Ledakan Dahsyat Tianjin, Cina

Empat hari pasca peristiwa ledakan dahsyat di kompleks pelabuhan Tianjin (Cina), korban tewas tercatat mencapai 104 orang. Sementara korban luka-lukanya, baik berat maupun ringan, membengkak menjadi 720 orang lebih. Statistik ini hanyalah sementara dan dikhawatirkan masih akan terus membengkak. Apalagi masih banyak yang dinyatakan hilang, termasuk diantaranya 85 petugas pemadam kebakaran yang berada di lokasi tepat sebelum ledakan kedua. Ribuan penduduk mengungsi, yang membikin macet jalan-jalan raya kota itu pada jam-jam pertama pasca ledakan. Beragam isu khas bencana pun berseliweran. Salah satunya (yang terbukti benar) adalah kebocoran gas sianida, gas beracun yang memiliki reputasi mematikan.

Gambar 1. Pemandangan lokasi ledakan dahsyat di kompleks pelabuhan Tianjin, diabadikan dari udara. Titik pusat ledakan terdahsyat nampak ditandai dengan cekungan (kawah) yang tergenangi cairan. Disekelilingnya terlihat tumpukan petikemas yang berantakan dan jajaran mobil siap ekspor yang berubah menjadi puing-puing. Sumber: News.cn, 2015.

Gambar 1. Pemandangan lokasi ledakan dahsyat di kompleks pelabuhan Tianjin, diabadikan dari udara. Titik pusat ledakan terdahsyat nampak ditandai dengan cekungan (kawah) yang tergenangi cairan. Disekelilingnya terlihat tumpukan petikemas yang berantakan dan jajaran mobil siap ekspor yang berubah menjadi puing-puing. Sumber: News.cn, 2015.

Bencana ini terjadi di distrik Binhai Baru yang menjadi bagian dari kawasan ekonomi khusus terbuka Tanggu di Tianjin. Kompleks pelabuhan tersebut hanya berjarak sekitar 100 kilometer di tenggara Beijing, ibukota Cina. Bencana dimulai pada Selasa malam 12 Agustus 2015 Tarikh Umum (TU). Hingga tiga hari kemudian tercatat telah terjadi sepuluh ledakan di kompleks lapangan petikemas pelabuhan Tianjin ini. Ledakan yang terbesar adalah ledakan ganda pada 12 Agustus 2015 TU pukul 22:30 WIB (23:30 waktu Cina), masing-masing berselisih waktu hanya 30 detik. Ledakan kedua adalah yang terdahsyat, menghasilkan bolaapi ledakan (fireball) sangat besar dan sangat terang. Ia kemudian berkembang menjadi awan jamur (mushroom cloud) yang membumbung tinggi ke langit. Dalam waktu bersamaan Bumi bergetar. Sementara udara tertekan demikian hebat akibat penjalaran gelombang kejut (shockwave), yakni energi ledakan yang ditransfer ke udara sekitar dalam bentuk tekanan dengan kuat tekanan berbanding terbalik terhadap kuadrat jaraknya dari titik pusat ledakan (ground zero).

Gambar 2. Awan jamur (mushroom cloud) terlihat jelas dari kejauhan sesaat setelah ledakan kedua terjadi di kompleks pelabuhan Tianjin. Ketampakan awan jamur berskala relatif besar menjadi salah satu indikasi bahwa ledakan Tianjin melepaskan energi yang besar. Sumber: Anonim, 2015.

Gambar 2. Awan jamur (mushroom cloud) terlihat jelas dari kejauhan sesaat setelah ledakan kedua terjadi di kompleks pelabuhan Tianjin. Ketampakan awan jamur berskala relatif besar menjadi salah satu indikasi bahwa ledakan Tianjin melepaskan energi yang besar. Sumber: Anonim, 2015.

Di sekitar ground zero, gelombang kejutnya demikian bertenaga sehingga mampu memorak-porandakan tumpukan petikemas yang tersusun rapi. Ia juga berkemampuan meremukkan (sebagian) bangunan yang ada di jalurnya. Tak kurang dari 17.000 unit apartemen rusak berat, khususnya yang berjarak hingga 2 kilometer dari ground zero. Di samping itu masih ada sekitar 800 buah mobil baru siap ekspor dari berbagai pabrikan yang hancur menjadi puing-puing karena terparkir tepat di sebelah ground zero. Hingga radius sekitar 10 kilometer dari ground zero, gelombang kejutnya masih sanggup menggetarkan kaca jendela. Jumlah kerugian material pun melangit, diperkirakan mencapai trilyunan rupiah.

Hingga ratusan bahkan ribuan kilometer dari ground zero, gelombang kejut ledakan ini masih sanggup dideteksi oleh radas (instrumen) mikrobarometer. Meskipun kuat tekanannya sudah sangat lemah dan kini menjalar sebagai gelombang infrasonik. Sejumlah radas mikrobarometer ultrasensitif yang terpasang di stasiun-stasiun IMS (International Monitoring System) yang menjadi bagian dari pengawasan larangan ujicoba nuklir global di bawah payung CTBTO (Comprehensive nuclear Test Ban Treaty Organisation) merekam ledakan Tianjin ini. Mikrobarometer terjauh yang mengendusnya berlokasi di Tonga (Samudera Pasifik) dan Kazakhstan, ribuan kilometer jauhnya dari ground zero.

Gambar 3. Beberapa stasiun IMS dalam jejaring CTBTO yang mendeteksi ledakan dahsyat Tianjin pada radas mikrobarometernya. Gelombang kejut ledakan dahsyat Tianjin menjalar demikian jauh hingga sanggup terekam oleh radas-radas mikrobarometer yang berjarak ratusan atau bahkan ribuan kilometer dari Tianjin. Sumber: CTBTO, 2015.

Gambar 3. Beberapa stasiun IMS dalam jejaring CTBTO yang mendeteksi ledakan dahsyat Tianjin pada radas mikrobarometernya. Gelombang kejut ledakan dahsyat Tianjin menjalar demikian jauh hingga sanggup terekam oleh radas-radas mikrobarometer yang berjarak ratusan atau bahkan ribuan kilometer dari Tianjin. Sumber: CTBTO, 2015.

Dalam tulisan ini, yang disebut dengan ledakan dahsyat Tianjin adalah peristiwa ledakan terkuat (yakni ledakan kedua) di kompleks pelabuhan Tianjin. Seberapa kuat ledakan dahsyat Tianjin ini?

40 ton TNT

Meski terendus oleh sejumlah stasiun IMS di CTBTO, namun lembaga pengawas larangan ujicoba nuklir global tersebut memastikan bahwa ledakan dahsyat Tianjin tidak mengandung ciri-ciri khas ledakan nuklir. Terutama karena tiadanya emisi gas-gas radioaktif khas produk ledakan nuklir. Ia hanyalah ledakan dari bahan-bahan kimia (ledakan konvensional) semata. Selain produk ledakan nuklir, gelombang infrasonik yang menjalar sangat jauh juga dapat diproduksi dari aksi pelepasan energi tinggi lainnya, seperti detonasi bahan eksplosif (peledak) konvensional maupun bencana alam seperti letusan besar gunung berapi. Hal tersebut dapat dilihat misalnya dalam Letusan Kelud 2014 dan Letusan Sangeang Api 2014, keduanya mengambil lokasi di Indonesia.

Dua ledakan pertama di pelabuhan Tianjin memproduksi getaran di kerak bumi. Getaran ini adalah hasil konversi energi ledakan menjadi energi seismik. Seperti halnya gempa bumi, getaran ini pun terekam dalam seismometer (radas/instrumen pengukur gempa) sebagai seismogram. Sekilas terlihat mirip seismogram gempa bumi umumnya, namun sejatinya sangat berbeda karena mengandung pola khas ledakan. Analisis memperlihatkan kedua ledakan pertama tersebut memiliki magnitudo lokal masing-masing 2,3 dan 2,9 skala Richter.

Pada dasarnya magnitudo gempa adalah ekspresi besarnya energi seismik. Energi seismik dalam peristiwa ledakan dahsyat Tianjin berasal dari konversi energi total ledakan itu sendiri . Dengan mempertimbangkan rasio energi seismik terhadap energi total ledakan yang bernilai (rata-rata) 1 banding 63, maka dapat diprakirakan kedua ledakan tersebut melepaskan energi masing-masing 3 dan 21 ton TNT. Terminologi ton TNT adalah satuan tak-resmi energi dalam kaitannya dengan bahan ledakan ataupun detonasi (peristiwa ledakan). 1 ton TNT merupakan jumlah energi yang setara 4,186 GigaJoule dan (dianggap) setara jumlah energi yang dilepaskan dari pembakaran 1.000 kilogram bahan peledak tingkat tinggi trinitrotoluena (TNT). Satuan ton TNT diderivasikan dari satuan kiloton TNT, yang acap digunakan untuk menggambarkan energi dan dampak ledakan nuklir.

Gambar 4. Rekaman ledakan dahsyat Tianjin pada salah satu seismometer di dalam jejaring pemantau gempa di Cina. Usikan rapat nan kecil di sisi kiri merupakan rekaman ledakan pertama yang menghasilkan getaran bermagnitudo 2,3 skala Richter. Sedangkan usikan rapat yang lebih besar (sisi kanan) dihasilkan dari getaran akibat ledakan kedua, dengan magnitudo 2,9 skala Richter. Sumber: Weibo, 2015.

Gambar 4. Rekaman ledakan dahsyat Tianjin pada salah satu seismometer di dalam jejaring pemantau gempa di Cina. Usikan rapat nan kecil di sisi kiri merupakan rekaman ledakan pertama yang menghasilkan getaran bermagnitudo 2,3 skala Richter. Sedangkan usikan rapat yang lebih besar (sisi kanan) dihasilkan dari getaran akibat ledakan kedua, dengan magnitudo 2,9 skala Richter. Sumber: Weibo, 2015.

Jumlah energi yang dilepaskan pada ledakan dahsyat Tianjin juga dapat diprakirakan dari dampak gelombang kejutnya ke lingkungan sekitar. Hingga radius 10 kilometer dari ground zero, hempasan gelombang kejut diinformasikan masih sanggup menggetarkan kaca jendela bangunan. Efek ini muncul akibat overpressure (tekanan lebih) sebesar 200 Pascal (0,03 psi). Perhitungan sederhana mengacu persamaan-persamaan matematis yang disajikan Kinney dan Graham (Kinney & Graham, 1985) memprakirakan, secara kasar energi ledakan (yield) berkisar 40 ton TNT. Pada tingkat energi ini persamaan serupa memprakirakan di ground zero bakal terbentuk kawah (cekungan) dengan prakiraan garis tengah 50 meter. Cekungan terbentuk sebagai akibat overpressure yang sangat besar, yakni melebihi 25 MegaPascal (362 psi). Cukup mengesankan pemotretan (pencitraan) udara di atas lokasi ledakan dengan menggunakan pesawat udara nir-awak (drone) memperlihatkan memang ada cekungan besar di ground zero. Cekungan tersebut kini tergenangi cairan dan memiliki perkiraan diameter sekitar 50 meter. Sejumlah dampak hempasan gelombang kejut lainnya pun sejauh ini konsisten dengan ledakan non-nuklir yang memiliki yield 40 ton TNT.

Indikasi lain besarnya energi ledakan dahsyat Tianjin datang dari langit. Sedikitnya tiga satelit cuaca yang berpangkalan di orbit geostasioner (ketinggian 35.782 kilometer di atas garis khatulistiwa) dan bertugas meliput dinamika cuaca di kawasan Asia Timur Jauh merekam pemandangan takbiasa di atas Tianjin pada saat bencana. Ketiganya masing-masing adalah satelit Himawari-8 (Jepang), Himawari-7 atau MTSAT-2 (Jepang) dan Chollian atau Coms-1 (Korea Selatan). Ketiga satelit itu merekam apa yang dikenal sebagai fenomena titik-panas (hotspot), tepat di atas pelabuhan Tianjin. Bersamaan dengan hadirnya titik-panas, terekam pula awan-awan yang bergerak menjauh darinya. Titik-panas tersebut merupakan bagian udara yang suhunya lebih tinggi dibanding sekelilingnya dan merupakan produk lebih lanjut dari mengembangnya gas-gas panas yang semula membentuk awan jamur. Sembari mengembang, gas-gas tersebut terus mendingin. Tapi suhunya masih lebih tinggi ketimbang udara sekelilingnya. Terdeteksinya titik-panas oleh satelit dalam waktu bersamaan dengan ledakan dahsyat Tianjin menjadi pertanda besarnya energi ledakan.

Gambar 5. Ledakan dahsyat Tianjin seperti teramati dari satelit cuaca Himawari-8 pada kanal 3,9 mikron dalam selisih waktu 40 menit. Terlihat hotspot (titik-panas) yang menunjukkan lokasi ledakan. Juga awan yang terlihat menyibak menjauhi hotspot , mungkin akibat dorongan gelombang kejut ledakan. Sumber: JMA, 2015.

Gambar 5. Ledakan dahsyat Tianjin seperti teramati dari satelit cuaca Himawari-8 pada kanal 3,9 mikron dalam selisih waktu 40 menit. Terlihat hotspot (titik-panas) yang menunjukkan lokasi ledakan. Juga awan yang terlihat menyibak menjauhi hotspot , mungkin akibat dorongan gelombang kejut ledakan. Sumber: JMA, 2015.

Penyebab ?

Jika ledakan dahsyat Tianjin adalah benar melepaskan energi 40 ton TNT maka kedahsyatannya setara dengan ledakan bom non-nuklir terkuat saat ini. Yakni bom FOAB yang ada dalam arsenal Angkatan Udara Russia. Bila diperbandingkan dengan bom non-nuklir terkuat milik AU Amerika Serikat, yakni GBUI-43/B MOAB (massive ordnance air blast), maka ledakan dahsyat Tianjin adalah empat kali lebih bertenaga. Meski begitu ledakan dahsyat Tianjin bukanlah yang terkuat sepanjang sejarah ledakan non-nuklir. Ia masih kalah jauh ketimbang bencana meledaknya roket N-1 (Russia) pada 3 Juli 1969 TU. N-1 adalah roket raksasa yang ditujukan untuk mendaratkan manusia Russia (saat itu Uni Soviet) di Bulan, namun meledak di landasan dalam penerbangan ujicoba tak-berawak dengan menghempaskan energi 7.000 ton TNT. Bahkan dibandingkan bencana industrial terbesar terakhir, yakni meledaknya gudang penyimpanan kembang api di kota Enschede (Belanda) pada 13 Mei 2000 TU yang melepaskan energi antara 4.000 hingga 5.000 ton TNT, ledakan dahsyat Tianjin masih kalah jauh.

tianjin-blast_modelling-deskripsi

Gambar 6. Atas: deskripsi dampak gelombang kejut ledakan dahsyat Tianjin dan radius maksimum setiap dampaknya berdasarkan pemodelan ledakan non-nuklir berenergi 40 ton TNT. Bawah: Plot sebagian hasil pemodelan radius maksimum dampak gelombang kejut ledakan dahsyat Tianjin ke dalam citra satelit pelabuhan Tianjin dan sekitarnya. Titik biru = ground zero, 2 = radius maksimum kerusakan kaca jendela (1.945 meter dari ground zero), 3 = batas puing-puing dan (1.265 meter dari ground zero) 8 = kerusakan blok beton/dinding bata (276 meter dari ground zero). Sumber: Sudibyo, 2015 berbasis Google Earth serta Kinney & Graham, 1985

Gambar 6. Atas: deskripsi dampak gelombang kejut ledakan dahsyat Tianjin dan radius maksimum setiap dampaknya berdasarkan pemodelan ledakan non-nuklir berenergi 40 ton TNT. Bawah: Plot sebagian hasil pemodelan radius maksimum dampak gelombang kejut ledakan dahsyat Tianjin ke dalam citra satelit pelabuhan Tianjin dan sekitarnya. Titik biru = ground zero, 2 = radius maksimum kerusakan kaca jendela (1.945 meter dari ground zero), 3 = batas puing-puing dan (1.265 meter dari ground zero) 8 = kerusakan blok beton/dinding bata (276 meter dari ground zero). Sumber: Sudibyo, 2015 berbasis Google Earth serta Kinney & Graham, 1985

Bagaimana ledakan dahsyat Tianjin bisa terjadi? Inilah yang masih terus diselidiki. Informasi yang berkembang masih simpang-siur. Awalnya peristiwa di pelabuhan Tianjin ini diduga merupakan ledakan gas yang merembet ke gudang penyimpanan bahan kimia mudah meledak milik sebuah perusahaan logistik. Ledakan di bahan kimia itu lantas menyulut cairan gampang terbakar (seperti etanol/alkohol) yang tertimbun dalam jumlah besar disekitarnya. Namun beberapa hari kemudian muncul versi lain. Yakni terjadi kebakaran, dengan sebab yang belum jelas, semenjak 40 menit sebelum ledakan pertama dimulai. Pemadam kebakaran menyemprotkan air dalam jumlah besar ke titik kebakaran dan ke lingkungan sekitar (untuk pendinginan), tanpa menyadari terdapat timbunan karbit (kalsium karbida) dalam jumlah besar hingga ratusan ton. Reaksi air yang berlimpah dengan karbit dalam jumlah besar menghasilkan gas asetilena (etuna) demikian berlimpah. Asetilena adalah gas mudah terbakar yang umum digunakan gas dalam pengelasan. Di Cina, gas asetilena juga dimanfaatkan dalam industri petrokimia khususnya sebagai bahan baku pembuatan polivinil klorida (PVC) yang berbiaya lebih murah ketimbang harus mengimpor minyak mentah. Tak heran jika pertumbuhan penggunaan karbit kian meningkat (mencapai hampir 9 juta ton per 2005 TU). Diduga terjadi pelepasan gas asetilena dalam jumlah besar dan sontak terbakar (meledak) oleh percikan api.

Terakhir muncul versi lain. Selain karbit, pergudangan di kompleks pelabuhan Tianjin juga menyimpan tak kurang dari 40 jenis bahan kimia gampang terbakar lainnya. Salah satunya amonium nitrat, dalam jumlah tak kurang dari 800 ton. Amonium nitrat adalah bahan baku pupuk, namun juga populer sebagai salah satu bahan utama untuk meracik bahan peledak kelas rendah (low explosive). Ada dugaan saat gas asetilen terbakar dan meledak, apinya menyulut amonium nitrat dalam jumlah besar hingga akhirnya meledak dahsyat.

Apapun penyebabnya, ledakan dahsyat Tianjin menjadi indikasi adanya masalah dalam pengelolaan bahan kimi berbahaya di tanah Cina. Dengan pertumbuhan ekonomi yang fantastis, konsumsi bahan-bahan kimia gampang meledak pun meroket. Namun tak diimbangi dengan peningkatan pengawasan maupun pelatihan untuk menanganinya, termasuk dalam situasi kritis seperti terjadinya kebakaran gudang penyimpanan. Sebagai imbasnya, pemerintah Cina mengancam akan memenjarakan siapapun yang bertanggung jawab dalam peristiwa ledakan dahsyat Tianjin. Mereka juga bersiap untuk mulai menginspeksi setiap perusahaan yang mengelola bisnis sejenis di seantero negeri, sebagai langkah preventif.

Referensi :
Kinney & Graham. 1985. Explosive Shocks in the Air. Springer-Verlag, New York, 2nd edition.

Iklan

2 thoughts on “Ledakan Dahsyat Tianjin, Cina

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s