Gempa Pelabuhan Ratu, Sebuah Catatan Singkat

Gambar 1. Peta intensitas getaran dari Gempa Pelabuhan Ratu 2 Agustus 2019 (magnitudo 7,4) menurut BMKG

Hingga 2 jam pasca Gempa Pelabuhan Ratu 2 Agustus 2019, tak terdeteksi adanya usikan khas tsunami pada stasiun-stasiun pasangsurut BIG (Badan Informasi Geospasial) terdekat, yakni stasiun Pelabuhan Ratu (Jawa Barat) dan stasiun Binangeun (Banten). Laut terlihat normal seperti biasanya. Patut disyukuri, mengingat berdasarkan kedudukan lokasi episentrum dan durasi gempa yang lumayan lama sempat membuat saya menerka mungkin ini jenis gempa unik yang dikenal sebagai slow-quake atau tsunami-earthquake. Yakni jenis gempa yang bsa memproduksi tsunami lebih besar ketimbang skala gempanya itu sendiri.

Dengan magnitudo 7,4 menurut rilis awal BMKG, maka gempa ini melepaskan energi 1,89 megaton TNT (setara 95 butir bom nuklir Nagasaki) yang merambat sebagai gelombang seismik. Energi totalnya tentu jauh lebih besar lagi, namun nggak perlu lah disinggung di sini. Yang jelas gempa ini bersumber dari area seluas 75 x 27 kilometer persegi. di area tersebut terjadi pematahan kerak bumi yang menimbulkan pergeseran rata-rata 260 cm (dengan pergeseran maksimal 330 cm). Pergeserannya besar? Ya. Namun mekanisme sumber gempanya (beachball) didominasi oleh pematahan mendatar (strike slip).

Komponen pergeseran vertikal sangat kecil. Dalam hitungan pak Widjo Kongko (dan saya juga setuju), hanya sekitar 5 cm saja. Dengan pergeseran vertikal yang kecil maka andaikata pergeseran tersebut juga mencapai dasar Samudera Indonesia di atas sumber gempa, deformasi dasar laut yang terjadi bakal sangat kecil. Usikan kolom air laut diatasnya pun bakal sangat kecil sehingga tsunami tak terbentuk. Keyakinan pribadi bahwa gempa ini tak menimbulkan tsunami juga datang dari lamanya durasi gempa, yang mengindikasikan bahwa sumber gempa tersebut relatif dalam. Hampir segenap tsunami merusak yang dibangkitkan oleh gempa bumi memiliki gempa dengan sumber yang dangkal / sangat dangkal.

Tentu saja, semua ini hanya bisa dituliskan dalam beberapa waktu pascagempa. Ya 2 jam untuk saya sendiri, di tengah sok sibuk ini dan itu serta data lebih lengkap telah berdatangan dari sana sini Namun jika anda misalnya bertugas di ruang operasi Sistem Peringatan Dini Tsunami Indonesia (InaTEWS) di gedung BMKG Kemayoran, Jakarta, dimana sahabat saya pak Daryono bertahta, anda hanya punya waktu lima menit untuk menganalisis sebelum menyebarluaskan informasi. Ya hanya lima menit, dengan data yang masih terbatas. Sistem peringatan dini tsunami Indonesia memang dirancang harus cepat, mengingat kajian-kajian menunjukkan banyak pesisir Indonesia yang hanya punya waktu kurang dari 15 menit sebelum terjangan tsunami datang manakala sumber gempanya berada persis di hadapannya. Bahkan dalam kasus khusus seperti di Palu 2018 lalu, tsunami menggempur pantai hanya dalam tempo 3 menit (!).

Semoga Gempa Pelabuhan Ratu 2019 ini tidak menelan korban. Pelajaran yang bisa diambil, bagi saya pribadi, tetaplah waspada namun jangan berlebihan. Manakala kelak ada gempa bumi lagi dengan peringatan dini tsunami-nya, cermati daerah-daerah mana saja yang tergolong Waspada dan Siaga. Kita yang berada di luar daerah itu silahkan tetap waspada, namun tak perlu ikut-ikutan mengungsi.

Sesar Sorong yang Gemar Mendorong, Gempa Halmahera Selatan 14 Juli 2019

Di ujung utara kawasan kepala burung pulau Irian berdirilah kota pantai bernama Sorong. Dahulu suku Biak menamakan tempat ini sebagai Soren, satu pengingat akan lautnya yang dalam dan bergelora. Kata Soren lama-kelamaan mengalami transformasi tipis-tipis menjadi Sorong. Penamaan Soren jelas memperlihatkan kearifan lokal suku Biak akan karakter kebumian setempat. Sorong memang berdiri di atas lembah sempit dan panjang, yang menatah kawasan kepala burung pulau Irian demikian rupa. Di bagian yang tergenangi air laut, lembah itu memang terkenal dalam dan penuh ombak.

Gambar 1. Sebagian zona sesar Sorong dalam peta model elevasi digital. Nampak jelas meski di dasar laut sekalipun sesar Sorong tetap berbentuk lembah sempit panjang. Sumber: SEARG, 2016.

Sesar Sorong

Dan itu bukan lembah biasa. Cendekiawan kebumian masakini mengidentifikasinya sebagai sesar Sorong. Tepatnya Zona Sesar Sorong. Inilah salah satu sesar (patahan) aktif terpanjang di Indonesia selain sistem Sesar Besar Sumatera yang lebih dulu melegenda. Terhitung dari pesisir timur Teluk Cenderawasih, zona sesar Sorong membentang sepanjang 1.900 km ke arah barat hingga berujung di Kepulauan Banggai (propinsi Sulawesi tengah). Itu setara dua kali lipat panjang pulau Jawa.

Luar biasanya lagi, zona sesar Sorong memiliki banyak cabang dan hampir semuanya aktif bergerak dan berpotensi menjadi sumber gempa tektonik. Salah satu cabangnya melintasi pulau Halmahera bagian selatan, dikenal sebagai segmen Bacan, dan pada Minggu 14 Juli 2019 TU (Tarikh Umum) terpatahkan. Terjadilah Gempa Halmahera Selatan (magnitudo 7,3) yang menyebabkan kerusakan dan memicu tsunami kecil. BNPB (Badan Nasional Penanggulangan Bencana) mencatat, hingga empat hari pascagempa tela tercatat korban 6 orang tewas, 51 orang luka-luka dan 3.104 orang mengungsi. Jumlah bangunan yang rusak terdiri atas 871 buah rumah dan 7 buah sekolah.

Sepak terjang sesar Sorong tak terlepas dari rumitnya kawasan Indonesia bagian timur. Termasuk bumi para raja, Laut Maluku. Di kawasan Indonesia timur inilah tiga lempeng tektonik besar dunia bertemu dalam kawasan yang disebut triple junction, yaitu lempeng Eurasia, lempeng Australia dan lempeng Pasifik. Zona sesar Sorong merupakan pembatas antara lempeng Australia yang bersifat kontinental (lempeng benua) dan relatif stabil dengan lempeng Laut Filipina dan Carolina yang bergerak ke barat. Karenanya zona sesar Sorong merupakan sesar geser yang aktif dan bergerak kecepatan yang relatif tinggi, yakni 32 mm/tahun.

Gambar 2. Sebagian zona sesar Sorong yang berada di lingkungan kepala burung pulau Irian dan sekitarnya. Nampak sesar Sorong memiliki sejumlah cabang. Salah satu cabangnya yang melintas di pulau h
Halmahera bagian selatan merupakan sumber Gempa Halmahera Selatan 14 Juli 2019 (magnitudo 7,3). Sumber: Permana & Gaol, 2018.

Dalam proses pembentukan pulau Sulawesi yang unik, karena menjadi kawasan dimana triple junction berada, sesar Sorong memegang peranan penting. Lewat sesar Sorong-lah sebagian kepala burung Irian dibelah-belah. Sebagian diantaranya didorong jauh ke arah pulau Sulawesi hingga akhirnya berbenturan. Bagian yang terdorong membentur itu kini menjadi kepulauan Banggai – Sula dan kepulauan Buton – Tukang Besi. Proses tersebut terjadi dalam kurun 11 hingga 5 juta tahun silam dalam peristiwa yang oleh pak Awang Satyana, salah satu cendekiawan kebumian terkemuka negeri ini, disebut sebagai Benturan Keempat. Ini adalah bagian dari lima kejadian benturan (collision) yang membentuk tanah Indonesia dalam kurun 50 juta tahun terakhir. Dengan karakternya yang gemar mendorong-dorong, tak salah jika sesar ini menyandang nama sesar Sorong.

Pusat studi gempabumi nasional dalam Peta Sumber dan Bahaya Gempa Indonesia 2017 membagi sesar Sorong ke dalam sejumlah segmen aktif. Yakni 13 segmen aktif dalam zona sesar Sorong sendiri, 1 segmen aktif pada sesar Sula utara dan 3 segmen aktif pada zona sesar Yapen. Magnitudo maksimum yang bisa dibangkitkan oleh segmen-segmen ini bervariasi mulai dari magnitudo 6,6 (pada segmen West Salawati yang panjangnya 45 km) hingga magnitudo 8,1 (pada segmen sesar Sula utara dengan panjang 405 km).

Gempa Halmahera

Meski memiliki belasan segmen aktif, diduga masih banyak bagian-bagian dari sesar Sorong yang belum tercakup ke dalam Peta 2017. Baik karena masih diteliti maupun belum akibat terbatasnya sumberdaya. Salah satu segmen yang belum tercakup adalah segmen Bacan yang melintasi pulau Halmahera bagian selatan serta pulau Bacan. Segmen Bacan inilah yang diduga kuat merupakan sumber Gempa Halmahera Selatan 14 Juli 2019.

Gambar 3. Sumber Gempa Halmahera Selatan 14 Juli 2019 berdasarkan analisis seismik cepat IRIS (Incorporated Research Institutions for Seismology). Panjang sumber gempa sekitar 65 km dengan lebar 24 km yang berarah tenggara-baratlaut. Sumber: IRIS, 2019.

Gempa itu tergolong gempa besar, magnitudonya 7,2 menurut rilis BMKG (Badan Meteorologi Klimatologi dan Geofisika) atau 7,3 menurut USGS (United States Geological Survey). Gempa tersebut sangat dangkal, kedalaman sumbernya hanyalah 10 km. Penyebab gempa adalah terjadinya pematahan yang bersifat mendatar pada segmen kerak bumi seluas 65 x 24 km2 yang berarah tenggara-baratlaut di ujung selatan pulau Halmahera. Pada area itu terjadi pergeseran sebesar 240 sentimeter (rata-rata) dimana pergeseran maksimumnya mencapai 295 sentimeter. Meski sifat pematahannya mendatar namun terdapat komponen gerak vertikal turun (subsidence) sebesar yang relatif kecil, yakni sekitar 20 sentimeter. Pada magnitudo 7,3 maka energi yang dilepaskan Gempa Halmahera Selatan 14 Juli 2019 sebagai gelombang seismik mencapai 1.340 kiloton TNT atau setara dengan 67 butir bom nuklir Nagasaki. Energi totalnya sendiri jauh lebih besar.

Karena sangat dangkal dan memiliki pergeserannya relatif besar, terbuka kemungkinan sumber gempa mencuat juga di paras Bumi diatasnya dan memproduksi pengamblesan. Nampaknya demikianlah yang terjadi. Bilamana gerak vertikal turun sebesar 20 sentimeter terjadi pula pada paras Bumi di atas sumber gempa yang sebagian diantaranya merupakan dasar laut, maka tsunami bisa tercipta. Di atas kertas, jika segenap area sumber gempa berada di dasar laut, maka tsunami yang terbentuk kecil sehingga pada jarak 160 km diperhitungkan hanya akan setinggi 25 sentimeter, secara kasar.

Gambar 4. Simulasi Widjo Kongko terkait pembangkita tsunami kecil dalam gempa Halmahera Selatan 14 Juli 2019. Atas: perkiraan bentuk sumber tsunami, dengan warna biru menunjukkan bagian dasar laut yang mengalami penurunan. Bawah : perkiraan tinggi tsunami dengan tinggi maksimum di pesisir pulau Widi sebesar sekitar 50 sentimeter. Sumber : Widjo Kongko, 2019.

Pak Widjo Kongko, salah satu cendekiawan tsunami Indonesia, memiliki pandangan sendiri terkait tsunami kecil ini. Menurutnya, sumber Gempa Halmahera Selata 14 Juli 2019 memiliki luas 70 x 18 km2. Pada paras bumi di atas sumber gempa terjadi gerak vertikal menurun sejauh maksimum 18 sentimeter. Tsunami yang terbentuk diperhitungkan memiliki tinggi maksimum sekitar 50 sentimeter, yang terjadi di pesisir pulau Widi. Sementara pesisir tenggara pulau Halmahera diterpa tsunami setinggi sekitar 20 hingga 25 sentimeter saja. Dan pada pulau Gebe, tinggi tsunami diperhitungkan kurang dari 20 sentimeter.

Gambar 5. Rekaman dinamika paras air laut di stasiun pasangsurut Gebe dalam peristiwa Gempa Halmahera Selatan 14 Juli 2019. Atas : data asli, bawah : data yang telah dinormalisasi ke elevasi nol. Nampak jelas pola tsunami dengan periode 15 menit dan tinggi maksimum 8 sentimeter. Sumber: Widjo Kongko, 2019 berdasar data BIG dan BPPT.

Faktanya stasiun pasangsurut Gebe yang dikelola BIG (Badan Informasi Geospasial), 161 km di sebelah timur sumber gempa, memang merekam usikan kecil tsunami. Tinggi tsunami yang terekam hanyalah 8 sentimeter dengan periode 15 menit. Tsunami kecil ini terekam dalam 35 menit pasca gempa, sehingga diperhitungkan melaju dengan kecepatan 276 km/jam. Dengan periode yang relatif besar yakni 15 menit, maka tsunami kecil ini murni diproduksi pergerakan segmen kerak bumi yang menjadi sumber gempa, tanpa diikuti oleh faktor-faktor lain seperti misalnya longsoran dasar laut. Dan dengan tinggi hanya 8 sentimeter, maka jelas area sumber tsunami lebih kecil ketimbang area sumber gempa, disebabkan oleh adanya daratan (pulau Halmahera bagian selatan) yang menjadi bagian sumber gempa.

Di atas semua fakta tersebut, tinggi tsunami ini cukup kecil dibandingkan ambang batas 25 sentimeter. Sehingga tidak memicu sistem peringatan dini tsunami Indonesia untuk mengeluarkan amaran.

Gambar 6. Distribusi episentrum gempa-gempa susulan dan gempa utama (bintang biru) dalam peristiwa Gempa Halmahera Selatan 14 Juli 2019. Nampak area episentrum membentuk huruf L, menandakan terdapat sedikitnya dua sesar yang bergerak dalam gempa ini. Segitiga terbalik menunjukkan posisi seismometer BMKG. Sumber: Dimas Sianipar, 2019 berdasarkan data BMKG.

Hingga empat hari pascagempa, telah terjadi 65 kali gempa susulan. Hal yang wajar bagi sebuah peristiwa gempa bumi tektonik. Cukup menarik saat episentrum gempa-gempa susulan diplot ke dalam peta seperti yang dilakukan mas Dimas Sianipar, seismolog muda Indonesia, dijumpai dua area. Area pertama berimpit dengan lokasi sumber gempa sebagaimana diperhitungkan sebelumnya berdasarkan analisis distribusi gelombang seismik. Sementara area kedua berada di sisi utara area pertama dan seakan menyudut siku-siku. Sehingga menjulur ke pulau Bacan. Di area kedua ini juga dijumpai dua gempa susulan dengan mekanisme sumber berupa pematahan menurun dan cukup dalam. Munculnya dua area episentrum gempa-gempa susulan ini mengindikasikan bahwa Gempa Halmahera Selatan 14 Juli 2019 menyebabkan reaktivasi (pergerakan) sedikitnya dua sesar.

Referensi :

SEARG. 2016. Sorong Fault Zone. South East Asia Research Group, Royal Holloway University of London, UK. Diakses 16 Juli 2019 TU.

Permana & Gaol. 2018. Sesar Geser Sorong segmen Sorong-Kofiau, Papua Barat, Indonesia: Bukti dari data Batimetri dan SBP. Jurnal Geologi Kelautan, vol. 16 no. 1 (Juni 2018), halaman 37-50.

Satyana & Herawati. 2011. Sorong Fault Tectonism and Detachment of Salawati Island: Implications for Petroleum Generation and Migration in Salawati Basin, Bird’s Head Papua. Proceeding Indonesia Petroleum Association 35th Annual Convention & Exhibition IPA11-G-183, May 2011.

Widjo Kongko. 2019. komunikasi personal.

Dimas Sianipar. 2019. komunikasi personal.

Laut Maluku, Gempa dan Rumit Bumi Para Raja

Laut Maluku adalah sebentuk perairan yang membentang di sebelah timur pulau Sulawesi bagian utara. Pulau-pulau yang bertebaran di perairan ini membentuk kepulauan yang adalah buminya para raja. Yakni Kepulauan Maluku. Nama Maluku diduga berasal dari al-Mulk dalam bahasa Arab yang bermakna negeri para raja, menurut satu pendapat. Sementara dalam pendapat lain, asma Maluku mungkin berasal dari Moloku kie Raha dalam bahasa Ternate yang mengandung arti tanah air dengan empat gunung (negeri). Sejarah mencatat di sini memang pernah berdiri empat negeri besar, yaitu Kesultanan Ternate, kerajaan Tidore, kerajaan Bacan dan kerajaan Jailolo.

Bumi para raja pernah menyandang pusat gravitasi dunia yang menjadi pemicu lahirnya era penjelajahan samudera khususnya bagi bangsa Eropa. Tanah sangat subur produk aktivitas jajaran gunung berapi aktif di kawasan ini menjadikan produksi rempah-rempah melimpah dan bermutu tinggi. Rempah-rempah ini telah dinikmati dunia sejak era Mesir Kuno dan turut mengubah wajah dunia khususnya sepanjang abad pertengahan.

Gambar 1. Rona muka bumi kawasan Laut Maluku. Area di antara sepasang garis merah merupakan mikrolempeng Laut Maluku yang telah terdesak dan terbenam sepenuhnya oleh peristiwa tabrakan antar busur. Di sebelah barat (kiri) terdapat mikrolempeng Sangihe, bagian dari lempeng Eurasia yang mendesak ke arah timur. Sementara di sebelah timur terdapat mikrolempeng Halmahera yang mendesak ke arah barat seiring dorongan lempeng Laut Filipina. Sumber: Hamilton, 1979 dalam PusGen, 2017.

Dari kawasan Laut Maluku inilah sebuah getaran kuat menyeruak pada Minggu 7 Juli 2019 TU (Tarikh Umum) malam pukul 22:08 WIB. Atau tepat pada tengah malam waktu setempat. Episentrum gempa berada di tengah-tengah Laut Maluku. Menurut Badan Meteorologi Klimatologi dan Geofisika (BMKG) magnitudo gempa ini 7,0 (versi pembaharuan, dalam versi awal dinyatakan 7,1). Sumber gempa berada pada kedalaman 50 km dengan mekanisme pematahan naik miring (oblique thrust). Gempa Laut Maluku 2019 ini sempat memicu sistem peringatan dini tsunami Indonesia. Status Waspada pun ditegakkan bagi pesisir Kota Ternate, Kota Tidore, Kabupaten Minahasa Utara, Kabupaten Minahasa Selatan dan Kabupaten Boolang Mongondow seiring potensi tsunami setinggi hingga maksimum 50 sentimeter. Sedangkan status Siaga diberlakukan bagi kota Bitung seiring potensi tsunami dengan tinggi antara 50 hingga 100 sentimeter. Status Waspada dan Siaga tersebut dicabut dalam dua jam kemudian, setelah pemantauan dinamika paras air laut di pesisir Laut Maluku melalui satsiun-stasiun pasangsurut yang dikelola Badan Informasi Geospasial (BIG) tidak mendeteksi adanya usikan khas tsunami.

Selain tanpa tsunami, gempa ini juga tak menimbulkan kerusakan fisik baik di pulau Halmahera maupun Sulawesi. Getaran gempa ini memang terasa keras khususnya di propinsi Sulawesi Utara dan Maluku Utara. Intensitas getaran di kedua tempat tersebut mencapai 4 MMI (Modified Mercalli Intensity), sehingga bisa dirasakan oleh hampir setiap orang. Intensitas getaran 4 MMI ditandai oleh suara derik pintu/jendela yang bergoyang akibat getaran hingga dinding yang berbunyi, mirip situasi manakala sebuah kendaraan angkutan berat seperti truk tronton sedang melintas manakala kita berdiri di pinggir jalan. Namun tingkat getaran ini belum cukup kuat guna menyebabkan kerusakan fisik.

Subduksi Ganda

Gempa Laut Maluku 2019 terbit dari kawasan yang statusnya cukup rumit dalam perspektif ilmu kebumian. Bumi Maluku dibentuk oleh jepitan tiga lempeng tektonik utama, masing-masing lempeng Eurasia yang mendorong dari sisi barat, lempeng Laut Filipina dari sisi timur dan lempeng Australia dari sisi selatan. Di bumi Maluku sendiri interaksi ketiga lempeng tektonik tersebut dimanifestasikan oleh tiga mikrolempeng. Di sisi barat ada mikrolempeng Sangihe, yang turut membentuk lengan utara pulau Sulawesi dan kepulauan Sangihe. Sementara di sisi timur bertahta mikrolempeng Halmahera yang menjadi pondasi bagi pulau Halmahera. Baik mikrolempeng Sangihe maupun Halmahera ditumbuhi gunung-gemunung berapi. Tercatat ada 10 buah gunung berapi aktif yang tumbuh di atas mikrolempeng Sangihe dan 6 gunung berapi aktif berdiri atas mikrolempeng Halmahera.

Gambar 2. Sumber Gempa Laut Maluku 2019 berdasarkan analisis seismik cepat IRIS (Incorporated Research Institutions for Seismology). Panjang sumber gempa sekitar 40 km dengan lebar separuhnya. Sumber: IRIS, 2019.

Di bawah kedua mikrolempeng tersebut terdapat lempeng tektonik mikro ketiga, yakni mikrolempeng Laut Maluku. Mikrolempeng Laut Maluku terjebak dan telah terbenam sepenuhnya di bawah mikrolempeng Sangihe dan Halmahera. Jejak-jejak keberadaan mikrolempeng laut Maluku masih bisa ditelusuri berdasarkan distribusi kedalaman sumber gempa-gempa tektonik yang ditimbulkan oleh gerakannya. Di sisi barat, mikrolempeng Laut Maluku masih bisa dilacak keberadaannya hingga sedalam 650 km. Sementara pada sisi timur hanya terlacak hingga sedalam sekitar 150 km. Berdasarkan distribusi sumber gempa-gempa tektoniknya pula, diketahui mikrolempeng Laut Maluku memiliki geometri berbentuk huruf U terbalik.

Bumi Maluku bisa serumit itu karena terjadinya proses benturan antar busur (arc-arc collission) sebagai bagian dari proses menutupnya cekungan samudera. Lempeng Eurasia bergerak ke timur pada kecepatan 2 cm/tahun. Sedangkan lempeng Laut Filipina mendesak ke barat pada laju 7 cm/tahun. Sebagai akibatnya mikrolempeng Sangihe dan Halmahera yang ada di antara keduanya saling berbenturan sembari mendesak mikrolempeng Laut Maluku melesak terbenam. Proses ini menciptakan kompleks benturan Laut Maluku dengan subduksi ganda Sangihe sebagai ciri khasnya. Disebut subduksi ganda, karena satu lempeng yang sama (yakni mikrolempeng laut Maluku) mengalami subduksi dengan dua lempeng yang saling berbatasan dengannya. Pada bagian barat barat subduksi ganda ini terbentuk Parit Sangihe, tempat mikrolempeng Laut Maluku menyelusup di bawah mikrolempeng Sangihe. Sementara bagian timur subduksi ganda itu membentuk Parit Talaud atau Parit Halmahera, dimana mikrolempeng Laut Maluku menyelusup di bawah mikrolempeng Halmahera.

Poros dasar Laut Maluku yang berupa pegunungan bawahlaut berarah utara selatan yang disebut Punggungan Mayo pada hakikatnya berdiri tepat di atas puncak huruf U terbalik dari mikrolempeng Laut Maluku yang terbenam sempurna. Puncak tertinggi dari punggungan itu muncul di atas paras laut sebagai Kepulauan Talaud.

Di Punggungan Mayo inilah Gempa Laut Maluku 2019 bersumber, khususnya pada bagian selatan. Berdasarkan analisis seismik dalam produk finite fault model (FFM), sumber Gempa Laut Maluku 2019 secara empiris memiliki panjang sekitar 40 km. Bilamana berbentuk persegi sederhana, sumber Gempa Laut Maluku 2019 memiliki lebar empiris sekitar 19 km. Pada bagian kulit bumi seluas inilah pematahan terjadi dengan pergerakan/lentingan (slip) sejauh rata-rata sekitar 160 sentimeter. Pergeseran maksimum yang bisa terjadi pada bidang sumber gempa ini mencapai sekitar 200 sentimeter.

Data seismik dari BMKG menunjukkan sumber gempa ini mempunyai sudut dip 61º. Maka pergerakan rata-rata 160 sentimeter itu membuat terjadinya gerak vertikal naik (uplift) sebesar 140 sentimeter. Jika pengangkatan ini mencapai dasar laut tepat di atas sumber gempa maka tsunami bisa terjadi. Jika pengangkatan dasar laut benar-benar terjadi, diperhitungkan kolom air laut sebanyak 0,2 km3 volume air turut terangkat dan bergolak yang bisa menerbitkan tsunami lokal. Perhitungan kasar menunjukkan pesisir kota Ternate dan kota Bitung akan mengalami terpaan tsunami setinggi 25 sentimeter. Tak mengherankan bila peringatan dini tsunami Indonesia sempat aktif. Seiring diakhirinya peringatan dini tsunami dalam dua jam kemudian, ada dua hal yang kemungkinan terjadi. Pertama, gempa ini tidak menyebabkan pengangkatan dasar laut. Atau yang kedua, gempa ini memang menyebabkan pengangkatan dasar laut tapi lebih kecil sehingga volume air laut yang diangkatnya tak signifikan.

Gambar 3. Penampang melintang zona tubrukan antar busur di kawasan Laut Maluku dalam arah barat – timur. Nampak jelas kedudukan lempeng Sangihe dan lempeng Halmahera yang muncul di permukaan serta lempeng laut Maluku yang telah terbenam. Sumber: Zhang dkk, 2017.

Rumitnya bumi para raja selain menjadikannya sebagai kawasan seismik teraktif di Bumi juga membuat kawasan ini memiliki potensi terlanda gempa tektonik besar. Pusat Studi Gempabumi Nasional dalam Peta 2010 menunjukkan subduksi Parit Sangihe memiliki kemampuan membangkitkan gempa bumi tektonik dengan magnitudo maksimum 7,9. Sedangkan subduksi Parit Talaud berkemampuan melepaskan gempa bumi tektonik pada magnitudo maksimum 8,1. Hal ini tentu bukan untuk ditakuti, melainkan untuk diantisipasi.

Referensi :

Pusat studi gempabumi nasional (PusGen). 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Badan Penelitian dan Pengembangan, Kementerian Pekerjaan Umum dan Perumahan Rakyat Republik Indonesia.

Zhang dkk. 2017. Geodynamics of Divergent Double Subduction: 3-D Numerical Modelling of a Cenozoic Example in the Molucca Sea Region, Indonesia. Journal of Geophysical Research: Solid Earth, vol. 122 no. 5 (May 2017): 3977–3998.

Mengenal Gunung Anak Ranakah, Sang Gunung Berapi Termuda di Darat

Tahun 2019 TU (Tarikh Umum) ditandai oleh lahirnya sebuah gunung berapi baru di Bumi, meskipun bertempat di dasar laut sehingga tak seorang pun yang menyaksikan langsung saat-saat kelahirannya. Gunung berapi baru yang belum bernama di sebelah timur Pulau Mayotte (Perancis) di Kepulauan Komoro tersebut terbenam sepenuhnya dalam perairan selat Mozambik yang berkedalaman 3.500 meter meski ia menjulang setinggi 800 meter dari dasarnya. Dengan volume 5.000 juta m3, lahirnya gunung berapi termuda di laut ini sekaligus merupakan letusan gunung berapi yang terbesar bagi tahun 2019 TU, untuk sementara ini. Jika semata mengacu volume magmanya maka letusannya tergolong berskala 5 VEI (Volcanic Explosivity Index), atau setara Letusan Gunung Agung 1963 (Indonesia). Meskipun letusan yang melahirkan gunung berapi termuda ini lebih bersifat efusif (leleran) dan sepenuhnya tersekap di dalam laut sehingga tak menyemburkan kolom material vulkanik nan khas ke udara.

Gambar 1. Gunung Anak Ranakah saat masih bertumbuh, berdampingan dengan Gunung Ranakah. Nampak kubah lava dan lidah lava pada gunung berapi darat termuda di dunia ini. Diabadikan pada 17 Januari 1988 TU. Sumber: PVMBG/Wirasaputra, 1988.

Membicarakan gunung berapi termuda mau tak mau akan mengalihkan pandangan mata ke mancanegara. Tepatnya ke negara bagian Michoacan, Meksiko. Yakni di kawasan vulkanik Michoacan – Guanajuto seluas 200 x 250 km2 dan terdiri atas sedikitnya 1.400 kerucut vulkanik berukuran kecil-kecil. Salah satu diantaranya lahir pada 20 Februari 1943 TU dari sebuah retakan di tengah-tengah ladang jagung pak Dionisio Pulido, 322 km sebelah barat ibukota Meksiko City. Letusan terus berlangsung hingga 9 tahun berikutnya, berselang-seling antara efusif dan eksplosif (ledakan). Dalam empat bulan pertama saja rentetan erupsi efusif telah membentuk kerucut vulkanik setinggi 200 meter. Kini kerucut tersebut dikenal sebagai Gunung Paricutin, sebuah kerucut sinder yang adalah gunung berapi monogenetik yang menjulang 208 meter dari daratan sekitar dengan puncak berelevasi 2.800 mdpl.

Namun gunung berapi termuda di daratan Bumi kita bukanlah Paricutin. Ia lahir 45 tahun kemudian. Bukan di Meksiko ataupun bagian dunia lainnya. Gelar tersebut disematkan pada satu tempat di tanah air kita tercinta, Indonesia. Yakni di pulau Flores, sebuah pulau vulkanis yang ditumbuhi oleh delapan buah gunung berapi aktif dan merupakan bagian dari propinsi Nusa Tenggara Timur. Gunung berapi termuda itu adalah Gunung Anak Ranakah, atau Gunung Namparnos dalam bahasa penduduk setempat. Gunung Anak Ranakah lahir pada 28 Desember 1987 TU.

Segenap penduduk kota Ruteng di Kabupaten Manggarai mungkin tak pernah menyadari bahwa kawasan pegunungan di sisi selatan kota mereka sejatinya adalah sebuah gunung berapi sangat tua yang telah padam. Dahulu kala menjulang sebuah gunung berapi setinggi 2.500 meter yang disebut Gunung Rii Purba. Di masa prasejarah, Gunung Rii Purba meletus dahsyat hingga dua kali. Masing-masing letusan menghasilkan Kaldera Rii dan Kaldera Lunggar yang saling berhadapan. Kedua kaldera tersebut membentuk sebuah struktur besar yang disebut Kaldera Poco Leok dengan garis tengah 3 km. Kaldera Poco Leok terbentuk akibat pengamblesan (subsidence) tubuh gunung seiring kosongnya kantung magma setelah terkuras habis dalam setiap letusan besar. Pengamblesan ini diiringi terbentuknya retakan-retakan (sesar) konsentris dengan pusat berimpit ke pusat kaldera.

Gambar 2. Peta geologi kaldera Poco Leok dan sekitarnya. Nampak jajaran kubah-kubah lava produk aktivitas pasca kaldera yang membentuk barisan setengah melingkar di sisi utara. Gunung Anak Ranakah ditandai oleh titik letusan. Sumber: Katili & Sudrajat, 1988 dalam Wahyudin, 2012.

Pada sejumlah titik di retakan-retakan konsentrik itulah aktivitas vulkanik pascakaldera berulang kali terjadi. Aktivitas itu membentuk kubah-kubah lava yang terdiri atas Gunung Ngrekok, Gunung Likang, Gunung Tadowalok, Gunung Nggolongtede, Gunung Kasteno, Gunung Mandosawu dan Gunung Ranakah. Aktivitas vulkanik terakhir terjadi 15.000 tahun silam. Sehingga kawasan Kaldera Poco Leok sejatinya merupakan gunung berapi padam jika mengacu klasifikasi gunung berapi dari Global Volcanism Program. Gejala pasca vulkanik bermunculan di berbagai titik pada sekujur kaldera ini. Di sisi selatan ini terdapat lapangan panasbumi Ulumbu yang memiliki potensi energi 90 megawatt elektrik dan telah dikembangkan menjadi PLTP Ulumbu yang berkapasitas 10 megawatt elektrik.

Jarum jam menunjukkan pukul 22:00 WITA pada titi mangsa Senin 28 Desember 1987 TU saat sebuah dentuman keras membangunkan sebagian penduduk Kota Ruteng dari peraduannya. Dentuman menggelegar itu berasal dari Gunung Ranakah, tepatnya dari kaki timur laut. Dentuman ini merupakan puncak dari upaya keras gas-gas vulkanik bertekanan tinggi dalam membobol jalan keluar ke parasbumi dari kantung magma jauh di bawah Gunung Ranakah. Kerasnya batuan kubah lava Gunung Ranakah membuat gas-gas vulkanik terpaksa mencari jalan menyamping dan berjumpa dengan titik lemah di kaki timur laut bukit tersebut. Yakni pada sebuah ceruk kecil yang disebut loka leke ndereng (lubang tempurung merah) oleh penduduk setempat.

Gambar 3. Fase erupsi freatik di awal mula lahirnya Gunung Anak Ranakah. Magma belum keluar ke paras bumi sehingga tubuh gunung belum terbentuk pada saat itu. Tanda panah menunjukkan Gunung Ranakah. Sumber: PVMBG/Rohi, 1988.

Dentuman disusul mengepulnya asap hitam kecoklatan setinggi 3.000 hingga 4.000 meter di atas titik letusan disertai suara gemuruh. Debu vulkanik yang diproduksinya berkomposisi andesit, konsisten dengan batuan penyusun tubuh Gunung Ranakah. Inilah awal rangkaian erupsi freatik yang berlangsung secara intensif hingga enam hari kemudian. Sepanjang fase erupsi freatik ini terjadi 17 letusan kuat dan 200 letusan lemah. Terjadi pula rentetan gempa vulkanik yang mencapai rata-rata 200 kejadian per hari.

Mulai enam hari pasca awal letusan, intensitas erupsi freatik cenderung menurun namun sebaliknya kegempaan vulkanik meningkat pesat hingga dua kali lipat. Ini indikasi kuat telah terjadi gerakan fluida (magma) yang sedang mencoba menembus ke paras bumi, yang bakal menimbulkan erupsi freatomagmatik atau bahkan erupsi magmatik. Terbukti dalam sepuluh hari pasca awal letusan, mulai terdeteksi cahaya terang berkelanjutan dari arah lubang letusan di malam hari. Itulah pertanda jelas letusan telah memasuki fase erupsi magmatik. Dan dalam 12 hari pasca awal letusan mulai teramati adanya gundukan membara menyerupai kerucut. Itulah kubah lava, dengan tinggi saat itu 30 meter yang menyelubungi lubang letusan. Gundukan lava membara yang menandakan sebagai bayi gunung inilah yang membuat penduduk setempat menamainya Gunung Namparnos (namparnos : dinding yang terbakar). Sementara vulkanolog Indonesia menyebutnya sebagai Gunung Anak Ranakah.

Gambar 4. Sketsa sederhana proses lahir dan tumbuh kembang Gunung Anak Ranakah dalam rentang waktu tiga minggu terhitung semenjak 28 Desember 1987 TU. Sumber : Katili & Sudrajat, 1988 dalam Wahyudin, 2012.

Letusan-letusan berikutnya sangat didominasi oleh erupsi efusif dengan sesekali saja terjadi erupsi eksplosif (ledakan). Karenanya ukuran kubah lava terus membesar. Erupsi eksplosif pertama terjadi dua minggu pasca awal letusan, dalam bentuk erupsi Vulkanian kuat yang membentuk kolom letusan setinggi 8.000 meter di atas lubang letusan. Letusan itu juga memproduksi awan panas untuk pertama kalinya, mengalir ke utara melalui lembah sungai Wae Reno sejauh 5 km. Intensifnya erupsi efusif yang bertipe erupsi Strombolian membuat kubah lava tumbuh pesat, dimana dalam tiga minggu pasca awal letusan telah menjulang 100 meter dari dasar dengan volume 5 juta meter3. Selain gundukan kubah lava, terbentuk juga lidah lava yang menjulur ke utara sepanjang sekitar 1.000 meter.

Fase erupsi magmatik di Gunung Anak Ranakah pada dasarnya telah berhenti sejak Juli 1988 TU. Saat itu kubah lava sudah menjulang setinggi 140 meter dari dasar, dengan puncak memiliki elevasi 2.200 mdpl. Dasarnya berjari-jari 400 meter, namun dengan bentuk kubah lava yang terpancung di bagian dasar karena menindihi kaki timur laut Gunung Ranakah, maka volumenya jauh lebih kecil dibanding volume kerucut. Jumlah magma yang dikeluarkan dalam letusan ini mencapai 19 juta m3, terdiri atas 14 juta m3 kubah lava dan 5 juta m3 lidah lava. Tingkat pengeluaran magma tertinggi mencapai 0,5 juta m3 per hari yang terjadi sepanjang Januari 1988 TU. Di bulan-bulan berikutnya tingkat pengeluaran magma kian menurun. Mulai Juli 1988 TU hingga dua tahun kemudian praktis aktivitas vulkanik Gunung Anak Ranakah hanya berupa hembusan solfatara dari puncak gunung, yang membumbung setinggi 15 hingga 25 meter saja.

Gambar 5. Awan panas guguran yang terbentuk pada 20 Januari 1988 TU dalam proses tumbuh kembang Gunung Anak Ranakah. Karena sifatnya yang rapuh dan mudah longsor, gugurnya bagian-bagian kubah lava Gunung Anak Ranakah akan membentuk awan panas guguran. Sumber: PVMBG/Wirasaputra, 1988.

Lahirnya Gunung Anak Ranakah tidak membawa korban manusia (baik korban jiwa maupun luka-luka) ataupun kerugian harta benda. Pada 6 Januari 1988 TU sebanyak 20.000 orang memang sempat diungsikan, yakni para penduduk yang tinggal di dalam radius 5 km dari bayi gunung tersebut. Manakala karakter letusan Anak Ranakah sudah lebih diketahui seiring perjalanan waktu, berangsur-angsur mereka pulang ke kediaman masing-masing. Pada 26 Januari 1988 TU, tinggal 4.200 pengungsi yang masih tersisa. Yakni yang bertempat tinggal di sekitar lembah sungai Wae Reno di utara Gunung Anak Ranakah. Begitu fase erupsi magmatik usai, maka pengungsi pun berangsur-angsur pulang kembali.

Berbeda dengan saudara muda-nya Gunung Paricutin di Meksiko, Gunung Anak Ranakah bukanlah gunung berapi monogenetik. Sehingga Anak Ranakah tidaklah sekali beraksi (meletus) untuk kemudian mati. Tubuh Gunung Anak Ranakah merupakan lava yang menumpuk dimana bagian dalamnya masih panas membara. Maka potensi letusan Gunung Anak Ranakah masih tetap terbuka, baik yang berasal dari runtuhnya kubah lava saat ini (yang bisa menghasilkan awan panas guguran) maupun dari suplai magma segar dari kantung magmanya. Kemungkinan suplai segar ini masih tetap terbuka, mengingat bila mengacu pada saudara-saudaranya di kawasan kaldera Poco Leok, ukuran Gunung Anak Ranakah masih jauh lebih kecil. Sehingga potensi untuk meletus dan menambah ukuran lagi masih terbuka. Untuk itu peta kawasan rawan bencana Gunung Anak Ranakah telah dibentuk sebagai langkah antisipasi.

Referensi :

Wahyudin. 2012. Vulkanisme dan Prakiraan Bahaya Gunung Api Anak Ranakah, Nusa Tenggara Timur. Jurnal Lingkungan dan Bencana Geologi, vol. 3 no. 2 Agustus 2012, hal. 89-108.

Pusat Vulkanologi dan Mitigasi Bencana Geologi. 2014. Gunung Anak Ranakah, Data Dasar Gunungapi.

Gempa Luwuk 12 April 2019, Gempa Bumi Laut Tanpa Tsunami

Gambar 1. Beberapa dari sesar aktif di daratan pulau Sulawesi yang telah diidentifikasi dalam Peta Sesar Aktif Indonesia 2017. Nampak posisi sumber Gempa Luwuk 12 April 2019 dan sesar Peleng. Sumber: Kemen PUPR, 2017.


Sebuah gempa tektonik kuat kembali mengguncang pulau Sulawesi pada Jumat 12 April 2019 ini. Gempa meletup pada di dasar Laut Banda di sisi selatan Pulau Peleng pada pukul 19:40 WITA. Rilis pendahuluan BMKG (Badan Meteorologi Klimatologi dan Geofisika) mencatat gempa ini merupakan gempa kuat (magnitudo 6,9) dengan sumber sangat dangkal (kedalaman sumber 10 km). Karena kota Luwuk menjadi kota terdekat dengan sumber gempa, maka gempa ini dinamakan Gempa Luwuk 12 April 2019.

Besarnya magnitudo gempa dan demikian dangkal sumbernya menyebabkan sistem peringatan dini tsunami Indonesia (InaTEWS) segera aktif. Maka status Waspada (kode kuning) pun terbit untuk sebagian pesisir timur pulau Sulawesi yang menghadap Laut Banda, khususnya yang bertatapan langsung dengan sumber gempa. Dalam status Waspada semacam ini pemodelan matematis InaTEWS memperlihatkan gempa bumi tersebut berpotensi menghasilkan tsunami kecil setinggi maksimum 50 cm.

Status Waspada dicabut sejam pascagempa, setelah pemantauan paras air laut berdasarkan marigram dari stasiun-stasiun pasangsurut BIG (Badan Informasi Geospasial) di pelabuhan-pelabuhan terdekat dengan sumber gempa seperti Luwuk dan Kendari. Marigram itu tidak memperlihatkan tanda-tanda khas tsunami. Tiadanya tsunami dari gempa bumi ini juga ditunjang hasil analisis mekanisme fokus sumber gempanya. Mekanisme fokus sangat penting guna menentukan apakah sebuah gempa bumi tektonik dengan sumber di dasar laut bisa menghasilkan tsunami ataukah tidak.

Mekanisme fokus Gempa Luwuk 12 April 2019 merupakan produk pematahan mendatar (strike-slip) ke arah timur laut. Sebaliknya tsunami hanya bisa terjadi apabila sumber gempa dasar lautnya merupakan pematahan naik (thrust) maupun turun (normal). Disini harus digarisbawahi bahwa produk mekanisme fokus sebuah gempa bumi hanya bisa diperoleh dalam beberapa belas menit pascagempa. Yakni kala data dari beragam seismometer pada berbagai jejaring mulai masuk dan dianalisis. Disisi lain, apabila gempa ini betul-betul memproduksi tsunami, maka waktu yang tersedia bagi penduduk pesisir timur pulau Sulawesi hanya beberapa belas menit sebelum gelombang pertama datang menerjang.

Ketimbang potensi tsunaminya, sesungguhnya potensi dampak yang lebih besar dari gempa bumi ini terletak pada getaran tanah yang diakibatkannya. Badan Geologi Amerika Serikat atau USGS (United States Geological Survey) memiliki program evaluasi cepat dampak getaran gempa bumi global yang disebut PAGER (Prompt Assessment of Global Earthquake for Response). PAGER dirancang untuk membantu para pengambil keputusan penanganan pasca bencana agar bisa menentukan tingkat keparahan yang berkemungkinan terjadi akibat guncangan gempa dengan mengacu pada besarnya intensitas getaran tanah pada kawasan tertentu.

Menurut rilis pendahuluan USGS PAGER, getaran Gempa Luwuk 12 April 2019 dirasakan oleh 17,4 juta jiwa penduduk pulau Sulawesi. Dari jumlah tersebut sebanyak 17,1 juta jiwa merasakan getaran yang lemah (dengan intensitas hingga 4 MMI). Sementara 230 ribu jiwa lainnya merasakan getaran sedang (intensitas 5 MMI). Dan 140 ribu jiwa menderita getaran kuat (intensitas 6 MMI). USGS PAGER juga memprakirakan terdapat korban jiwa akibat guncangan gempa ini, yakni di antara 1 – 10 orang (pada probabilitas 95 %). Sedangkan potensi kerugian material diperkirakan berada pada angka 1 hingga 10 juta dollar (probabilitas 95 %).

Jika mengacu pada peta sesar aktif Indonesia 2017, sumber Gempa Luwuk 12 April 2019 berasal dari lokasi dengan sesar yang belum terpetakan. Namun di sisi utara sumber Gempa Luwuk 12 April 2019 ini, tepatnya di daratan Pulau Peleng, terdapat sejumlah sesar darat yang aktif dan telah teridentifikasi. Salah satu diantaranya adalah sesar Peleng, sesar sepanjang 44 km dengan orientasi baratdaya – timurlaut dan merupakan sesar mendatar. Andaikata sesar ini diperpanjang ke selatan menyusuri dasar laut, maka posisi sumber Gempa Luwuk 12 April 2019 akan tepat berimpit dengannya.

Sumber Gempa Luwuk 12 April 2019 dan sesar Peleng merupakan satu dari sekian banyak torehan sesar aktif pada kerak bumi pulau Sulawesi. Mereka terpahat sebagai akibat dari proses pembentukan pulau Sulawesi yang unik dan sangat kompleks. Pulau besar yang bentuknya menyerupai huruf K ini dibentuk oleh desak-mendesak antara empat lempeng tektonik sekaligus. Masing-masing mikrolempeng Sunda (bagian dari lempeng Eurasia yang besar), mikrolempeng Maluku, mikrolempeng Laut Banda dan mikrolempeng Kepala Burung Irian. Interaksi mereka menyebabkan pulau Sulawesi sangat menarik dan sangat kaya akan mineral bahan tambang. Namun di sisi lain pulau ini juga dianugerahi oleh sesar-sesar aktif sumber potensial gempa bumi tektonik. Baik di darat maupun di dasar laut. Potensi ini tak perlu ditakuti. Sebaliknya kita umat manusia yang harus mempelajarinya dan menyesuaikan diri dengannya. Menyesuaikan diri dengan alam yang terus berproses selama jutaan tahun terakhir.

Melacak Jejak Asteroid yang Jatuh di Atas Laut Bering

Sebuah asteroid-tanpa-nama telah jatuh di atas perairan Laut Bering, bagian dari Samudera Pasifik bagian utara yang berdekatan dengan lingkar Kutub Utara, pada Rabu 19 Desember 2018 TU (Tarikh Umum) tengah hari waktu setempat. Ini disebut Peristiwa Bering 2018. Energinya sungguh besar, totalnya mencapai 173 kiloton TNT atau 8,5 kali lipat lebih dahsyat ketimbang bom nuklir yang dijatuhkan di Nagasaki. Sebanyak 96 kiloton TNT diantaranya dilepaskan sebagai airburst, satu fenomena mirip ledakan di ketinggian udara yang khas bagi asteroid/komet yang memasuki atmosfer Bumi. Saat airburst terjadi, kilatan cahaya yang diprodusinya demikian benderang hingga mencapai sekitar 70 % kecerlangan Matahari. Siang hari Laut Bering saat itu laksana berhias dua Matahari meski hanya untuk sesaat.

Perhitungan menunjukkan asteroid-tanpa-nama itu relatif padat, dengan massa jenis sekitar 4.000 kg/m3. Garis tengahnya, jika dianggap berbentuk bola, adalah 8,8 meter dan memiliki massa 1.400 ton. Umumnya asteroid seukuran ini jika masuk ke atmosfer Bumi akan berubah menjadi boloid karena berkemampuan memproduksi meteorit. Dimana massa meteoritnya minimal 0,1 % dari massa awal asteroid, yang setara dengan 1,4 ton.


Gambar 1. Ketampakan bola api airburst sebagai puncak dari Peristiwa Bering 2018 yang direkam radas MISR pada satelit Terra. Tumbuh kembangnya bola api airburst diiringi dengan pelepasan energi sekitar 96 kiloton TNT, bagian dari energi total 173 kiloton TNT yang dibawa asteroid-tanpa-nama yang memasuki atmosfer Bumi di atas perairan Laut Bering. Sumber: NASA, 2019.

Berdasarkan tingkat energinya, Peristiwa Bering 2018 adalah peristiwa jatuhnya benda langit terdahsyat kedua yang pernah terukur di Bumi sepanjang seperempat abad terakhir. Peringkat pertama diduduki Peristiwa Chelyabinsk 2013 (580 kiloton TNT), yang berdampak kerusakan ringan pada area cukup luas disertai korban luka-luka ringan dan sedang yang berjumlah hingga ribuan orang. Peristiwa yang terjadi di kawasan Chelyabinsk dan sekitarnya, sisi barat Pegunungan Ural (Russia). Sementara peringkat ketiga ditempati Peristiwa Bone 2009 (60 kiloton TNT) yang terjadi di atas Kab. Bone, Sulawesi Selatan (Indonesia). Kejadian ini tidak menyebabkan kerusakan, namun satu korban jiwa jatuh sebagai akibat tak langsung.

Selain problema dampaknya, jatuhnya meteoroid berupa asteroid/komet dalam ukuran tertentu menggamit minat untuk menelusuri asal-usulnya. Penelusuran dapat dilakukan bilamana tersedia informasi lokasi titik jatuh (dalam koordinat geografis), kecepatan awal meteoroid (berupa infinity velocity) serta tinggi (sudut lintasan meteoroid terhadap bidang horizontal) dan azimuth meteoroid tersebut. Untungnya semua itu tersedia bagi asteroid-tanpa-nama penyebab Peristiwa Bering 2018.

Asteroid kelas Apollo

Satelit mata-mata rahasia milik Amerika Serikat merekam kilatan cahaya Peristiwa Bering 2018 melalui radas bhangmeter-nya. Dari sini diperoleh data koordinat titik jatuh (56º 54′ LU 172º 247 BT) dan kecepatan jatuh meteoroid (32 km/detik) yang setara dengan infinity velocity 30 km/detik. Data lebih lengkap diperoleh dari satelit observasi Terra yang dikelola badan antariksa Amerika Serikat (NASA). Satelit Terra menyajikan citra yang lebih tajam dan kontras ketimbang satelit cuaca Himawari 8. Radas MISR (Multi-angle Imaging Spectro Radiometer) pada satelit ini berhasil merekam jejak lintasan asteroid kala menerobos lapisan atmosfer bagian atas dan saat-saat awal tumbuhkembangnya bola api airburst. Lewat mata tajam MISR satelit Terra dapat diketahui meteoroid penyebab Peristiwa Bering 2018 datang dari arah barat laut. Atau dari sekitar azimuth 315º.

Gambar 2. Orbit asteroid-tanpa-nama penyebab Peristiwa Bering 2018 di dalam sistem tata surya kita bagian dalam. Terlihat jelas orbit asteroid ini mengikuti karakter orbit asteroid dekat-Bumi kelas Apollo. Sumber: Sudibyo, 2019.

Berbekal data-data tersebut asal-usul asteroid-tanpa-nama penyebab Peristiwa Bering 2018 dapat dilacak. Memanfaatkan spreadsheet Calculation of a Meteor Orbit yang dikembangkan Marco Langbroek dari Dutch Meteor Society, akhirnya diketahui asteroid itu merupakan bagian kelompok asteroid dekat-Bumi khususnya kelas Apollo. Asteroid kelas Apollo adalah kelompok asteroid dekat Bumi yang beredar mengelilingi Matahari demikian rupa sehingga orbit lonjongnya radius rata-rata (a) lebih dari 1 SA (satuan astronomi), perihelion kurang dari 1,017 SA dan bidang orbitnya memotong orbit Bumi.

asteroid-tanpa-nama penyebab Peristiwa Bering 2018 memiliki orbit cukup lonjong dengan eksentrisitas (kelonjongan orbit) 0,365. Perihelionnya hanya 0,911 SA atau lebih dekat ke Matahari dibanding orbit Bumi. Akan tetapi aphelionnya melambung hingga 1,96 SA atau menjangkau kawasan Sabuk Asteroid Utama. Praktis orbit asteroid ini melintasi orbit Bumi dan orbit Mars, meski dengan inklinasi orbit sebesar 51,26º sesungguhnya hanya orbit Bumi saja yang dipotong oleh orbit asteroid ini. asteroid-tanpa-nama itu membutuhkan 1,72 tahun untuk bisa menyusuri orbitnya dalam sekali putaran.

Asteroid mencapai titik perihelionnya pada 21 Januari 2019 TU silam sekitar pukul 22:00 WIB. Dalam 36,7 hari kemudian asteroid tiba di titik nodal orbitnya, yakni titik potong antara orbit asteroid dengan bidang orbit Bumi. Pada saat yang sama Bumi pun sedang berada di titik nodal itu. Sehingga tak terelakkan, asteroid pun menjadi meteoroid, lalu memasuki atmosfer dan menjadi Peristiwa Bering 2018. Bila dilihat dari lokasi titik jatuh, maka meteoroid seakan-akan berasal dari titik dengan deklinasi 66,9º dan Ascensio Recta 14 jam 36 menit yang terletak dalam gugusan bintang Ursa Minor.

Hasil ini memberikan gambaran bahwa, sekali lagi, Bumi menderita ancaman permanen dari langit. Salah satunya dari populasi asteroid dekat-Bumi, kawanan asteroid yang semula menghuni Sabuk Asteroid Utama di antara orbit Mars dan Jupiter namun kemudian terlontar mendekati Matahari oleh beragam sebab. Mereka berjibun banyaknya dan bergentayangan di dekat atau bahkan memotong orbit Bumi kita. Dengan energi berbanding lurus terhadap pangkat tiga dimensinya, maka semakin besar ukuran suatu asteroid dekat-Bumi akan semakin beresiko Bumi terhadapnya. Tidak usah jauh-jauh melambung ke masa 65 juta tahun silam, kala dunia dicekam kengerian akibat hantaman asteroid raksasa yang memicu punahnya dinosaurus beserta 75 % kelimpahan makhluk hidup lainnya, abad ke-20 dan 21 TU memiliki contohnya masing-masing. Mulai dari Peristiwa Tunguska 1908 (15 megaton TNT) yang menumbangkan pepohonan di area seluas 2.000 km2 hingga Peristiwa Chelyabinsk 2013. Memitigasi potensi bencana dari langit ini merupakan tantangan bagi umat manusia masakini, agar mampu mereduksi dampak katastrofik sejenis atau bahkan mengeliminasi potensi ancamannya.

Referensi:

Langbroek. 2004. A Spreadsheet that Calculates Meteor Orbits. Journal of IMO, vol. 32 (2004) no. 4 hal 109-110.

Kala Matahari Menjadi Dua, Asteroid Meledak di Udara dekat Kutub Utara

Peristiwa Bering 2018. Itulah namanya. Satu peristiwa ledakan-benda-langit-di-udara (airburst) yang sejatinya telah terjadi pada Rabu 19 Desember 2018 TU (Tarikh Umum) pukul 06:48 WIB mengambil tempat di atas Laut Bering beratus kilometer lepas pantai timur Semenanjung Kamchatka atau tak jauh dari perbatasan Russia dan Amerika Serikat. Tak kurang dari 96 kiloton energi ledakan dilepaskan airburst ini. Sementara energi totalnya sendiri diperhitungkan mencapai 173 kiloton TNT, membuatnya hampir seterang Matahari pada saat airburst terjadi. Andaikata di sekitar ground zero (yakni titik yang tepat berada di bawah lokasi airburst) terdapat pemukiman penduduk, niscaya mereka bakal terkesiap menyaksikan langit siang bolong (tepatnya pukul 11:48 waktu setempat) mendadak laksana berhias dua Matahari.

Gambar 1. Ilustrasi sebuah peristiwa airburst yang memvisualisasikan dengan jelas lintasan benda langit (kiri atas citra) hingga bola api airburst (tengah dan kanan citra) serta hempasan gelombang kejut dan sinar panas airburst ke paras Bumi yang berupa daratan berhutan belantara (bagian bawah citra). Peristiwa Bering 2018 pada dasarnya seperti ini, hanya saja terjadi di atas lautan pada ketinggian yang cukup besar. Sumber: atas perkenan Don Davis, tanpa tahun.

Dan andaikata pula Peristiwa Bering 2018 terjadi tiga dasawarsa silam, di tengah puncak Perang Dingin, niscaya alarm bahaya serangan nuklir Uni Soviet (pendahulu Russia) akan berdering-dering nyaring dan siaga nuklir mungkin akan segera diberlakukan. Dan dunia bakal selangkah lebih dekat lagi ke perang nuklir yang ditakuti siapapun. Beruntung Peristiwa Bering 2018 terjadi di masakini, kala pemantauan langit dan cara membedakan ledakan nuklir terhadap aksi pelepasan berenergi tinggi yang mirip telah bisa dilakukan dengan beragam metode.

Bhangmeter dan Mikrobarometer

Peristiwa Bering 2018 sejatinya langsung terdeteksi oleh setidaknya 3 instrumen (radas) berbeda. Dan segera diketahui oleh para cendekia yang berspesialisasi padanya. Namun memang baru dipublikasikan kepada umum dalam pertengahan Maret 2019 TU ini saja. Dari ketiga radas tersebut, yang pertama adalah satelit mata-mata yang dikelola Departemen Pertahanan Amerika Serikat. Satelit rahasia ini dilengkapi bhangmeter, instrumen pengukur tingkat energi melalui fluks cahaya inframerah yang dipancarkan. Bhangmeter memungkinkan mengukur energi optis dari kilatan cahaya Peristiwa Siberia 2018 sekaligus membedakannya dari kilatan cahaya ledakan nuklir. Pada ledakan nuklir, bhangmeter akan menampilkan kurva khas dengan dua bukit (double-peak) dan sebaliknya pada peristiwa non-nuklir tidak demikian.

Gambar 2. Saat-saat asteroid mini tanpa-nama mengalami airburst di atas Chelyabinsk (Russia) pada 15 Februari 2013 TU. airburst terjadi di ketinggian 30 km dpl dan demikian benderang hingga mencapai 30 kali lipat lebih terang dari Matahari pada puncaknya. Peristiwa Bering 2018 pada dasarnya serupa, hanya pelepasan energinya jauh lebih kecil. Sumber: NASA APOD, 2013.

Radas yang kedua adalah satelit Himawari-8 yang dikelola Badan Meteorologi Jepang, sebuah satelit cuaca berkemampuan tinggi yang dipangkalkan di orbit geostasioner (ketinggian 35.792 km dpl atas garis khatulistiwa) pada lokasi di Samudera Pasifik bagian barat. Sehingga Himawari 8 mampu menyajikan liputan dari sebagian besar daratan Asia, segenap Australia dan segenap perairan Samudera Pasifik. Dan yang ketiga adalah radas mikrobarometer di daratan yang terpsang di sebuah stasiun infrasonik yang bagian jaringan CTBTO (the Comprehensive nuclear Test Ban Treaty Organization), lembaga pengawas penegakan larangan ujicoba nuklir segala matra yang berada di bawah payung PBB (Perserikatan Bangsa-Bangsa). Meski sama-sama dirancang mengendus aktivitas peledakan nuklir khususnya matra atmosferik dan paras Bumi, berbeda dengan satelit mata-mata yang dilengkapi bhangmeter, radas mikrobarometer mengandalkan kemampuan mengendus gelombang infrasonik berpola khas. Detonasi senjata nuklir atmosferik dan permukaan bumi melepaskan gelombang kejut ke udara yang sebagian kecil diantaranya lantas bertransformasi menjadi gelombang infrasonik yang menjalar jauh dan bisa dideteksi.

Pada Peristiwa Bering 2018, bhangmeter sebuah satelit mata-mata merekam kilatan cahaya yang setara pancaran energi optis sebesar 130 TeraJoule. Kurva yang diperolehnya tidak mirip ledakan nuklir. Sehingga disimpulkan sebagai kejadian airburst sebuah benda langit, karena hanya tumbukan benda langit (asteroid atau komet) sajalah yang memiliki tingkat energi setara ledakan nuklir.

Peristiwa Bering 2018 juga dideteksi oleh setidaknya 10 stasiun infrasonik di berbagai penjuru, melewati gelombang infrasonik pada durasi lebih dari 10 detik. Misalnya pada stasiun infrasonik IS18 yang terpasang di pulau Greenland (Denmark). Sinyal infrasonik Peristiwa Bering 2018 yang terekam disini memiliki durasi 20 – 25 detik. Radas mikrobarometer tidak bisa menghasilkan perkiraan energi total sebuah peristiwa, mengingat akurasinya buruk. Peristiwa yang sama juga terpantau satelit Himawari 8 khususnya pada kanal cahaya tampak, Meskipun analisis citranya baru dilaksanakan pada pertengahan Maret 2019 TU ini. Pada citra satelit ini, Peristiwa Bering 2018 nampak sebagai garis berwarna kuning-jingga di antara taburan awan yang berwarna putih. Di samping garis kuning-jingga ini terdeteksi juga garis kehitaman, yang mengesankan sebagai jejak lintasan benda langit tersebut sebelum mengalami airburst.

Analisis Departemen Pertahanan Amerika Serikat yang kemudian dipublikasikan badan antariksa AS (NASA), sebagai bagian kerangka kerjasama yang terbentuk pasca Peristiwa Chelyabinsk 2013, menunjukkan Peristiwa Bering 2018 memiliki energi total 173 kiloton TNT. Hal senada juga diperlihatkan dari analisis sinyal infrasonik, yang menjumpai angka mendekati 200 kiloton TNT. Sehingga secara teknis relatif sama, terlebih mengingat akurasi pengukuran energi airburst lewat sinyal infrasonik yang cenderung buruk. Titik airburst terletak di ketinggian 26 km dpl. Dan benda langit yang terlibat melesat secepat 32 km/detik (115.200 km/jam) dengan membentuk sudut 70º terhadap bidang horizontal di titik targetnya.

Asteroid Mini

Apa penyebab Peristiwa Bering 2018?

Dalam hemat saya, asteroid lah biang keladinya. Analisis saya dengan memanfaatkan serangkaian persamaan matematis dari Collins dkk (Collins, 2005) mengindikasikan penyebab Peristiwa Bering 2018 adalah asteroid dengan komposisi menyerupai meteorit akondrit, tepatnya dengan massa jenis 4.000 kg/m3. Meteorit akondrit adalah salah satu tipe meteorit yang diduga berasal dari bagian kerak benda langit terestrial seperti Mars maupun Bulan. Mereka terlempar ke antariksa oleh rangkaian tumbukan benda langit mahadahsyat di masa silam, lantas melayang-layang layaknya asteroid pada umumnya di keluasan antariksa.

Jika dianggap berbentuk bulat seperti bola, asteroid penyebab Peristiwa Bering 2018 memiliki garis tengah 8,8 meter sehingga merupakan asteroid kecil. Maka massanya sekitar 1.400 ton. Statistik memperlihatkan meteoroid seukuran ini (baik asteroid kecil maupun kepingan komet) memasuki atmosfer Bumi sekali dalam rata-rata setiap 28 tahun.

Gambar 3. Potongan citra satelit Himawari 8 pada kanal cahaya tampak untuk kawasan Samudera Pasifik bagian utara. Jejak Peristiwa Bering 2018 nampak jelas sebagai titik-titik cahaya berwarna kuning-jingga membentuk sebuah garis di antara tebaran awan-awan putih (tanda panah). Jejak diperbesar dalam gambar inset. Sumber: Japan Meteorology Agency, 2018.

Saat memasuki atmosfer Bumi bagian atas, gerak dan kecepatan meteoroid ini menyebabkan kolom udara yang dilintasinya mengalami tekanan ram yang kian membesar. Selain membuatnya bertransformasi menjadi meteor super terang (superfireball), tekanan ram yang kian membesar pada akhirnya akan memecah-belah asteroid tersebut mulai dari ketinggian 54 km dpl. Pemecah-belahan ini terus berlangsung dan kian intensif seiring kian jauh superfireball memasuki atmosfer. Hingga pada ketinggian 26 km dpl terjadilah proses pemecah-belahan yang paling intensif, membuat pecahan-pecahan yang terbentuk sontak mengalami deselerasi besar laksana direm di udara. Timbullah airburst yang melepaskan energi hingga 96 kiloton TNT. Pada saat airburst ini terbentuk kilatan cahaya sangat terang dengan tingkat terang (magnitudo semu) setara 70 % Matahari.

Bagaimana Dampaknya?

Seberapa besar sih energi airburst ini? Ledakan bom nuklir Nagasaki berkekuatan 20 kiloton TNT, sehingga airburst tersebut hampir lima kali lipat lebih dahsyat ketimbang bom nuklir Nagasaki. Secara keseluruhan Peristiwa Bering 2018 ini delapan kali lipat lebih dahsyat ketimbang ledakan bom nuklir Nagasaki.

Adakah dampaknya?

Meski energinya terkesan sangat besar bagi kita, namun dengan titik pelepasan energi yang jauh di ketinggian (yakni 26 km dpl) membuat dampaknya ke paras Bumi boleh dikata minimal, bahkan nyaris tidak ada. Pada dasarnya dampak tumbukan benda langit (termasuk dalam peristiwa airburst) mirip dengan dampak ledakan nuklir pada titik yang sama. Dengan mengacu simulasi ledakan nuklir (Dolan dan Glasstone, 1977) maka diperhitungkan pada ground zero saja besarnya tekanan lebih (overpressure) dari gelombang kejut airburst ini hanyalah 183 Pa (atau 19 kg/m2). Ini masih di bawah nilai ambang batas yang besarnya 200 Pa, yakni overpressure minimum yang bisa menghasilkan kerusakan teringan akibat papasan gelombang kejut. Yakni berupa retaknya kaca jendela.

Demikian halnya dengan pelepasan sinar panasnya. Simulasi ledakan nuklir memang memperlihatkan potensi munculnya sinar panas (thermal rays) sebagai imbas terbentuknya bola api airburst. Bola api airburst ini diperhitungkan bergaris tengah 295 meter dan sangat panas (suhu lebih dari 3.000º C) namun umurnya sangat singkat (kurang dari 1 detik). Pada ground zero, fluks panas akibat pembentukan bola api airburst ini diperhitungkan hanya 4,63 kiloJoule/m2. Sementara ambang batas fluks panas bagi luka bakar paling ringan (yakni luka bakar tingkat satu) adalah 5,16 kiloJoule/m2. Sedangkan untuk bisa menghasilkan kerusakan fisik teringan (yakni dalam bentuk terbakarnya/hangusnya kulit batang pohon) dibutuhkan fluks panas minimal 9,93 kiloJoule/m2. Jadi, seperti halnya dalam aspek gelombang kejut, Peristiwa Bering 2018 tidak memberikan dampak dalam hal paparan sinar panasnya.

Gambar 4. Rekaman gelombang infrasonik produk Peristiwa Bering 2018 yang ditangkap oleh stasiun IS8 di pulau Greenland (Denmark), ribuan kilometer jauhnya dari ground zero. Sumber: Peter Brown, 2019.

Sehingga tidak ada dampak lebih lanjut yang dialami kawasan Laut Bering dan sekitarnya akibat Peristiwa Bering 2018. Berbeda halnya dengan Peristiwa Chelyabinsk 2013, yang memiliki ketinggian airburst relatif sama namun energinya jauh lebih besar (hampir 4 kali lipat lebih besar). Sehingga dampaknya ke ground zero dan sekitarnya cukup signifikan terutama dalam aspek gelombang kejut.

Adakah Meteoritnya?

Karena terjadi di tengah laut maka mustahil untuk mengetahui apakah Peristiwa Bering 2018 memproduksi meteorit yang bisa menjadikannya peristiwa boloid dan bukan hanya sekedar superfireball. Secara teoritis minimal 0,1 % dari massa meteoroid yang berbentuk asteroid mini akan selamat dari proses penghancuran di atmosfer Bumi dan melanjutkan perjalanannya hingga mendarat di paras Bumi sebagai meteorit. Untuk Peristiwa Bering 2018, maka sisa meteoroid itu akan setara dengan massa 1,4 ton. Garis tengahnya akan sebesar 0,88 meter, jika sisa meteoroid itu dianggap berbentuk bola sempurna.

Apabila meteorit itu jatuh sebagai bongkahan tunggal ke perairan Samudera Pasifik, maka kecepatannya saat menyentuh air masih 152 m/detik (546 km/jam). Tumbukan ini akan menciptakan tsunami kecil yang khas dengan panjang gelombang 129 meter dan menjalar melintasi perairan dengan kecepatan sekitar 122 km/jam. Tsunami ini demikian kecil sehingga dalam jarak 3 km saja dari titik tumbukannya hanya akan setinggi 0,15 meter. Faktanya sistem peringatan dini tsunami Pasifik tak mendeteksi usikan khas tsunami di Samudera Pasifik bagian utara. Ini menjadi indikasi bahwa kalaupun Peristiwa Bering 2018 memproduksi meteorit, maka meteorit itu jatuh tercebur ke laut bukn sebagai bongkahan tunggal (seperti halnya dalam peristiwa Chelyabinsk 2013). Melainkan sebagai kepingan-kepingan berukuran kecil yang sangat banyak sehingga tak berdampak serius kepada perairan yang dijatuhinya.

Referensi :

Collins dkk. 2005. Earth Impact Effects Program: A Web based Computer program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science no. 6 vo. 40 (2005), halaman 817-840.

Collins dkk. 2017. A Numerical Assessment of Simple Airblast Models of Impact Airbursts. Meteoritics & Planetary Science no. 8 vo. 52 (2017), halaman 1542-1560.

Dolan & Glasstone. 1977. The Effects of Nuclear Weapons. Washington DC (USA), Department of Defense and Energy, 3rd edition.