatannya. Ia tak sanggup ‘meloncat’ untuk menimbuni mayoritas rumah di dusun Jemblung sebelah timur yang ada di gundukan sisi utara jalan raya. Bahkan terdapat tanda-tanda benturan massa tanah longsoran ke gundukan dimana rumah-rumah dusun Jemblung sebelah timur berada. Benturan ini menyebabkan sebagian massa tanah longsor tersebut nampaknya terbelokkan ke arah barat, menurun menuju dusun Jemblung sebelah barat.

Hal itu berbeda dengan luncuran tanah sisi barat. Pada awalnya luncurannya mungkin kecil dengan arah ke utara-barat laut. Namun tumpukan material longsornya amat mendesak lereng yang lebih rendah. Sehingga lereng yang sudah labil itu pun turut runtuh, menghasilkan longsor dalam volume lebih besar juga dengan arah ke utara-barat laut. Hal yang sama berulang, tumpukan materialnya mendesak lereng yang lebih rendah lagi hingga turut longsor. Pada akhirnya luncuran tanah sisi barat membawa volume tanah yang lebih besar ketimbang sisi timur. Pun demikian energinya, sehingga daya gerusnya pun lebih besar. Massa tanah pun terdorong jauh tanpa terhenti meski telah menghantam dusun Jemblung sebelah barat dengan telak. Selain dari luncuran tanah sisi barat, dusun Jemblung sebelah barat juga diterjang sebagian kecil massa tanah dari longsoran tanah sisi timur yang tadi terbelokkan. Akibatnya dusun Jemblung sebelah barat pun dihapus dari peta, sebagian tertimbun tanah dan sebagian lagi tergerus. Massa tanah di sini pun meluncur jauh hingga memasuki sungai Petir untuk kemudian menghilir sejauh sekitar 150 meter. Sehingga selain di bekas dusun Jemblung sebelah barat, banyak jasad korban longsor yang ditemukan di sekitar sungai Petir.

Gambar 4. Perkiraan batas luncuran tanah sisi barat dalam bencana longsor dahsyat Jemblung (Sampang) 2014 dalam citra satelit Pleiades pada kanal cahaya tampak (kiri) dan citra aerial PUNA/drone (kanan). Kemungkinan terjadi tiga kali pergerakan tanah secara berantai, dari lereng yang lebih tinggi ke lereng yang lebih rendah dengan luasan kian membesar. Perkiraan batas masing pergerakan tanah diperlihatkan oleh garis kuning putus-putus, sementara arah masing-masing gerakan tanah oleh tanda panah. Sumber: LAPAN, 2014 & KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Gambar 4. Perkiraan batas luncuran tanah sisi barat dalam bencana longsor dahsyat Jemblung (Sampang) 2014 dalam citra satelit Pleiades pada kanal cahaya tampak (kiri) dan citra aerial PUNA/drone (kanan). Kemungkinan terjadi tiga kali pergerakan tanah secara berantai, dari lereng yang lebih tinggi ke lereng yang lebih rendah dengan luasan kian membesar. Perkiraan batas masing pergerakan tanah diperlihatkan oleh garis kuning putus-putus, sementara arah masing-masing gerakan tanah oleh tanda panah. Sumber: LAPAN, 2014 & KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Hingga Minggu 21 Desember 2014 TU tengah hari, secara akumulatif tim telah menemukan 95 jenazah. Paling tidak 13 jasad lainnya masih belum ditemukan. Namun atas kesepakatan bersama warga dusun Jemblung, BNPB memutuskan untuk menghentikan proses pencarian jasad korban. Pertimbangannya adalah luasnya kawasan yang terkena longsor, tebalnya timbunan tanah, cuaca yang kurang menentu dan ancaman longsor susulan akibat keberadaan telaga baru di bawah mahkota longsor sisi barat. Fokus penanganan bencana longsor dahsyat Jemblung (Sampang) 2014 kini dialihkan pada relokasi penduduk dari 35 KK (kepala keluarga) yang selamat, mencakup 32 KK yang rumahnya tertimbun longsor dan 3 KK yang rumahnya rusak berat. 21 KK sisanya tidak turut direlokasi karena seluruhnya menjadi korban bencana dahsyat ini.

Pelajaran

Selain bermanfaat memperkirakan bagaimana mekanisme sebuah bencana khususnya pada bencana yang berskala besar, penggunaan citra aerial dan/atau citra satelit memberikan pelajaran berharga dari Banjarnegara. Citra aerial dan/atau citra satelit sangat membantu dalam pencarian jasad korban. Dalam bencana longsor dahsyat Jemblung (Sampang) 2014 ini, citra aerial dan satelit membantu memberikan gambaran antara pra dan pasca bencana. Sehingga gambaran dimana rumah-rumah yang tertimbun/tergerus tanah longsor dapat segera diperoleh. Mengingat cuaca yang kurang mendukung dengan langit kerap mendung, satelit penginderaan jauh tak bisa secepatnya membantu apalagi jika bekerja pada kanal cahaya tampak. Sebab pandangan satelit ke lokasi bencana akan kerap terganggu oleh tutupan awan. Sebaliknya PUNA/drone tidak begitu terganggu karena ketinggian jelajahnya lebih rendah dibanding awan. Sepanjang tidak turun hujan deras, PUNA/drone dapat dioperasikan tepat di atas lokasi bencana.

Gambar 5. Panorama eks Dusun Jemblung sebelah barat yang telah lumat oleh timbunan tanah dan juga tergerus (atas) dan Dusun Jemblung sebelah timur dengan latar depan tebing tempat sebagian massa tanah dalam luncuran tanah sisi timur menubruk untuk kemudian berbelok arah (bawah). Sumber: KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Gambar 5. Panorama eks Dusun Jemblung sebelah barat yang telah lumat oleh timbunan tanah dan juga tergerus (atas) dan Dusun Jemblung sebelah timur dengan latar depan tebing tempat sebagian massa tanah dalam luncuran tanah sisi timur menubruk untuk kemudian berbelok arah (bawah). Sumber: KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Dalam bencana longsor dahsyat Jemblung (Sampang) 2014 ini, sebelum tim KataDesa dan BukaPeta meluncurkan PUNA/drone-nya, sesungguhnya telah ada PUNA/drone lain yang terbang di atas lokasi bencana. Yakni dari tim respon cepat bencana UGM (Universitas Gadjah Mada) serta dari tim BNPB (Badan Nasional Penanggulangan Bencana). Hasil pencitraan aerial tim ini memang tidak dipublikasikan, namun nampaknya kemudian menjadi acuan bagi BNPB untuk menyusun bagan bencana longsor. Dengan bagan tersebut, maka dusun Jemblung yang terlanda bencana dibagi ke dalam sektor-sektor tertentu. Sehingga upaya tim relawan dalam pencarian jasad-jasad korban dapat dilakukan dengan lebih fokus.

Selain sangat membantu dalam pencarian jasad para korban dengan memetakan batas-batas kawasan yang terlanda bencana longsor, pelajaran berharga lainnya dari Banjarnegara adalah bahwa citra aerial yang diproduksi PUNA/drone juga membantu mengevaluasi bagaimana tutupan vegetasi (tumbuh-tumbuhan) di sebuah lereng. Juga bagaimana keadaan lereng tersebut, khususnya lereng yang telah menunjukkan gejala pendahuluan akan bencana tanah longsor dalam bentuk retak-retak tanah dalam beragam skala. Ini akan sangat membantu dalam menyiapkan kewaspadaan bagi masyarakat disekitarnya.

Gambar 6. Perkiraan arah gerakan tanah dalam bencana longsor dahsyat Jemblung (Sampang) 2014. Luncuran tanah sisi timur digambarkan dengan panah kuning, sementara luncuran tanah sisi barat dengan panah merah. Gabungan massa tanah kedua luncuran digambarkan dengan panah hitam, yang terus menerjang dusun Jemblung sebelah barat hingga memasuki sungai Petir. Sumber: KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Gambar 6. Perkiraan arah gerakan tanah dalam bencana longsor dahsyat Jemblung (Sampang) 2014. Luncuran tanah sisi timur digambarkan dengan panah kuning, sementara luncuran tanah sisi barat dengan panah merah. Gabungan massa tanah kedua luncuran digambarkan dengan panah hitam, yang terus menerjang dusun Jemblung sebelah barat hingga memasuki sungai Petir. Sumber: KataDesa, 2014 dengan teks oleh Sudibyo, 2014.

Takdir kebumian Banjarnegara khususnya kawasan Karangkobar-Merawu dengan batuan dasarnya yang rapuh membuat kejadian longsor di sini menjadi begitu banyak dan beberapa diantaranya unik. Dalam pandangan umum, tanah longsor bisa diminimalkan atau bahkan dielakkan jika lereng yang setengah terjal atau bahkan terjal ditanami dengan vegetasi (tumbuhan) berakar tunjang. Namun di sebagian Banjarnegara, hal tersebut tidak selalu berlaku. Dalam bencana longsor dahsyat Gunungraja (Sijeruk) 2006 misalnya, longsor berskala besar tetap terjadi meskipun lereng Bukit Pawinihan masih tertutup tumbuhan-tumbuhan tinggi yang relatif rapat dan berakar tunjang. Tebalnya tanah pelapukan membuat tumbuh-tumbuhan itu tak sempat mengakar kuat hingga ke lapisan batuan yang masih keras dibawahnya. Sehingga tatkala tanah pelapukan itu jenuh dengan air, longsor pun tetap terjadi.

Gambar 7. Tiga titik retak baru di Gunung Telagalele, desa Sampang (Banjarnegara), tak jauh dari lokasi longsor dahsyat Jemblung (Sampang) 2014. Ketiga titik retak baru ini harus dicermati lebih lanjut ke depan sebagai titik-titik yang rawan longsor. Sumber: Sudibyo, 2014 berbasis Google Earth dan data dari KataDesa, 2014.

Gambar 7. Tiga titik retak baru di Gunung Telagalele, desa Sampang (Banjarnegara), tak jauh dari lokasi longsor dahsyat Jemblung (Sampang) 2014. Ketiga titik retak baru ini harus dicermati lebih lanjut ke depan sebagai titik-titik yang rawan longsor. Sumber: Sudibyo, 2014 berbasis Google Earth dan data dari KataDesa, 2014.

Pasca bencana longsor dahsyat Jemblung (Sampang) 2014 ini, beberapa titik retakan baru telah muncul di lereng Gunung Telagalele. Misalnya di teras SD Negeri 3 Sampang (dusun Tekik), di jalan desa ke dusun Gondang dan tepat di atas mahkota longsor Jemblung. Di luar Gunung Telagalele, retakan-retakan juga terdeteksi di dusun Slimpet desa Tlaga (kecamatan Punggelan) dan di desa Bandingan (kecamatan Sigaluh). Titik-titik retakan baru ini bisa jadi merupakan gejala pendahuluan tanah longsor yang akan datang.

Titik-titik ini perlu segera ditangani dengan jalan segera ditutup tanah hingga rata. Juga perlu untuk terus dipantau apakah ada tanda-tanda pendahuluan lainnya seperti mulai merosotnya lereng, mulai miringnya pepohonan/tiang listrik ataupun mulai menegangnya kabel listrik yang melintas di atas lokasi. Selain itu bagaimana skenario terburuk terkait besarnya luncuran tanah dan arahnya pun musti mulai dipikirkan. Dalam konteks inilah pencitraan aerial berbasis PUNA/drone menjadi penting peranannya untuk mengevaluasi status lereng tersebut. Apalagi dengan kemampuannya yang melebihi resolusi citra satelit penginderaan bumi dan ongkos operasionalnya yang relatif murah. Agar kelak korban tak lagi berjatuhan…

Referensi :

KataDesa.

Citra Udara Dampak Longsor Jemblung di Youtube.

Badan Nasional Penanggulangan Bencana.

Merdeka. 2014. Cerita Rumah Putih yang Selamat dari Longsor Hebat Banjarnegara. Laman Merdeka.com, reportase Chandra Iswinarno, 19 Desember 2014.

Longsor Dahsyat Jemblung dan Takdir Kebumian Banjarnegara

Senja menjelang tiba di segenap Kabupaten Banjarnegara, propinsi Jawa Tengah, pada Jumat 12 Desember 2014 Tarikh Umum (TU) lalu. Dalam kondisi normal panoramanya bakal memukau siapapun, saat langit berangsur-angsur menjadi memerah tembaga di kala Matahari memerah dan meredup, pemandangan yang selalu menimbulkan kesan spiritual dan relijius. Namun sore itu tak satupun yang dapat disaksikan. Bahkan seberkas sinar Matahari tak juga nampak. Banjarnegara sedang kehujanan. Titik-titik air hujan yang sangat deras meredam segenap kabupaten tersebut sejak sehari sebelumnya. Stasiun geofisika kelas III Banjarnegara yang dioperasikan oleh BMKG (Badan Meteorologi Klimatologi dan Geofisika) mencatat curah hujan sepanjang Kamis 11 Desember 2014 TU mencapai 112,7 milimeter. Dan sehari kemudian curah hujannya masih sebesar 101,8 milimeter. Dalam dua hari saja saja intensitas hujan yang mengguyur seantero Banjarnegara telah sebesar 214,5 milimeter. Di waktu-waktu lalu, pada umumnya curah hujan sebanyak itu membutuhkan waktu sebulan Desember penuh (rata-rata) dalam menjatuhi segenap Banjarnegara. Jelas sudah, dengan volume air hujan yang setara dengan yang rata-rata diguyurkan selama 31 hari penuh, hujan sepanjang 11 hingga 12 Desember 2014 di Banjarnegara berkualifikasi hujan sangat deras atau hujan ekstrim.

Gambar 1. Wajah dusun Jemblung, desa Sampang (Banjarnegara) antara sebelum dan sesudah bencana tanah longsor dahsyat 12 Desember 2014 TU. Citra sebelum bencana diambil dari sisi utara jalan raya Banjarnegara-Dieng menghadap ke barat laut-utara. Nampak masjid al-Iman di latar belakang. Sementara citra sesudah bencana diambil dari lokasi yang lebih tinggi namun tidak seberapa jauh dari lokasi pengambilan citra sebelum bencana, dengan arah pandang yang sama. Nampak semua sudah berubah menjadi timbunan lumpur. Sumber: Nurmansyah, 2014.

Gambar 1. Wajah dusun Jemblung, desa Sampang (Banjarnegara) antara sebelum dan sesudah bencana tanah longsor dahsyat 12 Desember 2014 TU. Citra sebelum bencana diambil dari sisi utara jalan raya Banjarnegara-Dieng menghadap ke barat laut-utara. Nampak masjid al-Iman di latar belakang. Sementara citra sesudah bencana diambil dari lokasi yang lebih tinggi namun tidak seberapa jauh dari lokasi pengambilan citra sebelum bencana, dengan arah pandang yang sama. Nampak semua sudah berubah menjadi timbunan lumpur. Sumber: Nurmansyah, 2014.

Hujan yang sangat deras ini membuat sekujur Banjarnegara menggigil dan berharap-harap cemas. Kabar meluapnya Sungai Serayu, sungai utama di kabupaten ini, sembari mengalirkan arusnya demikian deras pun menyebar kemana-mana. Sedemikian berlimpah air sungai ini sehingga tinggi genangan di Waduk Panglima Besar Sudirman (Mrica), yang ada di aliran sungai Serayu, pun mencapai maksimum dalam waktu singkat. Akibatnya pengelola dipaksa membuka pintu-pintu pelimpas air (spillway)-nya untuk tetap menjaga keamanan bendung. Air Serayu pun menderas ke hilir dan sempat menenggelamkan sejumlah rumah. Kabar tak berkeruncingan pun menyebar kemana-mana, mewartakan waduk telah bobol dan menenggelamkan hilir sungai meski hal ini segera dibantah oleh pengelola bendungan. Titik-titik tanah longsor pun bermunculan dimana-mana di kabupaten ini. Namun yang terburuk belumlah tiba.

Pada Jumat senja itu mayoritas penduduk dusun Jemblung, desa Sampang, kecamatan Karangkobar lebih memilih meriung di kediamannya masing-masing. Hujan sangat deras hari itu baru saja berlalu. Namun titik-titik air yang lebih lembut masih berjatuhan, membuat orang-orang enggan keluar. Dusun sederhana berhawa sejuk itu terletak pada elevasi 930 hingga 940 meter dpl (dari paras air laut rata-rata). Mayoritas penduduk bergelut di dunia pertanian. Dusun ini nyaris tak dikenal orang luar Karangkobar, meski berada di jalur jalan raya utama yang menghubungkan kota Banjarnegara dengan Leksana (ibukota kecamatan Karangkobar) dan Dataran Tinggi Dieng. Jalan raya yang sama juga menjadi salah satu poros penghubung Banjarnegara dengan Pekalongan di utara. Jalan tersebut telah beraspal mulus dengan kualitas baik, meski naik turun dan penuh tikungan. Terdapat sekitar 150 rumah di dusun ini. Desa Sampang sendiri berpenduduk lebih dari 2.000 jiwa dengan 1.805 orang diantaranya terdaftar sebagai pemilih dalam daftar pemilih tetap pilpres 2014 lalu seperti dipublikasikan KPU (Komisi Pemilihan Umum).

Gambar 2. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dari langit dalam citra Google Earth pra bencana. Nampak bentangan jalan raya Banjarnegara-Dieng/Banjarnegara-Pekalongan, sungai Petir dan masjid al-Iman. Sumber: Sudibyo, 2014 dengan basis Google Earth.

Gambar 2. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dari langit dalam citra Google Earth pra bencana. Nampak bentangan jalan raya Banjarnegara-Dieng/Banjarnegara-Pekalongan, sungai Petir dan masjid al-Iman. Sumber: Sudibyo, 2014 dengan basis Google Earth.

Situasi berubah dramatis pada pukul 17:00 WIB. Didahului suara mirip ledakan keras hingga dua kali, lereng sisi utara Gunung Telagalele yang persis ada di hadapan dusun ini mendadak longsor. Materialnya mengalir deras tak tertahankan ke kaki gunung. Hampir segenap dusun beserta penduduknya kontan terkubur di bawah timbunan lumpur tebal. Longsor dahsyat ini juga menimbun jalan raya beserta kendaraan apapun yang sedang melintasinya saat itu. Hanya dalam lima menit, lansekap yang semula indah kini berubah menjadi timbunan tanah yang mengerikan. Luas kawasan yang terkena hantaman longsor dalam bencana dahsyat ini mencapai tak kurang dari 15 hektar dan sebagian menyumbat Sungai Petir, salah satu anak sungai Merawu dalam DAS (daerah aliran sungai) Serayu. Hingga Minggu 13 Desember 2014 TU, tim evakuasi yang kini sudah beranggotakan lebih dari 2.000 orang dari segenap eksponen relawan telah menemukan 42 jasad korban. Dari perkiraan 108 jasad yang terkubur, maka masih ada 66 orang yang belum ditemukan. Ribuan penduduk baik dari desa Sampang maupun desa-desa sekitarnya telah diungsikan ke tempat-tempat pengungsian sementara, seiring Gunung Telagalele dan bukit-bukit lainnya di sini yang masih labil. Nama Jemblung dan Sampang pun sontak menjadi episentrum perhatian hingga skala nasional.

Lempung dan Napal

Skala kedahsyatan bencana longsor Jemblung (Sampang) 2014 ini menggamit kembali ingatan akan sejumlah bencana sejenis yang menerpa Banjarnegara dalam setengah abad terakhir. Misalnya bencana longsor Gunungraja (Sijeruk) 2006, yang terjadi pada 4 Januari 2006 TU dan merenggut 90 nyawa dengan 76 jasad korban berhasil ditemukan dan 14 sisanya tetap hilang. Atau bencana longsor Legetang (Kepakisan) 1955 yang spektakuler, yang terjadi pada 16 April 1955 TU akibat ambrolnya lereng Gunung Pengamun-amun di Dataran Tinggi Dieng dan menimbun tak kurang dari 351 orang. Ketiga bencana longsor dahsyat itu pun harus disandingkan pula dengan bencana longsor dalam skala yang lebih kecil lainnya di Banjarnegara. Dalam kurun lima tahun terakhir, kabupaten ini berhadapan dengan 15 peristiwa tanah longsor atau rata-rata tiga peristiwa longsor per tahun. Semua bencana longsor menimbulkan kerugian material yang besar dan beberapa diantaranya bahkan merenggut korban jiwa, meski tak sefantastis bencana longsor dahsyat Legetang, Gunungraja dan Jemblung. Pada saat yang sama dengan bencana longsor dahsyat Jemblung ini, Banjarnegara pun sedang berhadapan dengan tak kurang dari 66 titik longsor lainnya.

Mengapa bencana tanah longsor seakan jadi penyakit kambuhan bagi Banjarnegara?

Gambar 3. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dalam citra Google Earth pra bencana ke arah timur-timur laut. Tanda panah kuning menunjukkan arah gerakan tanah saat bencana longsor dahsyat 12 Desember 2014 TU. Sementara garis putus-putus menandakan perkiraan batas daerah yang tertimbun tanah dalam bencana tersebut. Sumber: Sudibyo, 2014 dengan basis Google Earth.

Gambar 3. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dalam citra Google Earth pra bencana ke arah timur-timur laut. Tanda panah kuning menunjukkan arah gerakan tanah saat bencana longsor dahsyat 12 Desember 2014 TU. Sementara garis putus-putus menandakan perkiraan batas daerah yang tertimbun tanah dalam bencana tersebut. Sumber: Sudibyo, 2014 dengan basis Google Earth.

Faktor utamanya terletak pada geologi Banjarnegara yang unik, khususnya kawasan Karangkobar-Merawu yang menjadi bagian sub-DAS Merawu. Kawasan ini merupakan bagian dari mandala Pegunungan Serayu Utara yang topografinya relatif bergelombang yang lereng-lerengnya setengah terjal hingga terjal. Segenap kecamatan Karangkobar terletak di dalam pegunungan ini, dengan gunung-gunungnya memiliki kemiringan lereng antara 15 hingga 40 %. Kawasan Karangkobar-Merawu ini dialasi oleh batuan sedimen lempung dan napal hasil rombakan gunung berapi jauh di masa silam. Permukaannya ditutupi tanah hasil pelapukan yang cukup tebal. Hal ini masih ditambah dengan tercabik-cabiknya kawasan Karangkobar-Merawu akibat aktivitas tektonik nun jauh di masa silam, yang membuat kawasan ini dibelah-belah dan ditekan hebat demikian rupa oleh beragam sesar (patahan) yang saling bersilang-siur dan aktif pada masanya. Kini sesar-sesar itu telah lama mati, namun imbasnya masih bisa dirasakan dalam wujud rapuhnya lempung dan napal yang mengalasi kawasan Karangkobar-Merawu. Lempung dan napal tersebut cukup sarang sehingga mampu menyimpan air namun juga membuatnya mudah longsor bila kandungan airnya telah jenuh.

Kekhasan ini masih ditambah dengan terus bergeraknya kawasan Karangkobar-Merawu akibat desakan dari dalam dari arah selatan. Desakan yang masih terus berlangsung membuat lempung dan napal seakan diremas-remas. Sejumlah gunung batu relatif padat, yang adalah sisa intrusi magmatik nun jauh di masa silam dan relatif tahan terhadap pengikisan oleh cuaca, pun turut terdorong oleh desakan tersebut hingga terputus dari akarnya. Situasi ini kian menambah rapuh lempung dan napal di segenap kawasan Karangkibar-Merawu. Tak heran jika tingkat erosi di sini demikian tinggi, bahkan meskipun vegetasi (tumbuhan) berkayu yang rapat masih menutupi lereng-lerengnya dengan baik. Tanah pucuk (topsoil) yang dihanyutkan air lantas mengalir ke sungai-sungai kecil yang menjadi bagian sub-DAS Merawu. Hampir tiga perempat abad silam geolog legendaris van Bemmelen menyebut Sungai Merawu adalah sungai paling berlumpur di Indonesia. Tingginya erosi di sub-DAS Merawu memberikan kontribusi cukup besar bagi sedimentasi Waduk Panglima Besar Sudirman. Setiap tahunnya waduk ini dimasuki sedimen sebanyak 2,4 juta meter kubik. Sedimentasi tersebut setara dengan lumpur/tanah yang diangkut 1.300 dump truck kapasitas 5 meter kubik dalam setiap harinya. Selain erosi yang sangat tinggi, kekhasan kawasan Karangkobar-Merawu juga menjadikannya kawasan yang sangat rentan terhadap bencana tanah longsor baik dalam skala kecil maupun besar. Tak heran jika PVMBG (Pusat Vulkanologi dan Mitigasi Bencana Geologi) menempatkan mayoritas kecamatan Karangkobar ke dalam zona kerentanan gerakan tanah menengah (zona kuning) dan tinggi (zona merah).

Gambar 4. Peta zona kerentanan gerakan tanah untuk kecamatan Karangkobar dan sekitarnya dari Pusat Vulkanologi dan Mitigasi Bencana Geologi. Lingkaran merah menunjukkan lokasi bencana tanah longsor dahsyat Jemblung (Sampang) 2014. Nampak lokasi bencana dan sekitarnya didominasi oleh zona rentan gerakan tanah menengah (zona kuning) dan zona rentan gerakan tanah tinggi (zona merah). Sumber: PVMBG, t.t.

Gambar 4. Peta zona kerentanan gerakan tanah untuk kecamatan Karangkobar dan sekitarnya dari Pusat Vulkanologi dan Mitigasi Bencana Geologi. Lingkaran merah menunjukkan lokasi bencana tanah longsor dahsyat Jemblung (Sampang) 2014. Nampak lokasi bencana dan sekitarnya didominasi oleh zona rentan gerakan tanah menengah (zona kuning) dan zona rentan gerakan tanah tinggi (zona merah). Sumber: PVMBG, t.t.

Bencana tanah longsor dahsyat di kawasan Karangkobar-Merawu umumnya disebabkan akumulasi air hujan dalam lereng setengah terjal hingga terjal sampai mencapai titik jenuh. Selain menambah bobot lereng, akumulasi air juga membuat bagian bawah tanah lereng tersebut seakan dilumasi sehingga menciptakan bidang gelincir. Begitu lereng tak lagi sanggup menahan bobotnya sendiri, bidang gelincir membuat proses melorotnya lereng menjadi lebih mudah. Jika bidang gelincirnya berbentuk cekung, maka tanah longsor bertipe rotasional pun terjadilah. Longsor rotasional cukup khas karena mengandung energi besar sehingga saat segenap lereng merosot, ia mampu meloncatkan kaki lereng (lidah longsor) hingga beberapa puluh atau bahkan beberapa ratus meter dalam kecepatan cukup tinggi sebelum menyentuh tanah. Sementara puncak lereng (mahkota longsor) mungkin hanya beringsut beberapa meter hingga beberapa puluh meter. Loncatan ini sangat sulit dihindari. Namun bencana tanah longsor dalam skala besar tidaklah terjadi sekonyong-konyong. Selalu terdapat gejala pendahuluan sebelum peristiwa utamanya terjadi, dalam rupa terbentuk retakan-retakan di bagian atas lereng yang kemudian terus berkembang memanjang dan kian dalam menjadi retakan lengkung/retakan bulan sabit/retakan tapal kuda. Dari retakan inilah air hujan lebih mudah memasuki lereng dan terakumulasi. Tatkala hal ini sudah terjadi, bencana tanah longsor tinggal menunggu waktu.

Gambar 5. Tiga lokasi dalam Kabupaten Banjarnegara yang pernah dilanda bencana tanah longsor dahsyat hingga melenyapkan hampir segenap dusun. Masing-masing adalah dusun Legetang desa Kepakisan (kecamatan Batur), dusun Gunungraja desa Sijeruk (kecamatan Banjarmangu) dan dusun Jemblung desa Sampang (kecamatan Karangkobar). Sumber: Sudibyo, 2014 dengan basis Google Earth.

Gambar 5. Tiga lokasi dalam Kabupaten Banjarnegara yang pernah dilanda bencana tanah longsor dahsyat hingga melenyapkan hampir segenap dusun. Masing-masing adalah dusun Legetang desa Kepakisan (kecamatan Batur), dusun Gunungraja desa Sijeruk (kecamatan Banjarmangu) dan dusun Jemblung desa Sampang (kecamatan Karangkobar). Sumber: Sudibyo, 2014 dengan basis Google Earth.

Legetang dan Gunungraja

Hal tersebut teramati dalam bencana tanah longsor dahsyat Legetang 1955. 70 hari sebelum bencana terjadi, retakan sudah mulai terlihat di dekat puncak Gunung pengamun-amun (elevasi 2.000 meter dpl) yang berjarak sekitar 500 meter sebelah timur dusun Legetang, desa Kepakisan. Para pencari rumput dan kayu bakar di gunung yang saat itu tertutupi hutan lebat pun telah mengetahuinya. Kian lama retakan tersebut kian melebar dan juga kian dalam, mengarah ke sisi tenggara. Retakan yang terus berkembang ini sering menjadi bahan obrolan sehari-hari penduduk dusun Legetang, yang terletak pada elevasi sekitar 1.800 meter dpl. Namun tak ada yang merasa khawatir atau menduga terlalu jauh.

Situasi berubah dramatis pada pertengahan April 1955 TU. Setelah diguyur hujan lebat selama berhari-hari, lereng sisi tenggara Gunung Pengamun-amun telah demikian berat dan terlumasi dasarnya sehingga merosot ambrol dalam volume sangat besar. Penyelidikan geolog MM Purbo dari Jawatan Geologi (kini Badan Geologi Kementerian Energi dan Sumber Daya Mineral RI) memperlihatkan kombinasi longsor bertipe rotasional dengan halangan bukit kecil dihadapannya membuat membuat lidah longsor meloncat jauh. Ia membentur bukit dihadapannya. Hingga akhirnya material longsor pun terbelokkan ke dusun Legetang setelah meloncati sebatang sungai kecil jelang tengah malam 16 April 1955 TU. Segenap dusun ini pun terkubur di bawah tumbunan tanah yang sangat tebal beserta 332 penduduknya dan 19 orang dari desa lain yang sedang bertamu ke dusun tersebut.

Gambar 6. Bagaimana bencana tanah longsor dahsyat Legetang (Kepakisan) 1955 terjadi, dalam ilustrasi berbasis citra Google Earth. Saat lereng tenggara Gunung Pengamun-amun hingga hampir ke puncaknya merosot dengan tipe rotasional (panah kuning tak terputus), materialnya segera membentur bukit dihadapannya. Sehingga berbelok arah menjadi mengubur dusun Legetang (panah kuning putus-putus). 351 orang tewas dan hanya 1 jasad yang berhasil dievakuasi. Sumber: Sudibyo, 2014 dengan basis Google Earth dan Abdrurrahman, 2013.

Gambar 6. Bagaimana bencana tanah longsor dahsyat Legetang (Kepakisan) 1955 terjadi, dalam ilustrasi berbasis citra Google Earth. Saat lereng tenggara Gunung Pengamun-amun hingga hampir ke puncaknya merosot dengan tipe rotasional (panah kuning tak terputus), materialnya segera membentur bukit dihadapannya. Sehingga berbelok arah menjadi mengubur dusun Legetang (panah kuning putus-putus). 351 orang tewas dan hanya 1 jasad yang berhasil dievakuasi. Sumber: Sudibyo, 2014 dengan basis Google Earth dan Abdrurrahman, 2013.

Bentang lahan Legetang pun berubah dramatis dari semula cekungan di sebuah lembah menjadi gundukan sedikit membukit. Dari 351 korban jiwa itu, hanya jasad kepala dusun yang berhasil dievakuasi. Sisanya terlalu sulit untuk digali akibat tebalnya timbunan tanah. Bencana dahsyat ini sontak menggemparkan masyarakat Banjarnegara khususnya di Dataran Tinggi Dieng. Penduduk segera menghubung-hubungkan bencana ini dengan sikap warga dusun Legetang, yang jauh dari kehidupan religius. Kini di ‘bukit’ yang menimbun Legetang terdapat sebuah tugu beton sebagai pengingat akan bencana yang paling mematikan di Dataran Tinggi Dieng dan Banjarnegara.

Hal serupa juga terjadi jelang bencana longsor dahsyat Gunungraja. Bahkan retakan di lereng bukit Pawinihan sudah terdeteksi semenjak 2004, atau dua tahun sebelumnya. Retakan tersebut terus berkembang dan melebar akibat erosi parit. Hingga dua minggu jelang bencana, retakan ini telah sepanjang 25 meter dengan lebar 1 hingga 2 meter sedalam 4 meter. Lebih tak menguntungkan lagi, erosi parit juga membuat ujung parit ini terbendung oleh material erosi sehingga air tak leluasa mengalir. Namun sepanjang waktu itu tidak ada langkah antisipasi. Meski demikian hingga November 2005 TU bencana relatif terhindarkan seiring masih seimbangnya arus keluaran air (lewat kemampuan tanah bukit untuk menyerap air) dengan arus masukan air (dari air hujan).

Situasi berubah dramatis pada November 2005 TU saat tanah di kaki bukit diperkeras dengan aspal sebagai jalan raya lokal yang menghubungkan dusun Gunungraja Wetan dengan dusun Kendaga, keduanya dalam wilayah desa Sijeruk. Pengaspalan jalan lokal ini jelas bertujuan baik, untuk memperlancar arus transportasi setempat dengan efek multidimensinya. Namun dalam analisis pascabencana yang dilakukan tim Dewan Riset Daerah (DRD) Jawa Tengah, pengaspalan jalan di kaki bukit membuat keseimbangan terganggu. Kini arus masukan air menjadi lebih besar dari arus keluarannya. Puncaknya terjadi pada selang waktu antara 27 Desember 2005 hingga 4 Januari 2006 TU, saat Banjarnegara diguyur hujan lebat. Masukan air di lereng bukit Pawinihan itu pun meningkat hebat tanpa diimbangi oleh peningkatan kemampuan keluaran air. Lereng yang jenuh air membuat bobotnya bertambah besar sembari menciptakan bidang gelincir didasarnya. Maka bencana tanah longsor dahsyat pun terjadilah, tak peduli bahwa lereng bukit itu masih tertutupi tumbuh-tumbuhan berakar tunggang dengan baik. Sebagian dusun Gunungraja pun lenyap di bawah timbunan tanah, yang merenggut nyawa 90 orang dari sekitar 600 orang penduduknya.

Gambar 7. Bagaimana bencana tanah longsor dahsyat Gunungraja (Sijeruk) 2006 terjadi, dalam ilustrasi berbasis citra Google Earth. Saat lereng timur Bukit Pawinihan merosot dengan tipe rotasional (panah kuning)materialnya segera meloncat dan mengubur dusun Gunungraja. 90 orang tewas dan 76 jasad yang berhasil dievakuasi. Sumber: Sudibyo, 2014 dengan basis Google Earth dan data dari Sutopo & Wilonoyudho, 2006.

Gambar 7. Bagaimana bencana tanah longsor dahsyat Gunungraja (Sijeruk) 2006 terjadi, dalam ilustrasi berbasis citra Google Earth. Saat lereng timur Bukit Pawinihan merosot dengan tipe rotasional (panah kuning)materialnya segera meloncat dan mengubur dusun Gunungraja. 90 orang tewas dan 76 jasad yang berhasil dievakuasi. Sumber: Sudibyo, 2014 dengan basis Google Earth dan data dari Sutopo & Wilonoyudho, 2006.

Bagaimana dengan longsor dahsyat Jemblung?

Relawan MDMC (Muhammadiyah Disaster Management Centre) yang sempat melakukan assessment sebelum bencana menyebutkan telah ada retakan di lereng utara Gunung Telagalele semenjak sebulan sebelum bencana. Retakan tersebut bahkan telah berkembang seiring datangnya musim penghujan. Berkaca dari pengalaman longsor dahsyat Gunungraja, yang hanya berjarak 5 kilometer di selatan dusun Jemblung, maka sejumlah langkah antisipasi telah dilakukan. Penduduk yang bermukim di rumah-rumah yang persis ada di bawah retakan pun telah dievakuasi. Dapat dikatakan bahwa penduduk dusun Jemblung telah mengetahui potensi longsor tersebut dan telah melakukan antisipasi. Satu hal yang belum jelas benar adalah seberapa jauh longsor yang bakal terjadi itu melanda. Anggapan yang berkembang, longsor yang bakal terjadi mungkin berskala kecil hingga sedang. Sehingga evakuasi hanya dilakukan di rumah-rumah di lereng, yang posisinya paling dekat ke retakan.

Asumsi ini ternyata tak terbukti. Longsor yang benar-benar terjadi ternyata berskala besar. Analisis tim respon cepat bencana UGM (Universitas Gadjah Mada) menyebut lereng yang longsor berdimensi tinggi 100 meter dan lebar 500 meter. Tipe longsornya mungkin rotasional, yang membuat lidah longsor meloncat dan menerjang hingga sejauh 600 meter. 35 rumah dan 1 masjid (Masjid al-Iman) bersama dengan penggal jalan raya Banjarnegara-Dieng tertimbun material longsor hingga bermeter-meter. Dari 308 penduduknya, 200 orang diantaranya berhasil menyelamatkan diri. Longsor dahsyat Jemblung merupakan yang terbesar di antara 34 titik tanah longsor lainnya yang berhasil ditemukan. Seluruhnya terletak di kawasan Karangkobar.

Gambar 8. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dan Gunung Telagalele dalam ilustrasi berbasis citra Google Earth dengan arah pandang ke selatan. Garis putus-putus menunjukkan perkiraan posisi asal material longsor. Tanda panah kuning menunjukkan arah gerakan tanah dalam bencana longsor dahsyat tersebut. Sumber: Sudibyo, 2014 dengan basis Google Earth dan keterangan Azizah, 2014.

Gambar 8. Panorama dusun Jemblung, desa Sampang (Banjarnegara) dan Gunung Telagalele dalam ilustrasi berbasis citra Google Earth dengan arah pandang ke selatan. Garis putus-putus menunjukkan perkiraan posisi asal material longsor. Tanda panah kuning menunjukkan arah gerakan tanah dalam bencana longsor dahsyat tersebut. Sumber: Sudibyo, 2014 dengan basis Google Earth dan keterangan Azizah, 2014.

Pasca bencana, tim kaji cepat yang beranggotakan UGM, BMKG, PVMBG, LIPI (Lembaga Ilmu Pengetahuan Indonesia), BNPB (Badan Nasional Penanggulangan Bencana) dan lainnya memperlihatkan potensi bencana masih tetap membayangi dusun Jemblung ke depan. Potensi pertama datang dari material longsoran yang sebagian membendung sungai Petir. Jika hujan deras, bendungan ini akan menghalangi air sungai untuk beberapa saat sebelum kemudian jebol menjadi banjir bandang. Sementara potensi kedua datang dari mahkota longsor. Di sini terdapat telaga sepanjang 30 meter yang digenangi air hingga sedalam 1 meter. Bila hujan deras kembali mengguyur, air dalam telaga ini dapat menekan tanah dibawahnya yang telah demikian lunak dan rapuh sehingga longsor dapat kembali terjadi. Bahkan dalam prediksi terburuk, skala bencananya bisa melampaui apa yang barusan dusun Jemblung alami!

Antisipasi

Dalam bencana tanah longsor pada umumnya, sedikitnya ada tiga faktor yang berkontribusi. Dalam kasus Banjarnegara khususnya di kawasan Karangkobar-Merawu, faktor pertama adalah kondisi geologi yang unik. Faktor kedua adalah hujan deras hingga hujan ekstrim. Dan faktor ketiga adalah tersumbatnya drainase sehingga air tidak bisa terbebas dengan leluasa dari lereng yang berpotensi longsor. Faktor pertama dan kedua adalah faktor yang terberi (given), atau sudah dari sononya demikian. Sehingga tak bisa dikendalikan manusia. Namun berbeda dengan faktor ketiga. Manusia dapat mengelola drainase lereng, sehingga tingkat kejenuhan airnya dapat direduksi. Saluran-saluran drainase sederhana dapat dibangun untuk keperluan itu. Di samping itu retakan yang sudah terbentuk harus segera ditimbuni lagi hingga rata. Juga tak boleh ada penggalian baik di lereng maupun kaki lereng, baik kecil-kecilan apalagi besar, atas alasan apapun.

Gambar 9. Citra medan pandang lebar (wide-field) lokasi bencana tanah longsor dahsyat Jemblung (Sampang) 2014, diambil Pusat Vulkanologi dan Mitigasi Bencana Geologi per 13 Desember 2014 TU. Arah pandang ke selatan-tenggara. Nampak posisi mahkota longsor dan telaga/genangan air tepat dibawahnya. Sumber: PVMBG, 2014.

Gambar 9. Citra medan pandang lebar (wide-field) lokasi bencana tanah longsor dahsyat Jemblung (Sampang) 2014, diambil Pusat Vulkanologi dan Mitigasi Bencana Geologi per 13 Desember 2014 TU. Arah pandang ke selatan-tenggara. Nampak posisi mahkota longsor dan telaga/genangan air tepat dibawahnya. Sumber: PVMBG, 2014.

Bencana tanah longsor senantiasa membayangi Banjarnegara sebagai implikasi dari takdir kembumiannya yang unik. Takdir yang membuat tanah di sini sangat subur dan dapat ditumbuhi beragam tanaman budidaya. Takdir yang juga menjadikannya kawasan berpanorama indah dan sejuk. Jika dikelola dengan baik, dua hal tersebut dapat menjadikan Banjarnegara gemah ripah loh jinawi. Namun high risk high gain, di balik segala keuntungan tersebut tersembunyi pula bakat marabahaya. Di masa beratus hingga ribuan tahun silam, potensi bencana tanah longsor mungkin tak menjadi masalah besar seiring jumlah penduduk yang masih jarang. Namun kini jumlah penduduk telah berlipat ganda, sehingga resikonya semakin besar. Maka patut disambut baik upaya tim UGM beserta institusi lainnya untuk memetakan potensi longsor Banjarnegara hingga ke tingkat dusun (sub-desa). Patut disambut pula gagasan gubernur Jawa Tengah untuk menransmigrasikan lokal penduduk dusun Jemblung yang masih tersisa. Gagasan transmigrasi lokal atau relokasi yang masih tetap berada dalam lingkup Banjarnegara patut dikembangkan tak hanya untuk dusun Jemblung pasca bencana. Namun juga untuk dusun-dusun lain yang kelak diketahui memiliki potensi longsor yang tinggi. Agar kelak korban tak lagi berjatuhan…

Bahan acuan :

Oman Abdurrahman. 2013. Geologi Linewatan, dari Tasikmalaya hingga Banjarnegara. Geomagz, vol. 3 no. 1 (Maret 2013), hal. 54-79.

PVMBG. 2014. Tanggapan Bencana Gerakan Tanah Di Kecamatan Sigaluh, Kecamatan Pejawaran dan Kecamatan Karang Kobar, Kabupaten Banjarnegara, Provinsi Jawa Tengah. Pusat Vulkanologi dan Mitigasi Bencana Geologi, Badan Geologi, Kementerian Energi dan Sumber Daya Mineral RI, 12 Desember 2014.

Buku Putih Sanitasi Kabupaten Banjarnegara. 2011.

Sutopo & Wilonoyudho. 2006. Analisis Tanah Longsor Banjarnegara. Wacana Suara Merdeka, 26 Januari 2006.

Daryono. 2014. komunikasi personal.

Ima Azizah. 2014. komunikasi personal.

Twitter Nurmansyah (@nurmansali). 2014.

Detik. 2014. Ini Hasil Investigasi UGM soal Aspek Geologi Bencana Longsor Banjarnegara. Laman DetikNews, reportase Sukma Indah Permana, 15 Desember 2014.

Tempo. 2014. Kolam Raksasa pada Sumber Longsor Banjarnegara. Laman Tempo.co, reportase Aris Andrianto, 15 Desember 2014.