Menyongsong Gerhana Bulan Total 4 April 2015

Sebuah peristiwa langit populer akan segera datang menjelang pada Sabtu 4 April 2015 Tarikh Umum (TU) besok. Peristiwa tersebut adalah Gerhana Bulan Total 4 April 2015. Dalam peristiwa itu tiga benda langit dalam tata surya kita yakni Matahari, Bumi dan Bulan akan terletak dalam satu garis lurus bila ditinjau dari ketiga sumbu koordinat (sumbu X, sumbu Y dan sumbu Z) dengan Bumi berada di tengah-tengah. Astronomi menyebut kesejajaran ini sebagai syzygy. Tentu, Bulan yang dimaksud di sini adalah Bulan yang sebenar-benarnya Bulan. Bukan asteroid Cruithne yang kerap disangka sebagai Bulan seolah-olah (meski sesungguhnya bukan) ataupun Bulan sementara (satelit alamiah tangkapan sementara).

Karena Bumi berada di tengah-tengah secara proporsional, ia menghalangi pancaran cahaya Matahari yang seharusnya jatuh ke permukaan sisi dekat Bulan yang normalnya menghasilkan Bulan purnama. Halangan itu menciptakan dua jenis bayangan, yakni bayangan tambahan/samar (penumbra) dan bayangan inti (umbra). Saat gerakan Bulan membuatnya memasuki zona bayangan samar, maka fase penumbra pun terjadi. Fase ini ditandai dengan sedikit berkurangnya cahaya Matahari yang jatuh ke Bulan sehingga Bulan akan sedikit meredup, di atas kertas. Dalam praktiknya amat sulit untuk bisa mendeteksi sedikit meredupnya Bulan pada saat fase penumbra secara kasat mata, kecuali jika kita dibantu dengan instrumen perekam yang memadai. Selanjutnya saat gerakan Bulan membawanya kian jauh hingga memasuki zona bayangan inti, maka fase umbra terjadilah. Dalam fase umbra, jumlah cahaya Matahari yang mengenai permukaan Bulan berkurang cukup signifikan. Sehingga Bulan yang seharusnya sedang bulat bundar penuh dalam fase purnamanya secara berangsur-angsur akan menggelap sebagian hingga menjadi seperti Bulan sabit. Dalam puncak fase umbra dimungkinkan Bulan akan benar-benar kehilangan hampir seluruh cahaya Matahari yang harusnya mengenainya akibat terblokir cakram Bumi. Situasi tersebut dinamakan fase totalitas.

Gambar 2. Linimasa yang memperlihatkan fase-fase gerhana dalam peristiwa Gerhana Bulan Total 4 April 2015 untuk zona Waktu Indonesia bagian Barat (WIB). Untuk zona waktu yang lain menyesuaikan. Sumber: Sudibyo, 2015.

Gambar 2. Linimasa yang memperlihatkan fase-fase gerhana dalam peristiwa Gerhana Bulan Total 4 April 2015 untuk zona Waktu Indonesia bagian Barat (WIB). Untuk zona waktu yang lain menyesuaikan. Sumber: Sudibyo, 2015.

Berdasarkan sejauh apa fase penumbra dan umbra dilalui, maka ada tiga macam Gerhana Bulan. Gerhana yang pertama adalah yang terpopuler, yakni Gerhana Bulan Total (GBT). Dalam gerhana ini Bulan akan mengalami tiga fase gerhana, yakni fase penumbra, umbra dan totalitas. Selanjutnya yang kedua adalah gerhana yang tak kalah populernya, yakni Gerhana Bulan Sebagian (GBS). Dalam gerhana ini Bulan akan mengalami dua fase gerhana saja, yakni fase penumbra dan umbra. Dan yang ketiga adalah yang paling tidak populer dan kerap diabaikan, yakni Gerhana Bulan Penumbral (GBP). Karena pada gerhana ini Bulan hanya akan mengalami satu fase gerhana saja, yakni fase penumbra. Tanpa didukung oleh alat bantu optik memadai dan serangkaian perhitungan awal jauh hari sebelumnya, sangat sulit bagi mata kita untuk dapat mendeteksi terjadinya sebuah peristiwa Gerhana Bulan Penumbral.

Fase

Gerhana Bulan apa yang akan terjadi dalam suatu waktu sangat bergantung dengan bagaimana konfigurasi posisi astronomis Bulan saat itu. Dan pada Sabtu 4 April 2015 TU itu konfigurasinya menghasilkan Gerhana Bulan Total. Perhitungan berbasis persamaan-persamaan Jean Meeus memperlihatkan Gerhana Bulan Total 4 April 2015 ini akan diawali pada pukul 16:02 WIB, saat Bulan mulai memasuki fase penumbra awal yang ditandai dengan terjadinya kontak awal penumbra (P1). Selanjutnya Bulan terus bergerak hingga kemudian mulai memasuki fase umbra awal. Fase ini ditandai dengan terjadinya kontak awal umbra (U1) pada pukul 17:16 WIB, yakni kala tepi barat cakram Bulan tepat mulai bersentuhan dengan umbra. Semenjak saat itulah Gerhana Bulan tersebut mulai bisa disaksikan secara kasat mata. Secara berangsur-angsur cakram Bulan menggelap dan memerah mulai dari sisi barat hingga akhirnya mencapai fase totalitas.

Gambar 2. Linimasa yang memperlihatkan fase-fase gerhana dalam peristiwa Gerhana Bulan Total 4 April 2015 untuk zona Waktu Indonesia bagian Barat (WIB). Untuk zona waktu yang lain menyesuaikan. Sumber: Sudibyo, 2015.

Gambar 2. Linimasa yang memperlihatkan fase-fase gerhana dalam peristiwa Gerhana Bulan Total 4 April 2015 untuk zona Waktu Indonesia bagian Barat (WIB). Untuk zona waktu yang lain menyesuaikan. Sumber: Sudibyo, 2015.

Persamaan-persamaan Jean Meeus gagal memperhitungkan seberapa lama fase totalitas Gerhana Bulan Total 4 April 2015 ini. Sehingga saya pun beralih ke persamaan-persamaan yang lebih kompleks, seperti misalnya dari ELP (Ephemerides Lunairre Parisienne) 2000-85. Tak seperti peristiwa Gerhana Bulan sebelumnya, kali ini fase totalitas berlangsung cukup singkat. Yakni kurang dari 5 menit, atau tepatnya hanya 4 menit 43 detik. Fase totalitas dimulai pada pukul 18:58 WIB ditandai dengan kontak awal totalitas (U2). Berselang beberapa saat kemudian gerhana memasuki puncaknya, yang terjadi pada pukul 19:01 WIB. Selanjutnya Bulan meninggalkan fase totalitas pada pukul 19:02:30 WIB yang bertepatan dengan kontak akhir totalitas (U3).

Selepas fase totalitas, Bulan kembali mengembara dalam umbra. Namun kali ini dalam fase umbra akhir, dengan bagian barat cakram Bulan secara berangsur-angsur mulai lebih terang. Fase umbra akhir selesai pada pukul 20:44 WIB saat umbra tepat mulai meninggalkan tepi timur cakram Bulan sebagai kontak akhir umbra (U4) pada pukul 20:44 WIB. Selepasnya Bulan terus bergerak mengarungi fase penumbra akhir, meski secara kasatmata sulit untuk mengindra apakah masih berstatus Gerhana Bulan, karena Bulan sudah muncul sebagai cakram bulat bercahaya khas purnama. Gerhana Bulan ini sejatinya baru berakhir pada pukul 21:58 WIB saat kontak akhir penumbra (P4) terjadi, yang ditandai dengan tepat menghilangnya penumbra dari tepi timur cakram Bulan. Secara keseluruhan Gerhana Bulan Total 4 April 2015 ini memiliki durasi 5 jam 56 menit, dengan durasi gerhana yang kasatmata (fase umbra) adalah 3 jam 28 menit.

Gambar 3. Peta wilayah Gerhana Bulan Total 4 April 2015 untuk lingkup global. Perhatikan bahwa hanya di wilayah A dan B (baik B1 maupun B2) saja Gerhana Bulan ini bisa dilihat, sepanjang langit tak berawan. Sumber: Sudibyo, 2015.

Gambar 3. Peta wilayah Gerhana Bulan Total 4 April 2015 untuk lingkup global. Perhatikan bahwa hanya di wilayah A dan B (baik B1 maupun B2) saja Gerhana Bulan ini bisa dilihat, sepanjang langit tak berawan. Sumber: Sudibyo, 2015.

Dalam lingkup global Gerhana Bulan Total 4 April 2015 hanya dapat disaksikan di segenap Australia, sebagian besar Asia (Asia timur, tengah, selatan dan tenggara) serta sebagian besar Amerika (utara dan selatan). Hanya Eropa, Afrika dan Asia barat (Timur Tengah) saja yang tak tercakup ke dalam wilayah Gerhana Bulan ini. Namun wilayah yang dapat menyaksikan gerhana secara penuh dalam setiap fasenya (tanpa terganggu aktivitas terbit ataupun terbenamnya Bulan) hanyalah sebagian besar Alaska, Russia bagian timur, sebagian Jepang, sebagian besar Australia dan sebagian besar pulau Irian.

Gambar 4. Peta wilayah Gerhana Bulan Total 4 April 2015 untuk Indonesia. Garis P1 adalah garis yang menghubungkan titik-titik dimana kontak awal penumbra terjadi tepat pada saat Bulan terbit. Sementara garis U1 menghubungkan titik-titik yang mengalami kontak awal umbra tepat pada saat Bulan terbit. Seluruh Indonesia mampu menyaksikan peristiwa Gerhana Bulan ini, sepanjang langit tak berawan. Sumber: Sudibyo, 2015.

Gambar 4. Peta wilayah Gerhana Bulan Total 4 April 2015 untuk Indonesia. Garis P1 adalah garis yang menghubungkan titik-titik dimana kontak awal penumbra terjadi tepat pada saat Bulan terbit. Sementara garis U1 menghubungkan titik-titik yang mengalami kontak awal umbra tepat pada saat Bulan terbit. Seluruh Indonesia mampu menyaksikan peristiwa Gerhana Bulan ini, sepanjang langit tak berawan. Sumber: Sudibyo, 2015.

Dalam lingkup Indonesia, seluruh wilayah di negeri ini tercakup ke dalam wilayah Gerhana Bulan Total 4 April 2015 ini, meski berbeda-beda dari satu lokasi ke lokasi lainnya. Gerhana secara utuh, yakni dari fase penumbra awal hingga fase penumbra akhir, hanya bisa disaksikan dari propinsi Papua. Sementara di propinsi-propinsi lainnya tidaklah demikian, akibat Bulan belum terbit kala gerhana dimulai. Segenap pulau Sulawesi, Kepulauan Maluku, Kepulauan Nusa Tenggara (minus propinsi Bali) dan propinsi Irian Jaya Barat serta sebagian kecil propinsi Kalimantan Timur serta sebagian propinsi Kalimantan Utara berada di sebelah barat garis P1 namun di sisi timur garis U1. Sehingga di kawasan ini Gerhana Bulan dapat dinikmati mulai dari fase penumbra awal yang terpotong terbitnya Bulan hingga fase penumbra akhir. Sisanya terletak di sisi barat garis U4, yang mencakup segenap pulau Sumatra, Jawa hampir seluruh pulau Kalimantan dan propinsi Bali. Di sini Gerhana Bulan hanya dapat dinikmati mulai dari fase umbra awal yang sudah terpotong terbitnya Bulan hingga fase penumbra akhir saja.

Shalat Gerhana dan Observasi

Dengan demikian Gerhana Bulan Total ini terjadi di kala Matahari sedang dalam proses terbenam (Bulan sedang dalam proses terbit) bagi sebagian besar Indonesia. Dengan kata lain, Bulan terbit sudah dalam keadaan gerhana bagi sebagian besar Indonesia. Sebagai implikasinya maka durasi-tampak gerhana, yakni selang waktu antara terbitnya Bulan hingga kontak akhir penumbra, pun menjadi berbeda-beda antara satu lokasi dengan lokasi lainnya. Di sisi timur garis P1 durasi-tampak gerhana adalah sama dengan durasi gerhana, yakni 5 jam 56 menit. Namun kian ke barat dari garis P1, durasi-tampaknya kian menurun. Durasi-tampak terkecil terjadi di ujung terbarat Indonesia, yakni di Banda Aceh (propinsi Aceh). Yaitu hanya sebesar 3 jam 14 menit saja.

Gambar 5. Peta durasi-tampak Gerhana Bulan Total 4 April 2015 untuk Indonesia. Gerhana Bulan ini sebenarnya memiliki durasi 5 jam 56 menit, terhitung dari kontak awal hingga kontak akhir penumbra. Namun dengan Bulan dalam proses terbit di Indoensia saat gerhana terjadi, maka durasi-tampak gerhana terhitung dari terbitnya Bulan hingga kontak akhir penumbra menjadi berbeda-beda dari satu lokasi ke lokasi lain. Garis-garis dalam peta ini menghubungkan titik-titik yang memiliki durasi-tampak yang sama. Angka 5j 30m bermakna "durasi-tampak 5 jam 30 menit." Sumber: Sudibyo, 2015.

Gambar 5. Peta durasi-tampak Gerhana Bulan Total 4 April 2015 untuk Indonesia. Gerhana Bulan ini sebenarnya memiliki durasi 5 jam 56 menit, terhitung dari kontak awal hingga kontak akhir penumbra. Namun dengan Bulan dalam proses terbit di Indoensia saat gerhana terjadi, maka durasi-tampak gerhana terhitung dari terbitnya Bulan hingga kontak akhir penumbra menjadi berbeda-beda dari satu lokasi ke lokasi lain. Garis-garis dalam peta ini menghubungkan titik-titik yang memiliki durasi-tampak yang sama. Angka 5j 30m bermakna “durasi-tampak 5 jam 30 menit.” Sumber: Sudibyo, 2015.

Meski memiliki durasi-tampak yang berbeda-beda, pada hakikatnya seluruh Indonesia tercakup dalam wilayah Gerhana Bulan Total 4 April 2015. Dan semuanya juga mampu menikmati gerhana kasat mata, baik dalam fase umbra maupun fase totalitas. Konsekuensinya Umat Islam di seluruh Indonesia berkesempatan menunaikan ibadah shalat gerhana bulan, tanpa terkecuali. Dan sebelum menunaikan shalat gerhana, dianjurkan untuk mengumandangkan gema takbir. Di samping itu alangkah baiknya jika turut mengamati gerhana ini, sebagai bagian dari mengagumi kebesaran Illahi dan memahami bagaimana semesta bekerja. Kesempatan untuk menunaikan shalat gerhana bulan terbuka hingga kontak akhir umbra (U4) terjadi pada pukul 20:44 WIB. Mengingat fase totalitas adalah fase gerhana yang paling menyedot perhatian, maka perlu disusun strategi kapan waktunya observasi (mengamati) gerhana dan kapan saatnya menunaikan shalat gerhana bulan.

Gambar 6. Peta saran waktu pelaksanaan shalat gerhana bulan terkait peristiwa Gerhana Bulan Total 4 April 2015 di Indonesia, dengan mengacu pada saat-saat fase totalitas. Untuk daerah-daerah yang ada di sisi timur garis U1 dan yang ada di sisi barat garis 18:28 WIB disarankan menyelenggarakan shalat gerhana bulan di masjid-masjid segera setelah shalat Isya' berjama'ah. Sebaliknya daerah-daerah yang terletak di antara garis U1 dan 18:28 WIB disarankan menyelenggarakan shalat gerhana bulan di masjid-masjid segera setelah shalat Maghrib berjama'ah. Sumber: Sudibyo, 2015.

Gambar 6. Peta saran waktu pelaksanaan shalat gerhana bulan terkait peristiwa Gerhana Bulan Total 4 April 2015 di Indonesia, dengan mengacu pada saat-saat fase totalitas. Untuk daerah-daerah yang ada di sisi timur garis U1 dan yang ada di sisi barat garis 18:28 WIB disarankan menyelenggarakan shalat gerhana bulan di masjid-masjid segera setelah shalat Isya’ berjama’ah. Sebaliknya daerah-daerah yang terletak di antara garis U1 dan 18:28 WIB disarankan menyelenggarakan shalat gerhana bulan di masjid-masjid segera setelah shalat Maghrib berjama’ah. Sumber: Sudibyo, 2015.

Dalam pendapat saya, dalam mengatur waktu penyelenggaraan shalat gerhana, maka sebaiknya shalat gerhana ini ditunaikan segera setelah shalat wajib berjamaah yang berdekatan, yakni shalat maghrib atau isya’. Shalat gerhana bulan dalam Gerhana Bulan Total 4 April 2015 ini baru bisa diselenggarakan setelah kontak awal umbra (U1) terjadi. Maka bagi wilayah-wilayah di Indonesia yang terletak di sebelah timur garis U1, shalat gerhana bisa diselenggarakan segera setelah shalat Isya’. Demikian halnya bagi propinsi Sumatra Utara dan Aceh. Sebaliknya wilayah-wilayah di sebelah barat garis U1 hingga propinsi Sumatra Utara dan Aceh dapat menyelenggarakan shalat gerhana bulan segera setelah shalat Maghrib. Dengan pengaturan waktu demikian, maka shalat gerhana bulan dapat ditunaikan sementara observasi Gerhana Bulan khususnya dalam fase totalitas juga tetap dapat berlangsung.

Seperti peristiwa sejenis sebelumnya, Gerhana Bulan Total 4 April 2015 sejatinya relatif bisa diamati dengan mudah dari lokasi dimana saja, termasuk lingkungan perkotaan sekalipun. Namun ada teknik tersendiri untuk mengabadikan peristiwa langit ini. Prinsip dasarnya, Gerhana Bulan menyebabkan adanya perubahan pencahayaan Bulan dari yang semula cukup benderang (sebagai purnama) menjadi jauh lebih redup ketimbang Bulan sabit (pada puncak gerhana). Perubahan pencahayaan ini memerlukan pengaturan khusus. Jika anda menggunakan kamera jenis DSLR (digital single lens reflex), maka atur kamera ke kondisi manual dan fokus lensa juga ke posisi manual. Pilih panjang fokus tertentu saja. Juga pilih f-ratio pada satu nilai tertentu dan demikian pula ISO-nya. Lalu arahkan ke Bulan dan atur waktu penyinarannya (exposure time) mengikut fase gerhana seperti diperlihatkan tabel di bawah ini:

Salah satu kelebihan kamera DSLR adalah dapat dihubungkan ke teleskop dengan penambahan adapter dan t-ring yang tepat sehingga menghasilkan teknik fotografi fokus prima. Namun bila disambungkan dengan teleskop, maka nilai f-ratio dan panjang fokusnya menjadi tetap seperti apa yang dimiliki oleh teleskop tersebut tanpa bisa diubah-ubah. Jika kamera DSLR ini disambungkan ke teleskop menghasilkan teknik fokus prima, maka nilai waktu penyinarannya (exposure time) bergantung pada ISO yang dipilih. Misalkan teleskop yang digunakan adalah teleskop pembias Celestron 70 mm dengan panjang fokus 900 mm, maka nilai ISO dan waktu penyinarannya mengikuti fase gerhana diperlihatkan tabel berikut :

Bagaimana jika anda tak memiliki kamera DSLR dan juga tak mempunyai teleskop? Jangan khawatir, Gerhana Bulan Total ini tetap dapat diabadikan meski dengan kamera digital sederhana atau bahkan kamera ponsel/ponsel pintar sekalipun. Kuncinya adalah mengeset kamera dengan nilai ISO yang besar (bila memungkinkan). Juga mengatur nilai EV (exposure value) ke yang terbesar (bila memungkinkan). Jika pilihan-pilihan tersebut tak tersedia, masih terbuka jalan untuk mengabadikannya dengan mengeset pencahayaan kamera lewat daylight atau sejenisnya saat fase penumbra dan fase umbra serta mengeset ke night atau sejenisnya saat fase totalitas.

Tak seperti Gerhana Bulan sebelumnya yang berbonus kesempatan mengamati planet Uranus, dalam Gerhana Bulan Total 4 April 2015 ini kita harus gigit jari. Tak ada satupun planet yang terlihat berdekatan dengan Bulan di saat gerhana. Kala Gerhana Bulan ini terjadi, bola langit hanya dihiasi planet Jupiter di dekat zenith dan planet Mars yang mengapung di atas kaki langit barat. Walau demikian ada yang relatif sama. Meski fase totalitasnya jauh lebih singkat, Gerhana Bulan Total 4 April 2015 berkemungkinan besar akan menampilkan wajah Bulan yang sama seperti gerhana-gerhana Bulan sebelumnya dalam puncaknya. Yakni tidak benar-benar gelap (menghilang), melainkan menjadi amat redup dengan laburan warna kemerah-merahan yang mirip darah.

Gambar 7. Letusan Holuhraun di Gunung Bardarbunga (Islandia). Meski menjadi letusan gunung berapi termutakhir dengan volume keluaran magma terbesar, namun jumlah partikulat dan aerosol sulfat yang dilepaskannya ke udara dianggap belum cukup mampu untuk membuat Bulan menjadi benar-benar gelap di puncak gerhana. Kiri: kawasan seluas 85 kilometer persegi yang telah ditutupi oleh magma basaltik produk letusan Holuhraun. tebal magma di kawasan ini mencapai rata-rata 7 meter. Kanan: pantauan salah satu titik letusan Holuhraun dari udara. Magma basaltik encer meluap dari pusat letusan yang berbentuk retakan sepanjang ratusan meter, untuk kemudian mengalir ke arah tertentu layaknya sungai api. Darinya gas vulkanik mengepul, tanpa debu vulkanik yang signifikan. Sumber: University of Iceland, 2015.

Gambar 7. Letusan Holuhraun di Gunung Bardarbunga (Islandia). Meski menjadi letusan gunung berapi termutakhir dengan volume keluaran magma terbesar, namun jumlah partikulat dan aerosol sulfat yang dilepaskannya ke udara dianggap belum cukup mampu untuk membuat Bulan menjadi benar-benar gelap di puncak gerhana. Kiri: kawasan seluas 85 kilometer persegi yang telah ditutupi oleh magma basaltik produk letusan Holuhraun. tebal magma di kawasan ini mencapai rata-rata 7 meter. Kanan: pantauan salah satu titik letusan Holuhraun dari udara. Magma basaltik encer meluap dari pusat letusan yang berbentuk retakan sepanjang ratusan meter, untuk kemudian mengalir ke arah tertentu layaknya sungai api. Darinya gas vulkanik mengepul, tanpa debu vulkanik yang signifikan. Sumber: University of Iceland, 2015.

Musababnya pada saat ini atmosfer Bumi pun relatif bersih, tidak terkotori oleh partikulat dan aerosol sulfat dalam jumlah signifikan yang dihasilkan letusan dahsyat/mahadahsyat gunung berapi.  Pada saat ini kita masih menyaksikan letusan besar Holuhraun di Gunung Bardarbunga (Islandia). Letusan ini telah berkecamuk semenjak 31 Agustus 2014 TU silam dan hingga kini telah memuntahkan tak kurang dari 1,5 kilometer kubik magma (10 kali lipat volume Letusan Merapi 2010). Namun partikulat dan aerosol sulfat yang dilepaskannya ke atmosfer masih terlalu kecil untuk membuat Bulan menjadi gelap pekat di kala puncak Gerhana Bulan Total.

Iklan

Bulan, Bulan Seolah-olah dan Bulan Sementara

Bersiaplah menatap langit kala Matahari telah merembang di waktu petang dan malam datang. Bila udara tak berawan dan posisi astronomisnya memungkinkan kita akan menyaksikannya bertahta di langit. Dari waktu ke waktu wajahnya selalu berubah-ubah. Suatu saat ia nampak bundar penuh sebagai purnama. Di saat yang lain dia nampak mirip lengkungan sabit. Di waktu yang lain lagi ia memperlihatkan diri separuh bundaran. Dan di momen yang lain lagi ia bahkan terlihat mirip lingkaran yang benjol pada salah satu sisinya. Itulah Bulan atau Rembulan, sang benda langit pengiring setia Bumi kita. Inilah satu-satunya benda langit yang memang benar-benar mengelilingi Bumi kita, bukan sekedar terkesan. Dengan posisinya yang demikian dekat, tak heran Bulan menjadi benda langit yang telah dikenal manusia semenjak awal peradaban. Tak hanya itu, ia pun mempengaruhi dinamika peradaban manusia. Mulai dari urusan sistem penanggalan (kalender) hingga ke ranah politis: balapan mendaratkan manusia pertama di Bulan.

Di antara satelit-satelit alamiah yang dimiliki planet-planet dalam tata surya kita, Bulan tergolong berukuran besar. Ia memang bukanlah satelit alamiah terbesar seantero tata surya kita. Dengan diameter 3.475 kilometer, Bulan masih kalah besar dibandingkan Io (diameter 3.644 kilometer), Callisto (diameter 4.820 kilometer), Titan (diameter 5.150 kilometer) maupun Ganymede (diameter 5.268 kilometer). Namun demikian dalam hal rasio dimensinya, maka dimensi Bulan relatif terhadap Bumi sebagai planet induknya adalah yang terbesar di antara planet-planet lainnya. Io, Callisto dan Ganymede boleh saja lebih besar dari Bulan. Namun bila dibandingkan dengan Jupiter (diameter 143.000 kilometer) sebagai planet induknya ketiga satelit alamiah itu ibarat kelereng bersanding dengan gajah karena rasionya sangat kecil (masing-masing 2,5 %; 3,4 % dan 3,7 %). Pun demikian halnya bilamana Titan disandingkan dengan planet Saturnus (diameter 120.500 kilometer), rasionya hanya 4,3 %.

Gambar 1. Bulan dalam wajah separuh saat berkonjungsi dengan Saturnus pada 4 Agustus 2014 TU silam, diabadikan dengan teleskop 70 mm yang dirangkai dengan kamera DSLR Nikon D60. Sampai saat ini Bulan adalah satu-satunya satelit alamiah Bumi. Meskipun demikian pada saat-saat tertentu Bulan memiliki teman baru, satelit alamiah tangkapan sementara Bumi. Sumber: Sudibyo, 2014.

Gambar 1. Bulan dalam wajah separuh saat berkonjungsi dengan Saturnus pada 4 Agustus 2014 TU silam, diabadikan dengan teleskop 70 mm yang dirangkai dengan kamera DSLR Nikon D60. Sampai saat ini Bulan adalah satu-satunya satelit alamiah Bumi. Meskipun demikian pada saat-saat tertentu Bulan memiliki teman baru, satelit alamiah tangkapan sementara Bumi. Sumber: Sudibyo, 2014.

Sebaliknya rasio ukuran Bulan terhadap Bumi adalah 27 %, sehingga ukuran relatif Bulan adalah hampir sepertiga Bumi. Dengan ukurannya yang besar, tak heran bila sistem Bumi-Bulan kadang dianggap sebagai sistem planet kembar ketimbang sistem planet dan satelit alamiahnya. Namun anggapan ini lemah. Sebab meski ukuran relatif Bulan memang besar sehingga Bulan tidaklah mengelilingi pusat Bumi melainkan mengitari titik barisenter (titik pusat massa bersama) Bumi-Bulan, namun titik itu hanya sejarak 4.670 kilometer dari pusat Bumi. Maka titik barisenter tersebut sepenuhnya berada dalam tubuh Bumi. Ini berbeda bila dibandingkan sistem Pluto-Charon. Dengan rasio dimensi Charon sebesar 52 % relatif terhadap Pluto, titik barisenter keduanya terletak sejarak 2.110 kilometer dari pusat Pluto. Dengan diameter Pluto 2.250 kilometer maka praktis titik barisenter itu sepenuhnya berada di luar tubuh Pluto. Sehingga jika dilihat tepat di atas bidang edar Charon, Pluto akan nampak bergoyang selagi Charon mengelilinginya.

Bulan menjadi satu-satunya benda langit selain Bumi yang pernah disinggahi manusia, meskipun kunjungan terakhir ke Bulan telah berlalu 43 tahun silam. Misi-misi antariksa ke Bulan, baik yang berawak (menyertakan manusia) maupun tak berawak, telah menghasilkan timbunan data akan seluk-beluk Bulan. Darinya astronomi modern mendeduksi bahwa Bulan lahir melalui peristiwa kosmik yang amat dramatis di awal masa tata surya. Setelahnya Bulan menjadi pengawal Bumi yang setia, menjaga stabilitas poros rotasi Bumi pada kemiringannya. Sehingga iklim di Bumi dapat bergulir stabil, yang memungkinkan terjaganya siklus air, oksigen dan karbon secara berkesinambungan. Sehingga kehidupan dapat tumbuh dan berkembang.

Namun jika sepintas kita bandingkan Bumi dengan planet-planet lainnya dalam tata surya kita, sebersit rasa cemburu mungkin menyapa. Betapa tidak. Planet biru yang kita huni dan cintai ini, yang menjadi satu-satunya tempat dimana kehidupan berjalan secara berkesinambungan, ternyata hanya mempunyai Bulan sebagai satu-satunya satelit alamiahnya. Mars saja, yang ukurannya separuh Bumi, punya dua satelit alamiah: Phobos dan Deimos. Bahkan jika planet-kerdil Pluto diperhitungkan, Bumi kita kalah jauh. Planet-kerdil yang besarnya hanya dua pertiga Bulan itu ternyata dikitari oleh paling sedikit lima buah satelit alamiah. Jangan bandingkan dengan para jumbo seperti Jupiter yang memiliki 67 satelit alamiah maupun Saturnus yang mengoleksi 62 satelit alamiah. Dalam bahasa populer masakini, itu hanya akan membuat kita merasa sedih. Meski di sisi lain kita juga bisa sedikit menghela nafas lega saat membandingkan Bumi dengan Merkurius maupun Venus. Dua planet yang lebih dekat ke Matahari itu sama sekali tak memiliki satelit alamiah barang sebiji pun.

Tapalkuda

Apakah Bumi hanya memiliki Bulan sebagai satu-satunya pengiring setianya?

Pada 10 Oktober 1986 Tarikh Umum (TU) astronom Duncan Waldron menemukan sebuah asteroid dekat-Bumi baru melalui fasilitas teleskop UK Schmidt di kompleks observatorium Siding Spring (Australia). Observatorium ini dikenal akan program pelacakan benda-benda langit mini dalam tata surya kita seperti asteroid dan komet. Salah satu satunya misalnya penemuan komet Siding-Spring yang menggemparkan karena lewat sangat dekat dengan planet Mars di tahun silam. International Astronomical Union (IAU) memberi nama asteroid temuan Waldron ini sebagai asteroid 3753 Cruithne. Semula asteroid yang berdiameter 5 kilometer ini hanya dianggap sebagai asteroid dekat-Bumi yang biasa saja. Ia juga cukup redup, magnitudo semu maksimumnya hanyalah +15,8 atau 6 kali lebih redup ketimbang planet-kerdil Pluto, sehingga tak mudah untuk mengamatinya. dibutuhkan teleskop reflektor yang cermin obyektifnya bergaris tengah minimal 100 cm untuk bisa mengamatinya.

Gambar 2. Asteroid Cruithne (diantara dua garis lurus datar), diabadikan dari Observatorium Powell, Kansas (Amerika Serikat). Asteroid ini adalah asteroid pertama yang diketahui memiliki periode revolusi tepat sama dengan Bumi, sehingga hakikatnya berbagi orbit dengan Bumi. Oleh posisi uniknya, asteroid Cruithne terlihat mengelilingi satu titik dalam orbit Bumi lewat orbit-tampak mirip kacang, jika diamati dari Bumi. Sumber: Observatorium Powell, 2001.

Gambar 2. Asteroid Cruithne (diantara dua garis lurus datar), diabadikan dari Observatorium Powell, Kansas (Amerika Serikat). Asteroid ini adalah asteroid pertama yang diketahui memiliki periode revolusi tepat sama dengan Bumi, sehingga hakikatnya berbagi orbit dengan Bumi. Oleh posisi uniknya, asteroid Cruithne terlihat mengelilingi satu titik dalam orbit Bumi lewat orbit-tampak mirip kacang, jika diamati dari Bumi. Sumber: Observatorium Powell, 2001.

Cruithne baru menyedot perhatian besar mulai 1997 TU kala trio astronom Finlandia dan Kanada, yakni Paul Wiegert, Kimmo Innanen dan Seppo Mikkola memperlihatkan uniknya asteroid ini. Asteroid Cruithne memiliki orbit sangat lonjong, jauh berbeda dibanding orbit Bumi. Orbit Cruithne memiliki perihelion (titik terdekat ke Matahari) sejarak 72 juta kilometer atau berdekatan dengan orbit Merkurius dan aphelion (titik terjauh ke Matahari) 226 juta kilometer atau berdekatan dengan orbit Mars. Sehingga orbit Cruithne memotong orbit Venus, Bumi dan Mars. Namun asteroid ini membutuhkan waktu hampir sama dengan Bumi dalam mengelilingi Matahari, karena periode revolusinya 364 hari (periode revolusi Bumi 365,25 hari). Dalam astronomi, kesamaan nilai periode revolusi ini membuat asteroid Cruithne dikatakan mengalami resonansi orbital dengan Bumi. Tepatnya resonansi orbital 1:1.

Sepasang benda langit yang mengalami resonansi orbital 1:1 bermakna bahwa kedua berbagi orbit yang sama. Resonansi orbital 1:1 istimewa karena tidak stabil. Bila massa kedua benda langit yang beresonansi itu tidak berbeda jauh, maka yang lebih kecil akan diusir keluar oleh yang lebih besar. Bumi kita pernah mengalami situasi seperti ini di awal masa tata surya. Saat itu proto-Bumi harus berbagi orbit bersama dengan proto-Theia, protoplanet seukuran Mars masakini. Proto-Bumi mendepak proto-Theia dari orbitnya, namun sebagai akibatnya proto-Theia justru berbenturan dengan proto-Bumi. Peristiwa itulah yang membentuk Bulan. Tapi karena massa Cruithne amat sangat kecil dibandingkan Bumi, maka depak-mendepak semacam itu tidak terjadi. Sebaliknya justru gerak-gerik Cruithne menyajikan pemandangan yang mengesankan.

Orbits_of_Cruithne_and_Earth Horseshoe_orbit_of_Cruithne_from_the_perspective_of_Earth
Gambar 3. Atas: simulasi yang memperlihatkan bagaimana gerak Bumi dan Cruithne saat dilihat tinggi di atas kutub utara/selatan Matahari (kiri) dengan program Celestia. Keduanya nampak bergerak berlawanan arah dengan jarum jam di orbitnya masing-masing. Bila dilihat dari Bumi, yakni kala Bumi dianggap diam sebagaimana Matahari (kanan), maka dalam setahun Cruithne terlihat menyusuri orbit-tampak mirip kacang dengan Cruithne seolah bergerak searah dengan jarum jam. Bawah: simulasi gerak asteroid 2002 AA29 selama seabad penuh dengan Bumi dianggap diam sebagaimana Matahari. Nampak 2002 AA29 bergerak di sekitar orbit Bumi dan membentuk orbit-tampak tapalkuda. Sumber: Jecowa, 2007 & NASA, 2002.

Gambar 3. Atas: simulasi yang memperlihatkan bagaimana gerak Bumi dan Cruithne saat dilihat tinggi di atas kutub utara/selatan Matahari (kiri) dengan program Celestia. Keduanya nampak bergerak berlawanan arah dengan jarum jam di orbitnya masing-masing. Bila dilihat dari Bumi, yakni kala Bumi dianggap diam sebagaimana Matahari (kanan), maka dalam setahun Cruithne terlihat menyusuri orbit-tampak mirip kacang dengan Cruithne seolah bergerak searah dengan jarum jam. Bawah: simulasi gerak asteroid 2002 AA29 selama seabad penuh dengan Bumi dianggap diam sebagaimana Matahari. Nampak 2002 AA29 bergerak di sekitar orbit Bumi dan membentuk orbit-tampak tapalkuda. Sumber: Jecowa, 2007 & NASA, 2002.

Bila dilihat pada titik yang nun tinggi di atas kutub utara/selatan Bumi dalam jangka waktu sangat lama hingga lebih dari 100 tahun, asteroid Cruithne terlihat menyusuri angkasa di sekitar orbit Bumi secara teratur melalui orbit-tampak yang mirip tapalkuda/ladam. Sementara jika hanya dilihat dalam setahun, Cruithne terlihat menyusuri orbit-tampak mirip kacang. Titik pusat orbit-tampak mirip kacang ini tepat berimpit dengan salah satu titik dalam orbit Bumi. Keunikan ini terlihat lebih jelas lagi dalam simulator. Bila kita memosisikan Bumi diam seperti halnya Matahari, maka Cruithne akan terlihat bergerak secara teratur menyusuri orbit-tampak tapalkuda-nya untuk ‘menjauhi’ Bumi dan kemudian ‘mendekati’ Bumi dari sisi yang lain. Analisis lebih lanjut memperlihatkan orbit-tampak tapalkuda Cruithne bukanlah sirkuit tertutup, melainkan berbentuk spiral yang secara perlahan kian menjauhi posisi Bumi dan kemudian bergerak mendekati Bumi dari sisi yang lain.

Seolah-olah dan Sementara

Karena beresonansi orbital 1:1 dengan Bumi, maka orbit asteroid Cruithne sesungguhnya tidak stabil. Terbuka kemungkinan ia bakal keluar dari orbitnya dan beralih mendekat ke Bumi hingga akhirnya bertumbukan. Dengan diameter 5 kilometer, tumbukan Cruithne dengan Bumi tentu bakal sangat dahsyat, mungkin setingkat di bawah kedahsyatan tumbukan asteroid yang memusnahkan dinosaurus. Namun analisis memperlihatkan asteroid Cruithne bakal tetap menghuni orbit ini hingga berjuta tahun mendatang. Sehingga potensi bahaya tumbukan asteroid Cruithne dengan Bumi hingga berjuta tahun ke depan dapat dikesampingkan. Belakangan ditemukan sejumlah asteroid yang mirip Cruithne. Misalnya asteroid 54509 YORP, (85770) 1998 UP1, 2002 AA29 (diameter ~100 meter), 2009 BD, 2001 GO2 dan 2010 SO16.

Ada sebuah situasi istimewa untuk asteroid-asteroid yang beresonansi orbital 1:1 dengan Bumi dan memiliki orbit-tampak tapalkuda. Yakni pada saat titik pusat orbit-tampak itu tepat berimpit dengan Bumi, bukan hanya dengan satu titik dalam orbit Bumi. Jika hal demikian terjadi, maka asteroid itu akan menjadi kuasi-satelit alamiah, atau kuasi-Bulan, atau seolah-olah Bulan. Sebab selama beberapa waktu asteroid tersebut terlihat mengelilingi Bumi di orbit tapalkudanya. Apakah asteroid yang berstatus kuasi-Bulan dapat dianggap sebagai satelit alamiah kedua Bumi atau Bulan kedua? Tidak. Sebab asteroid tersebut hanya seakan-akan saja mengedari Bumi. Tapi sesungguhnya ia tak terikat oleh gravitasi Bumi layaknya Bulan. Asteroid kuasi-Bulan sesungguhnya masih tetap beredar mengelilingi Matahari dalam orbitnya sendiri.

Gambar 4. Simulasi pergerakan asteroid 2002 AA29 saat berstatus kuasi-Bulan dalam enam abad mendatang, dengan Bumi dianggap diam sebagaimana Matahari. Nampak 2002 AA29 bergerak menyusuri orbit-tampak mirip kacang dengan pusat orbit di Bumi, sehingga seolah-olah mengelilingi Bumi. Sumber: NASA, 2002.

Gambar 4. Simulasi pergerakan asteroid 2002 AA29 saat berstatus kuasi-Bulan dalam enam abad mendatang. Kiri: dilihat dari ketinggian di atas kutub utara Matahari dengan Matahari diam, nampak Bumi dan 2002 AA29 beredar mengelilingi Matahari dengan arah berlawanan terhadap jarum jam. Kanan: bila dilihat tinggi di atas kutub utara Bumi dan Bumi dianggap diam sebagaimana Matahari. Nampak 2002 AA29 bergerak menyusuri orbit-tampak mirip kacang dengan arah searah jarum jam. Pusat orbitnya ada di Bumi, sehingga seolah-olah mengelilingi Bumi. Sumber: NASA, 2002.

Asteroid 2003 YN107 (diameter ~30 meter) adalah kuasi-Bulan yang pertama ditemukan. Ia berkedudukan sebagai kuasi-Bulan semenjak tahun 1996 TU dan bertahan hingga 2006 TU. Sebelum tahun 1996 itu gerak asteroid 2003 YN107 mirip dengan perilaku Cruithne. Ia bergerak dalam orbit-tampak tapalkudanya dimana titik pusat orbitnya selalu bergeser dari waktu ke waktu. Pergeseran itu membuat titik pusat orbit-tampak tapalkuda asteroid 2003 YN107 akhirnya berimpit dengan Bumi mulai 1996 TU dan bertahan hingga sepuluh tahun kemudian. Selepas 2006 TU kembali asteroid 2003 YN107 berperilaku seperti Cruithne. Belakangan sejumlah asteroid dekat-Bumi beresonansi orbital 1:1 yang juga menjadi kuasi-Bulan ditemukan, seperti asteroid (164207) 2004 GU9,(277810), 2006 FV35 dan 2014 OL339. Analisis memperlihatkan dalam 600 tahun ke depan, asteroid 2002 AA29 juga bakal menjadi kuasi-Bulan.

Selain kuasi-Bulan, apakah Bumi benar-benar tidak memiliki satelit alamiah yang lain diluar Bulan?

Jawabannya bisa, meski mengandung syarat. Bumi dapat saja memiliki satelit alamiah lain disamping Bulan, namun sifatnya sementara. Jadi satelit alamiah yang lain itu hanya bakal ada untuk jangka waktu tertentu yang sangat singkat. Bumi kita bisa melakukannya khususnya pada asteroid-asteroid dekat-Bumi yang melintas pada kecepatan dan memasuki ruang yang tepat. Ruang tersebut dinamakan ruang Hill, merujuk nama astronom George William Hill (Amerika Serikat). Kadang dinamakan juga sebagai ruang Roche, mengabadikan nama astronom Eduoard Roche (Perancis). Baik Hill maupun Roche adalah dua sosok astronom yang pertama mengusulkan adanya sebuah ruang bervolume yang menyelubungi planet, dimana gravitasi planet tersebut mendominasi ruang itu ketimbang gravitasi planet tetangganya maupun Matahari.

Bagi Bumi, ruang Hill atau ruang Roche ini adalah kawasan yang berjarak hingga 1,5 juta kilometer dari pusat Bumi. Dalam kawasan inilah sebuah satelit alamiah selain Bulan bisa berada. Bulan menjadi satelit alamiah Bumi karena sepenuhnya ada dalam ruang Hill/Roche Bumi. Dengan radius sumbu utama orbit Bulan sebesar 384.000 kilometer dari pusat Bumi, maka radius tersebut masih lebih kecil ketimbang radius ruang Hill/Roche Bumi. Bila ada asteroid dekat-Bumi yang melaju pada kecepatan relatif cukup lambat dan melintas di dalam ruang Hill/Roche Bumi ini, gravitasi Bumi dapat menangkapnya dan memaksanya berubah haluan menjadi mengelilingi Bumi. Proses ini membuat asteroid tersebut menjadi satelit alamiah tangkapan. Satelit tangkapan banyak dijumpai di planet-planet dalam tata surya kita. Misalnya Mars, yang mendapatkan Phobos dan Deimos dari proses tangkapan.

Gambar 5. Pergerakan asteroid 2006 RH120 (di antara dua garis lurus datar) saat berstatus satelit tangkapan sementara Bumi, sebagaimana diabadikan dengan teleskop Schmidt-Cassegrain 40 cm + kamera CCD dari Observatorium Great Shefford (Inggris). Citra pergerakan ini dihasilkan dari empat citra terpisah yang masing-masing merupakan hasil stacking (penumpukan) dari 20 citra beruntun dengan penyinaran masing-masing 4 detik. teleskop diarahkan untuk mengikuti gerak asteroid, sehingga bintang-bintang dilatarbelakangnya terlihat sebagai garis-garis putih. Atas adalah utara. Satelit alamiah tangkapan Bumi itu nampak bergerak dengan kecepatan 47 detik busur dalam setiap menitnya. Sumber: Observatorium Great Shefford, 2007.

Gambar 5. Pergerakan asteroid 2006 RH120 (di antara dua garis lurus datar) saat berstatus satelit tangkapan sementara Bumi, sebagaimana diabadikan dengan teleskop Schmidt-Cassegrain 40 cm + kamera CCD dari Observatorium Great Shefford (Inggris). Citra pergerakan ini dihasilkan dari empat citra terpisah yang masing-masing merupakan hasil stacking (penumpukan) dari 20 citra beruntun dengan penyinaran masing-masing 4 detik. teleskop diarahkan untuk mengikuti gerak asteroid, sehingga bintang-bintang dilatarbelakangnya terlihat sebagai garis-garis putih. Atas adalah utara. Satelit alamiah tangkapan Bumi itu nampak bergerak dengan kecepatan 47 detik busur dalam setiap menitnya. Sumber: Observatorium Great Shefford, 2007.

Satelit alamiah tangkapan Bumi umumnya berumur singkat, bergantung pada konfigurasi orbit awalnya sebelum memasuki ruang Hill/Roche Bumi. Karenanya ia disebut satelit alamiah tangkapan sementara (STS) atau temporary satellite capture (TSC). Dan Bumi sempat memiliki satelit alamiah kedua-nya yang berupa satelit alamiah tangkapan sementara pada periode antara September 2006 hingga Juni 2007 TU. Satelit alamiah kedua itu adalah asteroid 2006 RH120 (diameter ~3 m). Asteroid ini pertama kali terlihat pada 14 September 2006 TU lewat sistem penyigian langit semi-otomatik Catalina Sky Survey sebagai benda langit yang sangat redup (magnitudo semu +19) dan bergerak cepat. Benda langit ini ditemukan kala berada pada jarak 2 kali lipat lebih jauh ketimbang Bulan. Observasi demi observasi selanjutnya memperlihatkan benda langit ini beredar mengelilingi Bumi dan sempat diduga sebagai sisa roket tingkat tiga dari era perlombaan antariksa. Namun analisis lebih lanjut mencoret kemungkinan tersebut sekaligus menempatkan benda langit ini sebagai asteroid yang juga adalah satelit alamiah kedua bagi Bumi, meski hanya sementara. Astronomi modern memperkirakan sedikitnya satu asteroid akan menjadi satelit alamiah tangkapan sementara Bumi dalam tiap dasawarsa.

Gambar 6. Orbit asteroid 2006 RH120 sepanjang 1 Desember 2006 hingga 1 Juli 2007 TU atau selagi menyandang status satelit tangkapan sementara Bumi atau Bulan sementara Bumi. Nampak asteroid mengelilingi Bumi hingga tiga kalis epanjangw aktu itu, dengan orbit yang terus berubah-ubah. Disimulasikan oleh Paul Chodas di NASA Jet Propulsion Laboratory, california (Amerika Serikat). Sumber: NASA, 2015.

Gambar 6. Orbit asteroid 2006 RH120 sepanjang 1 Desember 2006 hingga 1 Juli 2007 TU atau selagi menyandang status satelit tangkapan sementara Bumi atau Bulan sementara Bumi. Nampak asteroid mengelilingi Bumi hingga tiga kalis epanjangw aktu itu, dengan orbit yang terus berubah-ubah. Disimulasikan oleh Paul Chodas di NASA Jet Propulsion Laboratory, california (Amerika Serikat). Sumber: NASA, 2015.

Sepanjang kurun September 2006 TU hingga Juni 2007 TU asteroid 2006 RH120 mengelilingi Bumi dalam orbit lonjong dengan perigee (titik terdekat ke Bumi) 277.000 kilometer dan apogee (titik terjauh ke Bumi) 1,635 juta kilometer, terhitung dari pusat Bumi. Orbit ini ditempuhnya sekali putaran dalam waktu 108 hari. Sebelum September 2006 TU, asteroid ini masih beredar mengelilingi Matahari sebagai bagian dari keluarga asteroid Aten dengan periode 340 hari, perihelion 135 juta kilometer dan aphelion 150 juta kilometer. Pada Juni 2007 TU, selepas melewati titik perigee-nya asteroid 2006 RH120 kembali melejit keluar dari pengaruh gravitasi Bumi. Asteroid itu kemudian mengelilingi Matahari dengan orbit yang berubah dibanding sebelum September 2006 TU. Kali ini orbitnya memiliki perihelion 151 juta kilometer dan aphelion 158 juta kilometer yang ditempuh dalam waktu 383 hari. Orbit demikian menjadikan asteroid 2006 RH120 berpindah ke keluarga asteroid Apollo. Semenjak itu Bumi kita kembali kehilangan satelit alamiah tangkapan termutakhirnya.

Referensi :

Barbee. 2015. Accessible Near-Earth Objects (NEOs). Presentasi dalam 12th Meeting of the NASA Small Bodies Assessment Group (SBAG), 7 Januari 2015.

Great Shefford Observatory. 2007. 2006 RH120 ( = 6R10DB9) (A Second Moon for the Earth?)

Wiegert, Innanen, Mikkola. 2009. Quasi-satellites, a Strange Class of Solar System Object, May Exist in the Outer Reaches of Our Solar System. Western University, Canada.

Wiegert, Innanen, Mikkola. 1997. Near-Earth Asteroid 3753 Cruithne, Earth’s Curious Companion. Western University, Canada.

Menemukan Chicxulub, di Balik Perburuan Kawah Pembunuh Dinosaurus

Tiap kali berbincang akan benda langit anggota tata surya yang berjuluk asteroid dan komet, di benak saya langsung terbayang sosok-sosok dinosaurus. Ya, pada kawanan hewan-hewan purba yang selama ini dipersepsikan berbadan besar dan tambun, meski sesungguhnya tidak seluruhnya demikian. Dinosaurus merajai seluruh benua selama ratusan juta tahun semenjak zaman Trias, tepatnya semenjak 231 juta tahun silam. Namun fosil-fosil mereka mendadak tak lagi dijumpai di lapisan-lapisan batuan yang berasal dari zaman Tersier awal, tepatnya mulai 65 juta tahun silam (atau dalam penelitian termutakhir, mulai 66 juta tahun silam). Dinosaurus tak menghilang sendirian. Dalam kurva kelimpahan genera makhluk hidup dari masa ke masa sepanjang 250 juta tahun terakhir yang disusun palentolog Jack Sepkoski dan David Raup yang dipublikasikan pada 1982 Tarikh Umum (TU) silam, jelas terlihat dinosaurus adalah bagian dari 76 % makhluk hidup sezaman yang mendadak menghilang. Selain dinosaurus, sejumlah anggota genera nanoplankton, tumbuhan darat, binatang laut dan darat tak bertulang belakang dan amfibi pun turut punah. Bedanya, mereka masih menyisakan sejumlah genera lainnya khususnya yang bertubuh kecil untuk bertahan hidup, sehingga tetap muncul dan bahkan berkembang pesat pada zaman geologi sesudahnya. Sementara sisanya beserta segenap dinosaurus, khususnya dinosaurus non burung, tak lagi dijumpai dalam kala dan zaman geologi sesudahnya.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Dinosaurus dan 76 % makhluk hidup sezaman itu menjadi korban dari peristiwa pemusnahan massal dalam skala global yang amat mencekik. Mulai dasawarsa 1980-an pencarian akan penyebab peristiwa dramatis tersebut mewarnai dunia ilmu pengetahuan yang terus berlanjut hingga ke abad ke-21 TU. Pencarian pun mengerucut pada dua kandidat. Yang pertama adalah dugaan peristiwa tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub (baca : chic-sa-lube) di sebagian Semenanjung Yucatan dan Teluk Meksiko (kini bagian dari Meksiko). Sementara kandidat kedua adalah dugaan letusan mahadahsyat gunung berapi areal yang memuntahkan magma basaltik dalam volume gigantis yang memproduksi Dataran Tinggi Dekan (kini bagian dari India). Keduanya terjadi pada rentang waktu hampir bersamaan dalam skala waktu geologi, yakni di perbatasan zaman Kapur dan Tersier sekitar 65 juta tahun silam. Sifat kedua kandidat itu sangat berbeda. Tumbukan pembentuk kawah Chicxulub berlangsung sangat singkat, hanya dalam waktu beberapa detik hingga beberapa jam saja. Sementara letusan gigantis Dataran Tinggi Dekan berlangsung dalam waktu hingga sejuta tahun

Setiap kandidat memiliki pendukungnya masing-masing. Namun hampir tiga dasawarsa kemudian, tepatnya pada tahun 2010 TU, terbentuk konsensus yang menyimpulkan tumbukan asteroid sebagai pembunuh dinosaurus dan pemusnah 76 % kelimpahan makhluk hidup sezaman. Setelah menganalisis seluruh literatur ilmiah terkait beserta segenap buktinya yang telah dihasilkan dalam dua dasawarsa terakhir, 41 ilmuwan prestisius dari berbagai disiplin ilmu seperti astronomi, kebumian dan geofisika menyepakati kesimpulan tersebut. Sebagai konsekuensinya, letusan gigantis Dataran Tinggi Dekan tak lagi dianggap sebagai penyebab peristiwa kepunahan massal 65 juta tahun silam. Meski mungkin berkontribusi dalam memperparah dampak lingkungan global akibat tumbukan asteroid raksasa tersebut.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Kawah raksasa Chicxulub adalah jejak paling jelas dari peristiwa tumbukan asteroid raksasa itu. Kawah tumbukan ini demikian akbar, berbentuk membulat dengan garis tengah tak kurang dari 170 kilometer. Namun ukuran sesungguhnya mungkin lebih besar lagi karena ada juga yang berpendapat terdapat tanda-tanda bahwa diameter kawah ini mencapai 300 kilometer. Kawah raksasa Chicxulub lahir kala asteroid raksasa bergaris tengah antara 5 hingga 15 kilometer jatuh menumbuk Bumi 65 juta tahun silam dalam peristiwa tumbukan benda langit. Tumbukan ini melepaskan energi kinetik yang sungguh luar biasa besar. Paling tidak 100 juta megaton energi dilepaskan, yang setara dengan peletusan 5 milyar bom nuklir Hiroshima secara serempak. Jika dibandingkan dengan energi letusan Gunung Toba 74.000 tahun silam, maka letusan gunung berapi terdahsyat di Bumi dalam 27 juta tahun terakhir itu hanyalah seper duaratus energi tumbukan asteroid raksasa ini. Apalagi jika dibandingkan dengan Peristiwa Chelyabinsk 2013 kemarin. Jelas sudah, inilah bencana alam terdahsyat dengan skala yang luar biasa !

Asteroid raksasa itu jatuh di perairan Teluk Meksiko purba yang adalah laut dangkal dengan kedalaman sekitar 150 meter. Maka megatsunami pun tercipta dan segera berderap mengarungi samudera. Gelombang setinggi ratusan meter menderu membanjiri pesisir-pesisir Amerika purba yang berhadapan. Bahkan di Eropa dan Afrika purba yang sudah cukup jauh dari lokasi tumbukan, tinggi megatsunami itu masih sekitar 100 meter kala tiba di pesisir.Namun bukan megatsunaminya yang menjadi masalah global yang sangat serius. Pembentukan kawah raksasa Chicxulub dibarengi semburan milyaran ton debu hingga jauh tinggi ke atmosfer. Pada saat yang sama, bongkah-bongkah batuan produk tumbukan yang terlontar ke angkasa sebagian berjatuhan lagi ke Bumi menjadi meteor dalam jumlah luar biasa besar. Udara pun terpanaskan hebat hingga kebakaran hutan spontan pun terjadilah dimana-mana bersamaan dengan badai api. Sebagai hasilnya milyaran ton jelaga pun terhembus ke udara. Selain debu dan jelaga, milyaran ton aerosol sulfat pun terlepas. Sulfat ini berasal dari gas belerang (sulfur dioksida), yang terbebaskan saat asteroid raksasa menumbuk dasar Teluk Meksiko yang dipenuhi endapan gipsum. Gas Belerang yang terproduksi segera bertemu uap air di atmosfer menjadi aerosol sulfat.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Ketiganya membumbung tinggi hingga memasuki lapisan stratosfer dan terdistribusikan ke segala arah. Karena berada di lapisan stratosfer, mereka tak bisa terlarut dan turun bersama air hujan. Hanya gravitasi yang mampu menurunkannya kembali ke permukaan Bumi. Namun dengan ukuran butir-butir debu, jelaga dan aerosol sulfat yang kecil, butuh waktu bertahun-tahun bagi gravitasi untuk bekerja mengendapkannya. Sepanjang waktu itu milyaran ton debu halus, jelaga dan aerosol sulfat terus melayang-layang dalam lapisan stratosfer. Tak sekedar melayang, mereka berkoalisi membentuk lapisan tabir surya alamiah khas produk tumbukan. Aerosol sulfat merupakan penyerap sinar Matahari yang efektif. Sementara debu dan jelaga menjadi pemantul sinar Matahari yang tak kalah efektifnya. Kehadiran ketiganya dalam jumlah luar biasa besar sebagai tabir surya alamiah di lapisan stratosfer menghalangi pancaran sinar Matahari yang seharusnya tiba di paras Bumi. Selain diserap, tabir surya tersebut juga memantulkan kembali sejumlah sinar Matahari ke angkasa, yang membuat albedo Bumi meningkat. Kombinasi kedua efek tersebut membuat intensitas sinar Matahari yang diterima di daratan dan lautan merosot demikian dramatis. Sehingga Bumi menjadi remang-remang gulita. Simulasi menunjukkan bahkan di siang bolong sekalipun situasinya masih lebih gelap ketimbang malam berhias Bulan purnama di hari yang normal.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Akibatnya sungguh buruk. Selain membuat suhu rata-rata paras Bumi anjlok dramatis dan jumlah penguapan pun berkurang dramatis dengan segala implikasinya ke sistem iklim dan cuaca Bumi, minimnya sinar Matahari juga memaksa tumbuh-tumbuhan darat dan fitoplankton di lautan berhenti berfotosintesis. Pelan namun pasti produsen makanan itu pun mati. Imbasnya segera merambat ke rantai makanan dan jaring-jaring makanan di segenap penjuru. Hewan-hewan yang menjadi konsumen, baik konsumen tingkat 1, 2 maupun 3 segera menyusul bergelimpangan akibat kelaparan. Dapat dikatakan segenap makhluk hidup yang bobotnya lebih dari 20 kilogram tewas bertumbangan. Hanya hewan-hewan kecil dan tumbuh-tumbuhan perintis saja yang sanggup bertahan.

Gravitasi dan Magnetik

Tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub mendorong kehidupan di Bumi memasuki saat-saat terpedihnya. Di era kontemporer, khususnya semenjak dasawarsa 1990-an, kengerian akan peristiwa ini mulai mengetuk pintu kesadaran umat manusia akan Bumi yang tidaklah steril dari hantaman komet dan asteroid, sebagaimana yang juga dialami planet-planet lainnya. Wajah Bumi pun pernah diwarnai kawah-kawah raksasa produk tumbukan, meski perjalanan waktu membuatnya dipahat erosi intensif atau bahkan terkubur di bawah ketebalan sedimen. Mata dunia semakin terbuka setelah menyaksikan untuk pertama kalinya bagaimana tumbukan benda langit bekerja, di planet lain. Selama tujuh hari berturut-turut semenjak 16 hingga 22 Juli 1994 TU, dunia menyaksikan bagaimana 21 fragmen komet Shoemaker-Levy 9 berjatuhan ke planet Jupiter. Secara akumulatif energi yang dilepaskannya pun mencapai ratusan juta megaton TNT, sebanding dengan peristiwa tumbukan asteroid raksasa 65 juta tahun silam. Kini asteroid dan komet pun dipandang dalam perspektif baru. Komet misalnya, tak lagi hanya dilihat sebagai benda langit eksotik yang mempunyai ‘ekor’ mempesona, namun juga menjadi salah satu potensi bahaya bagi Bumi meski dalam perspektif yang sangat berbeda dibanding ungkapan Aristoteles 2.000 tahun silam.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Namun jarang diketahui bahwa upaya pencarian, penemuan dan hubungan antara kawah raksasa Chicxulub dengan peristiwa pemusnahan massal 65 juta tahun silam berjalan dalam rangkaian yang mirip kisah-kisah detektif. Di dalamnya ada luapan energi dan semangat para pencarinya, yang ditingkahi pula dengan penolakan demi penolakan hingga hampir tiga dasawarsa seiring benturan asimetrik antara ‘kubu’ amatir vs profesional, sebelum kemudian bukti-bukti yang meyakinkan datang.

Ilmu tumbukan benda langit merupakan salah satu cabang ilmu pengetahuan yang usianya masih sangat muda. Secara formal cabang ilmu ini lahir pada 1963 TU seiring kerja keras Eugene M. Shoemaker, Nicholas M. Short, Edward Chao, B.M. French dan W. von Engelhardt dalam menganalisis dampak ledakan nuklir di medan percobaan nuklir Nevada (Amerika Serikat). Kala sebuah bom nuklir yang berjuluk Sedan (kekuatan 104 kiloton TNT) diledakkan di kedalaman 192 meter dari paras Bumi pada 5 Juli 1962 TU dan membentuk lubang kawah yang besar, Shoemaker sangat tertarik dengan morfologi kawahnya. Kawah produk ledakan Sedan memiliki diameter 426 meter dengan kedalaman 107 meter. Ia pun segera membandingkan kawah Sedan dengan kawah Barringer (Meteor) di Arizona (juga di Amerika Serikat) yang telah lama mengundang kontroversi akan asal-usulnya.

Perbandingan itu menunjukkan kawah Barringer nampaknya terbentuk oleh pelepasan energi 3,5 megaton TNT. Sementara analisis petrologi oleh M. Short menyimpulkan mineral-mineral kuarsa di dasar kawah Sedan telah mengalami metamorfosis dinamik tingkat tinggi akibat hadirnya tekanan sangat tinggi, minimal 200 ribu ton per meter persegi. Sementara di Arizona, analisis petrologi serupa yang dilakukan trio Chao, French dan Engelhardt di dasar kawah Barringer pun menemukan pola metamorfosis kuarsa yang sama. Ini memperlihatkan kawah Barringer juga dibentuk oleh aksi pelepasan energi yang melibatkan tekanan sangat tinggi. Secara alamiah hal semacam itu hanya bisa dihasilkan oleh tumbukan komet atau asteroid ke Bumi. Inilah tonggak berdirinya cabang ilmu tumbukan benda langit, sebagai hasil perkawinan silang antara ilmu kebumian dengan astronomi. Mulai saat itu para geolog harus lebih berhati-hati dalam mendeskripsikan morfologi cekungan bulat (bowl-shaped) di paras Bumi, tidak lagi sekedar mengidentifikasinya sebagai kawah maar, dolina, kaldera mud volcano ataupun erosi kubah garam.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Pada tahun 1966 TU pemuda belia Robert Baltosser yang juga geofisikawan yunior di Seismographic Service Corp, Tulsa (Amerika Serikat) berangkat ke Meksiko. Ia bertugas menganalisis data gravitasi PEMEX (perusahaan perminyakan nasional Meksiko) di kawasan Semenanjung Yucatan bagian utara, seiring terpilihnya tempat kerjanya sebagai salah satu kontraktor PEMEX. Sudah hampir dua dasawarsa PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan. Selama lima tahun sejak 1947 TU, PEMEX telah melakukan survei gravitasi di kawasan ini dengan harapan menemukan cekungan-cekungan potensial kaya minyak bumi. Mereka berhasil mengidentifikasi pola aneh setengah-melingkar di Semenanjung Yucatan bagian utara. Pola seperti itu biasanya menunjukkan ada sesuatu yang terpendam di dalam tanah. Berharap menjumpai cadangan minyak baru, PEMEX mengebor bagian utara kawasan berpola aneh tersebut di dua titik berbeda, yakni di Chicxulub Puerto dan Sacapuc. Sayangnya pengeboran yang menembus kedalaman hampir 1.000 meter itu tidak menghasilkan setetes minyak pun. Namun geolog yang mengawasi pengeboran itu mencatat satu hal yang aneh. Jika pada 800 meter pertama pemboran hanya menembus sedimen karbonat dan gipsum yang cerah, sejak kedalaman 800 meter pengeboran mulai menembus batuan beku kegelapan. Geolog itu menginterpretasikannya sebagai andesit, batuan beku khas di gunung berapi. Maka PEMEX pun berkesimpulan sumurnya telah menembus gunung berapi purba yang telah lama mati. Sumur pun ditutup dan pemburu minyak beralih ke lokasi lain.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Dua dasawarsa kemudian, pola setengah-melingkar itu tetap mengusik benak geofisikawan PEMEX. Apalagi harga minyak sedang meningkat sehingga penemuan cekungan-cekungan baru menjadi kebutuhan mendesak. Maka dipanggillah perusahaan yang mempekerjakan Baltosser. Kebetulan pemuda ini baru saja usai memetakan struktur Wells Creek di Tennesse (Amerika Serikat) secara gravitasi. Wells Creek adalah sebuah struktur bergaris tengah 13 kilometer yang sudah dipastikan sebagai produk tumbukan asteroid/komet, seiring telah teridentifikasinya kuarsa termetamorfosis dinamik tingkat tinggi didasarnya. Survei gravitasi Baltosser mengukuhkan hal itu, khususnya melalui peta anomali gravitasinya. Tatkala geofisikawan PEMEX menyodorkannya peta gravitasi Semenanjung Yucatan, Baltosser segera menyadari pola aneh setengah-melingkar itu memiliki banyak kemiripan dengan Wells Creek, hanya saja ukurannya 10 kali lebih besar. Maka spontan Baltosser pun berargumen pola setengah-melingkar di Semenanjung Yucatan itu jejak kawah tumbukan.

Namun sebuah perubahan dramatis tak terduga datang menerpa. Manajemen PEMEX sedang melaksanakan reorganisasi disertai perampingan pada semua lini. Geofisikawan PEMEX yang menjadi partner Baltosser turut diberhentikan. PEMEX juga menerapkan peraturan baru yang lebih ketat. Sehingga semua data hasil survei, termasuk peta yang dilihat Baltosser, tidak diperbolehkan keluar dari lingkungan PEMEX apalagi digandakan dan disebarluaskan. Baltosser pun pulang ke Tulsa sembari memendam rasa penasaran akan apa yang dilihatnya. Namun tanpa data di tangan untuk dianalisis, ia tak bisa berbuat apa-apa.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Bonanza minyak pasca berkecamuknya Perang Arab-Israel 1973 membuat permintaan minyak dunia kian melonjak. Seperti perusahaan minyak lainnya, PEMEX pun kian agresif mencari cekungan-cekungan minyak yang baru untuk mempertahankan dan bahkan meningkatkan produksinya. Segera PEMEX kembali mendiskusikan pola setengah-melingkar yang unik di Semenanjung Yucatan. Meski satu dasawarsa sebelumnya Baltosser menganggapnya sebagai kawah tumbukan, tak satupun geolog dan geofisikawan PEMEX yang sepaham. Mereka tetap memperkukuhi argumen gunung berapi purba dan menyebut kawasan Semenanjung Yucatan itu sebagai Central Yucatan Igneous Zone. Atas nama profesionalitas, mereka mengabaikan pendapat Baltosser dan menganggapnya sebagai sekedar imajinasi anak muda amatiran yang penuh energi menggelegak, masih idealis dan belum tahu apa-apa tentang realitas dunia. Namun PEMEX tetap membutuhkan survei baru sebagai pembanding guna mengetahui lebih lanjut apa yang tersembunyi di bawah Semenanjung Yucatan dan kawasan lepas pantainya. Syukur-syukur ada prospek minyak yang bisa dibor.

Maka pada 1978 TU datanglah perusahaan survei Western Geophysical (juga dari Amerika Serikat) sebagai pemain baru. Dalam rombongan ini terdapat pula Glenn Penfield, seorang geofisikawan ingusan namun sudah berpengalaman dengan pengukuran dan pembuatan peta magnetik kawasan. Selama tiga bulan di tahun 1976 TU Penfield menghabiskan waktunya di Alaska untuk melaksanakan survei aeromagnetik menggunakan radas magnetometer yang diterbangkan pesawat. Lebih dari 25.000 kilometer lintasan penerbangan ditempuhnya, beberapa melalui gunung-gemunung berapi besar di Alaska. Sehingga bagaimana anomali magnetis khas gunung berapi telah menjadi pengetahuannya, baik gunung berapi aktif yang tersingkap di paras Bumi maupun gunung berapi purba yang terpendam jauh di dalam tanah.

Divisi Aerosurvey perusahaan Western Geophysics mulai melaksanakan survei aeromagnetik di Semenanjung Yucatan sejak April 1978 TU. Selama berbulan-bulan kemudian Penfield dan rekan-rekannya menghabiskan waktu untuk terbang di atas kawasan pada altitud 5.000 meter dpl dengan lintasan barat-timur sejauh 400 kilometer. Lintasan terbang selanjutnya hanya bergeser 4 kilometer di sebelah lintasan terbang sebelumnya. Setelah usai, rute pesawat diubah menjadi berarah utara-selatan juga sejauh 400 kilometer, Namun selisih antar lintasan kali ini lebih lebar, yakni 20 kilometer. Dengan cara ini maka dihasilkan peta magnetik Teluk Meksiko dengan resolusi hingga 30 meter. Secara akumulatif panjang lintasan penerbangan survei tersebut mencapai kurang lebih 25.000 kilometer.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Sejak hari pertama survei aeromagnetik, Penfield sudah mendeteksi anomali medan magnetik di titik tertentu. Anomalinya memang kecil, antara 1 hingga 5 nanoTesla di atas rata-rata. Namun cakupan areanya cukup besar. Titik-titik anomali tersebut dijumpai di hampir setiap lintasan penerbangan survei, sepanjang April hingga Agustus 1978 TU. Setelah penerbangan usai, mulailah analisis dilakukan dalam periode September 1978 hingga Maret 1979 TU. Titik-titik anomali tiap lintasan penerbangan survei dimasukkan dalam perangkat lunak pengolah data Western Geophysics. Perangkat lunak itu juga memadukannya dengan peta topografi daratan Semenanjung Yucatan dan batimetri Teluk Meksiko. Hasilnya, ditemukanlah sebuah kawasan anomali magnetik yang sangat besar. Kawasan tersebut terkonsentrasi dalam sebuah struktur sirkular mengesankan berdiameter lebih dari 90 kilometer dan berimpit dengan Central Yucatan Igneous Zone.

Selain memanfaatkan perangkat lunak, Penfield juga menggunakan cara konvensional. Mereka mengeplot titik-titik anomali tersebut ke dalam peta kawasan. Keduanya merasa takjub saat melihat sejumlah titik di peta ternyata membentuk pola setengah-melingkar. Penfield pun berbagi cerita dengan rekan geofisikawannya di PEMEX. Si rekan, yang sama takjubnya, segera menggali timbunan arsip dan menyodorkan peta gravitasi Semenanjung Yucatan yang dilihat Baltosser satu dasawarsa sebelumnya. Kala dua peta ini digabungkan, jelas terlihat terlihat bagaimana pola setengah-melingkar peta gravitasi dan pola setengah-melingkar peta aeromagnetik membentuk satu kesatuan struktur sirkular bergaris tengah lebih dari 100 kilometer. Sama persis dengan hasil olahan perangkat lunak. Mengacu pengalamannya selama di Alaska, pola anomali magnetik berskala besar di Semenanjung Yucatan sangat berbeda dengan yang umumnya dijumpai di gunung berapi, baik aktif maupun purba. Penfield pun sependapat dengan Baltosser, bahwa Central Yucatan Igneous Zone lebih mungkin merupakan kawah tumbukan raksasa yang terpendam. Maka, sejak Agustus 1978 TU nama Struktur Chicxulub pun mulai bergaung.

Tapi senasib dengan Baltosser, PEMEX pun mengabaikan pendapat Penfield dan melemparkan laporannya ke kolong arsip di gudang data. Sesuai kebijakannya, PEMEX juga melarang Penfield memublikasikan apapun yang berbasis data PEMEX. Pada 1979 TU, PEMEX kembali mengebor daratan Yucatan di Yaxcopoil. Pengeboran sedalam 1.800 meter itu lagi-lagi tidak menemukan minyak, sehingga sumur pun ditutup dan ditinggalkan. Namun geolog yang menyupervisi pengeboran, yakni Burkhard Dressler dan David Kring, menjumpai keanehan yang mirip dengan temuan di sumur Chicxulub Puerto dan Sacapuc tiga dasawarsa sebelumnya. Pada kedalaman 800 meter tidak lagi dijumpai sedimen karbonat dan gipsum, namun justru ditemukan bebatuan mirip breksi, sejenis batuan sedimen yang tersusun dari bongkahan-bongkahan batu bersudut tajam. Breksi juga biasa dijumpai di kawasan gunung berapi, sehingga PEMEX tanpa ragu mengatakan sumur Yaxcopoil pun menembus gunung berapi purba di Central Yucatan Igneous Zone.

Menemukan Chicxulub

Selagi PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan namun sibuk memperkukuhi argumen gunung berapi purba, satu kuartet ilmuwan menggoncangkan dunia ilmu geologi, astronomi, biologi dan fisika lewat publikasi menggemparkan. Dalam bulan Juni 1980 TU kuartet ilmuwan Luis W. Alvarez, Walter Alvarez, Frank Asaro dan Helen Michel dari University of California (Berkeley) mengumumkan temuan tentang hubungan peristiwa pemusnahan massal 65 juta tahun silam dengan sumber ekstraterestrial berupa tumbukan komet/asteroid. Lewat analisis terhadap lapisan lempung hitam tipis yang terjepit di antara sedimen zaman Kapur dan Tersier dari sejumlah singkapan seperti di Gubbio (Italia), Stevns Klint (Denmark) dan Woodside Creek (Selandia Baru), mereka menemukan konsentrasi Iridium cukup pekat. Yakni antara 30 hingga 160 kali di atas normal. Iridium adalah salah satu logam yang ditemukan berlimpah dalam meteorit namun tidak di paras Bumi. Sehingga jika di daratan atau lautan terdapat temuan konsentrasi Iridium nan pekat, jelas sumbernya adalah debu-debu meteor dari langit. Jika Iridium di lempung hitam tipis tersebut dianggap berasal dari pengendapan debu-debu antariksa, maka butuh waktu setidaknya 500 ribu tahun untuk mencapai konsentrasi sepekat itu. Namun berselang setahun kemudian lewat analisis singkapan Caravaca (Spanyol), Jan Smit menyimpulkan deposisi lempung hitam berlangsung jauh lebih cepat yakni hanya dalam waktu sekitar 50 tahun.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Karena lapisan lempung hitam sejenis tersingkap pula di berbagai penjuru (dalam catatan terkini, ditemukan di lebih dari 350 singkapan di lima benua) Alvarez dkk meyakini skala peristiwa yang menyebabkannya bersifat global. Perhitungan Alvarez dkk menyimpulkan bahwa lempung hitam tipis tersebut hanya bisa dibentuk oleh tumbukan komet/asteroid berdiameter 10 +/- 4 km. Tumbukan komet/asteroid sebesar itu bakal menimbulkan kawah tumbukan raksasa bergaris tengah tak kurang dari 200-an kilometer. Tumbukan seukuran ini memproduksi debu sangat banyak yang terhambur ke atmosfer dan berperan sebagai tabir surya sehingga intensitas sinar Matahari di di paras Bumi turun drastis. Perhitungan menunjukkan pada puncaknya intensitas sinar Matahari yang diterima paras Bumi tinggal sepersepuluh juta dari normalnya. Maka fotosintesis akan terhenti, yang segera membunuh fitoplankton dan flora berdaun hijau. Selanjutnya giliran kawanan fauna yang tumbang berkalang tanah. Sayangnya Alvarez dkk tidak bisa menyodorkan bukti dimana lokasi kawah raksasa tersebut. Belakangan pada tahun 1984 TU Bruce Bohor dkk dari United States Geological Survey memperkuat argumen Alvares dkk. Bohor dkk menemukan butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi dalam lempung hitam di tepi Madrid Road, Colorado (Amerika Serikat). Setahun kemudian giliran Wendy Wolbach yang menemukan bahwa lapisan lempung hitam itu sangat kaya dengan butir-butir karbon mikro hasil kebakaran hutan konifer dalam skala global.

Penfield menyimak publikasi menggemparkan tersebut dan segera menyadari Struktur Chicxulub mungkin adalah kawah raksasa yang dibicarakan Alvarez dkk. Berdasar ketebalan sedimen di atas batuan mirip andesit/breksi di sumur Chicxulub Puerto dan Yaxcopoil, Penfield mengetahui umur struktur itu sekitar 80 juta tahun. Namun jika betul kawah tumbukan, umurnya bisa lebih muda karena faktor deposisi sedimen dasar kawah. Sehingga umur 65 juta tahun adalah masuk akal. Dengan rasa gembira meluap Penfield menghubungi Antonio Camargo, koleganya di Meksiko, menceritakan apa yang diketahuinya. Mereka akhirnya bersepakat untuk melaporkan Struktur Chicxulub serta kemungkinannya sebagai kawah raksasa penyebab pemusnahan massal 65 juta tahun silam dalam pertemuan ilmiah. Yang dituju adalah temu ilmiah geofisikawan dibawah tajuk Society of Exploration Geophysicist di Los Angeles (Amerika Serikat) pada bulan Oktober 1981. Di forum ini Penfield dan camargo memaparkan apa yang selama ini dikenal sebagai Central Yucatan Igneous Zone merupakan Struktur Chicxulub yang adalah kawah raksasa produk tumbukan komet/asteroid dan berkaitan dengan pemusnahan massal 65 juta tahun silam.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber:  Wilson, 2010.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber: Wilson, 2010.

Namun pertemuan Society of Exploration Geophysicist berlangsung bersamaan dengan pertemuan lain yang lebih presitisius, yakni Snowbird Conference di Utah (juga di Amerika Serikat). Berbeda dengan Society of Exploration Geophysicist, Snowbird conference dihadiri oleh para ilmuwan keplanetan, palentolog dan geolog yang secara khusus membahas peristiwa pemusnahan massal dan tumbukan komet/asteroid. Maka kala presentasi Penfield dan Camargo di Los Angeles ditanggapi dengan biasa-biasa saja dan bahkan cenderung dingin, konferensi di Utah justru begitu bersemangat menunggu pemaparan penyelidikan kandidat-kandidat kawah raksasa produk tumbukan yang memicu pemusnahan massal. Utah tak mengetahui sedikitpun bahwa Struktur Chicxulub sedang dipaparkan di Los Angeles. Nestapa Penfield bertambah setelah pejabat PEMEX mengecamnya secara terbuka. PEMEX kecewa data anomali magnetik milik mereka ternyata menjadi basis pemaparan di di Los Angeles.

Tapi Los Angeles jugalah yang mempertemukan Penfield dengan Carlos Byars, wartawan Houston Chronicle dan satu-satunya orang yang tertarik dengan presentasinya. Tanpa membuang waktu, Houston Chronicle edisi 13 Desember 1980 TU memajang artikel Penfield dan Camargo di halaman pertama dengan judul provokatif, lengkap dengan peta Struktur Chicxulub. Byars juga mempublikasikan tulisannya di majalah astronomi prestisius Sky and Telescope edisi Maret 1982 TU. Belakangan editor Sky and Telescope memangkas habis-habisan tulisannya sehingga hanya ditempatkan pada kolom singkat di halaman 249 dan 250. Byars pun khawatir tidak semua orang membacanya. Penfield sendiri terbang ke Houston (juga di Amerika Serikat) dan bertemu dengan pakar-pakar keplanetan di NASA Johnston Spaceflight Center. Salah satunya William Phinney. Phinney menekankan bahwa gagasan Struktur Chicxulub tidak akan dianggap remeh jika Penfield sanggup memperlihatkan bukti batuan metamorf dinamik tingkat tinggi dari struktur tersebut.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Saran Phinney membakar obsesi Penfield. Segera ia terbang ke Meksiko dan mencari sampel batuan khususnya di sekitar sumur-sumur yang pernah dibor PEMEX, atas biaya sendiri. Setelah tahu batuan dari sumur yang dibor di dasawarsa 1970-an dikirim ke Quetzalcoalcos, ia pun menyewa taksi dan pergi ke sana, hanya untuk mendapati gudang penyimpanan batuan sudah dibongkar dan diratakan dengan tanah. Tanpa patah semangat, Penfield menyigi jengkal demi jengkal puing-puing gudang guna mencari sisa-sisa batuan, namun tanpa hasil. Pencarian ke seluruh penjuru hingga 600 kilometer dari Merrida, dengan meneliti setiap cenote (telaga dolina) yang ada pun tidak mendapati batuan andesit/basalt yang dicarinya. Dari Merrida, ia pergi ke Sacapuc. Lokasi sumur Sacapuc ternyata sudah berubah jadi kandang babi dan berada di bawah timbunan kotoran. Mengabaikan bau kotoran dan rasa jijik, ia menggali hingga posisi sumur ketemu dan mencari batuan yang diinginkannya, lagi-lagi tanpa hasil. Lantas pergilah ia ke sumur di Chicxulub Puerto. Ketika sumur digali, disinilah bongkahan-bongkahan batuan yang dicarinya dijumpai sebagai penutup sumur. Penfield mengambil sampel seberat 9 kilogram, membersihkannya dari sisa-sisa semen penutup sumur dan segera dikirim ke Houston.

Lidah memang tak bertulang. Kerja keras Penfield tidak diapresiasi Phinney. Rupanya argumen gunung api purba di Semenanjung Yucatan juga telah merasuki benak ilmuwan-ilmuwan keplanetan NASA. Lebih dari itu, ilmuwan-ilmuwan itu pun terhinggapi penyakit profesionalitas layaknya geolog dan geofisikawan PEMEX. Mereka menganggap, sebagai profesional, merekalah yang lebih paham akan sifat dan dinamika kawah tumbukan. Apalagi dengan gencarnya misi antariksa antarplanet sejak dasawarsa 1960-an. Sementara Penfield yang hanya anak bawang. Sehingga meski Penfield datang membawa gagasan Stuktur Chicxulub dan segerobak sampel, ia hanyalah sosok amatir yang dianggap tidak memahami persoalan dan apa yang diungkapkannya sendiri, apalagi mengaitkannya dengan pemusnahan massal. So, genta perang amatir vs profesional kembali ditabuh. Sampel kiriman Penfield dicueki di Houston dan ilmuwan-ilmuwan NASA menganggap teka-teki Yucatan sudah usai dengan penjelasan tentang gunung api purba (Central Yucatan Igneous Zone).

Perang serupa juga dialami Byars. Setiap tahun, sebagai jurnalis, ia menghadiri pertemuan demi pertemuan di bawah Lunar and Planetary Science Conference (LPSC) di Houston. Dalam setiap sesi ia selalu berupaya meyakinkan ilmuwan yang dijumpainya mengenai Struktur Chicxulub, namun selalu ditolak. Byars dianggap sebagai jurnalis ilmiah yang baik, namun pembahasan kawah tumbukan dianggap bukan kompetensinya. Dalam salah satu pertemuan bahkan tulisan tentang Struktur Chicxulub yang disiapkannya langsung diserahkan seorang ilmuwan kepada mahasiswa S-1 binaannya. Belakangan sang mahasiswa malah menghilangkan tulisan tersebut. Situasi tak berubah memasuki tahun 1988 TU kala Snowbird Conference kedua diselenggarakan, juga mengambil tempat di Utah. Kelak Penfield menyebut periode sulit sepanjang Maret 1979 hingga Februari 1990 TU sebagai tahun-tahun yang penuh kebisuan.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Pada bulan Maret 1990 TU, kegigihan Byars menemukan hasilnya, Ia bersua Alan Hildebrand, pemuda tanggung lulusan University of Arizona yang sedang bersemangat mencari kawah tumbukan penyebab pemusnahan massal 65 juta tahun silam tanpa sponsor siapapun. Hildebrand sudah mendengar dari Jan Smit bahwa lapisan lempung hitam di Karibia lebih tebal dibanding tempat lain dimanapun, sehingga kawah tumbukan yang dicari tentu berada di dekat Kini. Hildebrand sebelumnya meneliti lapisan serupa di Beloc (Haiti) yang tebalnya mencapai 1 meter. Dari koleganya William Boynton, Hildebrand juga tahu lempung hitam tebal juga dijumpai di Texas, namun tidak setebal di Beloc. Esktrapolasi ketebalan lempung Texas, Beloc dan Karibia membuat Hildebrand dan Boynton berpendapat kawah raksasa itu mungkin saja ada di Colombia. Mereka segera menulis makalah ilmiah tentangnya yang akan dikirim ke jurnal Science. Menjelang pengiriman, Byars mempertemukannya dengan Penfield dan segera keduanya terlibat diskusi intensif akan Struktur Chicxulub. Hildebrand terpukau dengan teori Penfield dan mencantumkannya dalam tulisannya di Science.

Saat mengikuti wawancara kerja di Geological Survey of Canada, Hildebrand menyadari institusi ini menyimpan peta-peta gravitasi seluruh benua Amerika, termasuk Colombia dan Semenanjung Yucatan. Hildebrand agak kecewa ketika menemukan Colombia ternyata tidak memiliki anomali gravitasi yang diharapkannya. Sebaliknya justru di Semenanjung Yucatan-lah anomali gravitasi tersebut berada. Segera benaknya berbinar dengan satu nama : Penfield. Tanpa membuang waktu, Hildebrand terbang kembali ke Amerika Serikat untuk berdiskusi panjang lebar dengan Boynton, Penfield dan Camargo dengan disaksikan Byars. Akhirnya disusunlah makalah tentang Struktur Chicxulub. Pada April 1990 TU ia dikirim ke Nature, hanya untuk menerima penolakan langsung dari juri. Hildebrand menyadari salah satu alasan penolakan adalah tiadanya bukti langsung tentang Struktur Chicxulub sebagai kawah tumbukan.

Hildebrand segera bertanya-tanya pada semua orang yang dianggapnya tahu tentang nasib batuan hasil pengeboran PEMEX di dasawarsa 1970-an. Akhirnya didapat informasi akurat bahwa sebagian sampel batuan itu dikirim PEMEX ke Al Weidie di University New Orleans. Rupanya sampel-sampel itu dijadikan bahan untuk mempelajari sistem air bawah tanah di Semenanjung Yucatan. Begitu dikabarkan ke Penfield, segera ia terbang ke New Orleans dan berhasil memperoleh 600 kotak sampel yang dimaksud. Tanpa membuang waktu ia mengirimkan beberapa kotak ke Hildebrand. Hildebrand segera mengirimnya lagi ke Arizona dimana David Kring, mantan supervisor sumur Yaxcopoil yang kemudian bekerja di University of Arizona, telah menunggu bersama partnernya Jacobsen dan Pilkington. Segera terkuak bahwa sampel itu memang mengandung butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi. Inilah bukti yang dicari-cari itu. Struktur Chicxulub memang dibentuk oleh tumbukan komet/asteroid raksasa.

Kini teori Struktur Chicxulub telah menemukan bukti penyokong terkuatnya. Namun masih ada satu halangan menghadang: perang amatir vs profesional. Hildebrand segera menulis makalah ilmiah tentang bukti Struktur Chicxulub sebagai kawah tumbukan dengan menyertakan Penfield, Camargo, Boynton, Kring, Jacobsen dan Pilkington sebagai penulis tambahan. Makalah segera dikirimkan ke Nature, namun kembali juri menolaknya kali ini tanpa alasan yang jelas. Tapi alasannya diduga sangat personal, terkait status Hildebrand dkk yang dianggap amatiran. Tak menyerah dengan penolakan Nature, Hildebrand mengirimkan makalahnya ke jurnal lain, Geology, yang akhirnya memuatnya di edisi September 1991 TU. Dengan cepat publikasi ini memukau dunia. Ibarat bak air yang lepas sumbatnya, publikasi ini segera memantik perhatian besar akan Struktur Chicxulub.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Satu demi satu dukungan pun berdatangan. Carl C. Swisher dari Berkeley datang menyodorkan hasil pertanggalan radioaktif berbasis Kalium-Argon dengan kesimpulan umur struktur itu memang 65 juta tahun. Di tahun yang sama, 1991, Kevin Pope bersama Adriana Ocampo dan Charles Duller menuturkan pola sebaran cenote di Semenanjung Yucatan ternyata sangat dipengaruhi Stuktur Chicxulub. Konsentrasi terbesar cenote terletak di atas tepi kawah (cincin kawah) dan sebagian lagi di luar tepi kawah dimana produk tumbukan sebagian besar diendapkan. Hanya sebagian kecil saja yang dijumpai di dalam kawah, yakni di dalam area yang disebut puncak pusat (central peak). Jika Struktur Chicxulub tidak ada, cenote-cenote tersebut pun tak terbentuk. Implikasinya bakal membuat umat manusia mulai dari masa peradaban Maya di masa silam hingga sekarang sulit berkembang.

Referensi :

Penfield. 2009. Finding Chicxulub.

Verschuur. 1996. Impact! The Threat of Comets and Asteroids. Oxford University Press, New York, USA.

French. 1998. Traces of Catastrophe, A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar Planetary Institute, Arizona, USA.

Schulte dkk. 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 327, 5 March 2010, pp 1214-1218 + Supporting Materials .

Brien. 2006. Raton Basin Field Trip, Southern Colorado / Northern New Mexico, September 28 – October 1, 2006. Lunar Planetary Institute, Arizona, USA.

Wilson. 2010. The Best Cretaceous-Paleogene Boundary Yet. Wooster Geologist Blog.

Hildebrand dkk. 1990. Chicxulub Crater Size and Structure as Revealed by Horizontal Bouguer Gravity Gradients and Cenote Distribution. Lunar & Planetary Science XXVI, 603-604.