Antara Potensi dan Prediksi Tsunami, Memahami Bilangan 57 Meter yang Menghebohkan

57 meter. Itulah bilangan yang menghebohkan (sebagian) Indonesia sejak awal April 2018 TU ini. Lebih lengkapnya tentang potensi tsunami dahsyat, hingga setinggi 57 meter bagi suatu lokasi di pesisir selatan Pandeglang, pada ujung barat pulau Jawa. Pulau terpadat penduduknya di Indonesia dan bahkan juga di dunia. Heboh akan bilangan ini melengkapi kehebohan lain akan bilangan lain sebulan sebelumnya, yakni Maret 2018 TU (Tarikh Umum). Saat itu bilangan 8,7 yang bikin heboh. Lebih tepatnya tentang potensi gempa bumi tektonik yang bersumber dari zona subduksi dan berkualifikasi gempa akbar (megathrust) berkekuatan maksimum 8,7 skala Magnitudo, juga bagi ujung barat Pulau Jawa. Dua bilangan yang menghebohkan itu hadir ke panggung sejarah Indonesia kontemporer melalui dua kegiatan ilmiah berbeda mengambil lokasi yang sama, yakni kompleks BMKG (Badan Meteorologi Klimatologi dan Geofisika) Kemayoran (Jakarta).

Gambar 1. Saat-saat tsunami besar Gempa Pangandaran 17 Juli 2006 menerjang kolam PLTU Bunton (Kabupaten Cilacap) dalam rekaman kamera sirkuit tertutup (CCTV). Riset pendahuluan termutakhir memperlihatkan zona subduksi Jawa, yang melepaskan tsunami besar ini, juga berpotensi memproduksi tsunami dahsyat. Sumber: PLTU Bunton, 2006 dalam Lavigne dkk, 2007.

Segera bilangan 57 meter menjadi bola liar yang menggelinding kemana-mana memantik beragam reaksi. Sebagian menganggapnya terlalu berlebihan dan malah menakut-nakuti orang. Sejumlah masyarakat Kabupaten Pandeglang, yang daerahnya disebut spesifik dalam potensi itu, mengaku tak bisa tidur dan merasa cemas. Nelayan berhenti melaut dan bahkan ada yang mulai mengungsi. Sebagian lainnya mencoba melakukan penyangkalan dengan menyebutnya sebagai kabar-bohong atau hoaks.

Wakil rakyat di Senayan turut cawe-cawe dengan memanggil BPPT (Badan Pusat Pengkajian dan Penerapan Teknologi) untuk menjelaskan masalah itu. Karena bilangan 57 meter datang dari peneliti tsunami kawakan yang bernaung di bawah BPPT. Belakangan Direktorat Reserse Kriminal Khusus Polda Banten juga turut serta dengan rencana hendak memanggil sang peneliti BPPT tersebut dan juga BMKG sebagai penyelenggara acara. Alasannya, selain bilangan 57 meter itu telah menakut-nakuti masyarakat Pandeglang dan berpotensi menghambat laju investasi di tempat tersebut, juga sebagai bagian integral dari penyelidikan kabar-bohong atau hoaks tentang tsunami yang berkecamuk kemudian. Di kemudian hari rencana ini dibatalkan menyusul kecaman dari berbagai penjuru di bawah tajuk ancaman kriminalisasi terhadap kerja ilmiah yang dipaparkan di forum ilmiah.

Ada apa sesungguhnya? Dan bagaimana menyikapinya?

Dasawarsa Gempa Sumatra

Saat berbicara dalam seminar yang diselenggarakan Pusat Penelitian dan Pengembangan BMKG, pak Widjo Kongko barangkali tak pernah menduga materinya bakal memantik reaksi berantai kehebohan. Pada seminar yang digelar dalam rangka memperingati Hari Meteorologi ke-68 pada Selasa 3 April 2018 TU, ia memaparkan riset pendahuluan yang dikerjakannya di bawah tajuk Potensi Tsunami di Jawa Barat. Pada dasarnya ia menindaklanjuti publikasi Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017 hasil kerja Pusgen (Pusat Studi Gempa bumi Nasional) Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum dan Perumahan Rakyat. Peta ini merupakan pemutakhiran dari peta sejenis yang dilansir tujuh tahun sebelumnya.

Berikut video tentang seminar tersebut :

Seluruh kegiatan tersebut berakar pada apa yang dialami Indonesia khususnya dalam dasawarsa pertama abad ke-21 TU. Inilah dasawarsa yang dalam ungkapan geolog legendaris pak Danny Hilman Natawidjaja, yang juga salah satu pembicara pada seminar tersebut, disebut sebagai teror gempa Sumatra. Dasawarsa gempa Sumatra adalah rentang masa tatkala gempa besar (kekuatan antara 7 hingga 8,5 skala Magntudo) hingga gempa akbar (kekuatan lebih dari 8,5 skala Magnitudo) dengan sumber di dasar laut mengguncang bumi Swarnadwipa secara berturut-turut dengan sumber sebelah-menyebelah layaknya mercon renteng. Dan semuanya melepaskan tsunami mulai dari tsunami besar hingga tsunami dahsyat.

Gambar 2. Gambaran sederhana sumber-sumber gempa besar dan akbar pada zona subduksi Sumatra. Gempa-gempa yang tercatat sejak tahun 2000 TU hingga 2010 TU merupakan bagian dari dasawarsa gempa Sumatra. Sumber: Muhammad dkk, 2016 dengan penambahan seperlunya.

Teror itu dimulai dari Gempa Enggano 4 Juni 2000 (7,9 skala Magnitudo) di ujung selatan Sumatra. Selanjutnya berpindah ke utara, dimulai dari Gempa Simeulue 2 November 2002 (7,3 skala Magnitudo) yang mengguncang daratan Pulau Simeulue. Puncaknya adalah Gempa Sumatra Andaman 26 Desember 2004 (9,3 skala Magnitudo) atau dikenal juga sebagai Gempa Aceh 2004 dengan tsunami dahsyatnya. Inilah gempa paling mematikan sekaligus bencana alam termahal sepanjang sejarah Indonesia modern. Gempa-gempa berikutnya beringsut kembali ke selatan, ditandai oleh Gempa Simeulue-Nias 28 Maret 2005 (8,6 skala Magnitudo). Gempa ini merontokkan pulau Nias dan sekitarnya. Sebagian kepulauan Mentawai pun menyusul berguncang dalam Gempa Bengkulu 12 September 2007 (8,4 skala Magnitudo). Dan yang terakhir adalah Gempa Mentawai 25 Oktober 2010 (7,8 skala Magnitudo) yang memorak-porandakan kepulauan Mentawai bagian selatan.

Selain merenggut korban jiwa yang sangat banyak, tak kurang dari 167.000 orang, dan kerugian materi luar biasa besarnya, tak kurang dari 45 trilyun rupiah, dasawarsa teror gempa Sumatra juga menggoyahkan pandangan umum tentang gempa besar dan akbar. Sebelum 2004 TU, para cendekiawan kebumian umumnya menerima pandangan bahwa peluang terjadinya gempa besar dan akbar yang memproduksi tsunami besar hingga raksasa akan lebih tinggi pada zona subduksi lebih muda. Sebab zona subduksi yang lebih tua akan lebih padat (memiliki massa jenis lebih besar) dan sudut penunjamannya lebih curam sehingga dianggap lebih stabil. Pandangan klasik ini nampaknya terbukti pada abad ke-20 TU, saat seluruh gempa akbar masa itu terjadi di bagian tepian Samudera Pasifik dengan zona subduksi berusia muda.

Gambar 3. Penampang sederhana zona subduksi Sumatra bagian utara khususnya segmen Aceh yang bersambungan dengan segmen Nicobar dan segmen Andaman. Umur subduksi segmen Aceh masih cukup muda (yakni 55 juta tahun) namun sebaliknya segmen Andaman sudah cukup tua (yakni 90 juta tahun). Ketiga segmen inilah yang secara bersama-sama menjadi sumber Gempa akbar Sumatra-Andaman 26 Desember 2004. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Namun Gempa Aceh 2004 mempertontonkan anomali yang menggoyahkan pandangan itu. Sisi selatan sumber gempanya, yakni di segmen Simeulue, memang relatif muda dengan umur subduksi 55 juta tahun. Akan tetapi sisi utaranya, yakni segmen Andaman, jauh lebih tua dengan umur subduksi 90 juta tahun. Dan pandangan klasik tersebut akhirnya itu berantakan seiring peristiwa Gempa Tohoku-Oki 11 Maret 2011 (9,0 skala Magnitudo) di Jepang. Gempa akbar yang juga melepaskan tsunami dahsyat ini terjadi pada zona subduksi Jepang Timur yang berusia sangat tua, yakni 130 juta tahun. Kini pandangan baru mengemuka, dimana setiap zona subduksi dimanapun tanpa terkecuali harus dianggap memiliki peluang memproduksi gempa besar dan akbar beserta tsunaminya.

Subduksi Tua yang Tetap Berbahaya

Pandangan baru itu berimbas bagi Pulau Jawa. Subduksi di sini juga sama tuanya dengan Jepang Timur, yakni sekitar 130 juta tahun. Kecepatan subduksi lempeng Australia terhadap mikrolempeng Eurasia pada zona subduksi Jawa (yakni 70 mm/tahun) juga tidak banyak berbeda dengan subduksi lempeng Pasifik terhadap mikrolempeng Okhotsk di zona subduksi Jepang Timur (yakni 80 hingga 90 mm/tahun). Keduanya tergolong lambat, khususnya dibandingkan perilaku lempeng Pasifik umumnya.

Perbandingan dengan subduksi Jepang Timur menyajikan kesan bahwa subduksi Jawa pun bisa berperilaku demikian. Dengan kata lain subduksi Jawa memiliki kemampuan untuk memproduksi gempa akbar beserta tsunami dahsyatnya. Bukan hanya berkemampuan memproduksi tsunami besar, seperti yang diperlihatkannya dalam Gempa Pangandaran 17 Juli 2006 (7,7 skala Magnitudo) dan Gempa Banyuwangi 3 Juni 1994 (7,8 skala Magnitudo).

Perbedaan di antara keduanya adalah riwayat gempa akbar subduksi Jepang Timur lebih diketahui. Selama 3.000 tahun terakhir subduksi tersebut telah mengalami empat peristiwa gempa akbar dengan periode ulang antara 800 hingga 1.100 tahun sekali. Gempa akbar terakhir sebelum peristiwa Gempa Tohoku-Oki 11 Maret 2011 adalah Gempa Sanriku 9 Juli 869 (sekitar 9 skala Magnitudo). Semuanya memproduksi tsunami dahsyat. Akan tetapi tidak demikian halnya dengan subduksi Jawa. Pencatatan bencana gempa bumi (dan juga tsunami) baru dimulai sekitar 300 tahun silam. Tempo yang cukup singkat untuk menyelisik riwayat gempa akbar beserta tsunami dahsyatnya yang bisa berbilang ribuan tahun.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana membengkak dan mengempisnya segmen subduksi pada gempa besar atau akbar, dalam hal ini Gempa Sumatra-Andaman 26 Desember 2004. Atas: zona kuncian terbentuk sehingga mikrolempeng Burma mulai terseret mengikuti gerakan lempeng India. Tengah: zona kuncian terus terdesak sehingga mikrolempeng Burma kian terseret dan membengkak. Dan bawah: zona kuncian patah membuat mikrolempeng Burma melenting sekaligus mengempis. Sumber: Sudibyo, 2014.

Ada berbagai cara untuk menyingkap riwayat gempa bumi sebuah zona subduksi di tengah tiadanya catatan tertulis. Disini harus digarisbawahi terlebih dahulu bahwa sumber gempa akbar di zona subduksi serupa dengan sumber gempa tektonik umumnya. Yakni sebagai area bergeometri empat persegi panjang yang akan melenting (slip) hingga jarak tertentu. Sebelum gempa terjadi, maka sumber gempa akbar akan terseret oleh gerak lempeng tektonik yang mendesaknya (fully coupling maupun partially coupling). Gerakan ini membuatnya membengkak. Sebaliknya pasca gempa, sumber gempa akbar akan bergerak berlawanan arah dengan lempeng tektonik pendesak (non coupling) sehingga membuatnya mengempis.

Tatkala gempa meletup, maka terjadi pula pengangkatan dasar laut sebagai komponen vertikal dari lentingan. Pengangkatan ini mendorong kolom air laut dalam luasan sangat besar tepat di atas sumber gempa akbar sehingga bergolak dan menyebar secara horisontal ke segala arah sebagai tsunami dahsyat. Berbeda dengan gelombang laut biasa, tsunami mengaduk-aduk air laut hingga ke dasar. Membuat sedimen dan aneka karang di dasar laut dicabik-cabik dan turut terangkut bersama air hingga akhirnya terhempas dan terendapkan di daratan.

Di sebelah barat pulau Sumatra teruntai pulau-pulau kecil berbaris sebagai busur luar Sumatra, mulai dari pulau Simeulue di utara hingga pulau Enggano di selatan. Jajaran pulau-pulau ini menyajikan kesempatan unik guna memahami zona subduksi Sumatra, mulai dari segmentasi (pembagian) hingga membengkak-mengempisnya setiap segmen. Pesisir pulau-pulau kecil itu ditumbuhi beragam karang. Dan karang tertentu membentuk pola mikroatol (atol/cincin kecil), yang menumbuhkan lembaran demi lembaran baru setiap tahunnya menyerupai lingkaran tahun pada tumbuhan berkayu. Tatkala paras air laut turun maka bagian mikroatol yang terekspos di atas paras air laut dan mati sehingga lembaran baru karang berikutnya akan tumbuh menyamping. Sebaliknya saat paras air laut naik maka lembaran baru karang berikutnya akan tumbuh di atas mikroatol lama.

Gambar 5. Lapisan-lapisan endapan tsunami di pulau Phra Thong (Thailand) dan karang mikroatol yang terangkat di pesisir pulau Simeulue (Indonesia). Kedua fenomena alam ini merupakan kunci untuk mengetahui riwayat gempa besar/akbar dan tsunami besar/dahsyatnya hingga beratus dan bahkan beribu tahun ke belakang. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Manakala sebuah segmen zona subduksi membengkak, pulau-pulau kecil diatasnya perlahan-lahan terbenam (submergence), membuat lembaran baru karang mikroatol tumbuh ke atas. Sementara saat segmen yang sama mengempis, pulau-pulau yang sama mendadak terangkat (uplift) sehingga lembaran baru karang mikroatol tumbuh menyamping. Dengan menandai lembaran-lembaran dimana mikroatol tumbuh ke atas atau tumbuh menyamping dan menghitung jumlah total lembaran karangnya (sekaligus menentukan umur absolutnya melalui penarikhan radioaktif), maka bagaimana riwayat gempa akbar di segmen zona subduksi tersebut hingga ratusan atau bahkan ribuan tahun ke belakang dapat diketahui.

Lewat cara inilah, yang dikombinasikan dengan penanaman sejumlah radas (instrumen) geodesi tektonik berbasis satelit (GPS) berketelitian sangat tinggi seperti misalnya dalam jejaring SuGAr (Sumatran GPS Array), maka segmen-segmen subduksi Sumatra dan riwayat kegempaannya masing-masing telah banyak diketahui. Dari utara ke selatan, subduksi Sumatra terbagi atas segmen Aceh (sumber gempa akbar 2004), Simeulue-Nias (sumber gempa akbar 2005), segmen Batu (sumber gempa besar 1935), segmen Siberut (sumber gempa akbar 1833), segmen Pagai (sumber gempa akbar 1833, gempa besar 2007 dan gempa besar 2010) dan segmen Enggano (sumber gempa besar 2000). Kecuali segmen Siberut dan sebagian segmen Pagai, seluruh segmen itu telah mengempis.

Jawa, Tenang Sebelum Badai?

Sebaliknya subduksi Jawa tidaklah demikian, busur luar Jawa tidak membentuk rantai pulau-pulau kecil. Sehingga mikroatol tidak dijumpai di sini. Maka selain menanami radas GPS, strategi menyingkap riwayat gempa akbar pada subduksi Jawa bergantung pada pelacakan endapan-endapan tsunami khususnya di pesisir selatan Jawa. Endapan tsunami ini mengandung ciri khas tertentu, umumnya berupa mikrobiota seperti molusca, diatom dan foraminifera. Semuanya bisa diukur umur absolutnya, juga lewat penarikhan radioaktif. Perburuan ini, khususnya untuk endapan produk tsunami besar dan tsunami dahsyat, menjadi fokus sejumlah lembaga riset di Indonesia.

Gambar 6. Dua contoh endapan tsunami masa silam (paleotsunami) pada dua tempat yang berbeda. Masing-masing endapan di tepi sungai Cikembulan, Pangandaran (Kabupaten Ciamis) produk tsunami dahsyat empat abad silam (kiri) dan endapan tsunami di pesisir Teluk Penyu (Kabupaten Cilacap) sekitar 1 kilometer dari garis pantai, jejak tsunami besar tahun 1883 TU (kanan). Sumber: Yulianto dkk, 2010 & Daryono, 2015.

Sejauh ini sepanjang garis pantai di antara Lebak (propinsi Banten) hingga Trenggalek (propinsi Jawa Timur) telah ditemukan sejumlah endapan tsunami yang terkubur cukup dalam. Endapan-endapan tersebut baik di Lebak, Pangandaran (Jawa Barat), Widarapayung (propinsi Jawa Tengah), Kulonprogo dan Gunungkidul (propinsi DIY) hingga Trenggalek memperlihatkan ada kandidat tsunami dahsyat pada sekitar 400 tahun silam. Juga terdeteksi kandidat tsunami dahsyat lainnya masing-masing pada sekitar 1.000 tahun dan 1.800 tahun silam. Jejak-jejak ini jelas menunjukkan bahwa subduksi Jawa mirip dengan Jepang Timur sekaligus mengukuhkan pandangan baru. Subduksi Jawa tidaklah sekalem yang selama ini diduga.

Sementara dari radas GPS diketahui bahwa subduksi Jawa bisa dibagi ke dalam sedikitnya tiga segmen. Masing-masing segmen Selat Sunda, segmen Jawa Barat dan segmen Jawa Tengah-Timur. Ada catatan sejarah tertulis tentang sejumlah gempa besar yang bersumber dari segmen-segmen subduksi tersebut. Misalnya Gempa 1780 (8,5 skala Magnitudo) dari segmen Selat Sunda. Lalu Gempa 1903 (8,1 skala Magnitudo) dan Gempa Pangandaran 17 Juli 2006 dari segmen Jawa Barat. Juga Gempa 1916 (7,2 skala Magnitudo) dan Gempa Banyuwangi 3 Juni 1994dari segmen Jawa Tengah-Timur. Gempa-gempa tersebut menghasilkan tsunami kecil hingga besar dengan dampak merusaknya bersifat lokal. Sebaliknya meskipun sejumlah endapan tsunami dahsyat sudah ditemukan, bagaimana riwayat gempa akbar dan perulangannya di subduksi Jawa masih terus diteliti.

Khusus pada segmen subduksi Selat Sunda, survei GPS selama tiga tahun penuh (2008 hingga 2010 TU) oleh Rahma Hanifa dkk (2014) dengan memanfaatkan 14 stasiun GPS yang tersebar di daratan Jawa Barat dan Banten menghasilkan temuan mencengangkan. Kecuali di area sumber Gempa Pangandaran 17 Juli 2006, segmen subduksi Selat Sunda terdeteksi dalam kondisi membengkak. Disimpulkan tiadanya peristiwa gempa akbar pada segmen ini sepanjang 300 tahun terakhir membuat sisi barat segmen (yakni di antara lepas pantai Ujung Kulo hingga Pelabuhan Ratu) kini berkemampuan membangkitkan gempa akbar berkekuatan minimal 8,7 skala Magnitudo. Sementara sisi timurnya, yakni di antara lepas pantai Pelabuhan Ratu hingga Pangandaran juga memiliki kemampuan memproduksi gempa besar dengan kekuatan minimal 8,3 skala Magnitudo. Jelas sudah bahwa kalemnya subduksi Jawa dalam gempa-gempa besar dan akbar adalah ibarat masa tenang sebelum badai menerjang.

Gambar 7. Distribusi keterseretan segmen Selat Sunda pada zona subduksi Jawa seiring interaksinya dengan lempeng Australia berdasarkan penelitian Hanifa dkk (2014). Merah menunjukkan derajat keterseretan tertinggi (fully coupling) sementara biru adalah sebaliknya. Warna merah-kuning adalah kandidat sumber gempa besar atau gempa akbar masa depan. Dari distribusi ini diketahui sisi barat dan timur segmen Selat Sunda masing-masing berpotensi menjadi sumber gempa berkekuatan 8,7 dan 8,3 skala Magnitudo. Sumber: Hanifa dkk, 2014 dalam Pusgen, 2017.

Dengan basis survei GPS serupa tim Pusgen mengungkap karakteristik setiap segmen subduksi Jawa. Segmen Selat Sunda memiliki kecepatan (sliprate) 40 mm/tahun sehingga secara keseluruhan memiliki kemampuan membangkitkan gempa akbar berkekuatan hingga 8,8 skala Magnitudo. Sementara segmen Jawa Barat memiliki sliprate 40 mm/tahun, maka berkemampuan memproduksi gempa akbar berkekuatan maksimum 8,8 skala Magnitudo. Dan segmen Jawa Tengah-Timur memiliki sliprate juga 40 mm/tahun, sehingga berkemampuan memproduksi gempa akbar berkekuatan hingga 8,9 skala Magnitudo. Inilah yang kemudian termaktub dalam Peta Sumber dan Bahaya Gempa Indonesia 2017.

Segmentasi inilah yang lantas dikembangkan lebih lanjut guna membentuk beragam skenario gempa akbar dan produksi tsunaminya. Pak Widjo Kongko menggunakan enam skenario sumber gempa berbeda dari tiga segmen subduksi berbeda yang saling bersebelahan. Skenario pertama berbasis segmen Enggano yang memiilki panjang 250 kilometer dan lebar 130 kilometer sebagai sumber gempa yang mampu menghasilkan gempa besar berkekuatan maksimum 8,4 skala Magnitudo. Skenario kedua mengasumsikan segmen Selat Sunda dengan panjang 390 kilometer dan lebar 130 kilometer sebagai sumber gempa yang mampumemproduksi gempa akbar berkekuatan maksimum 8,7 skala Magnitudo. Dan skenario ketiga beranggapan segmen Jawa Barat yang panjangnya 390 kilometer dan lebarnya 130 kilometer sebagai sumber gempa yang mampu menghasilkan gempa akbar berkekuatan maksimum 8,7 skala Magnitudo.

Skenario keempat hingga keenam merupakan gabungan atas segmen-segmen tersebut. Misalnya skenario keempat, membayangkan segmen Enggano dan segmen Selat Sunda bersama-sama sebagai sumber gempa, dengan panjang total 640 kilometer, lebar 130 kilometer dan mampu memproduksi gempa akbar berkekuatan maksimum 8,8 skala Magnitudo. Skenario kelima berasumsi segmen Selat Sunda dan segmen Jawa Barat bersama-sama sebagai sumber gempa, dengan panjang total 780 kilometer, lebar 130 kilometer dan mampu menghasilkan gempa akbar berkekuatan maksimum 8,9 skala Magnitudo. Dan skenario keenam beranggapan seluruh segmen secara bersama-sama sebagai sumber gempa, dengan panjang total 1.040 kilometer, lebar 130 kilometer dan mampu menghasilkan gempa akbar berkekuatan maksimum 9,0 skala Magnitudo.

Gambar 8. Segmen-segmen subduksi yang digunakan dalam riset pendahuluan potensi tsunami dahsyat Jawa Barat dan Banten beserta keenam skenario sumber gempanya dengan karakternya masing-masing. Bersumber dari video seminar BMKG menyambut hari Meteorologi ke-68, 3 April 2018 TU. Sumber: BMKG, 2018.

Skenario keenam mengingatkan pada peristiwa Gempa Aceh 2004. Gempa akbar fenomenal itu berasal dari tiga segmen sekaligus, satu fenomena yang jarang terjadi. Yakni segmen Nicobar di utara, segmen Andaman di tengah dan segmen Aceh di selatan. Sehingga sumber Gempa Aceh 2004 secara keseluruhan memiliki panjang 1.600 kilometer dengan lebar 200 kilometer. Dengan basis sumber tersebut, beragam simulasi tsunami yang dikerjakan oleh sejumlah cendekiawan dari berbagai lembaga menyajikan hasil yang cocok dengan kenyataan lapangan. Termasuk bagaimana tsunami dahsyat produk Gempa Aceh 2004 itu bisa memorak-porandakan pesisir India, Sri Lanka dan bahkan berdampak hingga pesisir timur benua Afrika. Juga mampu menjawab tinggi tsunami terbesar dalam kejadian tersebut yang mencapai 50 meter di Lhoknga (sebelah barat kota Banda Aceh).

Berikut adalah peta sumber gempa bagi skenario kedua (hanya segmen Selat Sunda) pada Google Maps berdasarkan publikasi Pusgen :

Dan berikut peta serupa namun bagi sumber gempa untuk skenario keenam (gabungan segmen Enggano, segmen Selat Sunda dan segmen Jawa Barat) :

Potensi vs Prediksi

Keenam skenario itu menjadi bahan masukan simulasi/perhitungan tsunami dengan memanfaatkan perangkat lunak TUNAMI-N3 yang dikembangkan University of Tohoku (Jepang). Selain skenario sumber gempa, TUNAMI-N3 juga membutuhkan masukan lain berupa kontur kedalaman dasar laut. Untuk itu digunakan basis data GEBCO (General Bathymetric Chart of the Oceans) yang memiliki resolusi 30 detik busur (900 meter) dan basisdata Angkatan Laut dengan resolusi 3 detik busur (90 meter). Simulasi dipusatkan di pulau Jawa bagian barat (mencakup Jawa Barat, Banten dan DKI Jakarta) mencakup 11 kabupaten dan 2 kota yang semuanya berbatasan dengan laut. Tinggi tsunami di pantai dihitung untuk setiap interval jarak 500 meter sepanjang pesisir. Rentang waktu simulasi adalah sejak skenario gempa akbar terjadi hingga 9 jam kemudian.

Gambar 9. Hasil simulasi gelombang awal (sesaat setelah gempa) dari masing-masing enam skenario sumber gempa untuk riset pendahuluan potensi tsunami dahsyat Jawa Barat dan Banten. Diadaptasi dari video seminar BMKG menyambut hari Meteorologi ke-68, 3 April 2018 TU. Sumber: BMKG, 2018.

Simulasi tsunami dengan langkah-langkah seperti itu merupakan standar bagi cendekiawan tsunami dimanapun berada. Jadi dasar ilmiahnya cukup kuat. Dengan demikian hasil simulasi ini juga bukanlah kabar-bohong atau hoaks.

Dari hasil simulasi TUNAMI-N3 untuk pulau Jawa bagian barat ini diperoleh dua keluaran. Pertama adalah tinggi tsunami, sebagai tinggi dari keenam hasil skenario sumber gempa di suatu pesisir. Dan yang kedua yaitu waktu tiba minimal tsunami dari sumber tsunami ke pesisir tersebut. Di sinilah diperoleh bilangan 57 meter untuk tinggi tsunami bagi satu titik pesisir Kabupaten Pandeglang, tepatnya lokasi pantai Cibitung. Selengkapnya tentang tinggi tsunami dan waktu tiba minimal tsunami untuk 13 titik di Jawa Barat dan Banten dapat dilihat dalam tabel berikut :

Harus digarisbawahi sungguh-sungguh bahwa hasil simulasi itu masih berada dalam ranah potensi tsunami. Bukan prediksi tsunami. Yang dimaksud dengan potensi tsunami adalah daya atau kemampuan yang tersimpan pada sebuah kandidat sumber gempa dasar laut untuk memproduksi tsunami tanpa menyinggung aspek waktu. Jadi tidak mengupas, misalnya, kapan peristiwa itu akan terjadi. Sebaliknya prediksi tsunami adalah ramalan atau prakiraan kapan sebuah tsunami akan terjadi di masa depan. Atau singkatnya, prediksi tsunami adalah potensi tsunami yang telah ditambah dengan prakiraan waktunya.

Ilmu pengetahuan kebumian hingga saat ini memang belum bisa memprakirakan kapan persisnya sebuah gempa bumi tektonik akan terjadi, terutama dengan tingkat ketelitian setinggi prakiraan cuaca. Sehingga apabila ada yang menyebutkan akan terjadi peristiwa gempa tektonik pada hari dan tanggal tertentu, atau bahkan pada lebih teliti lagi pada jam tertentu, maka hal itu adalah kabar-bohong dan bukanlah prediksi yang mempunyai latar belakang ilmiah kebumian.

Gambar 10. Distribusi tinggi tsunami di sepanjang pesisir Jawa Barat dan Banten (dengan tambahan DKI Jakarta) hasil simulasi untuk seluruh skenario sumber gempa, sebagai produk riset pendahuluan potensi tsunami dahsyat di Jawa Barat dan Banten. Diadaptasi dari video seminar BMKG menyambut hari Meteorologi ke-68, 3 April 2018 TU. Sumber: BMKG, 2018.

Namun ilmu pengetahuan yang sama pada saat ini telah bisa menyimpulkan apakah suatu daerah berpotensi mengalami gempa bumi tektonik dan berpotensi terlanda tsunami. Terutama karena tsunami hanya bisa dihasilkan oleh gempa besar/akbar (dengan mengecualikan potensi longsor dasar laut yang juga menjadi penyebab tsunami) dan kandidat sumber gempa semacam ini selalu berada di zona subduksi. Dan ilmu pengetahuan yang sama telah mampu menguak bahwa gempa-gempa besar dan akbar selalu berulang pada sebuah segmen subduksi yang sama, dengan periode perulangan yang khas. Di Indonesia perilaku tersebut dapat dilihat misalnya pada segmen Simeulue-Nias dengan Gempa Nias 16 Februari 1861 (8,6 skala Magnitudo) dan 154 tahun kemudian berulang lagi dengan Gempa Simeulue-Nias 28 Maret 2005.

Bisakah ilmu pengetahuan yang sama memprediksi tsunami? Dalam kata-kata pak Danny Hilman: bisa, sepanjang riwayat kegempaan pada suatu segmen zona subduksi bisa diketahui hingga ribuan tahun ke belakang. Dan hasil prediksinya adalah sebuah peluang (probabilitas) pada suatu rentang waktu. Bukan waktu spesifik seperti halnya hasil prakiraan cuaca saat ini. Disamping itu prediksi tsunami juga tetap memiliki peluang terlampaui, dimana dalam kejadian tsunami sesungguhnya bisa lebih besar ketimbang prediksi.

Gambar 11. Distribusi waktu tiba tsunami di sepanjang pesisir Jawa Barat dan Banten (dengan tambahan DKI Jakarta) hasil simulasi untuk seluruh skenario sumber gempa, sebagai produk riset pendahuluan potensi tsunami dahsyat di Jawa Barat dan Banten. Diadaptasi dari video seminar BMKG menyambut hari Meteorologi ke-68, 3 April 2018 TU. Sumber: BMKG, 2018.

Gempa Tohoku-Oki 11 Maret 2011 mempertontonkan bagaimana prediksi tsunami terlampaui dalam realitasnya. Sudah lama Jepang mengetahui segmen subduksi Jepang Timur adalah zona subduksi yang siap mengalami gempa besar. Prediksinya hingga 30 tahun ke depan, sejak 2007 TU, segmen subduksi Jepang Timur berpeluang hingga 99 % menjadi sumber gempa besar berkekuatan 8,1 hingga 8,3 skala Magnitudo. Sejak 2001 TU juga sudah dipahami periode perulangan gempa akbar di sini (yakni maksimum 1.100 tahun sejak peristiwa Gempa Sanriku 9 Juli 869) sudah terlampaui,. Langkah-langkah untuk mengantisipasinya juga sudah digelar, baik dalam bentuk mirigasi fisik maupun non fisik. Yang paling spektakuler adalah pembangunan tanggul laut setinggi 7,2 meter sepanjang 400 kilometer garis pantai, lengkap dengan pintu-pintu air yang dapat ditutup bila dibutuhkan.

Begitu Gempa Tohoku-Oki 11 Maret 2011 meletup, kekuatannya ternyata melampaui prediksi. Demikian halnya tsunaminya. Di kota Miyako, prefektur Iwate, tsunami dahsyat menggempur pantai dengan tinggi gelombang maksimum 39 meter. Ini jauh melampaui tinggi tanggul laut. Sehingga tsunami dengan mudah tumpah ruah dari mercu tanggul dan menerjang hingga berkilo-kilometer jauhnya ke daratan. Walaupun begitu, meski realitasnya tsunami melampaui prediksinya, langkah-langkah mitigasi fisik dan non fisik yang Jepang lakukan berhasil mereduksi jumlah korban. Tsunami produk Gempa Tohoku-Oki 11 Maret 2011 merenggut korban jiwa sekitar 18.500 orang. Itu empatbelas kali lipat lebih kecil dibanding korban jiwa akibat tsunami produk Gempa Sumatra-Andaman 26 Desember 2004, yang menerjang negara-negara yang sama sekali tak siap.

Gambar 12. Saat-saat airbah tsunami beserta reruntuhan yang diangkutnya mulai tumpah dari mercu tanggul laut pada menit awal terjangan di kota kecil Miyako, prefektur Iwate (Jepang) dalam kejadian Gempa Tohoku-Oki 11 Maret 2011. Dirancang setinggi 7,2 sesuai prediksi tsunami besar gempa berkekuatan maksimum 8,3 skala Magnitudo, dalam realitasnya kekuatan gempanya jauh lebih besar sehingga tsunami dahsyat yang menerjang Miyako berketinggian 39 meter. Sumber: Jiji Press/AFP/Getty Images, 2011.

Hambatan Politis

Indonesia belum mempunyai contoh prediksi tsunami seteliti Jepang. Dengan beragam keterbatasan yang ada, sejauh ini kemampuan kita di Indonesia masih sebatas pada eksplorasi potensi tsunami.

Contoh penyelidikan potensi tsunami terbaik ada di subduksi Sumatra. Penyelidikan riwayat kegempaan berbasis analisis mikroatol yang dikombinasikan dengan survei GPS memperlihatkan gabungan segmen Siberut dan Pagai dalam kondisi membengkak dan sudah berada di ujung periode perulangannya. Penyelidikan menyimpulkan periode perulangan gempa akbar di segmen ini antara 200 hingga 250 tahun. Di masa silam gabungan dua segmen tersebut (panjang total 600 kilometer) menghasilkan Gempa Mentawai 10 Februari 1797 (8,7 skala Magnitudo). Gabungan segmen yang sama juga memproduksi Gempa Mentawai 25 November 1833 (8,9 skala Magnitudo). Keduanya sama-sama memproduksi tsunami dahsyat yang cukup merusak.

Dan gempa terakhir dari gabungan dua segmen tersebut terjadi hampir 200 tahun silam, sehingga ada cukup alasan untuk mengatakan gabungan segmen ini akan menghasilkan gempa akbar dalam waktu antara saat ini hingga beberapa puluh tahun ke depan. Potensi inilah yang kemudian ditindaklanjuti dengan upaya-upaya mitigasi terutama mitigasi non-fisik yang melibatkan banyak komponen masyarakat. Terdapat Komunitas Siaga Tsunami (Kogami) di sini, yang aktif menyebarluaskan informasi terkait potensi tsunami di pesisir Sumatra Barat sekaligus sosialisasi jalur-jalur evakuasi, titik-titik evakuasi, prosedur evakuasi dan pembinaan terhadap sekolah-sekolah. Latihan bersama evakuasi tsunami (tsunami drill) pertama di Indonesia pun digelar di sini, tepatnya di Padang (Sumatra Barat) pada 26 Desember 2005 TU.

Penyelidikan potensi tsunami dahsyat di Jawa Barat dan Banten belumlah sejauh pencapaian di Sumatra Barat itu. Penyelidikan untuk Jawa Barat dan Banten barulah awal. Meskipun langkah-langkahnya berterima secara ilmiah, akan tetapi pilihan skenario sumber gempanya masih diperdebatkan. Pak Irwan Meilano, cendekiawan kebumian yang juga menjadi pembicara lainnya dalam seminar yang sama, berpandangan skenario keenam, yakni skenario yang berpotensi memproduksi gempa akbar berkekuatan hingga 9,0 skala Magnitudo, kecil kemungkinannya terjadi pada subduksi Jawa. Baginya lebih mungkin skenario yang melibatkan dua segmen bersamaan, dengan konsekuensi kekuatan gempa akbarnya sedikit lebih rendah (yakni 8,7 hingga 8,8 skala Magnitudo).

Jelas, sebagai penelitian awal, penyelidikan potensi tsunami Jawa Barat dan Banten ini perlu ditindaklanjuti dengan penelitian-penelitian berikutnya. Misalnya dilengkapi dengan riwayat kegempaan besar maupun akbar di kawasan ini, yang sedang giat-giatnya dilakukan dengan perburuan endapan-endapan tsunami. Dari riwayat tersebut juga perlu dilanjutkan penelitian guna mengetahui periode perulangan gempa akbar di kawasan ini. Serta seberapa besar kekuatan maksimum gempa akbar yang terekam dalam endapan-endapan tsunami tersebut. Dari penelitian-penelitian lanjutan itu barulah bisa diketahui seberapa valid skenario sumber-sumber gempa akbar yang digunakan untuk mendeskripsikan potensi tsunami dahsyat di Jawa Barat dan Banten.

Gambar 13. Jejak tsunami dahsyat masa silam di tanah Jawa? Kiri: sisa-sisa karang bercabang ditutupi endapan pasir tebal di rawa Sukamanah, Malingping (Kabupaten Lebak). Hanya tsunami dahsyat, sekitar 400 tahun silam, yang bisa membawa karang hingga sejauh 1 kilometer dari garis pantai ini. Kanan: lapisan endapan tsunami dari masa sekitar 1.800 tahun silam (tanda panah) pada pesisir Sindutan, Temon (Kabupaten Kulonprogo). Sumber: Yulianto dkk, 2017.

Jika hal-hal tersebut sudah dilakukan, barulah langkah-langkah mitigasi bisa lebih konkrit. Misalnya seperti memperbaharui peta resiko tsunami untuk kabupaten/kota di Jawa Barat dan Banten yang berbatasan dengan laut (baik Samudera Indonesia maupun Selat Sunda dan Laut Jawa bagian barat), menyiapkan skenario penyelamatan, menyiapkan titik-titik evakuasi beserta peta evakuasinya, memasang rambu-rambu petunjuk arah evakuasi, melakukan tsunami drill secara rutin, memasukkan pertimbangan potensi tsunami ke dalam penyusunan tata ruang kabupaten/kota setempat, memasukkan pendidikan kebencanaan dalam muatan lokal kurikulum sekolah dan sebagainya.

Jadi langkahnya masih panjang. Dan tidak elok jika penelitian awal potensi tsunami Jawa Barat dan Banten malah dibelokkan ke ranah lain seperti ranah politis maupun penyelidikan kriminal. Cendekiawan tsunami adalah hal yang jarang di Indonesia, sementara negeri ini bejibun dengan kawasan rawan tsunami dan hingga saat ini banyak yang belum diteliti lebih lanjut. Bila politisasi dan kriminalisasi dilakukan, selain berpotensi mematikan kebebasan akademis dan meredupkan gairah meneliti potensi bencana, juga akan membuat Indonesia mengikuti jejak konyol a la Italia. Pada 2009 TU Italia memenjarakan tujuh ahli gempanya pasca peristiwa Gempa L’Aquila 6 April 2009 (6,3 skala Magnitudo). Gempa L’Aquila menewaskan 309 orang, semuanya akibat tertimbun bangunan yang runtuh seiring buruknya mutu bangunan di kota L’Aquila.

Meski tak sekonyol Italia, Indonesia juga pernah merasakan dampaknya saat riset potensi gempa dan tsunami menubruk dinding politis. Manakala mulai menyelusuri zona subduksi Sumatra di akhir dasawarsa 1990-an TU, riset pendahuluan pak Danny dan rekan-rekannya menemukan besarnya potensi gempa akbar dan tsunami dahsyatnya untuk kawasan tengah. Temuan ini membuat mereka beranggapan kawasan ujung utara mungkin juga berpotensi serupa, terutama karena subduksi di sini dikenal kalem. Namun mereka tak bisa menguji kebenaran anggapan itu dengan penelitian langsung di lapangan. Sebab pada waktu yang sama ujung utara pulau Sumatra sedang bergolak. Merebaknya perlawanan GAM (Gerakan Aceh Merdeka) menjadikan kawasan itu ditetapkan sebagai DOM (Daerah Operasi Militer) pada periode 1990-1998 TU yang berlanjut dengan pemberlakuan status darurat militer mulai pertengahan 2003 TU.

Gambar 14. Dua lapis endapan tsunami masa silam (paleotsunami) yang berhasil dikuak dari pantai Lamreh, kota Banda Aceh. Lapisan paleotsunami 1450 lebih tebal dan hanya bisa diendapkan oleh peristiwa tsunami dahsyat yang sama besarnya atau bahkan lebih besar dari tsunami dahsyat produk Gempa Aceh 2004. Sementara lapisan paleostsunami 1390 lebih tipis, merupakan hasil pengendapan peristiwa tsunami besar. Sumber: Natawidjaja, 2015.

Meski sasaran para peneliti adalah pulau-pulau kecil di lepas pantai barat seperti pulau Simeulue dan sekitarnya, bukannya daratan utama Aceh, mereka tetap tidak diperkenankan masuk. Akibatnya semua menjadi ‘buta informasi’ akan gambaran potensi gempa akbar dan tsunami dahsyat di Aceh. Hingga saat meletupnya Gempa Sumatra Andaman 26 Desember 2004 yang fenomenal itu. Ironisnya hambatan serupa masih dialami dalam hari-hari pascagempa, saat para cendekia ingin mengetahui apa yang terjadi pada segmen Aceh.

Untungnya larangan masuk itu dijawab dengan solusi cerdas. Menggunakan helikopter sewaan, para cendekiawan itu berhasil mendeduksi bahwa pulau-pulau kecil di sebelah barat daratan Aceh memang terdongkrak naik. Mereka mendapati garis pantai setiap pulau bertambah ke arah laut, menyingkap daratan baru yang lebih segar penuh karang, hingga mudah diidentifikasi dari langit. Langkah serupa diulangi dengan melibatkan pencitraan satelit sehingga ruang lingkup amatan menjadi lebih luas. Maka gambaran lebih besar pun diperoleh. Setiap pulau kecil dalam rentang sepanjang 1.600 kilometer dari pulau Simeulue di selatan hingga pulau Preparis di utara terbukti terangkat. Jelas sudah Gempa Aceh 2004 itu melibatkan tiga segmen sekaligus: Aceh, Nicobar dan Andaman.

Memang ada pertanyaan, jika potensi gempa akbar dan tsunami di Aceh sudah diketahui beberapa tahun sebelumnya (katakanlah sejak lima tahun sebelumnya), akankah informasi itu akan mengubah permainan? Ya. Mitigasi fisik memang tak mungkin dilakukan. Namun mitigasi non fisik, dalam wujud sosialisasi potensi tsunami, sosialisasi daerah rawan, sosialisasi peta evakuasi beserta jalur-jalur evakuasi dan titik-titik evakuasi, dapat dilaksanakan hingga tahap tertentu. Sehingga publik terpapar informasi dan tidak buta sama sekali akan potensi tsunami. Dan kala bencana benar-benar datang menerjang, publik (setidaknya sebagian diantaranya) tahu apa yang harus dilakukan.

Gambar 15. Perbandingan data mikroatol di pesisir utara pulau Simeulue dengan irisan kronologi sejarah Aceh. Mikroatol mengalami kenaikan (uplift) saat segmen Aceh mengempis dalam tempo singkat pasca gempa akbar. Sebaliknya mengalami penurunan (submergence) saat segmen yang sama perlahan-lahan membengkak dalam tempo 600 tahun hingga terjadinya gempa akbar. Nampak jejak gempa akbar terakhir (1450 TU) bertepatan dengan memudarnya pengaruh kerajaan Samudera Pasai. Sumber: Natawidjaja, 2015.

Kita berharap hambatan politis sejenis dalam bentuk lain, seperti klaim menakut-nakuti publik atau menghambat investasi, tidak lagi dimunculkan dalam penyelidikan potensi tsunami dahsyat di Jawa Barat dan Banten. Betul, di satu sisi prediksi semacam itu bisa membuat bulu kuduk berdiri. Gambaran visual seperti yang terjadi di pesisir Aceh pada 2004 TU silam dan (mungkin) bisa terjadi pula di pesisir-pesisir Jawa Barat dan Banten tentu bisa membuat cemas dan menggelisahkan sebagian kita. Itu manusiawi. Namun mitigasi bencana geologi tak hanya berhenti di titik itu. Kita bisa bertindak lebih lanjut dengan memahami sampai sejauh mana tsunami dahsyat itu bisa menerjang ke daratan, apakah ratusan meter atau beberapa kilometer. Area yang berpotensi terendam tsunami itu menjadi daerah rawan tsunami.

Contoh peta kawasan rawan tsunami dapat dilihat berikut ini, dalam hal ini untuk Kabupaten Kebumen (Jawa Tengah) :

Dari daerah rawan ini kita bisa membentuk jalur-jalur evakuasi yang dilengkapi dengan titik-titik evakuasi. Sehingga kemana hendak melakukan evakuasi bila bencana terjadi dapat diketahui. Langkah semacam ini telah sukses diterapkan dalam mitigasi bencana geologi yang lain, yakni letusan gunung berapi. Dalam beberapa kejadian letusan gunung berapi mutakhir di Indonesia seperti Letusan Gunung Sinabung, Letusan Gunung Kelud, Letusan Gunung Sangeang Api hingga Letusan Gunung Agung, jumlah korban bisa ditekan seminimal mungkin. Kisah sukses mitigasi bencana letusan gunung berapi itu bisa juga diterapkan dalam mitigasi bencana tsunami dengan tiga hal mutlak yang harus terus dilakukan: sosialisasi, sosialisasi dan sosialisasi.

Pada akhirnya, kita juga harus melihat kembali ke dalam relung masa silam kala mencoba mengeksplorasi potensi tsunami dahsyat di suatu daerah. Dan contoh terbaik di Indonesia lagi-lagi Aceh. Jejak endapan tsunami di pesisir Aceh dan berbagai tempat memperlihatkan tsunami dahsyat sebelum 2004 TU di Aceh terjadi pada sekitar tahun 960 TU dan 1450 TU. Sehingga periode perulangannya adalah sekitar 600 tahun. Pada enam abad silam, Kerajaan Samudera Pasai tumbuh dan berkembang di ujung utara pulau Sumatra sekaligus menabalkan dirinya sebagai kerajaan Islam pertama di tanah Nusantara. Namun beragam faktor, termasuk terjangan tsunami dahsyat pada tahun 1450 TU, melemahkan kerajaan tersebut yang berujung pada keruntuhan menyakitkan begitu memasuki abad ke-16 TU. Kita berharap Indonesia khususnya Jawa Barat dan Banten tak perlu mengulangi nestapa itu.

Referensi:

BMKG. 2018. Video seminar menyambut hari Meteorologi ke-68, 3 April 2018 TU.

Muhammad dkk. 2016. Tsunami Hazard Analysis of Future Megathrust Sumatra Earthquakes in Padang, Indonesia Using Stochastic Tsunami Simulation. Front. Built Environ., 23 December 2016.

Kementerian Pekerjaan Umum Perumahan Rakyat. 2017. Peta Sumber dan Bahaya Gempa Indonesia Tahun 2017. Pusat studi gempa bumi nasional, Pusat penelitian dan pengembangan perumahan dan pemukiman, Badan Penelitian dan Pengembangan Kementerian Pekerjaan Umum Perumahan Rakyat RI.

Yulianto dkk. 2017. Paleotsunami, Studi Interdisiplin Tsunami Raksasa Selatan Jawa. worksjop Dukungan Infrastruktur yang Handal Proyek Stratgeis Nasional di Propinsi DIY, Kementerian Koordinasi Maritim, 29-30 Agustus 2017 TU.

Natawidjaja. 2015. Siklus Mega-Tsunami di Wilayah Aceh-Andaman dalam Konteks Sejarah. jurnal Riset Geologi dan Pertambangan, vol. 25 no. 1, Juni 2015, hal. 49-62.

Iklan

Ledakan Besar Akibat Petasan (Lagi) di Kebumen

Ledakan besar itu terjadi pada Sabtu 23 Juli 2017 TU (Tarikh Umum) sekitar pukul 21:30 WIB. Lokasinya pada suatu sudut di RT 05 RW 04 desa Krakal yang termasuk ke dalam kecamatan Alian Kab. Kebumen (Jawa Tengah). Titik pusat ledakan berada di sebuah rumah kosong yang difungsikan sebagai gudang. Gudang itu beralamatkan di jalan Pagerkemiri di sekitar koordinat 7º 36′ 31″ LS 109º 42′ 11″ BT dan secara fisik ada di sebelah barat Pasar Indrakila Alian, sejarak sekitar 250 meter. Dari lokasi mataair panas Krakal yang menjadi markah (icon) daerah ini, lokasi ledakan berjarak 1.200 meter.

Gambar 1. Lokasi di sekitar titik pusat Ledakan Krakal, sekitar 10 jam pasca kejadian. Titik pusat ledakan berada di rumah berdinding merah, yang menjadi rumah dengan kerusakan terparah. Secara keseluruhan 23 rumah mengalami kerusakan dengan 9 diantaranya berderajat rusak sedang hingga berat. Sumber: Lintas Kebumen, 2017.


Ledakan besar itu tidak melukai siapapun apalagi menelan korban jiwa. Namun terlepas dari ‘keberuntungan’ itu, ledakan menghasilkan dampak aneka kerusakan bagi rumah-rumah disekelilingnya mulai dari derajat rusak ringan hingga rusak berat. Secara keseluruhan 23 rumah mengalami kerusakan, dimana dua diantaranya rumah rusak berat, sembilan rumah rusak sedang dan sisanya rusak ringan. Radius kerusakan mencapai sekitar 50 meter dari titik pusat ledakan. Namun dalam kondisi tertentu pecahnya kaca jendela masih dijumpai hingga radius 500 meter ke arah tertentu.

Tak pelak ledakan besar jelang tengah malam ini menggegerkan daerah setempat. Dentuman suara ledakan terdengar hingga ke kecamatan tetangga, yakni Karangsambung, yang berjarak tak kurang dari 4 kilometer. Dentuman menggelegar itu juga diiringi dengan getaran tanah layaknya gempa. Warga sekitar pun sempat dibikin panik.

Ini adalah ledakan besar kedua di tanah Kebumen dalam kurun sebulan terakhir, setelah peristiwa Ledakan Gemeksekti. Dan seperti halnya Ledakan Gemeksekti, peristiwa ledakan besar di Krakal ini (yang untuk selanjutnya disebut Ledakan Krakal) pun disebabkan oleh bahan petasan alias mercon. Bedanya, peristiwa Ledakan Krakal ini mendapat perhatian lebih lanjut termasuk dengan melibatkan tim Laboratorium Forensik Polda Jawa Tengah. Sebaliknya dalam kejadian Ledakan Gemeksekti, penyebab dan pelakunya telah terang benderang sedari awal.

Gambar 2. Detik-detik awal bahan petasan mengalami ledakan (deflagrasi) dalam peristiwa Ledakan Gemeksekti, sebulan sebelum kejadian Ledakan Krakal. Dua peristiwa ledakan besar di Kabupaten Kebumen itu sama-sama disebabkan oleh bahan petasan. Sumber: Kebumen Ekspres, 2017.


Petasan

Seperti halnya dalam peristiwa ledakan-ledakan besar pada umumnya, kerusakan-kerusakan dan getaran yang mengiringi Ledakan Krakal diakibatkan oleh penjalaran gelombang kejut (shockwave) ledakan. Gelombang kejut adalah tekanan tak-kasat mata yang diekspresikan oleh nilai tekanan-lebih (overpressure), yakni selisih antara tekanan gelombang kejut terhadap tekanan atmosfer standar (diidealkan pada paras laut rata-rata). Nilai overpressure itu bisa mulai dari sekecil 200 Pascal (Pa, 1 Pa = 1 Newton/meter2) dengan dampak minimal yakni hanya menggetarkan kaca jendela dan berkemungkinan meretakkan kisi-kisinya. Namun bisa juga sebesar 1 MegaPascal (1.000.000 Pa) dengan dampak sangat mematikan bagi manusia, karena mampu memutilasi tubuh manusia tanpa ampun. Parah tidaknya dampak gelombang kejut bergantung kepada jaraknya terhadap titik pusat ledakan. Sebab nilai overpressure berbanding terbalik dengan bertambahnya jarak. Dan dalam kondisi tertentu bahkan ia bisa berbanding terbalik dengan pangkat dua (kuadrat) jarak dari titik pusat ledakan.

Gambar 3. Lokasi titik pusat Ledakan Krakal dalam peta Google Maps. Secara fisis titik pusat ledakan berada di sebelah barat Pasar Indrakila, pasar sentral di kecamatan Alian, dengan jarak sekitar 200 meter. Sumber: Sudibyo, 2017.


Dua rumah yang terkategori rusak berat mengalami kaca-kaca jendela yang hancur lebur dan tembok jebol. Satu dari rumah yang rusak berat ini adalah lokasi titik pusat ledakan. Sementara tujuh rumah yang terkategori rusak sedang memiliki kaca-kaca jendela yang pecah dan pintu jebol. Sembilan rumah ini bertebaran hingga radius sekitar 50 meter dari titik pusat ledakan. Dengan anggapan ledakan terjadi di udara terbuka tanpa halangan, maka perhitungan menggunakan persamaan-persamaan gelombang kejut memprakirakan bahwa kekuatan Ledakan Krakal adalah sekitar 3 kilogram TNT.

Hasil ini relatif tak berbeda dengan temuan Polres Kebumen, yang mengindikasikan ada sedikitnya 4 kilogram bahan peledak. Bahan peledak tersebut berupa bahan petasan (mercon), yang tergolong kelompok peledak low explosives. Dalam jumlah yang sama, bahan petasan memiliki kekuatan sedikit lebih kecil dibanding bahan peledak TNT (trinitrotoluena) yang menjadi standar kekuatan ledakan. Dengan demikian cukup beralasan untuk menyimpulkan bahwa Ledakan Krakal disebabkan oleh deflagrasi bahan petasan yang kekuatannya setara 3 kilogram TNT.

Perhitungan lebih lanjut dengan persamaan yang sama memperlihatkan bagaimana dampak gelombang kejut dari Ledakan Krakal ini. Dalam jarak hingga 12 meter, gelombang kejutnya masih sanggup merusak dinding beton. Dalam jarak 17 meter, gelombang kejut yang sama masih cukup kuat untuk melengkungkan lembaran logam. Dalam jarak 25 meter ia juga masih cukup kuat untuk menghancurkan kaca-kaca jendela sekaligus meretakkan dinding. Angka-angka ini sekaligus menyajikan gambaran seperti apa dampaknya jika ‘bahan peledak dalam bobot kecil’ diledakkan. Aksi terorisme masakini kerap melibatkan ‘bahan peledak dalam bobot kecil’ dengan daya rusak ditingkatkan seperti tergambar dalam peledak yang lebih populer sebagai bom panci.

Gambar 4. Hasil perhitungan dampak papasan gelombang kejut dalam peristiwa Ledakan Krakal yang telah dibandingkan dengan kondisi lapangan. Dampak gelombang kejut dipilih untuk sejumlah deskripsi dampak tertentu, yang lantas diplot ke dalam peta. Sumber: Sudibyo, 2017.


Harus digarisbawahi bahwa perhitungan dampak tersebut bersandar pada kondisi ideal, yakni titik pusat ledakan di udara terbuka. Realitanya titik pusat Ledakan Krakal berada dalam sebuah rumah kosong. Sehingga banyak dari dampaknya yang teredam oleh dinding-dinding rumah tersebut. Rumah kosong tersebut juga berjendela pada sisi tertentu dan ini yang mungkin menghasilkan dampak terpolarisasi (terkutub) ke satu arah. Sehingga sebuah rumah yang berjarak 500 meter dari titik pusat ledakan pun dijumpai mengalami pecahnya kaca-kaca jendela.

Peristiwa Ledakan Krakal, seperti halnya peristiwa Ledakan Gemeksekti, sekali lagi mendemonstrasikan seperti apa dampaknya jika bahan peledak low explosive seperti petasan ditumpuk dalam jumlah besar dan kemudian meledak (lebih tepatnya ter-deflagrasi). Baik Ledakan Gemeksekti maupun Ledakan Krakal sama-sama berakar pada tradisi yang mewabah di Kebumen sepanjang Ramadhan dan terutama saat hari raya Idul Fitri. Yakni petasan. Razia yang gencar dilaksanakan Polres Kebumen di bawah tajuk Operasi Ramadniya tidak sepenuhnya berhasil mengeliminasi ‘wabah’ tersebut. Pada satu sisi, razia tersebut bahkan berbalik memukul Polres Kebumen sendiri saat pemusnahan bahan petasan telah disita tak ditangani dengan baik sehingga berujung pada peristiwa Ledakan Gemeksekti.

Referensi:

Kinney & Graham. 1985. Explosive Shocks in the Air. Springer-Verlag, New York, 2nd edition.

Twitter Lintas Kebumen. diakses 22 Juli 2017 2017.

Ledakan Besar di Gemeksekti Kebumen, Sebuah Catatan Singkat

Senin siang 19 Juni 2017 Tarikh Umum (TU), bertepatan dengan 24 Ramadhan 1438 H, menjelang waktu Dhuhur, warga kota Kebumen di Kabupaten Kebumen (Jawa Tengah) digemparkan dengan gelegar suara ledakan yang sangat keras. Ledakan tersebut datang dari kawasan halaman-belakang kota sisi utara, terjadi sekitar pukul 10:30 WIB. Saksi mata melaporkan terdengar sedikitnya dua suara ledakan dengan yang terkeras adalah ledakan kedua. Akibat dari ledakan ini, sedikitnya 17 bangunan tempat tinggal dan masjid yang berlokasi dusun Semelang desa Gemeksekti mengalami aneka kerusakan ringan. Mulai dari pecahnya kaca-kaca jendela dan pintu hingga retaknya eternit dan dinding (tembok). Sebagian warga sempat dibikin panik dan membanjiri balai desa setempat.

Gambar 1. Detik-detik menjelang Ledakan Gemeksekti, saat mercon hasil razia mulai dimusnahkan dengan cara dibakar. Nampak ledakan pertama di sisi kanan, yang diduga memicu ledakan kedua dalam beberapa detik kemudian. Sumber: Kebumen Ekspres, 2017.

Catatan singkat ini dibangun melalui analisis jarak jauh, dengan kondisi yang diidealkan dan tanpa tinjauan ke lokasi. Sehingga kemungkinan terjadi kondisi yang berbeda antara hasil catatan ini dengan senyatanya tetap berpeluang terjadi.

Mercon

Penyebab ledakan tersebut tidaklah misterius dan sudah diketahui sejak awal. Yakni tumpukan petasan (mercon) dalam jumlah yang cukup banyak produk razia petasan yang digencarkan Polres Kebumen selama bulan Ramadhan 1438 H. Satu saksi mata melaporkan terdapat sekitar 10 karung petasan yang hendak dimusnahkan. Demam mercon selalu mewabah di Kebumen setiap kali bulan Ramadhan dan hari raya Idul Fitri tiba. Namun dalam beberapa tahun terakhir Polres Kebumen menggencarkan razia terhadap ‘asesoris Lebaran’ yang sejatinya dikategorikan sebagai bahan peledak kelompok low explosives itu.

Sebagai titik pemusnahan seluruh mercon hasil razia, dipilih satu sudut di dusun Semelang desa Gemeksekti. Tepatnya pada lereng sebuah bukit batu kapur yang sedang ditambang hingga membentuk dinding tegak yang menyajikan lapisan-lapisan bebatuan khas formasi Penosogan dan juga ketampakan sesar (patahan) turun. Lokasi ini nampaknya dipilih karena selain dekat dengan kota Kebumen (dimana Markas Polres berada) juga dianggap terlindung. Karena berada di cekungan produk penambangan dan berjarak minimal 100 meter dari rumah terdekat. Sehingga dampak ledakannya dianggap akan ternetralisir oleh struktur cekungan. Pemusnahan dilakukan dengan cara menaruh seluruh mercon hasil razia di paras tanah di udara terbuka untuk kemudian dibakar.

Gambar 2. Lokasi titik ledak dalam Ledakan Gemeksekti dalam beberapa jam kemudian yang masih ramai dikunjungi warga. Nampak kertas sisa-sisa meron yang dimusnahkan masih berserakan. Di latar belakang nampak dinding tegak hasil penambangan batu kapur, menampilkan lapisan-lapisan bebatuan dan sebuah sesar turun. Sumber: Kebumen Ekspres, 2017.

Perhitungan Dampak

Siapa sangka, proses pemusnahan ini justru berujung dengan ledakan sangat keras. Dan merusak. Tak ada korban luka-luka, apalagi korban jiwa, yang ditimbulkannya. Namun sedikitnya 17 bangunan rumah dan 1 masjid mengalami kerusakan. Seluruh bangunan tersebut terletak di sisi timur hingga timur laut dari titik ledakan. Getaran mirip gempa terasakan hingga sekitar 1 kilometer dari lokasi ledakan.

Hampir dapat dipastikan bahwa kerusakan-kerusakan dan getaran tersebut diakibatkan oleh penjalaran gelombang kejut (shockwave) dari ledakan. Bukan karena konversi energi ledakan menjadi energi seismik yang lantas menjalar di tanah sebagai gelombang seismik (gempa), karena nilai konversi itu sangat kecil. Gelombang kejut adalah tekanan tak-kasat mata yang diekspresikan oleh nilai tekanan-lebih (overpressure), yakni selisih antara tekanan gelombang kejut terhadap tekanan atmosfer standar (diidealkan pada paras air laut rata-rata). Nilai overpressure itu bisa mulai dari sekecil 200 Pascal (Pa, 1 Pa = 1 Newton/meter2) dengan dampak minimal yakni hanya menggetarkan kaca jendela dan berkemungkinan meretakkan kisi-kisinya. Namun bisa juga sebesar 1 MegaPascal (1.000.000 Pa) dengan dampak sangat mematikan bagi manusia, karena mampu memutilasi tubuh kita tanpa ampun.Parah tidaknya dampak gelombang kejut bergantung kepada jaraknya terhadap titik ledakan. Sebab nilai overpressure berbanding terbalik dengan bertambahnya jarak. Dan dalam kondisi tertentu bahkan ia bisa berbanding terbalik dengan kuadrat jarak dari titik ledakan.

Masjid yang mengalami pecahnya kaca-kaca pintu dan jendela dalam ledakan ini berjarak 160 meter dari titik ledakan. Dengan anggapan bahwa ledakan terjadi di udara terbuka tanpa halangan, maka dapat perhitungan dengan persamaan-persamaan gelombang kejut memprakirakan bahwa kekuatan ledakan adalah sekitar 25 kg TNT. Perhitungan dengan persamaan yang sama memperlihatkan gelombang kejut ledakan sanggup memecahkan gendang telinga manusia jika berdiri pada jarak 14 meter dari titik ledak. Ia juga sanggup menjatuhkan orang yang sedang berdiri tegak, jika berada pada jarak 37 meter dari titik ledak. Gelombang kejut yang sama juga mampu meremukkan kaca-kaca jendela pada jarak 107 meter dari titik ledak. Bahkan gelombang kejut ini pun masih sanggup menggetarkan kaca-kaca jendela hingga jarak 875 meter dari titik ledak.

Gambar 3. Hasil perhitungan dampak papasan gelombang kejut Ledakan Gemeksekti, dipilih untuk dampak tertentu, yang diplot ke dalam peta. Sumber: Sudibyo, 2017.

Saat angka-angka hasil perhitungan tersebut diplot ke dalam peta, nyatalah bahwa saat radius 160 meter ditarik dari titik ledakan, terdapat sekurangnya 15 bangunan yang terdeteksi berada dalam radius tersebut. Termasuk sebuah masjid. Seluruh bangunan itu berada di sisi timur laut dari titik ledakan. Dari sini terlihat bahwa hasil perhitungan tersebut nampaknya bersesuaian dengan data bangunan yang mengalami kerusakan di lapangan.

Harus digarisbawahi bahwa perhitungan di atas bersandar pada kondisi ideal, yakni titik ledak di udara terbuka. Dalam realitanya, titik ledak pada Ledakan Gemeksekti ini berada tepat di sisi sebuah tebing tegak hasil penambangan batu kapur. Kontur tanah di sekeliling titik ledak juga lebih tinggi, kecuali ke arah timur laut yang lebih terbuka. Sehingga gelombang kejut ledakan nampaknya terfokus hanya mengarah ke sisi timur laut saja, tidak ke arah-arah mataangin yang lain. Gelombang kejut yang terfokus hanya ke satu sisi juga membawa implikasi bahwa peledak yang digunakan memiliki kekuatan lebih kecil. Artinya Ledakan Gemeksekti mungkin ditimbulkan oleh akumulasi mercon yang totalnya kekuatannya tak sampai mencapai 25 kilogram TNT.

Catatan

Mercon tergolong ke dalam peledak low explosives, karena memiliki kecepatan peledakan yang jauh lebih kecil ketimbang kecepatan suara. Namun di sisi lain, mercon dikenal takstabil. Paparan panas atau tekanan sedikit saja sudah cukup untuk membuatnya bereaksi dan mengalami peristiwa mirip detonasi yang disebut deflagrasi. Rekaman video dalam peristiwa Ledakan Gemeksekti memperlihatkan nampaknya terjadi semacam ‘reaksi berantai’ saat pembakaran pemusnahan mercon hasil razia tak berlangsung secara serempak di setiap titik. Akibatnya kala ledakan pertama terjadi, ia mengirimkan gelombang kejut yang cukup kuat kepada tumpukan mercon disebelahnya (yang belum terbakar). Paparan gelombang kejut ini membuat tumpukan tersebut spontan bereaksi dengan melibatkan massa peledak yang jauh lebih besar.

Razia dan pemusnahan mercon, di satu sisi memang memiliki dilema tersendiri. Dengan sifat takstabilnya, ia tak bisa disimpan di satu lokasi dalam jangka waktu lama. Sementara kegiatan pemusnahannya sendiri juga beresiko, terlebih bila dibakar. Berbelas tahun silam anggota Polres Purworejo (di sebelah timur Kebumen) gugur kala memusnahkan mercon hasil razia dengan pembakaran. Pemusnahan dengan cara lain, misalnya direndam air, juga tak efektif karena begitu kandungan air mengering maka mercon dapat memiliki kemampuan eksplosifnya kembali.

Mengingat sifat paparan gelombang kejutnya terlebih lagi jika massa merconnya cukup besar, maka kegiatan pemusnahan mercon seyogyanya dikelola sedemikian rupa sehingga meminimalkan dampak paparan gelombang kejut ke lingkungan sekitar khususnya dalam arah mendatar. Misalnya, dengan menempatkan mercon hasil razia ke dalam sebuah lubang mirip liang lahat. Sehingga tatkala terjadi deflagrasi, paparan gelombang kejut ke arah horizontal teredam sepenuhnya oleh dinding-dinding tanah liang tersebut. Hanya meloloskan gelombang kejut ke arah vertikal.

Catatan Tambahan

Informasi dari Polres Kebumen: terdapat ribuan mercon yang berhasil disita dalam razia sejak awal Ramadhan 1438 H di Kabupaten Kebumen. Hampir semuanya diperlakukan sebagai bahan peledak low explosive, sehingga isinya (bahan mercon) dikeluarkan. Secara akumulatif terkumpul tak kurang dari 287 kilogram bahan mercon. Pemusnahan dilaksanakan dengan cara menabur bahan mercon di permukaan tanah dalam dua kelompok, untuk kemudian dibakar.

Normalnya pada proses pembakaran di udara terbuka, bahan mercon hanya akan terbakar saja tanpa meledak (berbeda jika berada di dalam selongsong). Namun diindikasikan ketebalan bahan mercon yang ditabur pada kelompok kedua masih terlalu tebal. Sehingga tatkala lapisan bagian atas terbakar, bagian bawahnya masih cukup terkungkung saat tersambar api sehingga masih mampu meledak. Maka cukup rasional untuk mengatakan bahwa Ledakan Gemeksekti diakibatkan oleh deflagrasi peledak low explosive yang kekuatannya setara dengan 25 kilogram trinitrotoluena (TNT).

Referensi:

Kinney & Graham. 1985. Explosive Shocks in the Air. Springer-Verlag, New York, 2nd edition.

Laman Kebumen Ekspres. Detik-Detik Ledakan Gemeksekti. 19 Juni 2017.

Longsor Clapar (Banjarnegara) yang Membuat Hati Bergetar

Jembatan itu pendek saja. Ia membentang di sebuah batang air kecil tak bernama yang menghilir ke tenggara hingga bermuara di Sungai Serayu. Serayu adalah sungai legendaris yang menjadi uratnadi utama Kabupaten Banjarnegara dan kabupaten/kota lainnya di propinsi Jawa Tengah bagian barat daya. Pada jembatan pendek inilah membentang sepenggal jalur jalan raya utama penghubung Kecamatan Madukara dan kecamatan-kecamatan lainnya di pinggir timur dan utara Kabupaten Banjarnegara dengan ibukotanya. Selama ini ia berdiri kokoh menjalankan tugasnya. Tak terhitung kendaraan, baik bermotor maupun tidak, dan makhluk hidup, baik manusia maupun hewan, yang pernah melintasinya sepanjang masa tugasnya. Setidaknya hingga Kamis 24 Maret 2016 Tarikh Umum (TU) lalu kala sebuah peristiwa menggetarkan terjadi: bencana tanah longsor Clapar.

Gambar 1. Jembatan kecil yang menjadi saksi bisu bencana longsor Clapar pada hari-hari awal bencana itu. Jalan yang semula melintasi jembatan ini nampak sudah mulai terputus. Di hari-hari berikutnya penggal jalan raya ini kian jauh beringsut sekaligus tertimbuni lumpur oleh longsor rayapan yang terjadi. Sumber: Sutopo Purwo Nugroho/BNPB, 2016.

Gambar 1. Jembatan kecil yang menjadi saksi bisu bencana longsor Clapar pada hari-hari awal bencana itu. Jalan yang semula melintasi jembatan ini nampak sudah mulai terputus. Di hari-hari berikutnya penggal jalan raya ini kian jauh beringsut sekaligus tertimbuni lumpur oleh longsor rayapan yang terjadi. Sumber: Sutopo Purwo Nugroho/BNPB, 2016.

Dan kini jembatan tak bernama itu pula yang menjadi salah satu fokus perhatian dalam bencana tanah longsor Clapar. Betapa tidak, sepenggal jalan raya yang membentang dari jembatan, yang secara administratif terletak di Rukun Warga (RW) 01 Desa Clapar Kecamatan Madukara, mendadak meliuk. Tanah yang mengalasinya secara tiba-tiba lebih lembek menjadi fluida laksana bubur. Sepenggal jalan raya itu pun menghanyut oleh aliran massa tanah dalam bencana tersebut. Tak sekedar merusak jalan raya, gerakan tanah yang sama membuat banyak rumah dibikin berantakan.

Mujurnya bencana longsor Clapar berjenis longsor rayapan (soil creep) yang secara alamiah terjadi secara perlahan-lahan. Sehingga pada satu sisi memberikan kesempatan bagi masyarakat yang bertempat tinggal di lokasi bencana dan sekitarnya untuk menyelamatkan diri. Inilah yang membedakan bencana longsor Clapar dengan bencana longsor dahsyat yang mendera Banjarnegara sepanjang sejarahnya. Mulai dari bencana longsor Legetang, Sijeruk hingga yang termutakhir Jemblung. Meski di sisi lain, perkembangan longsor rayapan dapat membuat area yang terdampak meluas, yang berimbas pada membengkaknya kerugian material dan jumlah pengungsi.

Gambar 2. Salah satu rumah permanen yang menjadi korban bencana longsor Clapar di hari-hari awal. Nampak ia rusak parah, telah retak separuh. Pada hari-hari berikutnya rumah ini kian rusak dan akhirnya runtuh sepenuhnya seiring gerakan tanah yang terus terjadi dalam longsor rayapan ini. Sumber: Sutopo Purwo Nugroho/BNPB, 2016.

Gambar 2. Salah satu rumah permanen yang menjadi korban bencana longsor Clapar di hari-hari awal. Nampak ia rusak parah, telah retak separuh. Pada hari-hari berikutnya rumah ini kian rusak dan akhirnya runtuh sepenuhnya seiring gerakan tanah yang terus terjadi dalam longsor rayapan ini. Sumber: Sutopo Purwo Nugroho/BNPB, 2016.

Saat gerakan tanah diawali pada 24 Maret 2016 TU pukul 19:00 WIB, yang disusul pada 25 Maret 2016 TU pukul 01:30 WIB dan pukul 06:00 WIB, luas area longsornya masih sebatas 5 hektar dengan keliling area 1,2 kilometer. Dampak yang diakibatkannya meliputi 9 rumah rusak berat, 3 rumah rusak sedang dan 2 rusak ringan dengan 29 rumah lain didekatnya pun dalam kondisi terancam. Jumlah pengungsi mencapai 158 orang. Tetapi berselang seminggu kemudian, yakni Kamis 31 Maret 2016 TU, gerakan tanah yang terus terjadi selama seminggu tersebut menyebabkan luas area longsor membengkak menjadi 35 hektar. Jumlah pengungsi pun melonjak menjadi 296 jiwa yang terbagi ke dalam 85 keluarga.

Gambar 3. Lokasi bencana longsor Clapar dalam citra Google Earth tiga dimensi. Area longsor ditandai dengan daerah berbayang putih, khususnya pada hari-hari pertama, yang luasnya 5,3 hektar dengan keliling 1,2 kilometer. Nampak alur jalan raya Madukara-Banjarnegara yang melintasi area longsor. Di latar belakang terlihat kota Banjarnegara. Di hari-hari berikutnya area longsor Clapar kian meluas seiring terus terjadinya gerakan tanah dalam longsor rayapan. Sumber: Sudibyo, 2016 dengan basis Google Earth serta data dari Nurmansyah & Andri.

Gambar 3. Lokasi bencana longsor Clapar dalam citra Google Earth tiga dimensi. Area longsor ditandai dengan daerah berbayang putih, khususnya pada hari-hari pertama, yang luasnya 5,3 hektar dengan keliling 1,2 kilometer. Nampak alur jalan raya Madukara-Banjarnegara yang melintasi area longsor. Di latar belakang terlihat kota Banjarnegara. Di hari-hari berikutnya area longsor Clapar kian meluas seiring terus terjadinya gerakan tanah dalam longsor rayapan. Sumber: Sudibyo, 2016 dengan basis Google Earth serta data dari Nurmansyah & Andri.

Mengapa bencana tanah longsor Clapar bisa terjadi?

Kemiringan dan Kondisi

Longsor rayapan di Clapar tak bisa dilepaskan dari takdir kebumian Banjarnegara dengan geologinya yang khas. Sebagai daerah yang bertempat di kawasan Pegunungan Serayu dan tepat di sisi utara daerah Karangsambung (Kebumen), Banjarnegara menderita tekanan yang kuat dari arah selatan selama berjuta-juta tahun. Akibatnya lempung dan napal yang mengalasi sebagian Banjarnegara seakan diremas-remas dengan sangat kuat, membuatnya rapuh. Tak hanya itu, tanah Banjarnegara pun dicabik-cabik oleh aktivitas tektonik. Sehingga beragam jenis sesar saling silang siur di kawasan ini. Proses serupa juga dialami Kebumen bagian utara, yang bahkan lebih kompleks sehingga membentuk daerah Karangsambung yang khas.

Desa Clapar dan sekitarnya berdiri di atas bebatuan sedimen formasi Rambatan yang terdiri atas serpih, napal dan batupasir mengandung gamping (karbonat). Dengan ketebalan sekitar 370 meter, formasi Rambatan dibentuk oleh pengendapan di lingkungan dasar laut yang terbuka. Pengendapan terjadi pada masa Miosen Awal hingga Miosen Tengah (23 hingga 16 juta tahun silam), menjadikannya satuan batuan tertua di Banjarnegara. Evaluasi oleh Fadlin, geolog Universitas Jenderal Soedirman Purwokerto, di lokasi bencana Clapar, menguak kekhasan lain. Batuan formasi Rambatan di Clapar telah cukup lapuk akibat dipanasi secara terus-menerus dalam periode yang cukup lama pada waktu tertentu, kemungkinan di kala Pleistosen (antara 2,5 hingga 0,1 juta tahun silam).

Gambar 4. Penampang melintang lereng bukit yang mengalami longsor rayapan dalam bencana longsor Clapar, di hari-hari pertama. Penampang melintang ini berimpit dengan sumbu area longsor yang berarah barat-barat daya ke timur-tenggara. Nampak posisi mahkota longsor dan lidah longsor serta jalan raya Madukara-Banjarnegara. Panah tebal putus-putus menunjukkan arah gerakan tanah. sementara tanda persen (%) menunjukkan persentase kemiringan lereng pada suatu titik. Sumber: Sudibyo, 2016 dengan basis Google Earth serta data dari Nurmansyah.

Gambar 4. Penampang melintang lereng bukit yang mengalami longsor rayapan dalam bencana longsor Clapar, di hari-hari pertama. Penampang melintang ini berimpit dengan sumbu area longsor yang berarah barat-barat daya ke timur-tenggara. Nampak posisi mahkota longsor dan lidah longsor serta jalan raya Madukara-Banjarnegara. Panah tebal putus-putus menunjukkan arah gerakan tanah. sementara tanda persen (%) menunjukkan persentase kemiringan lereng pada suatu titik. Sumber: Sudibyo, 2016 dengan basis Google Earth serta data dari Nurmansyah.

Sumber panasnya adalah magma, yang melesapkan cairan hidrotermal ke dalam lapisan batuan formasi Rambatan disekelilingnya. Sehingga terjadi proses alterasi hidrotermal yang kuat. Jejak magma tersebut masih terlihat di kecamatan Pagentan sebagai batuan beku terobosan (intrusi) sejarak 4 kilometer sebelah utara-timur laut Clapar. Batuan beku dalam intrusi tersebut merupakan diorit, terbentuk saat magma panas membeku secara berangsur-angsur jauh di dalam tanah sehingga menghasilkan bekuan gelap dengan butir-butir sedang hingga kasar. Apabila magma panas tersebut sempat keluar ke paras Bumi, maka ia akan membentuk batuan beku andesit. Intrusi diorit di Pagentan bisa saja merupakan fosil gunung berapi, yakni gunung berapi yang telah mati dan tererosi demikian brutal seiring waktu sehingga tinggal menyisakan bagian terkerasnya. Namun untuk itu dibutuhkan penyelidikan lebih lanjut. Yang jelas saat batupasir formasi Rambatan dikukus magma panas secara terus-menerus untuk jangka waktu yang lama, ia pun melapuk. Terbentuklah butir-butir lempung yang terkenal licin sehingga berperan menjadi bidang gelincir dalam banyak bencana tanah longsor.

Selain batuan yang lapuk dan penuh lempung, kekhasan lainnya yang diduga turut berkontribusi dalam bencana Clapar adalah adanya sesar (patahan). Sebuah sesar geser dengan arah utara-selatan melintas di sini. Aktivitasnya tidak diketahui dan kemungkinan besar tak aktif di masa kini. Namun keberadaan sebuah sesar apapun senantiasa diiringi eksisnya zona hancuran. Yakni sebentuk zona selebar beberapa meter hingga beberapa kilometer yang terbentuk sebagai akibat penghancuran batuan akibat gerakan sesar hingga berkumpul di jalur tertentu tepat di mana sesar tersebut melintas. Zona hancuran senantiasa menjadi zona lemah nan rapuh di paras Bumi. Lokasi bencana longsor Clapar nampaknya terletak di sekitar zona hancuran sesar geser tersebut.

Gambar 5. Peta zona kerentanan gerakan tanah sebagian Kabupaten Banjarnegara khususnya kecamatan Madukara dan sekitarnya. Lokasi bencana longsor Clapar ditandai dengan lingkaran merah. Area bencana terletak di zona rentan menengah (untuk lereng bagian atas) dan zona rentan rendah (untuk lereng bagian bawah). Sumber: PVMBG, 2014.

Gambar 5. Peta zona kerentanan gerakan tanah sebagian Kabupaten Banjarnegara khususnya kecamatan Madukara dan sekitarnya. Lokasi bencana longsor Clapar ditandai dengan lingkaran merah. Area bencana terletak di zona rentan menengah (untuk lereng bagian atas) dan zona rentan rendah (untuk lereng bagian bawah). Sumber: PVMBG, 2014.

Dengan kekhasan tersebut, bagaimana longsor Clapar mengambil bentuk yang berbeda dibandingkan kejadian di Legetang, Sijeruk dan Jemblung?

Salah satu faktornya mungkin terletak pada kemiringan lereng di Clapar. Mahkota longsor Clapar terletak di elevasi 837 meter dpl (dari paras laut rata-rata) dengan kemiringan 23 %. Sementara ujung lidah longsor Clapar terletak pada elevasi 705 meter dpl dengan kemiringan 12%. Maka terdapat selisih elevasi 132 meter. Sebagai pembanding mari gunakan kejadian bencana longsor dahsyat Jemblung. Mahkota longsor Jemblung terletak pada elevasi 1.056 meter dpl sementara bagian terendahnya pada elevasi 931 meter dpl. Sehingga selisih elevasi longsor Jemblung adalah 125 meter, sedikit lebih kecil dibanding selisih elevasi longsor Clapar. Akan tetapi kemiringan lereng Jemblung jauh lebih besar, yakni mencapai 47 % di mahkota longsor. Sehingga kemiringan lereng Jemblung terkategori sangat curam. Sebaliknya kemiringan lereng Clapar masih dikategorikan sebagai agak curam. Perbedaan kemiringan lereng ini mungkin menjadi faktor kunci mengapa bencana longsor Clapar bersifat rayapan. Tak mengambil bentuk yang sama dengan bencana longsor Jemblung, walaupun selisih elevasi keduanya relatif mirip.

Kemiringan lereng yang lebih rendah ini pula yang nampaknya mendasari Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) Badan Geologi Kementerian ESDM RI menempatkan area di sekitar lokasi longsor Clapar dalam zona rentan menengah (untuk lereng bagian atas) dan zona rentan rendah (untuk lereng bagian bawah). Bagi zona rentan rendah, potensi terjadinya gerakan tanah akan timbul manakala terjadi gangguan pada lereng tersebut. Sementara bagi zona rentan menengah, potensi gerakan tanahnya adalah lebih besar dibanding zona rentan rendah. Selain gangguan pada lereng, potensi gerakan tanah di zona rentan menengah bisa terjadi pada lereng yang berbatasan dengan lembah sungai, tebing jalan maupun gawir. Terutama saat terjadi hujan deras.

Gambar 6. Peta geologi Kabupaten Banjarnegara bagian timur, yang telah dilekatkan ke citra Google Earth tiga dimensi. Nampak lokasi bencana Clapar terletak di batuan formasi Rambatan, batuan tertua di Banjarnegara. Sedikit ke utara-timur laut dalam jarak sekitar 4 kilometer terdapat intrusi diorit Pagentan, magma yang menelusup di masa silam dan kemudian membeku. Intrusi ini mungkin melesapkan cairan hidrotermal ke batuan disekelilingnya hingga menciptakan fenomena alterasi hidrotermal. Di latar belakang nampak Gunung Telagalele, lokasi bencana longsor dahsyat Jemblung pada 2014 TU silam. Sumber: Sudibyo, 2016 dengan peta geologi dari P3G, 1998.

Gambar 6. Peta geologi Kabupaten Banjarnegara bagian timur, yang telah dilekatkan ke citra Google Earth tiga dimensi. Nampak lokasi bencana Clapar terletak di batuan formasi Rambatan, batuan tertua di Banjarnegara. Sedikit ke utara-timur laut dalam jarak sekitar 4 kilometer terdapat intrusi diorit Pagentan, magma yang menelusup di masa silam dan kemudian membeku. Intrusi ini mungkin melesapkan cairan hidrotermal ke batuan disekelilingnya hingga menciptakan fenomena alterasi hidrotermal. Di latar belakang nampak Gunung Telagalele, lokasi bencana longsor dahsyat Jemblung pada 2014 TU silam. Sumber: Sudibyo, 2016 dengan peta geologi dari P3G, 1998.

Evaluasi Fadlin memperlihatkan area lereng di sekitar mahkota longsor Clapar telah berubah menjadi kebun dengan tanaman budidaya berupa salak. Sebagai tumbuhan monokotil, salak memiliki sistem akar serabut. Ia membuat tanah tempatnya tumbuh menjadi gembur. Maka perkebunan salak yang ada pada sebuah lereng menyebabkan lereng tersebut menjadi gembur, sebuah gangguan bagi lereng tersebut. Terletak di zona rentan menengah, maka curahan hujan deras pada lereng yang telah terganggu tersebut akan meningkatkan potensi terjadinya gerakan tanah.

Faktor lainnya yang juga mungkin berperan adalah kondisi tanah. Terkait hal ini ada penelitian menarik dari Purwanto & Listyani (2008), dua geolog dari UPN Veteran dan STTNAS Yogyakarta. Di bawah tajuk tinjauan hidrogeologi dan evaluasi gerakan tanah Kabupaten Banjarnegara, Purwanto & Listyani memperlihatkan bahwa dari 18 titik di 18 desa (pada 11 kecamatan yangberbeda) di Kabupaten Banjarnegara, hampir seluruhnya terkategori sebagai daerah yang labil dan kritis dalam hal keamanan lereng. Dari ke-18 titik tersebut, tujuh diantaranya berada di sekitar Desa Clapar yakni di kecamatan Pagentan dan Wanayasa. Dan dari ketujuh titik tersebut, hanya dua desa yang lebih baik karena tergolong daerah kritis untuk keamanan lereng. Masing-masing desa Pandansari (kecamatan Wanayasa) dan desa Larangan (kecamatan Pagentan). Sisa lima desa lainnya seluruhnya tergolong daerah labil untuk keamanan lereng, sehingga lebih buruk. Yakni desa Karangnangka, Metawana, Sokaraja, Gumingsir (seluruhnya di kecamatan Pagentan) dan desa Suwidak (kecamatan Wanayasa).

Gambar 7. Distribusi rumah-rumah yang mengalami kerusakan dalam aneka tingkatan pada bencana longsor Clapar, hingga Sabtu 26 Maret 2016 TU. Sumber: JejakData.id, 2016.

Gambar 7. Distribusi rumah-rumah yang mengalami kerusakan dalam aneka tingkatan pada bencana longsor Clapar, hingga Sabtu 26 Maret 2016 TU. Sumber: JejakData.id, 2016.

Mayoritas dari ketujuh tempat tersebut memiliki sifat fisik-mekanik tanah yang dipicu oleh airtanah. Beberapa juga memiliki sifat fisik-mekanik litologi yang dapat berubah jika terkena air yang cukup banyak, membuat terjadinya penambahan kadar air yang berlebihan dan tiba-tiba di kala hujan terjadi. Seluruhnya juga memiliki pengaliran air permukaan yang kurang baik, sehingga luapan air pada saat hujan tak bisa segera dibuang. Situasi ini menjadikan tanah tersebut mudah jenuh air. Dan dengan keamanan lereng yang rendah (karena terkategori sebagai daerah kritis atau bahkan labil), potensi terjadinya bencana longsor di musim hujan menjadi sangat besar.

Catatan distribusi curah hujan sepanjang Februari 2016 TU dari Badan Meteorologi Klimatologi dan Geofisika (BMKG) Stasiun Klimatologi Semarang memperlihatkan Kabupaten Banjarnegara bagian timur menerima curah hujan yang tinggi, yakni antara 301 hingga 400 milimeter untuk bulan itu. Sehari sebelum bencana longsor Clapar terjadi, hujan deras pun masih mendera kawasan ini. Kombinasi lereng yang telah terganggu (akibat berkembangnya perkebunan salak), kondisi tanah yang pengaliran air permukaannya kurang baik sehingga luapan air saat hujan tak bisa segera hilang dan akumulasi hujan deras yang mungkin menjenuhkan kadar air dalam tanah nampaknya menjadi faktor-faktor yang berkontribusi dalam bencana ini.

Gambar 8. Dinamika curah hujan berdasarkan citra satelit pada Rabu 23 Maret 2016 TU antara pukul 15:00 hingga 20:00 WIB, sehari sebelum bencana longsor Clapar mulai terjadi. Dibangkitkan dengan kanal Hydro Estimator Rainfall pada laman RealEarth. Sumber: RealEarth, 2016.

Gambar 8. Dinamika curah hujan berdasarkan citra satelit pada Rabu 23 Maret 2016 TU antara pukul 15:00 hingga 20:00 WIB, sehari sebelum bencana longsor Clapar mulai terjadi. Dibangkitkan dengan kanal Hydro Estimator Rainfall pada laman RealEarth. Sumber: RealEarth, 2016.

Berbenah

Bencana Clapar memang berjenis rayapan, sehingga tak merenggut korban luka-luka atau bahkan korban jiwa. Maka ia tidaklah sedramatis bencana longsor dahsyat seperti di Jemblung pada akhir 2014 TU yang merenggut lebih dari 100 nyawa. Namun begitu ia tetap menghadirkan keperihan teramat dalam yang menggetarkan hati. Banyak penyintas (survivor) yang terguncang saat mendapati tempat tinggal mereka mendadak retak-retak parah, yang memaksanya harus mengungsi. Rasa kaget yang lebih besar terjadi di hari-hari berikutnya, saat rumah-rumah yang ditinggal mengungsi ternyata sudah lenyap dari paras Bumi, hancur porak-poranda seiring gerakan tanah yang terus terjadi.

Gambar 9. Akumulasi curah hujan di propinsi Jawa Tengah sepanjang Februari 2016 TU. Nampak lokasi bencana longsor Clap[ar berada di kawasan yang mengalami curah hujan akumulatif tinggi, yakni antara 301 hingga 400 milimeter dalam bulan itu. Sumber: BMKG, 2016.

Gambar 9. Akumulasi curah hujan di propinsi Jawa Tengah sepanjang Februari 2016 TU. Nampak lokasi bencana longsor Clap[ar berada di kawasan yang mengalami curah hujan akumulatif tinggi, yakni antara 301 hingga 400 milimeter dalam bulan itu. Sumber: BMKG, 2016.

Relokasi para korban ke tempat pemukiman yang baru menjadi kebutuhan mutlak untuk jangka pendek. Demikian halnya relokasi sepenggal jalan raya Madukara-Banjarnegara yang terputus dalam bencana ini. Dalam jangka panjang, Pemerintah Kabupaten Banjarnegara nampaknya musti berbenah. Pemukiman-pemukiman yang terletak di area rawan musti dipetakan. Sistem peringatan dini bencana longsor sebaiknya juga dipasang di tempat-tempat rawan. Dan yang lebih penting lagi, bagaimana mengupayakan rekayasa teknik untuk meminimalkan potensi gerakan tanah. Kita memang tak dapat berbuat apa-apa dengan kondisi tanah dan curah hujan. Namun pengaliran air permukaan di area yang rawan dapat diperbaiki dengan pembuatan dan pemeliharaan sistem drainase secara rutin.

Referensi :

Nurmansyah. 2016. komunikasi personal.

Andri Sulistyo. 2016. komunikasi personal.

Purwanto & Listyani. 2008. Tinjauan Hidrogeologi dan Evaluasi Gerakan Tanah di Wilayah Kabupaten Banjarnegara. Makalah dalam Seminar Nasional Aplikasi Sains dan Teknologi 2008, Institut Sains dan Teknologi AKPRIND, Yogyakarta.

Kamtono dkk. 2005. Studi Potensi Batuan Induk pada Sub Cekungan Banyumas dan Serayu Utara. RISET – Geologi dan Pertambangan jilid 15 no. 1 Tahun 2005.

Iswinarno. 2016. Akademisi Anggap Longsor di Desa Clapar Akibat Manusia dan Alam. Reportase Merdeka.com Rabu 30 Maret 2016.

Sang Surya Meredup di Kebumen, Notasi Gerhana Matahari 9 Maret 2016

Gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 yang dihelat di kompleks Masjid al Mujahidin Kauman, Karanganyar Kab. Kebumen (propinsi Jawa Tengah) akhirnya terlaksana dengan sukses pada Rabu 9 Maret 2016 Tarikh Umum (TU) lalu. Sebelumnya gelaran yang diselenggarakan oleh lajnah falakiyyah al-Kawaakib pondok pesantren Mamba’ul Ihsan Karanganyar bekerja sama dengan Badan Hisab dan Rukyat (BHR) Daerah Kebumen dan lembaga falakiyyah PCNU Kebumen itu telah disosialisasikan ke publik lewat beragam cara. Mulai dari media sosial di bawah tagar (hashtag) #GerhanadiKebumen, media cetak melalui wawancara dan opini hingga media elektronik melalui siaran televisi lokal.

Gambar 1. Matahari dalam berbagai waktu yang berbeda sepanjang durasi Gerhana Matahari Total 9 Maret 2016, yang nampak di Kebumen sebagai gerhana sebagian. Sumber: Sudibyo, 2016.

Gambar 1. Matahari dalam berbagai waktu yang berbeda sepanjang durasi Gerhana Matahari Total 9 Maret 2016, yang nampak di Kebumen sebagai gerhana sebagian. Sumber: Sudibyo, 2016.

Sosialisasi dan publikasi yang lumayan massif dikombinasikan dengan intensifnya publikasi even GMT 2016 dalam lingkup nasional nampaknya menggamit ketertarikan masyarakat Kabupaten Kebumen. Rencana shalat Gerhana Matahari siap digelar dimana-mana mengacu pada jadwal yang panitia publikasikan. Bahkan calon-calon khatib shalat gerhana pun ramai menghubungi panitia, mencoba mencari bahan-bahan untuk pelaksanaan khutbah shalat Gerhana Matahari nanti.

Gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 ini mengambil bentuk berbeda dibandingkan even astronomi/ilmu falak sebelumnya di Kabupaten Kebumen. Kali ini pelibatan publik yang lebih luas lebih dimaksimalkan. Undangan untuk kalangan tertentu juga diajukan. Termasuk untuk sosok nomor satu di Kabupaten Kebumen, yakni Bupati Kebumen. Meski bupati tak hadir hingga gelaran berakhir, namun acara ini menggaet tak kurang dari seribuan orang. Menjadikannya even astronomi/iilmu falak terbesar sepanjang sejarah Kabupaten Kebumen.

GMT_gbr2_teleskop-gerhana

Gambar 2. Atas: salah satu teleskop iOptron Cube E-R80 yang digunakan untuk pengamatan. Teleskop ini dihubungkan dengan kamera CCD yang dicolokkan ke komputer jinjing. Bawah: hasil observasi teleskop yang langsung disajikan ke layar melalui proyektor. Nampak terlihat citra Matahari yang sudah 'robek' di bagian atas (sisi barat) karena tutupan cakram Bulan. Sumber: Sudibyo, 2016.

Gambar 2. Atas: salah satu teleskop iOptron Cube E-R80 yang digunakan untuk pengamatan. Teleskop ini dihubungkan dengan kamera CCD yang dicolokkan ke komputer jinjing. Bawah: hasil observasi teleskop yang langsung disajikan ke layar melalui proyektor. Nampak terlihat citra Matahari yang sudah ‘robek’ di bagian atas (sisi barat) karena tutupan cakram Bulan. Sumber: Sudibyo, 2016.

Agar mampu melayani publik dalam jumlah besar, dua teleskop semi-robotik refraktor yakni iOptron Cube E-R80 pun dikerahkan, masing-masing di dua titik yang berbeda. Di salah satu titik, teleskop tersebut dilengkapi dengan kamera CCD yang langsung tersambung dengan perangkat komputer jinjing dan proyektor, sehingga hasil bidikan teleskop langsung tersaji pada satu titik di dalam kompleks masjid. Selain mengujicoba sistem observasi secara elektronik, konfigurasi ini juga ditujukan agar kelak bisa dikembangkan ke arah live streaming untuk peristiwa astronomi/ilmu falak di masa depan. Disamping kedua teleskop tersebut, sebuah teleskop manual Celestron Astromaster 130EQ juga dipasang. Kacamata Matahari pun turut disediakan dalam tempat tersendiri.

Gambar 3. Citra radar cuaca dari stasiun geofisika BMKG Yogyakarta untuk 9 Maret 2016 TU pukul 07:00 WIB. Nampak segenap Kabupaten kebumen bebas dari tutupan awan maupun kabut. Sumber: BMKG, 2016.

Gambar 3. Citra radar cuaca dari stasiun geofisika BMKG Yogyakarta untuk 9 Maret 2016 TU pukul 07:00 WIB. Nampak segenap Kabupaten Kebumen bebas dari tutupan awan maupun kabut. Sumber: BMKG, 2016.

Langit yang cerah mendukung suksesnya gelaran ini. Meski gerimis sempat mengguyur di malam sebelumnya, namun sejak Rabu dinihari awan-awan telah menyibak. Bintang-bintang dan beberapa planet terang pun terlihat, memudahkan panitia dalam mengkalibrasi radas-radas. Citra radar cuaca dari stasiun geofisika BMKG (Badan Meteorologi Klimatologi dan Geofisika) Yogyakarta per pukul 07:00 WIB memperlihatkan ruang udara Kabupaten Kebumen relatif bersih dari awan. Ini kontras bila dibandingkan misalnya dengan Yogyakarta dan sekitarnya yang ditutupi kabut tipis. Langit yang cerah membuat publik pun berduyun-duyun mendatangi kompleks Masjid al-Mujahidin sejak sebelum pukul 06:00 WIB. Shalat Gerhana Matahari diselenggarakan pukul 06:30 WIB, atau hanya sepuluh menit setelah cakram Bulan terdeteksi mulai bersentuhan dengan bundaran Matahari dalam layar proyeksi. Shalat gerhana lantas disusul dengan khutbah gerhana yang secara keseluruhan memakan waktu 30 menit.

Gambar 4. Pelaksanaan shalat gerhana dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 di Masjid al-Mujahidin Karanganyar, Kebumen (Jawa Tengah). Sumber: Sudibyo, 2016.

Gambar 4. Pelaksanaan shalat gerhana dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 di Masjid al-Mujahidin Karanganyar, Kebumen (Jawa Tengah). Sumber: Sudibyo, 2016.

Tahap-tahap Gerhana Matahari yang teramati dalam gelaran ini relatif konsisten dengan apa yang sebelumnya diperhitungkan dengan bantuan perangkat lunak Emapwin 1.21 karya Shinobu Takesako. Awal gerhana terdeteksi terjadi pada pukul 06:20 WIB atau konsisten dengan hasil perhitungan. Sementara akhir gerhana terdeteksi terjadi semenit lebih cepat dibanding hasil perhitungan, yakni pukul 08:33 WIB. Dengan demikian durasi gerhana yang terlihat adalah 133 menit. Kendala teknis yang mendadak muncul saat perekaman sedang dilakukan membuat kapan puncak gerhana terjadi tak bisa terdeteksi dengan baik.

Gambar 5. Salah satu hasil rekaman video dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016. Nampak bundaran Matahari kian 'robek' akibat cakram Bulan yang terus merasuk. Sumber: Sudibyo, 2016.

Gambar 5. Salah satu hasil rekaman video dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016. Nampak bundaran Matahari kian ‘robek’ akibat cakram Bulan yang terus merasuk. Sumber: Sudibyo, 2016.

Fenomena lain yang juga konsisten dengan apa yang telah diprakirakan sebelumnya adalah meredupnya langit. Perbandingan antara citra (foto) lingkungan saat diperhitungkan puncak gerhana terjadi dengan lingkungan yang sama setengah jam sebelumnya secara gamblang memperlihatkan bagaimana langit memang meredup.

Gambar 6. Dua citra yang diambil lewat kamera dengan setting yang sama dan lokasi yang sama namun pada jam yang berbeda dengan jelas menunjukkan bagaimana perubahan dramatis pencahayaan Matahari selama gerhana. Kiri: 20 menit sebelum puncak gerhana. Kanan: tepat saat puncak gerhana. Sumber: Sudibyo, 2016.

Gambar 6. Dua citra yang diambil lewat kamera dengan setting yang sama dan lokasi yang sama namun pada jam yang berbeda dengan jelas menunjukkan bagaimana perubahan dramatis pencahayaan Matahari selama gerhana. Kiri: 20 menit sebelum puncak gerhana. Kanan: tepat saat puncak gerhana. Sumber: Sudibyo, 2016.

Pembaharuan: Gerhana Matahari dan Konjungsi (Ijtima’)

Salah satu temuan menarik dalam gelaran ini adalah hubungan Gerhana Matahari dengan konjungsi Bulan-Matahari (ijtima’). Telah menjadi pengetahuan bersama bahwa dalam kondisi normal, peristiwa konjungsi Bulan-Matahari nyaris mustahil untuk disaksikan, kecuali dalam kasus khusus. Nah Gerhana Matahari kerap disebut sebagai kasus khusus tersebut, menjadikannya peristiwa konjungsi Bulan-Matahari yang bisa disaksikan manusia.

Dalam peradaban manusia konjungsi Bulan-Matahari memiliki peranan penting khususnya dalam ranah kultural dan religius, yakni untuk kepentingan sistem penanggalan (kalender). Misalnya bagi Umat Islam, peristiwa konjungsi Bulan-Matahari merupakan titik acuan (titik nol) bagi parameter umur Bulan. Umur Bulan didefinisikan sebagai selang masa (waktu) sejak peristiwa konjungsi Bulan-Matahari hingga saat tertentu yang umumnya adalah saat Matahari terbenam (ghurub). Di Indonesia, penentuan awal bulan kalender Hijriyyah yang berbasis hisab (perhitungan) dengan acuan “kriteria” imkan rukyat revisi menyertakan elemen umur Bulan sebagai salah satu syarat. Dimana umur Bulan harus minimal 8 jam. Sementara hisab yang lain yang mengacu “kriteria” wujudul hilaal pun menjadikan umur Bulan sebagai salah satu syarat, meski tak langsung. Yakni umur Bulan harus lebih besar dari 0 (nol) jam.

Dalam hisab dikenal ada tiga kelompok sistem hisab. Kelompok termutakhir dinamakan sistem hisab kontemporer (haqiqi bittahqiq), yang perhitungannya telah melibatkan serangkaian persamaan kompleks yang membentuk algoritma. Pada dasarnya hisab kontemporer adalah perhitungan astronomi modern yang telah disesuaikan untuk aspek-aspek ilmu falak. Sistem hisab kontemporer didaku sebagai sistem hisab yang paling akurat, dengan kemelesetan terhadap observasi hanya dalam orde detik.

Beragam sistem hisab kontemporer memperlihatkan konjungsi Bulan-Matahari akan terjadi pada Rabu 9 Maret 2016 TU pukul 08:54 WIB. Peristiwa ini berlaku universal untuk semua titik di paras Bumi. Sementara perhitungan berbasis Emapwin 1.21 dengan titik acu di kota Kebumen, Kabupaten Kebumen (Jawa Tengah) memberikan hasil bahwa awal gerhana akan terjadi pukul 06:20 WIB. Sedangkan puncak gerhana pada pukul 07:23 WIB dan akhir gerhana pada pukul 08:34 WIB. Hasil observasi dalam gelaran Nonton Bareng & Shalat Gerhana Matahari 9 Maret 2016 di kompleks Masjid al-Mujahidin Karanganyar Kebumen memperlihatkan awal gerhana terjadi sesuai perhitungan, yakni pukul 06:20 WIB. Sementara akhir gerhana pada pukul 08:33 WIB atau semenit lebih cepat ketimbang hasil perhitungan.

Terlihat jelas bahwa bahkan pada saat Gerhana Matahari sudah usai di Kebumen, ternyata konjungsi Bulan-Matahari belum terjadi (!) Padahal peristiwa langka inilah yang kerap digadang-gadang sebagai momen dimana konjungsi Bulan-Matahari dapat dilihat. Sepanjang pengalaman saya pribadi, ini bukan yang pertama. Dalam Gerhana Matahari 26 Januari 2009 pun terjadi hal serupa. dengan titik observasi di kota Cirebon (propinsi Jawa Barat), saat itu awal gerhana teramati terjadi pada pukul 15:21 WIB. Perhitungan berbasis Emapwin 1.21 juga menyajikan angka serupa. Puncak gerhana diperhitungkan terjadi pada pukul 16:40 WIB yang juga terdeteksi dalam observasi meski Matahari mulai ditutupi awan. Tutupan awan pula yang membuat akhir gerhana tidak teramati. Sebaliknya perhitungan sistem hisab kontemporer menunjukkan konjungsi Bulan-Matahari terjadi pada pukul 14:55 WIB atau sebelum Gerhana Matahari terjadi (!)

Gambar 7. Perbandingan observasi dua Gerhana Matahari, yakni antara Gerhana Matahari Total 9 Maret 2016 (terlihat di karanganyar Kebumen sebagai gerhana sebagian) dan Gerhana Matahari Cincin 26 Januari 2009 (terlihat di Cirebon sebagai gerhana sebagian). Dua observasi ini memperlihatkan dengan jelas bahwa konjungsi (dalam hal ini sejatinya konjungsi geosentrik) berselisih waktu terhadap peristiwa Gerhana Matahari. Sumber: Sudibyo, 2016.

Gambar 7. Perbandingan observasi dua Gerhana Matahari, yakni antara Gerhana Matahari Total 9 Maret 2016 (terlihat di karanganyar Kebumen sebagai gerhana sebagian) dan Gerhana Matahari Cincin 26 Januari 2009 (terlihat di Cirebon sebagai gerhana sebagian). Dua observasi ini memperlihatkan dengan jelas bahwa konjungsi (dalam hal ini sejatinya konjungsi geosentrik) berselisih waktu terhadap peristiwa Gerhana Matahari. Sumber: Sudibyo, 2016.

Mengapa ketidaksesuaian ini terjadi?

Masalahnya bukan pada sistem hisabnya. Namun lebih pada bagaimana kita mendefinisikan peristiwa konjungsi Bulan-Matahari. Sejatinya terdapat dua jenis konjungsi Bulan-Matahari. Yang pertama adalah konjungsi geosentris Bulan-Matahari (ijtima’ hakiki), yakni peristiwa dimana Matahari dan Bulan terletak dalam satu garis bujur ekliptika yang sama ditinjau dari titik di pusat (inti) Bumi. Dalam terminologi ini Bumi dianggap sebagai titik kecil tanpa volume. Sehingga saat terjadinya konjungsi geosentris Bulan-Matahari adalah sama bagi segenap koordinat manapun di paras (permukaan) Bumi. Dan yang kedua konjungsi toposentris Bulan-Matahari (ijtima’ mar’i), sebagai peristiwa dimana Matahari dan Bulan terletak dalam satu garis bujur ekliptika yang sama ditinjau dari satu titik di paras Bumi. Dalam konjungsi toposentris ini Bumi dianggap sebagai bola besar bervolume dengan jari-jari 6.378 kilometer. Konjungsi toposentris bersifat khas untuk suatu titik koordinat, sehingga antara suatu tempat dengan tempat yang lain akan berbeda.

Konjungsi geosentris Bulan-Matahari jauh lebih populer ketimbang konjungsi toposentris Bulan-Matahari. Saat berbicara awal bulan suci Ramadhan dan/atau dua hari raya (Idul Fitri/Idul Adha), yang dimaksud “konjungsi” selalu mengacu pada konjungsi geosentris. Namun observasi Gerhana Matahari memperlihatkan konjungsi geosentris tak berlaku bagi setiap titik koordinat di paras Bumi. Konjungsi toposentris-lah yang berlaku (dan lebih rasional). Hal ini seyogyanya berimplikasi pada redefinisi (pendefinisian ulang) konsep konjungsi (ijtima’) yang selama ini diterapkan dalam penentuan awal bulan kalender Hijriyyah. Baik di Indonesia maupun negara-negara Islam/berpenduduk mayoritas Muslim lainnya.

Menanti Tranformasi Sang Surya Menjadi Sabit (Gerhana Matahari 9 Maret 2016 di Tanah Jawa)

Rabu 9 Maret 2016 Tarikh Umum (TU), bertepatan dengan 29 Jumadal Ula 1437 H. Inilah masa kala dua benda langit yang mendominasi peradaban manusia bersua di angkasa. Itulah Bulan dan Matahari. Keduanya berjumpa di titik yang sama. Kita akan menyaksikannya sebagai situasi kala Matahari tertutupi Bulan hingga persentase tertentu. Bahkan apabila kita berada di tempat yang tepat, penutupan tersebut akan tepat sempurna. Menjadikan wajah Matahari yang terik menyilaukan pandangan menghilang sesaat, tertutupi sepenuhnya selama 2 hingga 3 menit kemudian. Panorama Matahari pun berganti dengan nampaknya mahkota Matahari atau korona, yakni bagian teratas atmosfer Matahari yang bersuhu jutaan derajat Celcius dan sehari–harinya mustahil terlihat. Inilah Gerhana Matahari Total, peristiwa alamiah yang langka, menakjubkan serta senantiasa mengundang puji syukur dan decak kagum.

Gambar 1. Wajah Matahari yang 'robek' oleh cakram Bulan. Diamati dalam Gerhana Matahari Cincin 26 Januari 2009 di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Diabadikan dengan kamera Nikon D60 dilengkapi filter buatan sendiri. Sumber : Sudibyo, 2009.

Gambar 1. Wajah Matahari yang ‘robek’ oleh cakram Bulan. Diamati dalam Gerhana Matahari Cincin 26 Januari 2009 di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Diabadikan dengan kamera Nikon D60 dilengkapi filter buatan sendiri. Sumber : Sudibyo, 2009.

Gerhana Matahari Total 9 Maret 2016 merupakan peristiwa gerhana pertama dalam musim gerhana 2016. Sepanjang tahun ini akan terjadi empat gerhana, masing-masing dua Gerhana Matahari dan dua Gerhana Bulan. Istimewanya, seluruh gerhana tersebut menghampiri Indonesia. Tetapi, hanya Gerhana Matahari Total 9 Maret 2016 yang bakal menyajikan panorama paling elok. Sisa tiga gerhana berikutnya terdiri dari Gerhana Matahari Cincin (yang nampak di Indonesia hanya sebagai gerhana sebagian) dan dua Gerhana Bulan Samar (penumbral).

Gerhana Matahari terjadi tatkala tiga benda langit dalam tata surya kita yakni Matahari, Bulan dan Bumi tepat berada dalam satu garis lurus secara tiga dimensi (dari tiga sumbu ruang sekaligus). Atau dalam istilah astronominya, mereka bertiga membentuk konfigurasi syzygy. Konfigurasi tersebut terjadi karena pada saat itu Bulan sedang menempati titik nodal (titik potong orbit Bulan dengan bidang ekliptika) dan Bulan sedang dalam situasi konjungsi Bulan-Matahari (ijtima’).

Gambar 2. Peristiwa Gerhana Matahari dan Gerhana Bulan dalam musim gerhana 2016 berdasarkan titik acu kota Kebumen, Kabupaten Kebumen (Jawa Tengah). Terlihat seluruh gerhana tersebut memiliki wilayah yang melintas di Indonesia. Tetapi hanya Gerhana Matahari Total 9 Maret 2016 saja yang berpotensi menyajikan panorama spektakuler. Sumber: Sudibyo, 2016.

Gambar 2. Peristiwa Gerhana Matahari dan Gerhana Bulan dalam musim gerhana 2016 berdasarkan titik acu kota Kebumen, Kabupaten Kebumen (Jawa Tengah). Terlihat seluruh gerhana tersebut memiliki wilayah yang melintas di Indonesia. Tetapi hanya Gerhana Matahari Total 9 Maret 2016 saja yang berpotensi menyajikan panorama spektakuler. Sumber: Sudibyo, 2016.

Dengan Bulan berkedudukan di tengah–tengah, maka ia menghalangi sinar Matahari yang seharusnya menuju ke Bumi. Sehingga bagian Bumi tertentu yang seharusnya mengalami siang hari mendadak temaram atau bahkan gelap sesaat. Bagian tersebut dinamakan wilayah gerhana. Karena diameter Matahari yang jauh lebih besar ketimbang Bulan, maka halangan dari Bulan tak sepenuhnya menghambat sinar Matahari. Masih tetap ada bagian sinar Matahari yang lolos meski dengan intensitas sinar sedikit berkurang. Sehingga wilayah gerhana pun terbagi ke dalam dua zona, yakni zona penumbra (bayangan tambahan) dan zona umbra (bayangan inti).

GMT 9 Maret 2016

Pada dasarnya ada tiga jenis Gerhana Matahari. Pertama adalah Gerhana Matahari Sebagian (GMS). Gerhana ini terjadi tatkala cakram Bulan tak sepenuhnya menutupi bundaran Matahari di seluruh wilayah gerhana. Akibatnya Matahari hanya akan terlihat ‘robek’ di salah satu sisinya dengan persentase tertentu. Sehingga wilayah gerhana bagi GMS pun hanya berupa zona penumbra. Yang kedua adalah Gerhana Matahari Cincin (GMC), yang terjadi tatkala cakram Bulan sudah sepenuhnya menutupi bundaran Matahari namun Bulan sedang berada di titik terjauh orbitnya (titik apogee). Sehingga di wilayah gerhana, tak hanya akan melihat Matahari yang ‘robek.’ Namun daerah-daerah tertentu juga akan melihat Matahari yang tak sepenuhnya tertutupi dan masih menyisakan secuil bagian terang yang mengemuka sebagai lingkaran bersinar mirip cincin pada puncaknya. Saat bentuk cincin ini muncul disebut tahap anularitas. Dengan demikian wilayah gerhana bagi GMC terdiri dari zona penumbra dan zona umbra (atau lebih tepatnya zona antumbra). Dan yang terakhir (ketiga) adalah Gerhana Matahari Total (GMT). Konfigurasinya seperti GMC dengan satu perbedaan mendasar: GMT terjadi tatkala Bulan berada dalam titik terdekatnya orbitnya (titik perigee). Sehingga pada daerah-daerah tertentu akan melihat Matahari sepenuhnya tertutupi Bulan dan menampakkan korona pada puncaknya. Momen ini terjadi pada tahap totalitas. Seperti halnya GMC, wilayah GMT pun terdiri dari zona penumbra dan umbra.

Gambar 3. Peta wilayah Gerhana Matahari Total 9 Maret 2016 dalam lingkup global. Wilayah gerhana ditandai dengan garis putih tak terputus dan putus-putus. Angka-angka menunjukkan waktu puncak gerhana dalam UTC (GMT). Peta diproses dengan software Solar Eclipse Viewer 1.0 karya Andrzej Okrasinki (Polandia). Sumber: Sudibyo, 2016.

Gambar 3. Peta wilayah Gerhana Matahari Total 9 Maret 2016 dalam lingkup global. Wilayah gerhana ditandai dengan garis putih tak terputus dan putus-putus. Angka-angka menunjukkan waktu puncak gerhana dalam UTC (GMT). Peta diproses dengan software Solar Eclipse Viewer 1.0 karya Andrzej Okrasinki (Polandia). Sumber: Sudibyo, 2016.

Dalam setiap jenis gerhana tersebut, zona penumbra menjadi kawasan yang bakal temaram sejak awal hingga akhir gerhana yang umumnya berlangsung selama 2 hingga 3 jam. Di zona ini bundaran Matahari akan terlihat ditutupi sebagian oleh cakram Bulan. Puncak gerhana ditandai dengan parsialitas, dimana wajah Matahari tertutupi cakram Bulan dengan persentase bervariasi mulai dari 1 hingga lebih dari 90 %. Di zona penumbra siang hari akan lebih redup, tetapi langit cukup benderang sehingga hanya Matahari yang terlihat. Sebaliknya zona umbra adalah kawasan yang tak hanya temaram, melainkan juga mengalami remang–remang (untuk GMC) atau kegelapan (untuk GMT) pada puncak gerhana. Remang–remang atau kegelapan itu umumnya terjadi selama 2 hingga 4 menit. Khusus untuk GMT, saat totalitas terjadi langit cukup gelap sehingga bintang–bintang dan planet–planet pun berpeluang terlihat.

Apapun jenis gerhananya, pada dasarnya ia terbagi ke dalam tiga tahap. Yakni tahap awal gerhana (kontak pertama penumbra), tahap puncak gerhana dan tahap akhir gerhana (kontak akhir penumbra). Awal gerhana ditandai dengan tepat mulai bersentuhannya cakram Bulan dengan bundaran Matahari. Sementara puncak gerhana adalah saat magnitudo gerhana atau persentase penutupan Matahari oleh Bulan mencapai nilai terbesar. Dan akhir gerhana adalah saat cakram Bulan tepat mulai meninggalkan bundaran Matahari. Khusus di zona umbra terdapat tambahan. Yakni tahap awal umbra dan tahap akhir umbra. Rentang waktu saat tahap awal hingga tahap akhir umbra merupakan durasi totalitas gerhana (untuk GMT) atau durasi anularitas gerhana (untuk GMC). Sementara durasi gerhana adalah rentang waktu sejak tahap awal hingga akhir gerhana.

Wilayah gerhana dalam GMT 9 Maret 2016 sejatinya cukup luas. Ia melingkupi tak kurang dari 25 negara berdaulat yang tersebar di kawasan Asia timur, Asia tenggara, Australia hingga Amerika utara. Negara–negara tersebut adalah India, Nepal, Bhutan, Sri Lanka, Myanmar, Thailand, Laos, Vietnam, Kamboja, Malaysia, Singapura, Indonesia, Brunei Darusalam, Timor Leste, Filipina, Papua Nugini, Australia, Palau, Cina (bagian timur dan selatan), Korea Selatan, Korea Utara, Jepang, Russia (pesisir Samudera Pasifik), Kanada (bagian barat) dan Amerika Serikat (negara bagian Alaska). Namun zona umbranya hanya melintasi satu negara, yakni Indonesia.

Gambar 4. Peta zona umbra dalam Gerhana Matahari Total 9 Maret 2016. Perhatikan nama kota-kota penting yang terlintasi zona umbra, sehingga secara tak resmi zona ini kadang disebut sebagai jalur P-P-P-P-P atau jalur 5P. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Gambar 4. Peta zona umbra dalam Gerhana Matahari Total 9 Maret 2016. Perhatikan nama kota-kota penting yang terlintasi zona umbra, sehingga secara tak resmi zona ini kadang disebut sebagai jalur P-P-P-P-P atau jalur 5P. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Zona umbra GMT 9 Maret 2016 hanya selebar 150 km yang melintasi daerah-daerah tertentu dari 12 propinsi. Masing–masing adalah empat propinsi di pulau Sumatra (meliputi propinsi Sumatra Barat, Bengkulu, Riau, Sumatra Selatan), propinsi Kepulauan Bangka Belitung, empat propinsi di pulau Kalimantan (meliputi propinsi Kalimantan Barat, Kalimantan Tengah, Kalimantan Selatan, Kalimantan Timur), dua propinsi di pulau Sulawesi (masing-masing propinsi Sulawesi Barat dan Sulawesi Tengah) serta propinsi Maluku Utara. Kota–kota penting yang terletak di zona umbra diantaranya Palembang, Pangkalpinang, Pangkalan Bun, Palangka Raya dan Palu. Tak mengherankan bila zona umbra GMT 9 Maret 2016 kadang disebut “jalur 5 P” atau “jalur P-P-P-P-P”, mengikuti huruf pertama dari keenam kota tersebut.

Sepanjang zona umbra inilah yang akan mengalami situasi langit siang hari yang berubah menjadi gelap saat totalitas terjadi. Panorama perubahan langit tersebut akan menyerupai apa yang pernah direkam di Afrika (dalam durasi panjang) pada saat Gerhana Matahari Total 29 Maret 2006


Tanah Jawa

Gambar 5. Peta wilayah Gerhana Matahari Total 9 Maret 2016 untuk pulau Jawa. Setiap garis kuning menghubungkan titik-titik yang memiliki persentase penutupan Matahari pada saat puncak gerhana yang nilainya sama. Perhatikan tak satupun titik di pulau Jawa yang berada dalam zona umbra. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Gambar 5. Peta wilayah Gerhana Matahari Total 9 Maret 2016 untuk pulau Jawa. Setiap garis kuning menghubungkan titik-titik yang memiliki persentase penutupan Matahari pada saat puncak gerhana yang nilainya sama. Perhatikan tak satupun titik di pulau Jawa yang berada dalam zona umbra. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Di luar zona umbra, sisa Indonesia lainnya berposisi di dalam zona penumbra. Di antara lima pulau besar di Kepulauan Nusantara ini, hanya pulau Irian dan pulau Jawa yang sepenuhnya menempati zona penumbra. Sehingga kita yang bertempat tinggal di kedua pulau tersebut hanya berkesempatan menikmati GMT 9 Maret 2016 dalam bentuk gerhana sebagian. Persentase penutupan Matahari dalam puncak gerhana yang terjadi di pulau Irian bervariasi mulai dari 51 % di Merauke hingga 94 % di Kep. Raja Ampat.

Sementara di tanah Jawa persentasenya bervariasi mulai dari 88 % di Banyuwangi (Jawa Timur) hingga 91 % di Merak (Banten). Namun durasi gerhana yang terpendek di tanah Jawa justru terjadi di Merak, yakni hanya 2 jam 11 menit. Sementara durasi terpanjang se-tanah Jawa terjadi di Banyuwangi, yakni 2 jam 19 menit.

Gambar 6. Prakiraan lintasan Matahari (garis putus-putus) dan kedudukan Matahari (titik-titik kuning) dalam Gerhana Matahari Total 9 Maret 2016 di ufuk timur kota Kebumen (Jawa Tengah). Masing-masing titik menunjukkan posisi dan wajah Matahari dalam jam-jam tertentu yang disajikan di sisi kanan. Sumber: Sudibyo, 2016

Gambar 6. Prakiraan lintasan Matahari (garis putus-putus) dan kedudukan Matahari (titik-titik kuning) dalam Gerhana Matahari Total 9 Maret 2016 di ufuk timur kota Kebumen (Jawa Tengah). Masing-masing titik menunjukkan posisi dan wajah Matahari dalam jam-jam tertentu yang disajikan di sisi kanan. Sumber: Sudibyo, 2016

Berikut adalah salah satu contoh bagaimana panorama Gerhana Matahari Total 9 Maret 2016 di tanah Jawa, dengan mengambil tempat di Kabupaten Kebumen. Sebagai salah satu daerah administratif di lingkungan propinsi Jawa Tengah, Kabupaten Kebumen juga turut berada dalam zona penumbra GMT 9 Maret 2016. Perhitungan dengan titik acu di kota Kebumen (ibukota kabupaten) memprakirakan awal gerhana bakal terjadi pukul 06:20 WIB. Saat itu Matahari relatif masih rendah di atas ufuk timur, dengan tinggi hanya 8° dari dan azimuth 93° (di selatan titik timur). Pergerakan Bulan yang memiliki kecepatan rata–rata hingga 1,02 km/detik membuat cakram Bulan kian jauh ‘menjajah’ wajah Matahari. Sehingga sang surya pun mulai ‘robek’ di sisi atasnya. Pada saat yang sama Matahari juga nampak kian meredup, pelan tapi pasti.

Hingga tibalah pada puncak gerhana yang diprakirakan terjadi pukul 07:23 WIB. Waktu itu Matahari sudah lumayan tinggi, bertengger di ketinggian 23° pada azimuth 91°. Dengan persentase penutupan Matahari diprakirakan mencapai 85,4 % maka hanya tersisa 14,6 % saja wajah Matahari yang masih terlihat (dan memancarkan sinar). Matahari pun seakan–akan berubah wujud menjadi bentuk sabit yang menghadap ke utara. Intensitas sinarnya di bumi Kabupaten Kebumen pun diprakirakan tinggal 15 % dari normal. Dalam istilah astronominya, puncak gerhana di Kabupaten Kebumen bakal ditandai dengan terjadinya penurunan magnitudo Matahari hingga 2,1 di bawah normal. Akibatnya langit pun bakal lebih temaram. Tetapi tak perlu khawatir, situasi semacam itu tak bertahan lama. Pergerakan Bulan yang teratur membuat cakram Bulan berangsur-angsur meninggalkan bundaran Matahari setelah puncak gerhana tercapai. Sehingga rona sang surya perlahan–lahan mulai meluas lagi. Pada pukul 08:00 WIB, rona Matahari yang ‘robek’ tinggallah sudut kiri bawahnya. Akhirnya tibalah akhir gerhana yang diprakirakan terjadi pukul 08:34 WIB kala Matahari berketinggian 41°. Dengan demikian durasi Gerhana Matahari di Kabupaten Kebumen adalah 2 jam 14 menit (134 menit).

Melihat Gerhana, Yang Boleh dan Tak Boleh

Dibanding peristiwa Gerhana Bulan, kesempatan mengalami Gerhana Matahari cukup langka. Gerhana Matahari Total terakhir dengan zona umbra yang melintasi sebagian tanah Jawa terjadi pada GMT 11 Juni 1983. Dan setelah itu tanah Jawa masih harus menunggu berabad-abad lagi sebelum bisa bersentuhan dengan zona umbra dalam peristiwa Gerhana Matahari Total yang akan datang.

Beberapa Gerhana Matahari yang non total singgah di tanah Jawa pasca 1983 hingga 2014 lalu. Namun tak semuanya memiliki konfigurasi yang menguntungkan untuk diamati. Secara kasat mata Gerhana Matahari terakhir di tanah Jawa terjadi pada 29 Januari 2009 sebagai Gerhana Matahari Cincin. Zona umbra bersentuhan dengan ujung barat pulau Jawa, sementara sisanya tergabung ke dalam zona penumbra. Di Kabupaten Kebumen, pada saat itu persentase penutupan Matahari mencapai 85 %. Berikutnya pada 15 Januari 2010 juga terjadi Gerhana Matahari Cincin. Namun satupun daerah di Indonesia yang berada pada zona umbra, sementara zona penumbra hanya meliputi pulau Sumatra, Kalimantan, Jawa (sebagian) dan Sulawesi (sebagian). Di Kabupaten Kebumen saat itu, persentase penutupan Matahari hanya sebesar 3 %. Sehingga sangat sulit untuk diamati.

Berikutnya pada 10 Mei 2013 juga terjadi Gerhana Matahari Cincin. Lagi-lagi tak satupun daerah di Indonesia yang tercakup zona umbranya, meski hampir seluruh Indonesia berkesempatan berada dalam zona penumbra. Namun dengan gerhana terjadi tepat pada saat Matahari terbit, maka upaya untuk mengamatinya juga sulit. Di Kabupaten Kebumen misalnya, persentase penutupan Mataharinya saat terbit mencapai 39 %. Namun dengan langit berkabut di ufuk timur, apa yang mau dilihat? Demikian halnya dengan Gerhana Matahari Sebagian 29 April 2014. Gerhana juga terjadi saat Matahari terbit.

Gambar 7. "Sabit Matahari" yang nampak puncak sebuah Gerhana Matahari, dalam hal ini adalah Gerhana Matahari Cincin 26 Januari 2009 yang diamati di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Wajah Matahari dalam puncak Gerhana Matahari Total 9 Maret 2016 pun bakal menyerupai pemandangan ini. Diabadikan dengan kamera Nikon D60 tanpa filter apapun (karena cuaca mendung). Sumber : Sudibyo, 2009.

Gambar 7. “Sabit Matahari” yang nampak puncak sebuah Gerhana Matahari, dalam hal ini adalah Gerhana Matahari Cincin 26 Januari 2009 yang diamati di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Wajah Matahari dalam puncak Gerhana Matahari Total 9 Maret 2016 pun bakal menyerupai pemandangan ini. Diabadikan dengan kamera Nikon D60 tanpa filter apapun (karena cuaca mendung). Sumber : Sudibyo, 2009.

Maka sah–sah saja bila kita ingin berpartisipasi secara langsung mengamati. Apalagi mengabadikan GMT 9 Maret 2016 dengan kamera. Namun ada beberapa hal yang harus digarisbawahi. Pada dasarnya kita dilarang menatap langsung ke arah Matahari. Demikian pula mengarahkan kamera secara secara langsung ke sang surya. Selain intensitas sinarnya begitu besarnya hingga terlalu benderang menyilaukan, salah satu gelombang elektromagnetik berenergi tinggi yang dipancarkan Matahari dan bisa tiba di permukaan Bumi adalah berkas sinar ultraungu. Intensitasnya juga tinggi. Dengan tingginya energinya, sinar ultraungu bisa menyebabkan perubahan kimia pada sel–sel retina apabila terpapar terlalu lama. Pada dasarnya menatap Matahari terlalu lama sama merusaknya dengan melihat pengelasan las listrik tanpa pelindung mata sama sekali. Gangguan penglihatan bisa terjadi.

Dalam situasi normal, mata kita memiliki respon spontan untuk menyipit dan mengerjap saat menatap Matahari. Inilah alarm kewaspadaan sekaligus pengaman mata kita. Namun pada saat Gerhana Matahari, khususnya dengan persentase penutupan Matahari yang besar, situasi unik terjadi. Meredupnya Matahari sepanjang durasi gerhana akan membuat langit lebih temaram. Alarm kewaspadaan kita pun mengendor. Kini Matahari jadi lebih enak dipandang tanpa harus banyak menyipitkan mata. Pada saat yang sama, temaramnya langit juga membuat mata kita meresponnya dengan membuka pupil lebih lebar untuk memungkinkan lebih banyak sinar yang masuk. Sehingga kualitas penglihatan tetap terjaga. Kombinasi dua hal ini berpotensi membuat lebih banyak sinar ultraungu Matahari yang masuk ke bola mata dibanding normal. Disinilah bahaya itu muncul.

Cara aman

Jadi bagaimana cara melihat Matahari yang aman? Juga bagaimana cara melihat Gerhana Matahari yang aman? Pada dasarnya Matahari cukup aman untuk dipandang apabila intensitas sinarnya telah diperlemah hingga minimal 50.000 kali lipat dari semula sebelum memasuki mata kita. Melihat Matahari dengan pantulan sinarnya melalui permukaan air yang tenang sama sekali tak disarankan. Sebab intensitas sinar hasil pemantulan hanyalah diperlemah 50 kali dari semula. Dengan dasar tersebut maka perlu adanya filter (penapis) yang tepat di antara mata kita dan Matahari. Filter yang dianjurkan adalah yang memperlemah sinar Matahari hingga 100.000 kali dari semula (0,001 %), yang teknisnya dikenal sebagai filter ND 5 (neutral density 5). Filter semacam ini secara komersial dipasarkan sebagai kacamata Matahari.

Gambar 8. Filter Matahari buatan sendiri, dibuat dengan menggunakan kotak kardus bekas wadah dompet yang dilubangi mirip kacamata lalu ditempeli negatif film yang telah dicuci. Sumber: Sudibyo, 2009.

Gambar 8. Filter Matahari buatan sendiri, dibuat dengan menggunakan kotak kardus bekas wadah dompet yang dilubangi mirip kacamata lalu ditempeli negatif film yang telah dicuci. Sumber: Sudibyo, 2009.

Bagaimana jika tak ada filter ND 5? Kita pun tetap bisa mengamati Gerhana Matahari dengan cara membuat filter sendiri. Carilah negatif film hitam putih yang telah ‘terbakar’ (dipapar sinar Matahari lalu dicuci di studio foto). Potong–potong menjadi 3 helai lalu rekatkan/tumpuk menjadi satu. Agar lebih mudah dipegang, tempatkanlah dalam misalnya kertas karton yang telah dilubangi demikian rupa agar mirip kacamata. Inilah filter Matahari–buatan–sendiri yang tak kalah ampuhnya dengan filter komersial. Bisa juga menggunakan kacamata las bernomor 14. Dengan filter semacam ini maka mata (atau kamera) anda akan tetap leluasa mengamati Gerhana Matahari tanpa khawatir cedera.

Selain itu melihat gerhana Matahari juga bisa dilakukan dengan teknik tak langsung. Yang terpopuler adalah menggunakan kamera lubang jarum (pinhole). Kamera ini bisa kita buat sendiri. Carilah sebuah kotak kertas yang berbentuk balok, misalnya kotak sepatu ataupun kardus bahan makanan. Lubangi salah satu ujung baloknya seukuran koin logam. Lalu rekatkan lembaran alumunium foil di lubang ini. Tepat di tengah–tengah lembaran alumunium foil, tusukkan jarum hingga membentuk lubang sangat kecil. Selanjutnya lubangi pula ujung yang berseberangan, kali ini dengan bentuk persegi/bujursangkar. Rekatkan sehelai kertas putih polos tipis disini yang akan berfungsi sebagai layar. Nah kita tinggal mengarahkan kamera ini ke Matahari, dengan bagian yang berlembaran alumunium foil di sisi Matahari. Bayangan Gerhana Matahari akan terproyeksikan oleh lubang jarum ke layar dengan jelas dan aman untuk disaksikan

Cara Terlarang

Ada banyak cara yang sesungguhnya tergolong tak aman dan bahkan terlarang untuk mengamati Gerhana Matahari, meski melingkupi beberapa hal yang telah melegenda. Misalnya dengan meletakkan sebaskom atau sepanci air di luar ruangan dan melihat Gerhana Matahari melalui pantulan di permukaan air tenangnya. Cara ini terlarang dengan alasan yang telah dipaparkan di atas. Begitu pula jika kita berinisiatif melihat melalui “filter” dari selembar film sinar–X / Roentgen bekas. Cara ini pun terlarang karena film sinar–X tak memiliki senyawa perak setinggi negatif film hitam putih. Demikian pula bila menggunakan negatif film berwarna yang sudah dicuci fotografis. Bahkan menggunakan negatif film hitam putih yang juga sudah dicuci secara fotografis pun bisa tak dianjurkan jika hanya selembar. Apalagi jika belum dicuci. Cara tak aman lainnya misalnya melihat gerhana dengan “filter” yang terbuat dari CD (compact disk) bekas. Atau melihat gerhana dengan “filter” dari media penyimpanan jadul seperti disket (floppy disk).

Mengapa cara-cara tersebut tak aman? Karena meski memperlemah cahaya Matahari yang melewatinya, namun jumlah cahaya Matahari yang ditransmisikan masih jauh lebih besar dibanding ambang batas yang diperkenankan.

Shalat Gerhana

Bagi Umat Islam, sangat dianjurkan untuk menyelenggarakan shalat gerhana tatkala peristiwa gerhana terjadi, baik Gerhana Matahari maupun Gerhana Bulan. Nah tulisan ini tak hendak menyentuh tata cara pelaksanaan shalat gerhana atau khutbah yang dianjurkan. Namun hanya mengupas kapan waktunya.

Ada sebagian kalangan yang mempertanyakan (sekaligus mempersoalkan) mengapa peristiwa GMT 9 Maret 2016 disambut dengan demikian gegap gempita di Indonesia. Mengapa tak mendirikan shalat gerhana saja? Mengapa justru mengamati dan seabrek kegiatan pendukung yang ditonjolkan?

Sejatinya tak perlu ada dikotomi semacam itu. Durasi Gerhana Matahari Total 9 Maret 2016 di Indonesia cukup panjang. Rata-rata 2 jam lebih. Nah sekarang mari kita lihat berapa waktu yang dibutuhkan untuk mendirikan shalat gerhana. Shalat dua raka’at itu umumnya terlaksana dalam tempo 10 menit. Kemudian khutbah gerhana sesudahnya juga seyogyanya berlaku 10 menit (tidak lebih panjang, sesuai dengan yang disunnahkan). Dengan demikian secara keseluruhan pelaksanaan shalat gerhana membutuhkan waktu sekitar 20 menit. Nah, masih tersisa 1,5 jam lebih dari durasi gerhana bukan? Mengapa tak dimanfaatkan untuk kegiatan pendukung, mulai dari kegiatan ilmiah hingga kesenian ? Terlebih Gerhana Matahari adalah salah satu ayat kauniyah. Bukankah ada sekurang–kurangnya 750 ayat al–Qur’an yang membahas dan mendeskripsikan beragam fenomena dalam jagat raya seperti dipaparkan Syeh Jauhari Thanthawi pada 7 dasawarsa silam? Ayat-ayat tersebut 5 kali lipat lebih banyak dibanding ayat-ayat yang mengupas masalah hukum lho.

Letusan Kelud Setahun Kemudian dan Kisah Senjakala Majapahit

Pulau Jawa, Indonesia, Kamis malam 13 Februari 2014 Tarikh Umum (TU). Tepat setahun silam. Selagi aktivitas sebagian besar insan yang mendiami pulau terpadat di Indonesia mulai menyurut dan bersiap-siap terlelap, ratusan ribu penduduk tiga kabupaten di kawasan Mataraman dan Arek Jawa Timur, yakni Kediri, Blitar dan Malang, justru dipaksa bersiaga. Mereka harus bergegas mengungsi, bergerak menjauh dari lereng dan kaki Gunung Kelud hingga radius minimal 10 kilometer dari kawah aktif. Arus pengungsi dimulai setelah Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), Badan Geologi Kementerian Energi dan Sumber Daya Mineral RI meningkatkan status Gunung Kelud pada pukul 21:15 WIB. Dari semula berstatus Siaga (Level III), sejak saat itu Gunung Kelud kemudian menyandang status tertinggi dalam tingkat aktivitas gunung-gemunung berapi di Indonesia, yakni Awas (Level IV). Dasarnya adalah terjadinya lonjakan gempa frekuensi rendah yang disusul dengan tremor menerus. Selepas pukul 21:00 WIB, tremor menerus yang terekam bahkan telah melebihi batasan skala yang tersedia dalam radas (instrumen) seismometer.

Gambar 1. Gunung Kelud pada Jumat 14 Februari 2014 TU jelang fajar dari kaki gunung sebelah barat. Nampak asap pekat masih mengepul dari kawah hingga setinggi beberapa ratus meter, beberapa jam pasca letusan besarnya usai. Pemandangan ini diterangi oleh semburat cahaya kemerah-merahan yang khas menjelang terbitnya Matahari. Planet Venus yang berada dalam kondisi paling terang (magnitudo -4,7) mengapung di atas horizon (tanda panah), menyaksikan kisah Bumi yang sedang bergulir. Sumber: Akhmad Zainuddin, 2014 dalam Geomagz, 2014.

Gambar 1. Gunung Kelud pada Jumat 14 Februari 2014 TU jelang fajar dari kaki gunung sebelah barat. Nampak asap pekat masih mengepul dari kawah hingga setinggi beberapa ratus meter, beberapa jam pasca letusan besarnya usai. Pemandangan ini diterangi oleh semburat cahaya kemerah-merahan yang khas menjelang terbitnya Matahari. Planet Venus yang berada dalam kondisi paling terang (magnitudo -4,7) mengapung di atas horizon (tanda panah), menyaksikan kisah Bumi yang sedang bergulir. Sumber: Akhmad Zainuddin, 2014 dalam Geomagz, 2014.

Dengan status tertinggi ini, jelas hanya tinggal menunggu waktu bagi gunung berapi terlasak se-Jawa Timur ini untuk meletus. Perintah evakuasi pun diturunkan. Meski keraguan masih membayang tentang bagaimana skala letusan yang bakal segera terjadi. Enam setengah tahun sebelumnya, ribuan penduduk juga berduyun-duyun mengungsi setelah Gunung Kelud dinyatakan berstatus Awas (Level IV) pada pertengahan Oktober 2007 TU. Tetapi hari demi hari gunung itu tak kunjung menampakkan letusan eksplosif yang selama ini menjadi tabiatnya. Sebaliknya tiga minggu setelah berstatus Awas (Level IV), ia justru mulai melelerkan lava pijar panasnya di dalam kawahnya sendiri. Muntahan lava pijar yang terus-menerus pun membentuk gundukan besar membukit berisikan bongkahan bebatuan beragam ukuran beserta pasir yang masih terus berasap. Gundukan berasap berbentuk kerucut raksasa yang dasarnya selebar 470 meter dan tingginya 215 meter itu kemudian dikenal sebagai kubah lava 2007. Atau kerap pula disebut sebagai Anak Kelud. Letusan tak biasa semenjak November 2007 TU hingga Juni 2008 TU itu tak menelan korban jiwa ataupun luka-luka sama sekali. Juga tak ada bangunan/fasilitas yang rusak. Namun implikasi sosialnya tak sedikit, mulai dari banyaknya agenda pernikahan yang harus dijadwal ulang hingga tertundanya kegiatan-kegiatan kemasyarakatan.

Kali ini polah Gunung Kelud tak lagi malu-malu. Ia kembali ke tabiatnya semula. Pukul 22:46 WIB seismograf-seismograf di sekujur tubuh Gunung Kelud mulai menangkap geliat awal letusan. Tak lama kemudian kamera di dekat kawah merekam percikan-percikan api melesat dari dinding kubah lava 2007. Inilah pertanda kubah lava itu mulai merekah dan menyemburkan material pijar letusan. Letusan besar yang eksplosif pun terjadilah. Letusan demi letusan berikutnya kemudian menyusul secara beruntun selama tiga setengah jam kemudian. Rempah letusan disemburkan demikian cepat ke udara sebagai kolom letusan hingga membentuk awan cendawan raksasa yang menjadi salah satu ciri khas letusan besar. Mayoritas tudung cendawan raksasa tersebut terletak di ketinggian 17 kilometer dpl (dari paras air laut rata-rata). Namun puncaknya menjangkau ketinggian hingga 26 kilometer dpl. Gesekan antara material vulkanik yang kering dan melejit pada kecepatan tinggi dengan lapisan udara disekelilingnya menciptakan aliran listrik statis sangat intensif. Hingga petir pun menyambar-nyambar di sela-sela debu letusan yang sedang membumbung. Menambah horornya suasana.

Tak pelak pada Jumat dinihari 14 Februari 2014 TU tersebut, hampir sekujur Jawa Timur dibuat terjaga oleh Gunung Kelud yang sedang membara. Berselang beberapa jam kemudian sebagian besar pulau Jawa pun dibuat terhenyak. Menyaksikan fajar yang biasanya penuh suasana syahdu dan energi baru berubah total menjadi suram dengan guyuran debu. Hujan debu vulkanik terus-menerus mengguyur dari langit, membedaki semuanya.

Gambar 2. Masjid Agung Kauman di pusat kota Kebumen, Kabupaten Kebumen (Jawa Tengah) yang nampak suram berselimutkan debu vulkanik tebal pada Jumat pagi 14 Februari 2014 TU. Segenap Kabupaten Kebumen dihujani debu vulkanik Letusan Kelud 2014 yang demikian pekat hingga sanggup membentuk endapan setebal 2 sentimeter atau lebih. Padahal daerah ini berjarak lebih dari 300 kilometer di sebelah barat Gunung Kelud. Sumber: Warta Kebumen, 2014.

Gambar 2. Masjid Agung Kauman di pusat kota Kebumen, Kabupaten Kebumen (Jawa Tengah) yang nampak suram berselimutkan debu vulkanik tebal pada Jumat pagi 14 Februari 2014 TU. Segenap Kabupaten Kebumen dihujani debu vulkanik Letusan Kelud 2014 yang demikian pekat hingga sanggup membentuk endapan setebal 2 sentimeter atau lebih. Padahal daerah ini berjarak lebih dari 300 kilometer di sebelah barat Gunung Kelud. Sumber: Warta Kebumen, 2014.

Dampak

Kini setahun kemudian, kita telah mengetahui lebih banyak apa yang terjadi dengan Letusan Kelud 2014. Analisis pendahuluan Pyle (2014) menunjukkan amukan Gunung Kelud itu menghembuskan antara 30.000 hingga 100.000 ton material letusan sepadat batuan dalam setiap detiknya. Pada awalnya secara keseluruhan Letusan Kelud 2014 memuntahkan sekitar 130 juta meter kubik rempah vulkanik. Namun di kemudian hari PVMBG meralat estimasi volume muntahan letusan Gunung Kelud ke angka 105 juta meter kubik. Rempah letusan yang lebih berat seperti awan panas (piroklastika) mengalir menyusuri lembah-lembah di lereng barat yang terhubung ke kawah hingga sejauh 2 kilometer. Material yang lebih ringan seperti pasir dan kerikil menghujani kawasan sejauh 20 hingga 30 kilometer dari kawah. Guyuran pasir dan kerikil hingga sejauh ini merupakan fenomena yang tak pernah terjadi dalam letusan-letusan Kelud sebelumnya. Di luar radius 30 kilometer dari kawah, debu vulkanik meraja. Hujan debu vulkanik pekat yang menciptakan endapan debu setebal 5 sentimeter atau lebih mengguyur kawasan seluas sekitar 4.000 kilometer persegi. Sebaliknya hujan debu vulkanik ringan yang hanya sanggup memproduksi endapan dengan ketebalan 1 milimeter melanda lebih jauh, sehingga area yang tercakup mencapai sekitar 80.000 kilometer persegi.

Letusan besar ini merenggut 7 korban jiwa. Penyebab kematian para korban beragam, mulai dari tertimpa tembok yang runtuh terbebani debu vulkanik hingga gangguan pernafasan. Seluruh korban tinggal di kawasan yang terbedaki debu vulkanik hingga setebal 20 sentimeter. Selain korban jiwa, tercatat 70 orang mengalami gangguan pernafasan dan harus dirawat di rumah sakit. Badan Nasional Penanggulangan Bencana (BNPB) di Jumat pagi 14 Februari 2014 TU juga mencatat 100.248 orang harus mengungsi. Skala kerusakan yang ditimbulkannya pun luar biasa. Sebanyak 11.093 buah bangunan/rumah di tiga kabupaten (Kediri, Blitar dan Malang) rusak berat. Sementara 7.370 buah lainnya mengalami kerusakan sedang. Dan 8.044 buah dinyatakan rusak ringan. Ribuan hektar lahan perkebunan dan pertanian pun turut dibuat rusak.

Gambar 3. Pesawat Airbus A320-232 nomor 9V-JSN milik maskapai JetStar Asia saat berada di apron bandara Soekarno-Hatta. Saat pesawat ini jelang mendarat di Jakarta sebagai penerbangan JSA114 pada Jumat pagi 14 Februari 2014 TU, ia mendadak masuk ke dalam awan debu produk Letusan Kelud 2014. Pesawat berhasil mendarat dengan selamat, namun insiden ini membuat kedua mesinnya rusak parah akibat menghisap debu vulkanik. Sumber: Indo-Avtiation.com, 2014.

Gambar 3. Pesawat Airbus A320-232 nomor 9V-JSN milik maskapai JetStar Asia saat berada di apron bandara Soekarno-Hatta. Saat pesawat ini jelang mendarat di Jakarta sebagai penerbangan JSA114 pada Jumat pagi 14 Februari 2014 TU, ia mendadak masuk ke dalam awan debu produk Letusan Kelud 2014. Pesawat berhasil mendarat dengan selamat, namun insiden ini membuat kedua mesinnya rusak parah akibat menghisap debu vulkanik. Sumber: Indo-Avtiation.com, 2014.

Namun yang paling fenomenal adalah pada imbasnya terhadap lalu lintas udara domestik dan internasional Indonesia. Tebaran debu vulkanik memaksa ditutupnya delapan bandara di pulau Jawa. Masing-masing bandara Juanda (Surabaya), Abdulrahman Saleh (Malang), Adisumarmo (Surakarta), Adisucipto (Yogyakarta), Ahmad Yani (Semarang), Husein Sastranegara (Bandung) serta bandara di Cilacap dan Cirebon. Ratusan penerbangan pun terpaksa dibatalkan. Bahkan sebuah insiden terjadi, yang menimpa pesawat Airbus A320-232 9V-JSN milik maskapai JetStar Asia. Selagi melayani rute Perth (Australia)-Singapura dengan persinggahan di Jakarta (Indonesia) dalam penerbangan JSA114 pada Jumat fajar 14 Februari 2014 TU, pesawat tersebut tanpa diduga memasuki awan debu letusan Kelud. Ini terjadi hanya dalam 30 menit jelang mendarat di Jakarta. Bau asap pun merebak di dalam kabin pesawat dan pemandangan di sisi luar jendela pun mendadak gelap gulita.

Pesawat berhasil mendarat dengan selamat di bandara Soekarno-Hatta (Jakarta) pada pukul 05:50 WIB. Ia tidak mengalami mati mesin di udara, seperti yang tiga dasawarsa silam diderita jumbo jet Boeing 747-236B nomor G-BDXH British Airways penerbangan 009 akibat paparan debu vulkanik letusan Gunung Galunggung saat melintas di selatan pulau Jawa. Meski begitu inspeksi detail yang dilakukan teknisi pabrikan Airbus memperlihatkan kedua mesin pesawat Airbus A320-232 9V-JSN itu rusak parah akibat menghisap debu vulkanik Kelud. Sehingga keduanya harus diganti dan pesawat pun dipaksa grounded berhari-hari lamanya.

Dengan semua dampak tersebut, Letusan Kelud 2014 menelan kerugian hingga bertrilyun-trilyun rupiah. Namun demikian korban manusia relatif minimal, baik korban jiwa maupun luka-luka. Hal ini memperlihatkan bahwa sistem peringatan dini mitigasi bencana letusan Gunung Kelud yang diterapkan PVMBG bersama dengan BNPB berjalan dengan efektif. Minimnya korban juga ditunjang oleh sifat letusan yang kering. Letusan Kelud 2014 terjadi tatkala kawah gunung berapi tersebut dalam kondisi kering (minim kandungan air) seiring tiadanya genangan air signifikan sebagai danau kawah. Danau kawah Kelud telah menghilang pasca munculnya kubah lava 2007 dalam Letusan Kelud 2007. Hanya tersisa sedikit genangan air yang kerap keruh di sisi barat daya.

Gambar 4. Bagaimana wajah kawah Gunung Kelud berubah antara sebelum tahun 1990 (atas) dan 2008 TU (bawah), diabadikan dari titik yang sama di bibir kawah. Jelang Letusan Kelud 1990, mayoritas kawah Kelud digenangi air sebagai danau kawah dengan air berwarna hijau toska akibat pengaruh gas vulkanik. Sementara pasca Letusan Kelud 2007, hampir seluruh bagian danau kawah telah menghilang dan digantikan dengan gundukan kubah lava 2007 yang masih berasap. Hanya tersisa sedikit genangan air di sisi barat daya (latar depan). Sumber: Geomagz, 2014.

Gambar 4. Bagaimana wajah kawah Gunung Kelud berubah antara sebelum tahun 1990 (atas) dan 2008 TU (bawah), diabadikan dari titik yang sama di bibir kawah. Jelang Letusan Kelud 1990, mayoritas kawah Kelud digenangi air sebagai danau kawah dengan air berwarna hijau toska akibat pengaruh gas vulkanik. Sementara pasca Letusan Kelud 2007, hampir seluruh bagian danau kawah telah menghilang dan digantikan dengan gundukan kubah lava 2007 yang masih berasap. Hanya tersisa sedikit genangan air di sisi barat daya (latar depan). Sumber: Geomagz, 2014.

Sebelum 2007 TU, kawah Gunung Kelud selalu berupa danau kawah yang genangan airnya cukup signifikan meskipun volumenya dibatasi lewat terowongan pembuang, seperti terowongan Ampera. Upaya mengontrol volume danau kawah Kelud menjadi salah satu cara mengurangi keganasan letusannya. Catatan sejarah Kelud memperlihatkan betapa volume air danau kawah yang terlalu banyak akan menghasilkan lahar letusan yang menerjang jauh, hingga merenggut banyak korban. Letusan Kelud 1919 membunuh tak kurang dari 5.000 orang tatkala 40 juta meter kubik air danau bercampur dengan rempah letusan menjadi lahar letusan. Lahar letusan menderu ke setiap lembah sungai yang terhubung dengan kawah. Ia menerjang hingga 40 kilometer jauhnya dari kawah, mengubah bentang lahan lembah sungai yang dilintasinya dan mengubur apa saja yang dilaluinya. Hempasan lahar letusan yang luar biasa setiap kali meletus hingga menyapu apa saja yang dilaluinya membuat Gunung Kelud mendapatkan namanya (Kelud = sapu).

Letusan Kelud 2014 mengubah wajah kawahnya secara dramatis. Hampir seluruh kubah lava 2007 yang volumenya 16 juta meter kubik remuk menjadi debu, pasir dan batu. Remukan itu kemudian diterbangkan ke langit sebagai bagian dari kolom letusan. Lantai kawah yang sebelumnya ditempati kubah lava 2007 kini berlubang besar. Lubang letgusan itu berbentuk mirip lingkaran dengan diameter sekitar 400 meter. Lubang besar itu masih mengepulkan uap air dan gas belerang didasarnya. Tapi seiring waktu, lubang ini bakal kembali digenangi air, mungkin dalam 2 hingga 3 tahun pasca letusan. Maka Gunung Kelud pun akan kembali mempunyai danau kawahnya seperti halnya pemandangan 2.000 tahun terakhir, setelah menghilang sementara sepanjang periode 2007-2014 TU. Volume danau kawah Kelud yang baru ini masih sulit diprediksi. Namun bakal hadirnya kembali danau kawah Kelud membuat kebutuhan memfungsikan kembali terowongan pembuang menjadi hal yang mutlak. Terowongan pembuang bertujuan membatasi volume air danau kawah Kelud di sekitar 4 juta meter kubik saja, sehingga tak berubah menjadi lahar letusan dalam letusan mendatang.

Gambar 5. Perubahan dramatis wajah kawah Gunung Kelud antara sebelum (atas) dan sesudah Letusan Kelud 204 (bawah), diabadikan dari titik yang hampir sama. Letusan kelud 2014 membuat kubah lava 2007 yang diproduksi oleh Letusan Kelud 2007 sebelumnya remuk dan menjadi komponen rempah letusan. Sebagai gantinya terbentuk lubang letusan berdiameter sekitar 400 meter yang masih berasap. Tak ada lagi genangan air. Sumber: Geomagz, 2014.

Gambar 5. Perubahan dramatis wajah kawah Gunung Kelud antara sebelum (atas) dan sesudah Letusan Kelud 204 (bawah), diabadikan dari titik yang hampir sama. Letusan kelud 2014 membuat kubah lava 2007 yang diproduksi oleh Letusan Kelud 2007 sebelumnya remuk dan menjadi komponen rempah letusan. Sebagai gantinya terbentuk lubang letusan berdiameter sekitar 400 meter yang masih berasap. Tak ada lagi genangan air. Sumber: Geomagz, 2014.

Meski didahului penghancuran kubah lava 2007 namun durasi letusan utamanya (yakni pengeluaran material letusan) tetap singkat, yakni tak lebih dari empat jam. Setelah empat jam, Letusan Kelud 2014 tinggal menghembuskan uap air sebagai erupsi freatik. Hal ini sekali lagi mendemonstrasikan salah satu ciri khas Gunung Kelud, yakni ukuran kantung magma yang relatif kecil. Sehingga letusan selalu berlangsung singkat karena kandungan magma segar yang siap diletuskannya cepat terkuras. Tak peduli bahwa Letusan Kelud 2014 memiliki tekanan gas demikian besar, yang diperlihatkan oleh melimpahnya fragmen batuapung (pumis) dalam material letusan. Kelimpahan batuapung merupakan pertanda bahwa magma Kelud 2014 merupakan magma yang asam (kaya silikat), sehingga mampu menyekap gas vulkanik lebih banyak. Konsekuensinya tekanan gas vulkaniknya pun cukup besar. Hingga mampu membobol dan menghancurkan kubah lava 2007. Meski diawali penghancuran kubah lava, kecilnya jumlah magma yang tertumpuk dalam kantung magma Kelud membuat Letusan Kelud 2014 tak menjadi berkepanjangan seperti halnya Letusan Galunggung 1983-1984 yang berlangsung 9 bulan lamanya.

Di satu sisi, Letusan Kelud 2014 merupakan letusan gunung berapi yang menghembuskan kolom letusan tertinggi di Bumi sepanjang tahun 2014 TU. Namun dari sisi volume rempah letusannya, Letusan Kelud 2014 bukanlah yang terbesar. Ia masih kalah jauh dibanding Gunung Bardarbunga (Holuhraun) di Islandia, yang hingga kini telah memuntahkan tak kurang dari 1,3 kilometer kubik rempah letusan.

Majapahit

Kecilnya jumlah korban jiwa dan luka-luka menunjukkan bahwa pada salah satu sisi dampak Letusan Kelud 2014 relatif minimal. Sistem peringatan dini yang bekerja efektif ditunjang dengan sifat letusan yang kering (akibat menghilangnya danau kawah semenjak 2007) menjadi dua dari banyak faktor yang berkontribusi terhadapnya. Namun, bagaimana dengan letusan Gunung Kelud di masa silam? Bagaimana dampaknya terhadap umat manusia yang bermukim disekelilingnya di masa silam? Yakni saat sistem peringatan dini belum terbentuk dan Gunung Kelud masih mempunyai danau kawah dengan volume jumbo? Bagaimana imbas letusannya terhadap hidup-matinya kerajaan legendaris di lembah sungai Brantas, yakni Majapahit?

Geolog Awang Satyana (2014) menuturkan beberapa dari letusan Gunung Kelud di masa kerajaan Majapahit nampaknya tercatat dalam kronik sejarah Pararaton, meski singkat. Secara kronologis kerajaan Majapahit muncul semenjak tahun 1293 TU seiring bertahtanya Kertarajasa Jayawardhana. Setelah mengalami pasang-surut akibat beragam pemberontakan, Majapahit mencapai puncak kejayaannya di masa Rajasanegara (Hayam Wuruk) yang berkuasa pada 1359 hingga 1380 TU. Selepas masa kejayaannya, kerajaan besar ini kemudian melapuk. Pertikaian antar keluarga kerajaan yang berlarut-larut dan bahkan sempat berkembang menjadi perang saudara seperti Perang Paregreg (1404-1406 TU). Pertikaian keluarga dinasti ini kian melemahkan kendali Majapahit atas daerah-daerah taklukannya, sehingga satu persatu pun melepaskan diri. Pada akhirnya kertajaan yang telah mengecil ini pun runtuh di sekitar tahun 1521 TU di masa kekuasaan Patih Udara.

Gambar 6. Topografi lembah Brantas beserta gunung-gunung berapi yang mengapitnya. Trowulan adalah bekas ibukota kerajaan pada sebagian besar masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Gambar 6. Topografi lembah Brantas beserta gunung-gunung berapi yang mengapitnya. Trowulan adalah bekas ibukota kerajaan pada sebagian besar masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Kecuali di dekade-dekade terakhir kehidupannya, hampir dalam segenap masanya Majapahit beribukota di Trowulan. Trowulan merupakan kawasan seluas 11 x 9 kilometer persegi yang terletak di lahan datar lembah sungai Brantas. Kini situs arkeologis tersebut menjadi bagian dari kabupaten Mojokerto dan kabupaten Jombang (keduanya di Jawa Timur). Salah satu pintu gerbang utama untuk memasuki ibukota Trowulan adalah pelabuhan Canggu, yang juga menjadi pelabuhan utama Majapahit. Pelabuhan besar ini terletak tak jauh dari muara sungai Brantas. Lokasi pelabuhan besar tersebut di masa kini ada di sebelah utara kota Mojokerto, berjarak sekitar 10 hingga 15 kilometer saja dari situs Trowulan. Di masa Majapahit, muara sungai Brantas terletak tak jauh dari pelabuhan Canggu. Kawasan yang kini menjadi kota Surabaya dan sekitarnya di era Majapahit masih berupa delta berteluk yang ditebari pulau-pulau kecil diapit dua tanjung. Pada tanjung sisi utara terdapat pelabuhan kecil, yakni Hujung Galuh (Ujung Galuh). Perubahan dramatis bentanglahan surabaya antara era Majapahit dengan masakini salah satunya merupakan imbas aktivitas Gunung Kelud.

Dalam catatan Pararaton, sepanjang zaman Majapahit terdapat peristiwa letusan gunung berapi hingga lima kali. Yang pertama pada minggu Madasia suryasengkala pendeta-sunyi-sifat-tunggal, yang mungkin bertepatan dengan tahun 1307 Saka atau 1385 TU. Yang kedua terjadi pada minggu Prangbakat suryasengkala muka-orang-tindakan-ular, yang mungkin bertepatan dengan tahun 1317 Saka atau 1395 TU. Lalu yang ketiga pada minggu Kuningan suryasengkala belut-pendeta-menggigit-bulan, mungkin bertepatan dengan tahun 1373 Saka atau 1451 TU. Selanjutnya yang keempat pada minggu Landep suryasengkala empat-ular-tiga-pohon, mungkin bertepatan dengan tahun 1384 Saka atau 1462 TU. Dan yang kelima adalah pada minggu Watu Gunung suryasengkala tindakan-angkasa-laut-ekor, yang mungkin bertepatan dengan tahun 1403 Saka atau 1481 TU.

Pararaton memang tak menyebut nama-nama gunung berapi yang meletus dalam kelima letusan tersebut. Pararaton juga tidak secara spesifik spesifik menyebut nama Gunung Kampud (nama Kelud di masa silam) sebagai yang meletus. Namun bila kita memperhatikan sejarah aktivitas gunung-gemunung berapi di sekitar ibukota Trowulan, yang terdiri dari Gunung Wilis, Gunung Kelud, Gunung Arjuno-Welirang, Gunung Penanggungan dan Gunung Kawi-Butak, hanya Gunung Kelud yang memperlihatkan catatan aktivitas tinggi dan kerap meletus. Sehingga dapat diduga kelima letusan yang dicatat Pararaton tersebut merupakan letusan-letusan Gunung Kelud. Dibandingkan dengan sejarah letusan Gunung Kelud, nampak jelas bahwa kelima letusan yang dicatat Pararaton bersesuaian dengan letusan-letusan yang dicatat dalam Data Dasar Gunung Api Indonesia (1979).

Seberapa besar kelima letusan tersebut?

Kitab Pararaton tidak memerikan (menggambarkan)-nya. Untuk mengetahuinya kita harus melihat penelitian geologi yang pernah dikerjakan di kawasan Gunung Kelud dan sekitarnya. Misalnya dari Zainuddin dkk (2013), yang mengkaji singkapan-singkapan endapan letusan Kelud pada empat titik di lereng/kaki barat gunung. Keempat titik tersebut berjarak antara 0,7 hingga 20 kilometer dari kawah. Salah satu titik tersebut adalah situs candi Tondowongso (Kediri), yang baru ditemukan pada April 2007 TU. candi ini terpendam di bawah endapan produk letusan setebal 3 meter dan hingga kini masih terus diekskavasi. Zainuddin dkk menemukan bahwa pada keempat titik tersebut terdapat bukti kuat Gunung Kelud pernah meletus besar sebanyak dua kali dalam selang waktu antara 1380 hingga 1420 TU.

Gambar 7. Situs candi Tondowongso di Gayam, kediri (Jawa Timur) yang baru ditemukan pada April 2007 dan belum sepenuhnya diekskavasi. Situs ini berjarak 20 kilometer di sebelah barat laut kawah Gunung Kelud. Seluruh lapisan tanah yang menimbuni situs ini merupakan produk letusan Gunung Kelud, yang terbagi menjadi dua: jatuhan abu/debu vulkanik dan lahar. Endapan lahar di situs ini merupakan bukti dahsyatnya letusan Gunung Kelud di masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Gambar 7. Situs candi Tondowongso di Gayam, kediri (Jawa Timur) yang baru ditemukan pada April 2007 dan belum sepenuhnya diekskavasi. Situs ini berjarak 20 kilometer di sebelah barat laut kawah Gunung Kelud. Seluruh lapisan tanah yang menimbuni situs ini merupakan produk letusan Gunung Kelud, yang terbagi menjadi dua: jatuhan abu/debu vulkanik dan lahar. Endapan lahar di situs ini merupakan bukti dahsyatnya letusan Gunung Kelud di masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Seberapa besar kedua letusan besar tersebut? Pada situs candi Tondowongso ditemukan endapan lahar setebal 70 sentimeter. Sebagai pembanding, sejumlah candi era Majapahit yang berdiri di berbagai situs di sekeliling Gunung Kelud pun banyak yang tertimbun endapan produk letusan tatkala ditemukan. Misalnya candi Sumbersugih, Purwosari dan Sumberagung di kaki selatan Gunung Kelud. Juga candi Modangan dan Candisewu di kaki barat daya. Ketebalan lahar dan tertimbunnya candi-candi tersebut mengindikasikan bahwa letusan Gunung Kelud saat itu demikian besar. Hingga mampu mengirimkan lahar letusan sampai sejauh antara 30 hingga 40 kilometer dari kawah.

Kita dapat membayangkan bagaimana besarnya letusan tersebut. Danau kawah Kelud, yang pada puncaknya sanggup memuat 40 juta meter kubik air, sontak tumpah bercampur dengan rempah letusan begitu Gunung Kelud mengamuk. Rempah letusan dalam jumlah mungkin mendekati 200 juta meter kubik yang langsung bercampur dengan air danau sontak membentuk lahar letusan. Lahar deras pun membanjir melalui alur-alur sungai yang berhulu ke Gunung Kelud. Derasnya lahar letusan tak sekedar membuat sungai-sungai tersebut meluap hebat hingga membanjiri lembah-lembahnya. Namun juga juga sanggup mengubah alur sungai-sungai tersebut akibat kuatnya gerusan. Tak heran jika kawasan yang terkena hempasan lahar letusan pun sangat luas di sepanjang lembah Brantas. Sungai Brantas pun mendangkal di sana-sini. Perikehidupan masyarakat masa itu yang menggantungkan diri pada dunia pertanian dan perdagangan memanfaatkan alur sungai pun bakal terganggu berat.

Gambar 8. Aliran lahar hujan Gunung Kelud pada 19 Februari 2014 TU di Pandansari (Malang). Lahar ini berasal dari material produk letusan yang bertumpukan di lereng dan kemudia dihanyutkan oleh air hujan. Selain lahar letusannya, salah satu dampak letusan Gunung Kelud terletak pada lahar hujannya. Terlebih hampir seluruh materi lahar hujan Gunung Kelud mengalir ke sungai Brantas. Aktivitas Gunung Kelud menjadi penyebab naik turunnya dasar sungai Brantas dan meluasya delta di muaranya. Hal ini tentu berdampak pada naik turunnya peradaban yang tumbuh dan berkembang di sepanjang lembah sungai ini. Sumber: Handoko, 2014 dalam Global Volcanism Program, 2014.

Gambar 8. Aliran lahar hujan Gunung Kelud pada 19 Februari 2014 TU di Pandansari (Malang). Lahar ini berasal dari material produk letusan yang bertumpukan di lereng dan kemudia dihanyutkan oleh air hujan. Selain lahar letusannya, salah satu dampak letusan Gunung Kelud terletak pada lahar hujannya. Terlebih hampir seluruh materi lahar hujan Gunung Kelud mengalir ke sungai Brantas. Aktivitas Gunung Kelud menjadi penyebab naik turunnya dasar sungai Brantas dan meluasya delta di muaranya. Hal ini tentu berdampak pada naik turunnya peradaban yang tumbuh dan berkembang di sepanjang lembah sungai ini. Sumber: Handoko, 2014 dalam Global Volcanism Program, 2014.

Bahkan hingga bertahun pasca letusan, dampaknya masih akan sangat terasa. Terlebih hampir segenap lahar letusan Kelud mengalir ke anak-anak sungai Brantas. Hulu anak-anak sungai tersebut menyebar di lereng selatan, barat dan utara Gunung Kelud. Hanya kawasan lereng timur yang relatif bebas dari anak-anak sungai Brantas, karena di sini berpagar jajaran gunung-gunung Arjuno-Welirang dan Kawi-Butak. Maka pada akhirnya hampir seluruh endapan lahar letusan Kelud bakal mengalir ke sungai Brantas kala hujan turun sebagai lahar hujan. Selain membuat alur sungai mendangkal sehingga banjir lebih mudah terjadi, lahar hujan Kelud juga bakal terikut aliran sungai hingga ke muaranya. Endapan bakal kian memperluas delta di muara sungai Brantas. Teluknya pun bakal mendangkal menjadi rawa-rawa dan akhirnya tertutup sepenuhnya. Sehingga apa yang semula hanyalah delta berteluk pun berkembang demikian rupa menjadi dataran rendah nan luas. Kelak di kemudian hari di sini berdiri kota Surabaya. Kian berkembangnya delta di muara sungai Brantas membuat jarak yang harus ditempuh perahu/kapal ke pelabuhan Canggu kian jauh. Pada saat yang sama alur sungai di pelabuhan itu kian mendangkal, membuat kapal berukuran besar kian sulit menambatkan diri.

Gambar 9. Diagram sederhana yang menunjukkan bagaimana aktivitas Gunung Kelud berpengaruh bagi kerajaan Majapahit. Saat Gunung Kelud meletus, terbentuk lahar letusan (panah hitam) yang sanggup mengalir hingga sejauh 40 kilometer dari kawah (garis titik-titik). Setelah beberapa lama, endapan lahar letusan bakal dihanyutkan lagi oleh air hujan deras menjadi lahar hujan (panah merah). Hampir seluruh materi lahar hujan akan masuk ke sungai Brantas, sungai utama di lembah Brantas. Di sungai Brantas, materi lahar hujan akan menghilir jauh hingga akhirnya sampai ke pelabuhan Canggu dan muaranya. Imbasnya pelabuhan Canggu menjadi kian dangkal dan muara sungai Brantas pun terus berkembang. Sumber: Sudibyo, 2014 dengan basis Google Maps dan data dari Zainuddin dkk, 2013.

Gambar 9. Diagram sederhana yang menunjukkan bagaimana aktivitas Gunung Kelud berpengaruh bagi kerajaan Majapahit. Saat Gunung Kelud meletus, terbentuk lahar letusan (panah hitam) yang sanggup mengalir hingga sejauh 40 kilometer dari kawah (garis titik-titik). Setelah beberapa lama, endapan lahar letusan bakal dihanyutkan lagi oleh air hujan deras menjadi lahar hujan (panah merah). Hampir seluruh materi lahar hujan akan masuk ke sungai Brantas, sungai utama di lembah Brantas. Di sungai Brantas, materi lahar hujan akan menghilir jauh hingga akhirnya sampai ke pelabuhan Canggu dan muaranya. Imbasnya pelabuhan Canggu menjadi kian dangkal dan muara sungai Brantas pun terus berkembang. Sumber: Sudibyo, 2014 dengan basis Google Maps dan data dari Zainuddin dkk, 2013.

Tambahkan segala kesulitan tersebut dengan situasi kerajaan Majapahit pasca kekuasaan Rajasanegara. Pertikaian dalam tubuh dinasti yang berlarut-larut membuat kerajaan besar tersebut mulai melemah. Jelas dalam situasi tersebut beragam problem sosial pun muncul. Keamanan mulai sulit dikendalikan. Apalagi saat pertikaian itu memuncak dalam perang Paregreg. Jelas sudah, dua letusan besar Gunung Kelud yang terjadi di antara tahun 1380 hingga 1420 TU merupakan salah satu faktor yang mungkin turut menggiring Majapahit menuju senjakalanya.

Referensi :

Pyle. 2014. Ash Fallout from The 2014 Kelut Eruption, a Preliminary Analysis. Earth Science Class, 18 February 2014. Oxford University, UK.

Sulaksana dkk. 2014. The Crater Configuration f Kelud Volcano, East Java, Indonesia after 2014 Eruption. International Journal of Science and Research, vol. 3 no. 3, March 2014, 419-422.

Global Volcanism Program. 2014. Kelut (Kelud), Java, Indonesia, Big 2014 Eruption. Smithsonian Institution.

Indo-Aviation. 2014. Imbas Abu Gunung Kelud, Airbus A320 Jetstar Asia Harus Ganti Mesin. Laman Indo-Aviation.com, reportase Achdiyatma Reza.

Zainuddin dkk. 2013. Letusan Gunung Kelud pada 690 ± 110 Tahun yang Lalu Merupakan Letusan yang Sangat Dahsyat dan Sangat Berdampak pada Kerajaan Majapahit. Jurnal Lingkungan dan Bencana Geologi, Vol. 4 No. 2 Agustus 2013: 117 – 133.

Triastuty dkk. 2014. Gelegar Kelud 2014. Majalah Geomagz, vol. 4 no. 1 Maret 2014, halaman 20-28.