Elegi Tebing Breksi, Letusan Sedahsyat Toba dan Gerhana Bulan Apogean

Salah satu lokasi pengamatan Gerhana Bulan Total 28 Juli 2018 adalah Taman Tebing Breksi, yang diselenggarakan oleh Jogja Astro Club (JAC), klub astronomi tertua di kota Yogyakarta. Taman Tebing Breksi bertempat di desa Sambirejo, kec. Prambanan, Kab. Sleman (DIY). Ini adalah sebuah obyek wisata baru nan khas, bekas area penambangan bahan galian C yang ditutup pada 2014 TU (Tarikh Umum) silam. Lantas dinding-dinding batu tegak yang masih tersisa didekorasi dengan aneka pahatan berseni. Kedekatan lokasinya dengan obyek wisata yang telah lebih dulu ada dan populer seperti kompleks Candi Prambanan dan kompleks Candi Ratu Boko menjadikan Taman Tebing Breksi cepat populer. Terlebih setelah pesohor seperti mantan Presiden Barrack Obama mengunjunginya tepat setahun lalu.

Gambar 1. Panorama Taman Tebing Breksi, obyek wisata baru yang berlokasi tak jauh dari Candi Prambanan dan Candi Ratu Boko yang tersohor. Meski menyandang nama breksi, sejatinya tak dijumpai batuan breksi di sini. Melainkan tuf, debu vulkanik produk letusan gunung berapi masa silam yang telah terpadatkan demikian rupa hingga mengeras dan membatu. Sumber: Detik.com/Bagus Kurniawan, 2016.

Nama Tebing Breksi yang melekat pada obyek wisata baru ini sesungguhnya tidaklah tepat menurut perspektif ilmu kebumian. Breksi adalah batuan sedimen yang mengandung fragmen/bongkah yang kasar dan sisinya relatif tajam/menyudut. Jika fragmen/bongkahnya relatif membulat, maka namanya berubah menjadi lebih megah dan populer. Yakni Konglomerat. Kata yang sering dinisbatkan kepada sosok-sosok yang dalam istilah milenial disebut horang-horang kayah rayah.

Breksi bisa dijumpai sebagai hasil aktivitas pengendapan di dasar laut. Bisa juga breksi tersebar di sekeliling sebuah gunung berapi sebagai produk aktivitasnya. Dapat pula breksi terbentuk akibat aktivitas tumbukan benda langit, yakni saat komet atau asteroid menghantam paras Bumi dengan dahsyatnya dan mengubah banyak hal pada batuan yang ditumbuknya. Breksi produk aktivitas terakhir itu dikenal sebagai suevit atau breksi tumbukan.

Namun breksi tidaklah ada di Taman Tebing Breksi, sejauh mata memandang dan sejauh tangan mampu menggali. Dinding-dinding batuan tegak yang kini berhias aneka rupa itu sejatinya dikenal sebagai Tuf. Ya tuf, tumpukan debu vulkanik yang telah membatu demikian rupa. Berbeda dengan breksi yang bisa berasal dari berbagai sumber, tuf jelas merupakan produk aktivitas gunung berapi.

Tuf yang tersingkap di Taman Tebing Breksi merupakan bagian dari apa yang dalam ilmu kebumian dikenal sebagai formasi Semilir. Ini adalah satuan batuan yang dijumpai membentang dalam area yang sangat luas di bagian selatan pulau Jawa, yakni hingga mencapai luasan 800 km2. Tuf ini tersebar mulai dari Yogyakarta di sebelah barat hingga Pacitan di sebelah timur. Dengan ketebalan antara 250 meter hingga 1.200 meter, maka volume tuf Semilir mencapai sedikitnya 480 km3.

Gambar 2. Sebaran dan ketebalan tuf Semilir di bagian selatan pulau Jawa. Tuf yang diendapkan dalam tempo singkat itu kini tersebar di tiga propinsi yakni DIY, Jawa Tengah dan Jawa Timur. Sumber: Smyth dkk. 2011.

Berdasarkan ketiadaan jejak-jejak erosi dan aktivitas binatang purba didalamnya, tuf Semilir diindikasikan terbentuk oleh pengendapan material letusan gunung berapi dalam tempo cukup singkat bagi skala waktu geologi. Tidak perlu menunggu ribuan hingga berjuta-juta tahun seperti umumnya batuan endapan dalam sebuah formasi. Maka tuf Semilir merupakan produk letusan tunggal, sebuah letusan yang sangat dahsyat.

Mari bayangkan berkelana ke masa silam, anggaplah kita bisa menumpang mesin waktunya Doraemon. Putar waktu kembali ke zaman 20 juta tahun silam, kembali ke kala Oligo-Miosen dalam skala waktu geologi. Pulau Jawa sudah terbentuk meski wajahnya belumlah seperti sekarang. Jawa bagian selatan masih terbenam di bawah air laut. Di sini terdapat untaian pulau-pulau kecil berbaris, yang sejatinya adalah puncak-puncak gunung berapi aktif yang tumbuh dari dasar laut. Mereka menjadi bagian dari apa yang disebut busur vulkanik Jawa tua, yang tumbuh dan aktif sejak 45 juta tahun silam.

Salah satu pulau itu adalah, sebut saja, pulau Semilir. Pada 20 juta tahun silam itu ia meletus, mengamuk teramat dahsyat. Seberapa dahsyat? Bagi kita di Yogyakarta, Jawa Tengah dan sekitarnya, Letusan Merapi 2010 selalu dikenang sebagai letusan terdahsyat saat ini. Gunung Merapi memuntahkan tak kurang dari 150 juta m3 magma saat itu. Ada juga Letusan Kelud 2014 meski tingkat kedahsyatannya sedikit di bawah Gunung Merapi, yakni dengan muntahan magma segar 105 juta m3. Namun dibandingkan letusan Semilir 20 juta tahun silam, Merapi dan Kelud adalah ibarat amuba yang bersanding dengan gajah.

Gambar 3. Jam-jam pertama Letusan Toba Muda 74.000 silam, dalam sebuah ilustrasi. Gas dan debu vulkanik disemburkan dahsyat hingga menjangkau ketinggian 70 kilometer. Gambaran situasi yang mirip juga dijumpai pada Letusan Semilir 20 juta tahun silam. Sumber: Anynobody, 2009 dalam Wikipedia, 2009.

Letusan Semilir 20 juta tahun silam memuntahkan tak kurang dari 480 milyar m3 atau 480 km3 magma padat setara batuan. Jika dianggap komposisinya mirip dengan magma Tambora, kalikan angka tersebut dengan 6. Akan kita dapatkan volume magma Letusan Semilir 20 juta tahun silam itu mencapai tak kurang dari 2.800 km3 magma! Bila anda pernah mendengar kisah horor dahsyatnya letusan Gunung Toba yang kini menjadi Danau Toba, ya seperti itulah gambarannya. Letusan Gunung Toba terjadi pada 74.000 tahun silam, yang disebut sebagai Letusan Toba Muda. Letusan yang menggelapkan tanah Sumatera dan Semenanjung Malaya serta mencekik dunia. Volume magma yang dierupsikan dalam Letusan Semilir 20 juta tahun silam itu 18.000 kali lipat lebih melimpah ketimbang amukan Gunung Merapi 2010 TU silam.

Seperti halnya kisah yang terjadi dalam letusan-letusan sangat besar gunung berapi, Letusan Semilir 20 juta tahun silam jelas menebarkan dampaknya ke segenap sudut paras Bumi. Tebaran debu vulkaniknya yang teramat banyak mungkin membedaki kawasan sekitarnya hingga radius 2.500 kilometer dari gunung. Namun debu vulkanik yang lebih halus tersembur tinggi hingga memasuki lapisan stratosfer bersama dengan gas SO2 yang sontak bereaksi dengan uap air membentuk butir-butir sulfat (H2SO4).

Terbentuklah tabir surya vulkanis di ketinggian lapisan stratosfer, yang efektif memblokir sinar Matahari sehingga paras Bumi dibikin remang-remang. Maka reaksi berantai pun terjadilah. Tumbuh-tumbuhan tak bisa menyelenggarakan fotosintesis sehingga mulau bermatian. Hewan-hewan herbivora pun kelaparan dan bertumbangan. Disusul hewan-hewan karnivora hingga ke puncak jaring-jaring makanan. Kematian besar-besaran diduga terjadi pada saat itu, meski seberapa besar tingkatannya masih belum bisa kita ketahui.

Gambar 4. Estimasi dampak sebaran debu vulkanik dalam Letusan Semilir 20 juta tahun silam, dengan mengacu pada dampak Letusan Toba Muda 74.000 tahun silam yang telah lebih diketahui. Bentuk kepulauan Indonesia adalah berdasarkan rekonstruksi untuk 20 juta tahun silam. Sumber: Smyth dkk. 2011.

Pergerakan tektonik menyebabkan bagian selatan pulau Jawa terangkat menjadi daratan. Sementara lempeng tektonik Australia terus mendesak ke utara sembari bersubduksi. Rangkaian proses inilah yang menyebabkan formasi Semilir terbentuk lantas terangkat dan menjadi jajaran perbukitan yang sebagian diantaranya menghiasi sisi timur Yogyakarta. Ilmu kebumian menyebutnya sebagai zona Baturagung. Dimana lokasi gunung berapi purba yang meletus demikian dahsyat itu? Ada beragam pendapat, misalnya yang menyebutkan pusat letusan ada di dalam area zona Baturagung yang terletak di antara Kab. Klaten dan Kab. Gunungkidul. Ada juga yang beropini pusat letusan sangat dahsyat itu kini menjadi cekungan Baturetno, cekungan besar bekas danau purba yang sebagian digenangi air sebagai Waduk Gajahmungkur, Kab. Wonogiri.

Raungan

Untuk apa membicarakan gunung berapi pada saat Gerhana Bulan?

Gerhana Bulan Total 28 Juli 2018 merupakan Gerhana Bulan Apogean, karena terjadi hanya berselang 14 jam setelah Bulan mencapai titik apogee-nya. Gerhana Bulan ini akan dimulai pada pukul 00:15 WIB (kontak awal penumbra atau P1) dan berakhir pada pukul 06:28 WIB (kontak akhir penumbra atau P4). Sehingga durasinya 6 jam 14 menit. Akan tetapi bagian gerhana yang kasatmata hanyalah berdurasi 3 jam 55 menit. Yakni mulai dari pukul 01:24 WIB (kontak awal umbra atau U1) hingga pukul 05:19 WIB (kontak akhir umbra atau U4).

Sementara durasi totalitasnya adalah 1 jam 43 menit dengan puncak gerhana dicapai pada pukul 03:22 WIB. Karena Bulan baru saja meninggalkan titik apogee dengan jarak Bumi – Bulan saat itu masih sebesar 406.100 kilometer, maka kecepatan orbital Bulan masih lambat. Ditunjang dengan lintasan Bulan yang tep@at hampir bersentuhan dengan pusat lingkaran umbra, maka inilah yang menjadikan Gerhana Bulan Total ini sebagai Gerhana Bulan dengan durasi totalitas terpanjang untuk abad ke-21 TU.

Gambar 5. Wajah Bulan dalam Gerhana Bulan Sebagian 7-8 Agustus 2017. Panorama tahap parsial seperti ini akan bisa disaksikan lagi dalam peristiwa Gerhana Bulan Total 28 Juli 2018. Sumber: Sudibyo, 2017.

Manakala gerhana Bulan terjadi, saksikanlah saat-saat sebelum umbra Bumi mulai menyelimuti paras Bulan. Nampak bundaran Bulan nan cemerlang di langit malam. Pada wajahnya ada bagian yang nampak lebih cerah, juga ada yang lebih gelap. Bagian-bagian yang gelap itu disebut mare (jamaknya maria), istilah Bahasa Latin untuk laut. Sebab para astronom jaman dulu, termasuk diantaranya Galileo Galilei, menganggap bagian itu adalah laut di paras Bulan. Namun di kemudian hari anggapan itu terbantahkan. Terlebih setelah eksplorasi Bulan menjadi salah satu bagian dalam khasanah penerbangan antariksa. Bulan ternyata kering kerontang.

Maria merupakan dataran rendah Bulan, khususnya cekungan raksasa (basin) yang terbentuk oleh sebab tertentu bermilyar tahun silam. Di kemudian hari ia digenangi oleh lava Bulan secara berangsur-angsur, produk muntahan magma gunung-gemunung berapi Bulan secara kontinu di masa silam. Magmanya relatif encer, tidak seperti magma Merapi yang lebih kental atau bahkan magma Semilir yang (mungkin) sangat kental. Gunung gemunung berapi Bulan saat itu mungkin seperti gunung berapi di Kepulauan Hawaii (Amerika Serikat) atau di kawasan Hijaz (Saudi Arabia) pada masa kini. Magmanya cair encer sehingga melebar menutupi area yang sangat luas dalam letusan yang dikenal sebagai erupsi efusif (leleran). Namun tak menutup kemungkinan bahwa gunung-gemunung berapi Bulan untuk meletus eksplosif. Layaknya Letusan Merapi 2010 atau bahkan Letusan Semilir 20 juta tahun silam.

Gambar 6. Wajah Bulan dengan tebaran nama-nama mare yang bertebaran diparasnya. Awalnya dikira laut, eksplorasi Bulan memperlihatkan mare adalah cekungan besar yang terisi material vulkanik produk aktivitas gunung-gemunung berapi Bulan yang aktif jauh di masa silam, bermilyar tahun yang lalu. Sumber : Sudibyo, 2018.

Jadi, kala kita menatap wajah Bulan dari tempat seperti Taman Tebing Breksi, kita bisa belajar bahwa kekuatan yang membentuk Taman Tebing Breksi ini sejatinya juga pernah bekerja di Bulan. Dan juga bagian lain tata surya kita. Vulkanisme atau aktivitas kegunungberapian sejatinya berlandaskan pada prinsip yang sangat sederhana, yakni pelepasan panas. Tatkala kita menyeduh secangkir kopi pada saat ini, kopi perlahan-lahan akan mendingin karena melepaskan panasnya ke lingkungan sekitarnya. Termasuk ke udara. Vulkanisme pun demikian. Manakala benda langit, baik planet maupun satelit alamiahnya, memiliki kandungan panas yang cukup besar dalam interiornya, maka panas itu perlahan-lahan akan dilepaskan ke lingkungan sekitar melalui berbagai cara. Salah satunya adalah vulkanisme.

Maka tak heran jika di Bulan kita menemukan jejak-jejak aktivitas gunung berapi. Demikian halnya di planet Venus dan Mars. Meski di ketiga benda langit tersebut aktivitas vulkanisme masakini nyaris tidak ada karena proses pelepasan panas interior nampaknya sudah kurang intensif. Di lingkungan planet Jupiter, bahkan dijumpai aktivitas vulkanisme aktif yang jauh lebih ganas ketimbang yang kita alami di Bumi. Yakni di Io, salah satu satelit alamiah dari planet gas raksasa itu. Bahkan hingga ke tempat yang demikian jauh, dingin dan ganjil seperti lingkungan planet Neptunus pun dijumpai aktivitas vulkanisme. Yakni di Triton, satelit alamiah terbesar dari planet yang berjarak terjauh terhadap Matahari.

Jadi, tatkala kita berada di Taman Tebing Breksi dan menatap Rembulan, mari bayangkan bahwa raungan vulkanik yang pernah membentuk tempat ini pada 20 juta tahun silam juga pernah bergema di keluasan langit, dalam sudut-sudut tata surya kita. Mulai dari Bulan sang pengawal setia Bumi kita, lalu Venus yang udaranya panas membara hingga ke lingkungan Neptunus yang demikian mengigil membekukan.

Referensi :

Smyth dkk. 2011. A Toba-scale Eruption in the Early Miocene: The Semilir Eruption, East Java, Indonesia. Lithos no. 126(3) October 2011, halaman198-211.  

Gerhana Bulan Total Terlama Abad Ini dan Mars Terdekat ke Bumi

Bagaimana jika dua peristiwa langit yang berbeda terjadi pada waktu yang hampir sama? Inilah yang akan kita jumpai pada akhir Juli 2018 TU (Tarikh Umum). Yakni peristiwa Gerhana Bulan Total 28 Juli 2018 dan Mars terdekat ke Bumi 31 Juli 2018.

Sebelum lebih jauh, perlu digarisbawahi bahwa yang dimaksud Gerhana Bulan Total terlama abad ini adalah dalam durasi totalitasnya. Yakni rentang waktu manakala Bulan sepenuhnya berada dalam umbra (bayangan inti) Bumi sehingga sepenuhnya terblokir dari paparan langsung cahaya Matahari. Peristiwa Gerhana Bulan Total telah diperhitungkan akan terjadi pada Sabtu 28 Juli 2018 TU, bertepatan dengan 15 Zulqaidah 1439 H jika berdasarkan takwim standar Kementerian Agama RI atau 14 Zulqaidah 1439 H merujuk kalender Nahdlatul ‘Ulama yang telah dikomparasikan dengan hasil rukyat hilaal. Dan dalam peristiwa ini, durasi totalitasnya adalah sebesar 103 menit atau 1 jam 43 menit. Panjangnya durasi totalitas ini menjadikan Gerhana Bulan Total 28 Juli 2018 adalah Gerhana Bulan Total (berdurasi totalitas) terlama bagi abad ke-21 TU.

Gambar 1. Bulan dalam tahap parsial saat Gerhana Bulan 7-8 Agustus 2017 silam. Diabadikan dalam citra overeksposur untuk memperlihatkan bagian umbra di cakram Bulan yang berwarna kemerah-merahan. Pemandangan yang lebih memukau akan kita saksikan pada Gerhana Bulan Total 28 Juli 2018. Sumber: Sudibyo, 2017.

Gerhana Bulan ini mengurung narasi yang hampir serupa dengan peristiwa sejenis sebelumnya. Yakni terjadi manakala Matahari, Bulan dan Bumi berada dalam satu garis lurus ditinjau dari segala arah (syzygy) dengan Bulan berada di tengah-tengah. Pada saat itu Bulan memiliki fase purnama. Dan pada saat yang sama pula Bulan berkedudukan dekat atau bahkan tepat menempati salah satu dari dua titik nodal dalam orbitnya, yakni titik potong antara orbit Bulandengan dengan ekliptika (bidang edar Bumi dalam mengelilingi Matahari). Sebagai akibatnya pancaran sinar Matahari ke arah Bulan akan terhalangi oleh bundaran Bumi. Bergantung pada besar kecilnya derajat penghalangan cahaya Matahari oleh Bumi, maka terdapat tiga macam Gerhana Bulan. Masing-masing Gerhana Bulan Total (GBT), Gerhana Bulan Sebagian (GBS) atau Gerhana Bulan Parsial dan Gerhana Bulan Penumbral(GBP) atau Gerhana Bulan Samar.

Gerhana Bulan Apogean

Gerhana Bulan 28 Juli 2018 merupakan peristiwa Gerhana Bulan Total. Terjadi karena Bulan tepat sepenuhnya melintasi umbra Bumi di kala puncak gerhana terjadi. Perhitungan menunjukkan awal gerhana akan terjadi pada pukul 00:15 WIB, yang ditandai dengan kontak awal penumbra (P1) yang juga pertanda dimulainya tahap penumbral. Dalam kondisi tersebut, meski gerhana telah dimulai namun masih sangat sulit untuk membedakannya dengan Bulan purnama biasa. Kecuali oleh pengamat yang berpengalaman, atau pengamatan dilakukan dengan menggunakan teleskop / binokular.

Gambar 2. Wajah Bulan dalam Gerhana Bulan Sebagian 7-8 Agustus 2017. Panorama tahap parsial seperti ini akan bisa disaksikan lagi dalam peristiwa Gerhana Bulan Total 28 Juli 2018. Sumber: Sudibyo, 2017.

Gerhana Bulan diperhitungkan baru akan nampak secara kasat mata pada pukul 01:24 WIB. Yakni pada saat kontak awal umbra (U1) dimulai yang juga menandakan dimulainya tahap parsial. Pada yakni pada saat umbra tepat mulai bersentuhan dengan cakram Bulan. Mulai saat itu cakram Bulan akan berangsur-angsur menggelap dari sisi timur. Tahap berikutnya, yakni tahap total, diperhitungkan akan terjadi mulai terjadi pada pukul 02:30 WIB dengan terjadinya kontak awal total (U2). Puncak gerhana diperhitungkan terjadi pada pukul 03:22 WIB.

Tahap total ini diperhitungkan akan berakhir pada pukul 04:13 WIB seiring terjadinya kontak akhir total (U3). Secara kasat mata gerhana diperhitungkan akan berakhir pada pukul 05:19 WIB seiring cakram Bulan tepat meninggalkan umbra sebagai pertanda terjadinya kontak akhir umbra (U4). Tahap parsial pun berakhir pada saat itu. Dan akhir gerhana diperhitungkan bakal terjadi pada pukul 06:28 WIB dengan terjadinya kontak akhir penumbra (P4) sekaligus akhir tahap penumbral.

Dari angka-angka tersebut kita bisa mengetahui durasi gerhana ini. Durasi gerhana secara keseluruhan, dimulai dari kontak awal penumbra hingga kontak akhir penumbra, diperhitungkan sebesar 6 jam 14 menit. Namun durasi gerhana kasat mata, yakni sejak kontak awal umbra hingga kontak akhir umbra, diperhitungkan sebesar 3 jam 55 menit. Sementara durasi totalitasnya adalah 1 jam 43 menit.

Durasi totalitas Gerhana Bulan Total 28 Juli 2018 cukup panjang. Karena gerhana terjadi pada waktu berdekatan dengan apogee Bulan. Yakni saat Bulan berkedudukan di titik apogee (titik terjauh dalam orbitnya terhadap Bumi). Karena itu merupakan Gerhana Bulan Apogean. Saat puncak gerhana terjadi pada 28 Juli 2018 TU pukul 03:22 WIB, jarak Bumi – Bulan diperhitungkan adalah sebesar 406.100 kilometer (yakni dari pusat Bumi ke pusat Bulan). Sementara apogee Bulan terjadi pada 27 Juli 2018 TU pukul 12:45 WIB, atau hanya 14 jam sebelum puncak gerhana. Apogee Bulan saat itu diperhitungkan memiliki jarak 406.220 kilometer.

Jarak rata-rata Bumi – Bulan adalah sebesar 384.400 kilometer. Jika jarak Bumi – Bulan untuk satu saat lebih besar dari nilai tersebut, maka ukuran tampak (apparent) cakram Bulan akan terlihat lebih kecil kala disaksikan dari Bumi. Fenomena ini akan cukup jelas pada saat terjadinya Bulan purnama. Dalam astronomi, Bulan purnama yang terjadi dalam waktu berdekatan dengan apogee Bulan disebut sebagai Bulan purnama apogean. Namun bagi khalayak ramai lebih populer dengan istilah Minimoon, sebuah lawan-kata dari istilah Supermoon. Sejak awal abad ke-21 hingga beberapa tahun ke depan, Minimoon selalu terjadi di setiap bulan Juli hingga Agustus, sementara Supermoon di setiap bulan Desember hingga Januari.

Gambar 3. Perbandingan ukuran Bulan antara saat Bulan purnama perigean (Supermoon) dengan saat purnama jelang Gerhana Bulan Sebagian 7-8 Agustus 2017. Diabadikan dengan instrumen yang sama. Nampak Bulan saat purnama perigean sedikit lebih besar. Sumber: Sudibyo, 2017.

Kecepatan gerak Bulan dalam mengelilingi Bumi tergantung pada posisinya. Saat berada di perigee (titik terdekat ke Bumi), Bulan bergerak paling cepat. Sebaliknya pada saat berada di apogee ia menjadi yang paling lambat. Maka saat Gerhana Bulan Total 28 Juli 2018 terjadi, gerak Bulan sedang dalam keadaan paling lambat. Inilah yang menjadikan durasi totalitasnya cukup besar, selain bahwa pada saat gerhana terjadi lintasan pergerakan Bulan tepat hampir menyentuh pusat bundaran umbra. Kombinasi dua hal tersebut menjadikan durasi totalitas Gerhana Bulan Total 28 Juli 2018 adalah yang terpanjang bagi abad ke-21 TU.

Keterlihatan Gerhana Bulan

Salah satu aspek istimewa dalam peristiwa Gerhana Bulan adalah tahap-tahap gerhananya terjadi pada waktu yang sama pada titik-titik manapun dalam wilayah gerhana. Jika ada perbedaan, maka perbedaan tahap-tahap gerhana antara satu titik dengan titik lainnya hanyalah dalam orde detik. Dengan demikian durasi gerhana Bulan di setiap titik pun dapat dikatakan adalah sama.

Gerhana Bulan Total 28 Juli 2018 memiliki wilayah gerhana cukup luas mencakup lebih dari separuh bola Bumi yang sedang berada dalam situasi malam hari. Yakni melingkupi seluruh benua Eropa, Afrika, Australia serta hampir seluruh Asia (kecuali sudut timur laut Russia) dan sebagian Amerika (khususnya Amerika selatan). Luasan wilayah gerhana terbagi menjadi dua, yakni wilayah yang mengalami gerhana secara utuh dan wilayah yang mengalami gerhana secara tak utuh (saat Bulan mulai terbenam maupun mulai terbit).

Gambar 4. Peta wilayah Gerhana Bulan Total 28 Juli 2018 secara global. Perhatikan bahwa hampir segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara tidak utuh. Yakni Gerhana Bulan terjadi di Indonesia saat Bulan sedang dalam proses terbenam. Sehingga tidak seluruh tahap gerhana bisa disaksikan, sepanjang langit cerah. Sumber: Sudibyo, 2018 dengan basis NASA, 2018.

Hampir segenap Indonesia tercakup ke dalam wilayah yang mengalami gerhana meski secara tak utuh. Karena Gerhana Bulan terjadi di Indonesia manakala Bulan sedang dalam proses terbenam. Jadi tidak seluruh tahap gerhana bisa disaksikan mengingat Bulan sudah keburu terbenam (dan sebaliknya sudah Matahari terbit). Karena itulah maka propinsi Papua hanya bisa menikmati Gerhana Bulan ini sebelum akhir tahap total (U3) saja. Sementara segenap daerah yang ada di antara pulau Sulawesi hingga sisi barat pulau Irian (yakni propinsi Irian Jaya Barat) beserta sebagian propinsi Nusa Tenggara Timur dan Kalimantan Utara hanya sanggup mengalami gerhana sebelum akhir tahap parsial (U4). Sisanya, kecuali sebagian pulau Sumatra, masih lebih beruntung karena mengalami Gerhana Bulan hingga sebelum tahap akhir gerhana (P4). Hanya propinsi Aceh, Sumatra Utara, Sumatra Barat dan Riau saja yang berkesempatan menyaksikan gerhana secara utuh.

Gerhana Bulan Total merupakan gerhana Bulan yang kasat mata. Sehingga dapat kita amati tanpa bantuan alat optik apapun, sepanjang langit cerah. Namun penggunaan alat bantu optik seperti kamera dan teleskop akan menyajikan hasil yang lebih baik. Sepanjang dilakukan dengan pengaturan (setting) yang tepat sesuai dengan tahap-tahap gerhana. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :


Mars Terdekat ke Bumi

Selain Gerhana Bulan Total, Juli 2018 TU juga ditandai dengan peristiwa langka, yakni saat Mars berkedudukan terdekat dengan Bumi. Terdekat dalam arti yang sesungguhnya, yakni dalam hal jarak. Pada Selasa 31 Juli 2018 TU pukul 14:51 WIB yang bertepatan dengan 18 Zulqaidah 1439 H (dalam takwim Kementerian Agama RI) atau 17 Zulqaidah 1439 H (dalam kalender Nahdlatul ‘Ulama) Mars diperhitungkan akan berjarak 57,59 juta kilometer dari Bumi kita, dihitung dari pusat Bumi ke pusat Mars. Terakhir kali Mars berada pada posisi yang lebih dekat ke Bumi ketimbang saat ini adalah pada 15 silam. Tepatnya pada 27 Agustus 2003 TU dimana saat itu Bumi dan Mars hanya terpisahkan jarak sebesar 55,7 juta kilometer saja.

Gambar 5. Simulasi panorama langit malam pada saat puncak Gerhana Bulan Total 28 Juli 2018 dilihat dari Jakarta, Indonesia. Atas = utara, kanan = barat. Nampak Bulan sangat berdekatan dengan Mars, dengan jarak sudut (elongasi) hanya sekitar 10º. Sumber: SkyMapOnline, 2018.

Karena berkedudukan cukup dekat dengan Bumi dibanding biasanya, maka Mars akan bertambah terang. Pada 31 Juli 2018 TU itu Mars bakal menjadi benda langit alami terterang nomor tiga di langit malam setelah Bulan dan Venus. Diperhitungkan Mars akan memiliki magnitudo semu hingga -3, atau 10 kali lebih benderang dibandingkan kondisi biasanya. Perubahan kecemerlangan ini akan mudah dideteksi bahkan tanpa menggunakan alat bantu optik apapun.

Baik Mars maupun Bumi adalah planet-planet yang beredar mengelilingi Matahari dalam lintasannya masing-masing. Mars tergolong dalam kelompok planet superior, yakni planet-planet yang orbitnya lebih jauh terhadap Matahari dibandingkan orbit Bumi. Maka dalam sudut pandang kita di Bumi, ada dua peristiwa unik yang terkait erat dengan posisi Bumi dan Mars dalam orbitnya masing-masing terhadap Matahari. Yakni peristiwa konjungsi (ijtima’) dan oposisi (istikbal).

Konjungsi Mars – Matahari terjadi saat Bumi, Mars dan Matahari terletak dalam satu garis lurus dengan kedudukan Matahari di tengah-tengah. Sehingga Mars akan terlihat sangat berdekatan atau bahkan menghilang di balik Matahari saat dilihat dari Bumi. Dalam peristiwa ini maka Matahari dan Mars akan terbit dan terbenam pada saat yang hampir sama dilihat dari Bumi. Saat itu terjadi maka Mars akan memiliki jarak terpanjangnya terhadap Bumi, yakni mencapai 400 juta kilometer. Pada saat konjungsi Mars – Matahari terjadi, Mars berada dalam kondisi paling redup dengan magnitudo semu +1,6.

Sedangkan oposisi Mars – Matahari adalah sebaliknya, yakni saat Bumi, Mars dan Matahari terletak dalam satu garis lurus dengan kedudukan Bumi di tengah-tengah. Sehingga Mars akan bertolak belakang terhadap kedudukan Matahari. Dengan kata lain, pada saat oposisi Mars terjadi maka planet itu tepat akan terbit kala Matahari tepat terbenam. Dan demikian pula sebaliknya. Saat oposisi Mars terjadi maka ia akan berada pada kondisi paling terang dan jaraknya ke Bumi pun adalah yang terpendek.

Gambar 6. Ilustrasi perubahan diameter tampak (apparent) Mars dari waktu ke waktu antara sebelum oposisi, pada saat oposisi 2018 dan setelah oposisi. Sumber: ALPO, 2018.

Mars memiliki orbit yang berjarak rata-rata 1,524 SA (satuan astronomi) terhadap Matahari sehingga mempunyai periode revolusi sideris 1,88 tahun. Namun demikian konjungsi maupun oposisi Mars – Matahari tidak terjadi setiap 1,88 tahun sekali. Dengan mempertimbangkan periode revolusi Bumi, maka Mars memiliki periode revolusi sinodis sebesar 2,135 tahun atau setara dengan 780 hari. Maka setiap 2,135 tahun inilah konjungsi Mars – Matahari terjadi. Demikian halnya oposisi Mars – Matahari.

Oposisi Mars 2018 sejatinya akan terjadi pada 27 Juli 2018 TU pukul 12:07 WIB, atau hanya 15 jam sebelum puncak Gerhana Bulan Total 28 Juli 2018. Sementara jarak terdekat Mars ke Bumi dicapai dalam empat hari kemudian, yang terjadi karena Mars mengalami dua kondisi sekaligus. Yakni oposisi Mars itu sendiri dan Mars yang sedang bergerak menuju titik perihelionnya (akan dicapai pada 15 September 2018 TU mendatang. Kombinasi dua hal ini sering disebut sebagai oposisi perihelion, umumnya terjadi setiap 15 hingga 17 tahun sekali.

Referensi :

SkyMapOnline, 2018.

Beish. 2018. The 2018 Perihelic Apparition of Mars. The Association of Lunar and Planetary Observers (ALPO), diakses 25 Juli 2018 TU.

Espenak & Meeus. 2009. Five Millennium Canon of Lunar Eclipse, – 1999 to +3000 (2000 BCE to 3000 CE). NASA Tech.Pub. 2008-214173, NASA Goddard Space Flight Center, Greenbelt, Maryland.

Tekanan Hidrostatik: Insiden Goa Thailand dan Kecelakaan Danau Toba Indonesia

John Volanthen masih menyelam sembari memasangi tali pandu di dasar lorong goa Tham Luang Nan Non, atau goa Putri Tidur, yang dibanjiri air. Mendadak sosok yang disebut sebagai penyelam spesialis goa terbaik di dunia itu tersadar kalau gulungan tali yang dibawanya habis. Kondisi yang memaksanya berenang ke paras air, sesuai prosedur standar, untuk berorientasi dan beristirahat barang sejenak. Saat itu pukul 22:00 waktu Thailand (setara dengan WIB di Indonesia), hari Senin 2 Juli 2018 TU (Tarikh Umum). Lorong itu gelap gulita dan hening seperti seharusnya, tapi mendadak terdengar suara lirih memanggil. Begitu lampu sorotnya diarahkan ke sumber suara, terpampang pemandangan 12 remaja dan seorang dewasa berkumpul pada satu serambi sempit di tepi air. Semua nampak tenang meski terduduk lemas tanpa bisa berdiri. Mereka inilah yang telah dicari-cari dan menyedot perhatian dunia selama sembilan hari terakhir.

Drama dimulai pada Sabtu 23 Juni 2018 TU. Kisah sesungguhnya masih simpang siur. Versi yang banyak dikutip menjelaskan, 13 remaja yang berasal dari desa-desa miskin di dekat perbatasan Thailand dan Myanmar meluncur ke kompleks goa Tham Luang usai berlatih sepakbola. Mereka adalah bagian klub kecil yang menjuluki dirinya klub Wild Boar. Setibanya di mulut goa, mereka segera masuk menjalani ritual inisiasi khas setempat. Yakni masuk sejauh mungkin dalam lorong goa, menuliskan namanya di dinding dan lantas bergegas keluar sebelum tergenang air. Juga ada rencana merayakan ulang tahun salah satu dari mereka. Beberapa bungkus makanan ringan pun turut dibawa.

Sang pelatih, pemuda yatim piatu berusia 25 tahun yang dididik menjadi biksu dan mengabdi pada kuil setempat, awalnya tak tahu rencana anak-anak didiknya. Bergegas ia menyusul mereka mengingat sifat goa Tham Luang yang tak boleh dimasuki selama periode Juli hingga September setiap tahunnya karena selalu tergenangi air dari hujan lebat muson. Apalagi mendung sudah membayang. Ia terlambat, para remaja itu sudah terlanjur masuk dan meninggalkan sepeda-sepedanya di dalam mulut goa. Ia pun menyusul masuk. Benar saja, hujan deras pun mengguyur selama berhari-hari kemudian.

Tak ada pilihan bagi mereka kecuali terus masuk kian jauh ke dalam lorong, mencari tempat yang kering dan menunggu. Selama sembilan hari kemudian mereka bertahan hidup dalam ruang sempit nan gelap dengan meminum tetes-tetes air dari stalaktit dan menjatah tiap keping makanan ringan yang dibawa. Sang pelatih juga mengajari bermeditasi, menekankan tetap tenang, tetap berkumpul dan tetap menghemat energi. Mereka sempat berusaha membuat jalan keluar dengan menggali dinding goa hingga 5 meter.

Drama itu menyedot perhatian berskala internasional sekaligus menyatukan kembali rakyat Thailand, yang terpecah oleh perbedaan politik berkepanjangan, untuk sementara. Angkatan Laut Thailand menyiagakan 18 penyelam Navy Seals terbaiknya. 24 sukarelawan penyelam goa pun berdatangan dari mancanegara, mulai dari negara-negara tetangga seperti Laos, Myanmar, China, Filipina, Jepang dan India. Hingga dari negeri-negeri jauh seperti Amerika Serikat, Inggris, Australia, Russia, Belanda, Belgia, Ceko, Denmark, Finlandia, Jerman, Ukraina dan bahkan Israel. Di luar itu ada sekitar 1.000 sukarelawan yang berpartisipasi dari beragam latar belakang. Mulai dari para relawan bencana, petugas penyelamat untuk keadaan darurat hingga petani, pencari sarang burung, tukang masak, pemilik usaha laundry dan juga tukang pijat.

Setelah mempertimbangkan aneka opsi masak-masak, otoritas Thailand memutuskan yang paling rasional dan memungkinkan adalah membawa mereka keluar melalui lorong yang tergenangi air. Begitu ditemukan dan diketahui masih hidup serta lengkap, mereka yang terjebak dalam goa segera diasup makanan dan minuman tinggi kalori. Mereka akan dikeluarkan dari goa dengan didampingi dua penyelam profesional. Mempertimbangkan derasnya arus air dan lebar lorong (yang di satu lokasi sangat menyempit menjadi leher-angsa yang khas), maka diputuskan mereka yang terjebak akan dikeluarkan secara bertahap dalam tiga kelompok.

Gambar 1. Penampang melintang goa Thamn Luang Nan Non di propinsi Chiang Rai (Thailand) berdekatan dengan perbatasan Thailand – Myanmar. Nampak lorong-lorong yang melebar membentuk ruang-ruang goa, juga yang menyempit membentuk sejenis terowongan yang dibanjiri air. Jarak antara pintu masuk goa (entrance) dengan lokasi terjebaknya para remaja dan pelatih sepakbolanya adalah 4 kilometer. Sumber: Anonim, 2018.

Meski serambi tempat mereka terjebak berjarak sekitar 4 kilometer dari mulut goa, namun setiap orang hanya perlu menempuh jarak 2 kilometer untuk tiba di pusat operasi penyelamatan yang ditempatkan ruangan besar kering dalam goa. Dari sini mereka akan dibawa dengan tandu ke mobil ambulans yang sudah menunggu di luar mulut goa, atau ke helikopter jika situasinya mendesak. RS Chiang Rai Prachanukroh yang berjarak 70 kilometer dari goa pun disiagakan.

Operasi evakuasi mulai dilaksanakan pada Minggu 8 Juli 2018 TU. Hari itu kelompok pertama yang terdiri dari empat remaja berhasil dikeluarkan. Sehari berikutnya giliran kelompok kedua, juga terdiri dari empat remaja, berhasil dikeluarkan. Operasi hari kedua berjalan dalam waktu lebih cepat ketimbang hari pertama. Sehingga komandan operasi cukup percaya diri untuk mengeluarkan kelimanya pada hari ketiga. Dan demikianlah adanya. Operasi penyelamatan dinyatakan berakhir pada Selasa malam 10 Juli 2018 TU.

Danau Toba

Lima hari sebelum drama goa Thailand dimulai, tragedi yang lebih memilukan berlangsung di Indonesia. Yakni tenggelamnya Kapal Motor (KM) Sinar Bangun VI di perairan Danau Toba sebelah utara pada Senin 18 Juni 2018 TU senja selagi melayari rute antara pelabuhan Simanindo di pulau Samosir ke pelabuhan Tigaras di pesisir timur danau. 21 orang berhasil diselamatkan sementara 3 jasad berhasil dievakuasi. Namun ratusan orang, dalam perhitungan terakhir adalah 164 orang, dinyatakan hilang .

Sejauh ini penyelidikan memperlihatkan kecelakaan yang menimpa KM Sinar Bangun VI terjadi akibat kelebihan muatan. Dimana kapal yang hanya berkapasitas 40 penumpang dijejali hampir 200 orang. Demikian berlebih bebannya sehingga kala berlayar, penumpang yang selamat menuturkan bahwa paras air Danau Toba hanyalah sejarak sejengkal dari bibir geladak kapal. Faktor berikutnya adalah cuaca buruk yang menerpa kawasan Danau Toba ditandai dengan hujan lebat dan angin kencang yang menciptakan gelombang di paras air danau. Diceritakan pula, kelebihan muatan merupakan hal yang biasa dilakukan pada pelayaran di Danau Toba selama bertahun-tahun di bawah hidung otoritas terkait.

Gambar 2. Diagram Kapal Motor Sinar Bangun IV, yang mengalami kecelakaan dan tenggelam di Danau Toba (Indonesia) pada 18 Juni 2018 TU. Kapal terdiri dari tiga dek dengan panjang hanya 17,5 meter dan kapasitas penumpang maksimum hanya 40 orang tanpa diperkenankan mengangkut barang. Namun pada saat kecelakaan terjadi, kapal dijejali oleh hampir 200 orang dan mengangkut sejumlah sepeda motor. Sumber: Reuters, 2018.

Posisi bangkai kapal dan sejumlah jasad penumpangnya baru diketahui sepuluh hari pasca tenggelam. Awalnya Badan SAR Nasional (Basarnas) mendeteksi adanya obyek asing tergolek di dasar danau sedalam 450 meter melalui sonar. Saat wahana otomatik bawahair (ROV) milik Badan Pengkajian dan Penerapan Teknologi (BPPT) dioperasikan guna melihat lebih lanjut temuan sonar secara visual, terlihat reruntuhan yang diduga adalah bangkai kapal. Terekam pula sejumlah jasad dan benda-benda yang terlontar keluar dari kapal, seperti sepeda motor.

Meski posisi bangkai kapal telah diketahui, namun pada Minggu 2 Juli 2018 TU otoritas Indonesia memutuskan menghentikan operasi pencarian bawahair pada keesokan harinya. Sementara pencarian di permukaan air terus berlanjut. Sebagai kenangan sekaligus peringatan ke masa depan akan peristiwa ini, akan dibangun tugu peringatan. Keputusan ini telah dikonsultasikan dengan keluarga para korban hilang. Walaupun demikian beberapa pihak mengkritik keras keputusan tersebut.

Kini, sukses operasi evakuasi para remaja dan pelatihnya yang terjebak dalam goa di Thailand memberikan bahan bakar baru. Bila remaja Thailand saja bisa dievakuasi, mengapa korban Sinar Bangun VI di Indonesia tidak?

Perbandingan

Membandingkan langsung operasi evakuasi goa Thailand dengan Danau Toba Indonesia sesungguhnya tak berimbang dan tak saling mendekati. Karena keduanya sangat berbeda. Terutama korban hilang terjebak di goa Thailand ditemukan masih hidup. Sementara korban hilang di Danau Toba Indonesia (sebagian kecil) ditemukan telah meninggal di dasar danau. Strategi evakuasi antara korban hidup dengan yang sudah meninggal jelas berbeda.

Gambar 3. Peta kedalaman air Danau Toba dan lokasi ditemukannya bangkai KM Sinar Bangun IV. Nampak bagian terdalam danau adalah sepanjang sisi timur pulau Samosir. Peta diadaptasi dari Chesner (2012). Sumber: Reuters, 2018.

Andaikata mau dibandingkan, dalam hemat saya salah satu faktor fisis yang bisa dievaluasi adalah persoalan hidrostatika yang mewujud dalam bentuk tekanan hidrostatis. Dalam fisika, tekanan hidrostatis berbanding lurus dengan kedalamannya. Semakin dalam maka tekanannya kian meninggi. Disinilah letak perbedaan mendasar kasus goa Thailand dengan Danau Toba Indonesia.

Goa Tham Luang Nan Non terletak pada elevasi 450 meter dpl (dari paras air laut rata-rata). Tekanan udara paras air laut didefinisikan sebagai tekanan 1 atmosfer (1 atm), yang setara dengan 1,013 bar atau 101.325 Pascal. Secara umum terjadi pengurangan tekanan udara sebesar 1.200 Pascal dalam tiap kenaikan elevasi 100 meter. Maka tekanan udara di lokasi goa Tham Luang diperhitungkan sebesar 0,95 atmosfir atau hanya 5 % lebih rendah ketimbang tekanan udara paras air laut. Lorong goa ini memang berliku-liku dan naik-turun dengan bagian yang lebih rendah digenangi air yang keruh berlumpur.

Namun genangan air terdalam hanyalah 3 meter, yakni di bagian lorong tersempit dan berbentuk mirip leher-angsa yang umum dijumpai pada wastafel atau toilet. Jika massa jenis air yang menggenangi goa dianggap 1.100 kg/m3 (karena berlumpur) maka dapat diperhitungkan pada titik genangan terdalam besarnya tekanan total (yakni kombinasi tekanan hidrostatis dan tekanan udara permukaan) adalah 1,27 atm. Ini hanya 27 % lebih tinggi ketimbang tekanan udara paras air laut. Maka di goa Tham Luang di Thailand, para penyelamat bisa mencoret problem tekanan hidrostatis dari daftar hal-hal yang harus diperhatikan dan diatasi dalam operasi penyelamatan.

Sebaliknya tidak demikian dengan Danau Toba di Indonesia.

Paras air danau berada pada elevasi 900 meter dpl. Sehingga tekanan udaranya diperhitungkan sebesar 0,89 atmosfir atau hanya 11 % lebih rendah ketimbang tekanan udara paras air laut. Akan tetapi bangkai kapal beserta para korban hilang tergeletak pada kedalaman 450 meter. Air danau terlihat jernih, sehingga massa jenisnya diperkirakan bernilai sekitar 1.000 kg/m3. Jika kerapatan air danau dianggap seragam untuk setiap titik kedalaman, maka dapat diperhitungkan pada kedalaman 450 meter itu tekanan totalnya mencapai 44,5 atm. Ini tekanan cukup tinggi, mencapai 44,5 kali lipat lebih besar ketimbang tekanan udara paras laut. Tekanan setinggi itu bisa disetarakan dengan tekanan udara yang berkekuatan menghancurkan di paras Venus.

Gambar 4. Gambaran sederhana akan perbandingan tekanan hidrostatis yang diderita di dasar Danau Toba dengan bagian terdalam lorong goa Tham Luang yang digenangi air. Jelas terlihat bahwa tekanan total (kombinasi tekanan hidrostatis dan tekanan udara paras air lokal) di dasar Danau Toba jauh lebih besar ketimbang goa Tham Luang. Inilah salah satu faktor yang membedakan proses evakuasi dalam kecelakaan di Indonesia dan insiden di Thailand. Sumber: Sudibyo, 2018.

Sehingga, bertolak belakang dengan goa Tham Luang di Thailand, para penyelamat di Danau Toba sedari awal harus berhadapan dengan masalah tingginya tekanan air di dasar danau. Indonesia memang memiliki perlengkapan penyelaman laut dalam, yang memungkinkan penyelam bisa bekerja pada kedalaman ekstrim. Namun kedalaman maksimum yang bisa dicapai hanyalah 200 meter. Untuk menjangkau kedalaman 450 meter diperlukan peralatan khusus untuk penyelaman laut dalam nan berat. Atau alternatif lainnya yang telah tersedia, dengan berkaca pada pengalaman evakuasi korban-korban hilang pada jatuhnya pesawat Airbus A330 Air France penerbangan 447 di Samudera Atlantik pada 1 Juni 2009 TU. Yakni menggunakan kapal selam mini khusus yang sanggup menyelami kedalaman lebih dari 200 meter. Dalam kasus Air France tersebut, kapal selam mini khusus itu mengangkut jasad-jasad dari kedalaman 4.000 meter.

Masalah tersulit adalah, baik peralatan penyelaman laut dalam maupun kapal selam mini khusus itu hanya bisa dioperasikan lewat kapal induk yang memang dirancang khusus untuknya. Mendatangkan kapal selam mini khusus ke Danau Toba, secara teknis memungkinkan. Ia bisa diangkut lewat jalur laut melalui Pelabuhan Belawan di Medan, atau lewat jalur udara ke Bandara Kuala Namu. Dari situ kapal selam mini khusus tersebut akan menempuh jalur darat ratusan kilometer menuju Danau Toba. Namun tanpa keberadaan kapal induknya, kapal selam mini khusus itu tak bisa berbuat apa-apa. Sementara kapal induknya, misalnya seperti kapal induk HSwMS Belos (A214) milik Swedia, berbobot mati 6.500 ton sehingga mustahil diangkut lewat jalur darat.

Disini saya tidak mengecilkan upaya evakuasi para korban yang terjebak dalam goa Tham Luang di Thailand. Evakuasi itu pun berhadapan dengan aneka problem di luar problem tekanan hidrostatis. Misalnya, paras genangan air dalam goa yang terus naik. Masalah ini diatasi lewat dipasangnya pompa berkekuatan tinggi yang sanggup menyedot 1,6 juta liter air perjam. Pemerintah Ceko mengirim bantuan pompa tambahan berkapasitas 1,4 juta liter perjam. Dan dalam dua hari terakhir operasi, sebuah pintu air pengendali dibangun tepat di jalan air masuk goa. Sehingga volume air yang memasuki goa dapat dikontrol dan demikian pula paras genangannya.

Begitupun pada saat-saat terakhir, yakni sekitar 30 menit setelah korban terakhir berhasil dikeluarkan dari dalam goa, mesin pompa mendadak meledak. Alhasil air terus masuk tak terkontrol lagi ke dalam goa, sementara di dalam masih ada 20 petugas penyelamat. Petugas terakhir berhasil keluar dari goa manakala air telah menggenang hingga setinggi kepala.

Problem berikutnya adalah ruangan goa tempat mereka terjebak merupakan ruang tertutup. Pernafasan setiap orang membuat kadar Oksigen menurun (terakhir terukur hanya 15 % dari normalnya 21 %) sebaliknya kadar CO2 terus meningkat. Awalnya masalah ini dicoba diatasi dengan memasang pipa penyalur udara segar dari luar goa. Setelah terbukti tak membantu, maka diputuskan mereka harus dievakuasi secepatnya.

Evakuasi secepatnya pun berhadapan dengan masalah tersendiri, karena mereka tak bisa berenang apalagi menyelam. Awalnya direncanakan untuk melatih mereka. Namun mengingat potensi rasa panik yang bisa timbul, terlebih mereka harus menyelam selama 3 jam penuh, maka diputuskan untuk memberi asupan obat penenang dosis tinggi. Sehingga seluruh korban melintasi genangan air dalam kondisi tertidur.

Namun begitu dalam perspektif hidrostatika, evakuasi goa Tham Luang Thailand tidak berhadapan dengan rejim tekanan tinggi sebagaimana halnya evakuasi di Danau Toba.

Referensi :

Chesner. 2012. The Toba Caldera Complex. Quaternary International, volume 258 (2012), hal 5-18.

Scar dkk. 2018. Tragedy on Lake Toba. Reuters Graphic, diakses 6 Juli 2018 TU.