Menuju Kebumen Siaga Tsunami

Bagian pertama dari dua tulisan

Peristiwanya sudah berlalu satu dasawarsa. Bekas-bekasnya pun sebagian besar sudah tak ada. Kota-kota yang dulu begitu merana dibuatnya, kini menggeliat kembali dalam rutinitas sehari-hari layaknya sedia kala. Bencana dahsyat itu seperti telah lenyap ditelan masa. Hanya di sejumlah lokasi saja jejak-jejak kedahsyatannya masih tersisa. Namun tidak demikian di sanubari dan benak sebagian besar insan Indonesia. Bencana itu masih demikian membekas, seakan baru terjadi kemarin sore saja.

Minggu 26 Desember 2004 Tarikh Umum (TU) awalnya mungkin dianggap bakal menjadi sebuah hari Minggu biasa saja bagi Indonesia. Di benak banyak orang mungkin bakal ada sedikit kemeriahan. Tahun 2014 TU bakal segera tutup buku. Tahun dimana Indonesia menjalani pemilu yang menentukan, namun terlaksana tanpa huru-hara seperti ramalan sejumlah orang. Terkecuali bagi ujung utara pulau Sumatra. Keributan masih terjadi di sini, sering masih berlakunya status darurat militer. Aparat militer masih terus mencoba menekan dan menghimpit anasir-anasir separatis hingga ke tubir kemampuannya. Baku tembak kerap terjadi diberbagai tempat. Namun secara umum Indonesia relatif tenang, aman dan bersiap menyongsong masa depan.

Semua berubah drastis semenjak pukul 07:59 WIB. Pada jam itu, ujung utara pulau Sumatra bergetar. Gempa bumi tektonik melanda. Sejatinya gempa tektonik bukanlah hal yang aneh bagi kawasan ini. Di dasar samudera lepas pantai barat pulau ini terdapat zona subduksi dimana lempeng India dan Australia melekuk ke bawah lempeng Eurasia. Palung laut yang panjang membentang dari barat laut ke tenggara merupakan wujud fisiknya. Sementara di darat, sebuah sistem patahan besar membentang dari Banda Aceh di utara hingga Selat Sunda di selatan, yang menampakkan dirinya sebagai lembah-lembah lurus panjang di sela-sela Pegunungan Bukit Barisan. Itulah sistem patahan besar Sumatra yang legendaris. Baik zona subduksi maupun sistem patahan besar Sumatra adalah generator tektonik yang produktif.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Tapi gempa ini bukanlah gempa biasa. Di ujung utara pulau Sumatra itu, tanah bergetar keras dan berayun-ayun laksana lautan yang sedang bergelora. Orang-orang yang merasakannya tak kuasa berdiri tegak. Banyak benda berjatuhan. Beberapa bangunan di kota-kota seperti Banda Aceh, Calang dan Meulaboh runtuh. Getaran bahkan masih sanggup meretakkan kaca-kaca bangunan di Medan, kota yang di pantai timur Sumatra. Getaran itu berlangsung cukup lama. Orang-orang merasakannya lebih dari 10 menit. Sementara instrumen pencatat gempa (seismometer) mencatatnya dengan riuh selama 15 menit lebih, menjadikannya durasi gempa terlama yang pernah tercatat sepanjang sejarah ilmu kegempaan (seismologi) modern. Magnitud (kekuatan)-nya juga luar biasa. Dengan getaran yang luar biasa keras, satuan pengukuran standar gempa bumi yang kita kenal sebagai skala Richter (SR) pun tersaturasi dan tak dapat digunakan dengan baik. Sehingga satuan pengukuran yang lebih spesifik pun digunakan, yakni skala Magnitudo (SM). Gempa bumi 26 Desember 2014 TU di ujung utara pulau Sumatra itu ternyata memiliki magnitud 9,3 SM. Inilah gempa terbesar nomor dua yang pernah tercatat sepanjang sejarah seismologi modern setelah Gempa Chile 1960.

Dengan magnitud-nya yang demikian besar, ilmu kegempaan modern menggolongkan getaran tak biasa di ujung utara pulau Sumatra sebagai gempa akbar (megathrust). Ini jenis gempa yang langka karena melibatkan pematahan kerak bumi dalam luasan yang sangat besar hingga puluhan ribu kilometer persegi. Pematahan ini disertai pergeseran (pelentingan) massa batuan yang terpatahkan dengan jarak yang fantastis, hingga puluhan meter. Gempa jenis ini selalu terjadi di zona subduksi. Semenjak seismologi modern bersemi di dekade 1930-an TU, umat manusia baru menyaksikan enam peristiwa gempa akbar. Dan getaran tak biasa di ujung utara pulau Sumatra itu adalah gempa akbar ketujuh, yang kemudian dikenal sebagai Gempa akbar Sumatra-Andaman 26 Desember 2004 atau disebut juga gempa akbar Sumatra-Andaman 2004.

Begitu menyadari sebuah gempa akbar telah terjadi di Samudera Indonesia di Minggu pagi 26 Desember 2014 TU itu, Pacific Tsunami Warning Center (PTWC) yang berkedudukan di Hawaii (Amerika Serikat) segera melakukan simulasi dan hasilnya segera disebar. Sebab pasca sebuah gempa akbar, akan ada bencana lain yang menyusul dengan skala yang tak kalah dahsyatnya. Namun tiadanya infrastruktur sistem peringatan dini di sekujur pesisir Samudera Indonesia membuat peringatan itu tak dapat disalurkan hingga ke masyarakat akar rumput yang berpotensi terdampak.

Bencana pun terjadilah tanpa bisa dihindari. Dalam waktu sejam pasca gempa, kota Banda Aceh dilimbur gelora dari arah samudera. Itulah tsunami. Tingginya tak kepalang tanggung, hingga 20 meter dan bahkan lebih. Air bah menginvasi daratan hingga sejauh 4 kilometer dari garis pantai. Tak hanya Banda Aceh. Kota-kota lain di pesisir barat propinsi Aceh pun tak luput dari terjangan seperti Meulaboh dan Calang. Di Lhoknga, tsunami bahkan menggempur sebagai gelora setinggi bukit. Tinggi gelombangnya mencapai 50 meter! Begitu memasuki kota, air bah tsunami melanda dan menggerus apa saja yang dilaluinya, kecuali bangunan berkualitas baik. Jaringan jalan raya berkualitas baik di Banda Aceh justru menjadi jalan bebas hambatan bagi tsunami untuk menginvasi daratan lebih jauh lagi. Jika kecepatan tsunami saat tiba di pesisir umumnya berkisar 20 hingga 30 kilometer/jam, saat menggempur daratan melalui jalan raya Banda Aceh justru ia melejit hingga secepat 60 kilometer/jam !

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Tsunami dahsyat tak hanya menyerbu Indonesia. Segenap negara yang pesisirnya berhadapan dengan Samudera Indonesia turut merasakannya seperti Thailand, Malaysia, Myanmar, Sri Lanka, India, Bangladesh, Maladewa, Yaman dan bahkan hingga ke benua Afrika meliputi Somalia, Tanzania, Afrika Selatan, Kenya dan Madagaskar. Lebih dari seperempat juta jiwa, tepatnya 280.000 orang, terbunuh oleh terjangan tsunami ini. Ini menjadikannya bencana tsunami paling mematikan semenjak awal peradaban manusia, melampaui rekor yang semula dipegang tsunami produk Gempa Messina 1908 (Italia) yang menewaskan 123.000 orang. Dari 280.000 korban, sekitar 200.000 diantaranya adalah orang Indonesia khususnya penduduk yang bermukim di sepanjang pesisir barat dan utara propinsi Aceh. Bersama dengannya 1,74 juta orang dipaksa mengungsi dengan lebih dari setengah juta diantaranya berasal dari Indonesia. Massifnya skala bencana tsunami ini membuat tsunami produk Letusan Krakatau 1883 yang merenggut nyawa 36.417 jiwa (angka resmi) atau 120.000 jiwa (angka perkiraan) terasa kecil. Bencana ini pun membuat tsunami paling mematikan di Indonesia dalam abad ke-20, yakni tsunami produk Gempa Flores 1992 yang menelan korban 2.500 jiwa, menjadi terasa demikian kerdil.

Raksasa Pembangkit Gelora

Dahsyatnya bencana tsunami dalam Gempa akbar Sumatra-Andaman 2004 sontak mengejutkan dunia. Berbagai anggapan yang aneh-aneh tentang penyebab bencana pun diapungkan. Satu yang sempat menarik perhatian adalah anggapan bencana itu bagian dari konspirasi. Gempa akbar tersebut dan tsunami yang menyertainya dianggap terjadi akibat diledakkannya bom termonuklir di dasar Samudera Indonesia yang kemudian memicu rentetan bencana. Anggapan serupa masih tetap muncul tujuh tahun kemudian, tatkala gempa akbar berikutnya yakni Gempa akbar Tohoku (Jepang) 2011 datang mengguncang. Gempa akbar Tohoku 2011 juga menerbitkan tsunami, yang menjalar hingga sekujur pesisir Samudera Pasifik dengan korban jiwa pun cukup besar. Kali ini yang dituding bukan lagi bom termonuklir, melainkan fasilitas riset pemantauan ionosfer di bawah tajuk HAARP (High-frequency Active Auroral Research Program).

Tanpa harus menelaah jauh-jauh, tak sulit untuk mementahkan anggapan konspirasi ini. Jika bom termonuklir memicu rentetan bencana di ujung utara pulau Sumatra, kemana semua sampah radioaktif yang khas produk ledakan nuklirnya? Padahal salah satu ciri khas tsunami adalah ia mengaduk-aduk dasar samudera demikian rupa sehingga sedimen/endapan yang semula teronggok di dasar laut pun akan diangkutnya dan diendapkan di daratan yang diserbunya. Selain itu bagaimana peristiwa serupa pernah terjadi di sini dalam 600 hingga 700, 1.200 hingga 1.400 dan 1.800 hingga 2.100 tahun silam seperti ditemukan para ahli kegempaan belakangan? Di atas semua itu, anggapan konspirasi hanyalah mencoba mencari kambing hitam atas suatu bencana sehingga tak bermanfaat untuk mengantisipasi bencana sejenis di kelak kemudian hari.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Dalam pandangan seismologi modern, peristiwa gempa akbar dan tsunami yang menyertainya lebih merupakan akibat dari interaksi konvergen (saling bertemu) antara dua lempeng tektonik di zona subduksinya. Dalam kasus Gempa akbar Sumatra-Andaman 2004 itu dua lempeng tektonik yang saling bertemu adalah lempeng India yang oseanik (lempeng samudera) dan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental (lempeng benua). Karena berat jenisnya lebih tinggi, maka saat lempeng India bertemu dengan mikrolempeng Burma, ia melekuk dan selanjutnya menyelusup kebawahnya dengan sudut tertentu hingga akhirnya memasuki lapisan selubung atas (asthenosfer).

Mulai dari titik pelekukan, bagian atas lempeng India bersentuhan dengan bagian bawah mikrolempeng Burma, membentuk zona subduksi. Jalur dimana lempeng India melekuk secara kasat mata terlihat sebagai palung laut. Sementara mikrolempeng Burma mengelembung dan menyembul ke atas paras laut sebagai bagian dari daratan Aceh sebelah barat. Lempeng India bergerak relatif ke utara-timur laut dengan kecepatan 53 mm/tahun, sementara mikrolempeng Burma relatif tak bergerak. Posisi pulau Sumatra yang melintang membuat palung lautnya pun turut melintang, sehingga pergerakan lempeng India relatif terhadap zona subduksinya bersifat miring (oblique). Di lepas pantai barat ujung utara pulau Sumatra, kecepatan pergerakan itu 30 mm/tahun relatif terhadap zona subduksi. Sementara di sebelah utaranya, yakni di Kepulauan Andaman dan Nicobar, kecepatan relatifnya bahkan mendekati nol.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Idealnya pergerakan lempeng India dalam zona subduksinya dengan mikrolempeng Burma tidak terganggu. Namun dalam realitanya tidak demikian. Karena gaya gesek antar batuan dalam dua lempeng yang berbeda tersebut, pergerakan lempeng India terhalangi oleh gesekannya dengan mikrolempeng Burma. Mikrolempeng tersebut bahkan dapat terkunci ke lempeng India. Sehingga selagi lempeng India terus bergerak ke utara-barat laut, zona subduksinya (beserta palung laut dan pulau-pulau kecil didekatnya) pun turut bergeser ke arah yang sama, lebih mendekat ke pulau Sumatra. Ibarat pegas raksasa, mikrolempeng Burma jadi terdesak dan mulai memendek. Namun pemendekan ini memiliki batas maksimum. Saat tegangan batuan telah melampaui daya ikat antar batuan di zona kuncian, maka kunciannya itu pun terpatahkan. Mikrolempeng Burma spontan melenting kembali sehingga palung laut pun kembali menjauhi pulau Sumatra. Pematahan diikuti pelentingan inilah yang menghasilkan gempa bumi tektonik dan kemudian tsunami. Dalam gempa akbar, pematahan yang terjadi melibatkan luasan sangat besar dengan pelentingan yang tak kalah fantastisnya.

Gempa akbar Sumatra-Andaman 2004 melibatkan pematahan sepanjang 1.600 kilometer di zona subduksi lepas pantai barat Sumatra dan kepulauan Andaman-Nicobar, mulai dari pulau Simeulue di selatan hingga pulau Preparis di utara. Lebar pematahannya 150 kilometer. Sehingga area yang terpatahkan mencapai 1.600 x 150 kilometer persegi atau setara dengan separuh luas pulau Sumatra! Pelentingan yang terjadi bervariasi antara 10 meter hingga 30 meter. Akibat pelentingan ini maka palung laut di sepanjang pulau Simeulue hingga ke pulau Preparis mengalami pengangkatan vertikal yang bervariasi antara 1 hingga 5 meter. Dengan kata lain, dasar samudera di atas sumber gempa terdongkrak naik. Inilah yang membuat massa air laut diatasnya turut terangkat hingga ke permukaan samudera. Usikan dahsyat inilah yang menerbitkan tsunami dahsyat yang amat mematikan.

Tsunami bukanlah gelombang laut biasa. Ia memiliki periode yang cukup lama, yakni antara beberapa menit hingga 30 menit. Sementara periode ombak akibat hembusan angin hanya berkisar beberapa detik hingga 20 detik saja. Panjang gelombangnya pun sangat besar, puluhan hingga hingga 200 kilometer. Sementara panjang ombak produk hembusan angin hanyalah antara 60 hingga 150 meter. Dengan panjang gelombang yang jauh melebihi kedalaman samudera dimanapun, tsunami memiliki karakteristik mengaduk-aduk lautan yang dilewatinya hingga ke dasar. Sementara ombak produk hembusan angin hanya berefek di paras/permukaan laut saja. Kecepatannya pun berbeda jauh. Di tengah samudera, sebuah tsunami bisa melaju secepat 700 kilometer/jam atau sama cepatnya dengan pesawat jumbo jet komersial! Bandingkan dengan ombak produk hembusan angin yang hanya melaju pada kecepatan antara 30 hingga 60 kilometer/jam saja.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Kala tiba di pesisir, baik tsunami maupun ombak akan sedikit berubah perilakunya. Namun perbedaannya dramatis. Bagi ombak, ia akan melambat dan terpecah saat mendekati pesisir sehingga hanya mengguyur garis pantai. Tsunami pun melambat pula jelang tiba di pesisir, dengan kecepatan merosot drastis hingga hanya antara 20 sampai 30 kilometer/jam. Tapi karena panjang gelombangnya amat sangat besar bila dibandingkan dengan ombak, maka tsunami tak terpecah. Sebaliknya ketinggiannya justru kian meningkat akibat efek akumulasi tatkala bagian tsunami yang lebih cepat mendesak bagian tsunami yang sudah melambat. Karena itu bila di tengah-tengah samudera ketinggian tsunami hanyalah berkisar setengah meter atau kurang, jelang tiba di pesisir ia bisa berlipat kali lebih besar hingga beberapa meter atau bahkan belasan/puluhan meter. Fenomena ini disebut run-up. Karena itu saat menerjang garis pantai, tsunami lebih mirip dengan gelombang pasang sehingga ia melanda/menginvasi daratan hingga jarak cukup jauh, bergantung pada run-up-nya. Bedanya, jika penjalaran gelombang pasang biasa berlangsung cukup lambat (dalam hitungan jam), tsunami menyerbu cukup cepat (hanya dalam hitungan menit pasca tiba di garis pantai). Karena itu daya rusaknya jauh lebih besar.

Tsunami di Pesisir Selatan Jawa

Di Indonesia, zona subduksi tak hanya dijumpai di lepas pantai ujung utara pulau Sumatra saja. Namun juga di tempat-tempat lain di sekujur tanah Nusantara ini. Dapat dikatakan separuh dari garis pantai kepulauan ini berhadapan dengan zona subduksi. Termasuk segenap pesisir selatan pulau Jawa.

Sebelum 2004 TU, para ahli kegempaan bersilang pendapat mengenai potensi zona-zona subduksi di Indonesia dalam menghasilkan gempa akbar. Pada umumnya mereka sepakat bahwa potensi gempa akbar jauh lebih tinggi bagi kawasan pesisir Samudera Pasifik, dimanapun berada. Sebab di sini zona subduksinya berumur relatif muda secara geologis, yakni 20 juta tahun di selatan (Chile) dan 40 juta tahun di utara (Alaska). Zona subduksi yang muda ini dianggap kurang padat sehingga lebih mudah terpatahkan. Sebaliknya zona subduksi di Samudera Indonesia, khususnya di sepanjang kepulauan Indonesia, relatif lebih tua. Di sekitar pulau Simeulue umurnya 55 juta tahun. Sementara di Kepulauan Andaman-Nicobar umurnya jauh lebih tua yakni hampir 90 juta tahun. Terdapat hubungan antara umur zona subduksi dan kecepatan lempeng samudera relatif terhadap zona subduksi dengan magnitud maksimum gempa tektonik yang bisa dibangkitkannya. Untuk zona subduksi lempeng India dengan mikrolempeng Burma, magnitud maksimum itu berkisar antara 8 hingga 8,2 skala Magnitudo. Anggapan ini berantakan setelah Gempa akbar Sumatra-Andaman 2004 meletup, yang berkekuatan hingga 9,3 skala Magnitudo.

Pasca 2004 TU, kini para ahli kegempaan menyepakati seluruh zona subduksi yang ada dimanapun harus dipandang memiliki potensi serupa Sumatra-Andaman. Termasuk zona subduksi di lepas pantai pesisir selatan Pulau Jawa. Di zona subduksi ini lempeng Australia yang oseanik bersubduksi dengan lempeng Eurasia yang kontinental. Lempeng Australia bergerak ke utara-timur laut pada kecepatan 67 mm/tahun sementara lempeng Eurasia (yang menjadi landasan pulau Jawa) relatif stabil. Subduksi telah berumur 130 juta tahun dan menghasilkan zona subduksi yang hampir tepat tegaklurus terhadap arah gerak lempeng Australia (head-on). Sebelum 2004 TU, magnitud maksimum gempa tektonik yang bisa dibangkitkan zona subduksi ini diperkirakan hanya sekitar 7,7 skala Magnitudo. Namun pasca 2004 TU, perkiraannya berubah dramatis. Sejumlah ahli kegempaan bahkan berpendapat gempa akbar dengan magnitud hingga 9 skala Magnitudo berpotensi terjadi di sini. Sumber gempanya bisa di sisi selatan Selat Sunda, atau di lepas pantai selatan Jawa Tengah. Jika gempa akbar sebesar ini terjadi, tsunami dahsyat bakal menggempur pesisir selatan pulau Jawa dengan ketinggian bisa mencapai 10 meter atau bahkan lebih.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Salah satu kesulitan dalam mengidentifikasi apakah sebuah gempa akbar bisa terjadi di zona subduksi terletak pada minimnya data. Pada umumnya gempa tektonik, termasuk gempa akbar, selalu berulang di sumber yang sama. Namun periode ulangnya sangat lama, hingga beberapa ratus tahun untuk gempa akbar. Sementara seismologi modern dengan instrumen seismometernya baru berjalan kurang dari seabad ini. Apalagi pencatatan pergerakan lempeng tektonik di suatu daerah, itu baru berlangsung semenjak dekade 1980-an saja. Maka untuk mengetahui potensi gempa akbar di suatu tempat, para ahli kegempaan memanfaatkan pendekatan tak langsung. Baik dengan jalan menyelidiki naik-turunnya daratan melalui naik-turunnya karang di pulau-pulau kecil tepat di sebelah sebuah palung laut (seperti dilakukan di pulau Sumatra) maupun dengan menyelidiki lapisan-lapisan endapan takbiasa yang diproduksi sebuah tsunami di sepanjang pesisir.

Lewat analisis karang, kita mengetahui salah satu sumber gempa akbar di pulau Sumatra ada di segmen Kepulauan Mentawai. Gempa akbar di sini terjadi pada sekitar tahun 1370, 1600 serta yang terakhir pada 1797 dan 1833 TU. Dengan demikian gempa akbar dan tsunami besarnya di segmen Kepulauan Mentawai terjadi setiap 200 hingga 230 tahun sekali. Sementara sedimen pesisir di Thailand dan Simeule memperlihatkan gempa akbar dan tsunami besar di segmen Simeulue-Andaman-Nicobar berulang jauh lebih lama, yakni setiap 600 hingga 700 tahun sekali.

Bagaimana dengan pesisir selatan Pulau Jawa?

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Pesisir selatan Jawa Timur dilimbur tsunami produk gempa besar Banyuwangi 3 Juni 1994 (7,8 skala Magnitudo). Tinggi maksimum tsunaminya mencapai 15 meter dan menginvasi daratan hingga sejauh 400 meter. Korban jiwa yang direnggutnya tercatat 238 orang. Sementara pesisir selatan Jawa Barat dan sebagian Jawa Tengah dihantam tsunami dari gempa besar Pangandaran 17 Juli 2006 (7,7 skala Magnitudo). Tsunaminya menghantam pesisir mulai dari pantai Pangandaran (Jawa Barat) hingga pantai Parangtritis (DI Yogyakarta) dengan tinggi maksimum 21 meter di pulau Nusakambangan. Tsunami ini menelan korban jiwa hingga lebih dari 700 orang. Baik gempa besar Banyuwangi 1994 maupun Pangandaran 2006 merupakan gempa pembangkit tsunami yang takbiasa. Mereka terjadi tepat di sisi utara palung laut dengan getaran yang cukup lama, sehingga disebut sebagai gempa-lambat atau gempa-ayun (slow earthquake) yang getarannya tak begitu dirasakan di daratan pulau Jawa. Di lokasi sumber gempanya, getaran gempa menyebabkan tebing-tebing curam di sisi utara palung runtuh, menciptakan longsoran bawah laut yang massif. Kombinasi pengangkatan dasar laut di lokasi sumber gempa dan longsoran massif ini membangkitkan tsunami yang tak biasa. Meski bersifat lokal, namun ketinggiannya di pesisir dan invasinya ke daratan amat sangat besar dibanding tsunami yang hanya disebabkan oleh gempa saja.

Sebelum kedua peristiwa tersebut, pesisir selatan Pulau Jawa antara pantai Pangandaran hingga Parangtritis juga pernah diterpa tsunami pada 1921 TU. Tsunami ini produk gempa besar (7,5 skala Richter) di seberang zona subduksi, namun tinggi gelombangnya kecil sehingga tidak menghasilkan kerusakan dan korban jiwa berarti. Sebelum itu tsunami lokal tercatat juga terjadi pada 1840 dan 1859 TU. Keduanya menerpa pesisir selatan pulau Jawa di antara Kebumen (Jawa Tengah) hingga Pacitan (Jawa Timur).

Tsunami yang lebih besar namun tak begitu tercatat dalam sejarah nampaknya terjadi empat abad silam, atau di abad ke-16 TU. Jejaknya ditemukan sebagai lapisan endapan takbiasa khas tsunami di dekat muara sungai Cikembulan, Pangandaran (Jawa Barat) oleh tim LIPI (Lembaga Ilmu Pengetahuan Indonesia). Endapan ini lebih tebal ketimbang endapan tsunami 2006 sehingga mungkin berasal dari gempa besar berskala 8 skala Magnitudo atau lebih. Peristiwa tersebut nampaknya dicatat oleh pujangga kerajaan Mataram Islam di zaman pemerintahan Sultan Agung pada Babad ing Sangkala. Peristiwa tersebut nampaknya terjadi pada tahun 1618 atau 1619 TU, sepuluh tahun jelang agresi Mataram ke kedudukan VOC Belanda di Batavia (kini Jakarta). Tsunami tersebut nampaknya berdampak signifikan dan mungkin melahirkan legenda Nyi Roro Kidul (Ratu Kidul). Legenda sejenis, meski kalah populer, juga dijumpai di tempat-tempat lain mulai dari masyarakat Mentawai di sebelah barat hingga ke masyarakat Flores di sebelah timur.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Berapa tahun sekali periode ulang gempa besar/akbar dan tsunami yang menyertainya di lepas pantai pesisir selatan pulau Jawa memang belum diketahui hingga kini. Namun jelas bahwa di masa silam hal itu pernah terjadi. Dan kelak juga pasti akan terjadi lagi. Ini hanya soal kapan waktunya dan seberapa besar magnitudonya. Maka suka tak suka, pesisir selatan pulau Jawa memang harus berbenah dan bersiap untuk menghadapinya. Termasuk Kabupaten Kebumen di propinsi Jawa Tengah, yang memiliki garis pantai unik sepanjang 58 kilometer. Ada lebih dari 220 ribu jiwa yang hidup di sepanjang pesisir Kabupaten Kebumen yang berpotensi terdampak jika bencana tsunami tersebut benar-benar terjadi, apalagi jika sekelas tsunami produk gempa akbar Sumatra-Andaman 2004.

Bagaimana Kabupaten Kebumen menyiagakan diri mengantisipasi ancaman tsunami ini? Simak di bagian kedua dari tulisan ini.

Referensi :

Yulianto dkk. 2010. Where the First Wave Arrives in Minutes, Indonesian Lessons on Surviving Tsunamis Near Their Sources. Intergovernmental Oceanographic Commission, United Nations Educational Scientific and Cultural Organisation, IOC-Brochure 2010-4.

BNPB. 2012. Masterplan Pengurangan Risiko Bencana Tsunami. Badan Nasional Penanggulangan Bencana, Juni 2012.

Natawidjaja. 2007. Tectonic Setting Indonesia dan Pemodelan Gempa dan Tsunami. Pelatihan Pemodelan Tsunami Run-up, Kementerian Negara Riset dan Teknologi RI, 20 Agustus 2007.

3 thoughts on “Menuju Kebumen Siaga Tsunami

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s