Bila Jupiter Dihantam Komet dan Asteroid

Gerrit Kernbauer mengira ia akan menjalani Rabu 16 Maret 2016 Tarikh Umum (TU) malam seperti halnya malam-malam sebelumnya. Kala itu ia telah menyiapkan kembali senjata utamanya, teleskop reflektor (pemantul) becermin obyektif 20 sentimeter dan telah dirangkai kamera CCD (charged couple device). Sasarannya mengamati langit malam kala kondisi memungkinkan. Rutinitas semacam ini sudah dijalani teknisi CAD (computer aided design) di industri logam Austria dengan penuh semangat dalam 17 tahun terakhir. Di sisi bayang-bayang Pegunungan Alpin di kota kecil Modling, pinggiran metropolitan Wina, Kernbauer menggelar teleskopnya di halaman belakang kediamannya. Sepanjang malam itu teleskopnya mengarah ke beragam sudut langit. Terutama ke Jupiter, salah satu permata di langit malam yang juga planet terbesar se-tata surya kita. Teleskopnya bekerja secara otomatis. Sementara kameranya langsung terhubung dengan komputer jinjing (laptop), memungkinkan merekam dan menyimpan hasilnya dalam format video secara otomatis pula.

Gambar 1. Jupiter, diabadikan pada 27 Oktober 2014 TU dinihari. Nampak dua garis kehitaman di cakram planet ini, yang adalah pita ekuatorial sisi utara (kiri bawah) dan pita ekuatorial sisi selatan (kanan atas).Lewat teleskop dan wantariksa, umat manusia telah mengungkap sedikitnya tujuh peristiwa tumbukan komet / asteroid di Jupiter, hingga 2016 TU ini. Sumber: Sudibyo, 2014.

Gambar 1. Jupiter, diabadikan pada 27 Oktober 2014 TU dinihari. Nampak dua garis kehitaman di cakram planet ini, yang adalah pita ekuatorial sisi utara (kiri bawah) dan pita ekuatorial sisi selatan (kanan atas).Lewat teleskop dan wantariksa, umat manusia telah mengungkap sedikitnya tujuh peristiwa tumbukan komet / asteroid di Jupiter, hingga 2016 TU ini. Sumber: Sudibyo, 2014.

Kernbauer sama sekali tak pernah menduga bahwa malam itu berbeda. Malam yang akan membuatnya dikenal seantero dunia. Semula ia sedikit kecewa kala mengecek hasil rekamannya dan mendapati kualitasnya tidaklah sebagus harapannya. Hari-hari pun berlalu sebelum Kernbauer memutuskan mulai menganalisis, lebih dari seminggu kemudian. Didapati bahwa pada 17 Maret 2016 TU pukul 07:18:33 WIB teleskopnya merekam hal yang nampaknya tak biasa di Jupiter. Ada kelipan cahaya sangat singkat yang menyeruak di pinggir timur cakram planet itu. Singkat, hanya 2 hingga 3 detik saja, namun sudah cukup membuatnya terhenyak. Sontak ingatannya terbayang pada peristiwa menggemparkan di pertengahan 1994 TU, yakni saat Jupiter dihantam oleh keping-keping komet Shoemaker-Levy 9.

Namun sebelumnya Kernbauer harus memastikan lebih dahulu bahwa kelipan cahaya yang direkamnya benar-benar berasal dari Jupiter. Bukan akibat fenomena di udara di atas Modling, ataupun gangguan pada teleskop/kamera Kernbauer sendiri. Segera ia memublikasikan video rekamannya ke media sosial. Gayung bersambut. Tak butuh waktu lama sebelum rekaman sejenis mengapung ke jagat maya. Adalah John McKeon, astronom amatir dari Swords di pinggiran metropolitan Dublin (Irlandia) yang juga mengamati Jupiter pada saat yang sama, yang mendukung Kernbauer. Lewat teleskop 28 sentimeter-nya, McKeon merekam kelipan yang sama pula. Dengan dua pengamat berbeda, yang terpisahkan oleh jarak lebih dari 1.600 kilometer satu dengan yang lain, maka jelas sudah kelipan tersebut adalah fenomena yang benar-benar terjadi di Jupiter. Mengacu pada enam fenomena sejenis yang pernah terjadi (dan dianalisis) sebelumnya, dapat dipastikan pula bahwa kelipan cahaya tersebut diakibatkan oleh kepingan asteroid/komet yang jatuh menghantam Jupiter!

Gambar 2. Kelipan cahaya dari tumbukan 17 Maret 2016 di Jupiter dalam citra yang diekstrak dari rekaman observasi Gerrit Kernbauer (Austria) dan John McKeon (Irlandia) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra yang cukup hati-hati untuk meningkatkan kualitasnya. Sumber: Sky & Telescope, 2016.

Gambar 2. Kelipan cahaya dari tumbukan 17 Maret 2016 di Jupiter dalam citra yang diekstrak dari rekaman observasi Gerrit Kernbauer (Austria) dan John McKeon (Irlandia) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra yang cukup hati-hati untuk meningkatkan kualitasnya. Sumber: Sky & Telescope, 2016.

Shoemaker-Levy 9

Sebagai planet terbesar dan termassif se-tata surya kita, Jupiter memiliki wajah ganda dalam hal perilakunya terhadap benda-benda langit mini anggota tata surya yang dikenal sebagai komet dan asteroid. Di satu sisi ia berperan menjadi penggembala kawanan asteroid atau komet, yang membuat mereka stabil di kawasannya masing-masing. Inilah yang membentuk Sabuk Asteroid Utama di antara orbit Mars-Jupiter dan Kelompok Asteroid Trojan Jupiter yang berbagi orbit dengan planet raksasa tersebut. Namun di sisi lain, Jupiter juga kerap iseng mengganggu orbit-orbit komet dan asteroid. Astronomi telah lama mengenal kelompok komet keluarga Jupiter, yakni komet-komet periodik dengan periode pendek (kurang dari 20 tahun). Ciri khasnya adalah senantiasa berada di bawah telapak kaki penjajahan gravitasi Jupiter sepanjang hayatnya. Terhadap komet-komet ini, Jupiter akan mengubah orbitnya secara perlahan-lahan hingga mereka mati akibat kehabisan substansi mudah menguap di parasnya, atau lenyap keluar dari tata surya kita atau bahkan lenyap dari tata surya akibat bertumbukan dengan Jupiter maupun planet lain. Hal yang sama juga berlaku untuk asteroid yang diganggu Jupiter, minus kehilangan substansi mudah menguapnya (yang tak dimiliki asteroid).

Peristiwa tumbukan yang paling terkenal sekaligus melegenda di masa astronomi modern adalah tumbukan komet Shoemaker-Levy 9 (D/1993 F2) dengan Jupiter. Peristiwa tersebut berlangsung pada 16 hingga 22 Juli 1994 TU. Komet ini ditemukan pada 23 Maret 1993 TU malam oleh pasangan suami-istri Eugene Shoemaker dan Carolyn Shoemaker serta koleganya David Levy di Observatorium Gunung Palomar, sehingga mendapatkan namanya sebagai komet Shoemaker-Levy 9. Sedari awal komet ini telah memperlihatkan pemandangan, berbentuk untaian mirip mutiara.

Gambar 3. Jupiter dan keping-keping inti komet Shoemaker-Levy 9, dua bulan sebelum tumbukan terjadi berdasarkan bidikan teleskop antariksa Hubble. Jupiter diabadikan pada 18 Mei 1994 TU sementara komet Shoemaker-Levy 9 sehari sebelumnya. Hasil kedua bidikan yang berbeda lantas digabung menjadi satu untuk keperluan ilustrasi. Sumber; NASA, 1994.

Gambar 3. Jupiter dan keping-keping inti komet Shoemaker-Levy 9, dua bulan sebelum tumbukan terjadi berdasarkan bidikan teleskop antariksa Hubble. Jupiter diabadikan pada 18 Mei 1994 TU sementara komet Shoemaker-Levy 9 sehari sebelumnya. Hasil kedua bidikan yang berbeda lantas digabung menjadi satu untuk keperluan ilustrasi. Sumber; NASA, 1994.

Observasi lebih lanjut dan analisisnya menghasilkan kesimpulan mengejutkan. Komet Shoemaker-Levy 9 menampakkan bentuk mirip mutiaranya karena inti kometnya telah terpecah-belah menjadi sedikitnya 21 kepingan besar. Lebih mengejutkan lagi, komet Shoemaker-Levy 9 tidaklah mengedari Matahari layaknya komet-komet lainnya, melainkan mengelilingi Jupiter hingga berperan sebagai satelit alaminya. Ia beredar mengelilingi Jupiter dengan periode 2 tahun dalam orbit sangat lonjong. Titik apojove-nya, yakni titik terjauh dari pusat Jupiter, adalah 49 juta kilometer atau masih lebih jauh ketimbang satelit alamiah terjauh Jupiter yakni S/2000 J2 yang memiliki apojove 37 juta kilometer. Sebaliknya titik perijove-nya, yakni titik terdekat dari pusat Jupiter, hanya sebesar 45.000 kilometer saja atau jauh lebih kecil ketimbang jari-jari Jupiter (yakni 70.000 kilometer). Dengan orbit seperti ini kesimpulan mengejutkan berikutnya pun muncul: komet Shoemaker-Levy 9 akan menumbuk Jupiter kala hendak menjangkau titik perijove orbitnya.

Analisis memperlihatkan bahwa 21 kepingan inti komet Shoemaker-Levy 9, yang dimensinya bervariasi antara sekecil 45 meter hingga sebesar 1.270 meter, sebelumnya telah melintas di titik perijove-nya yang sejarak hanya 110.000 kilometer dari pusat Jupiter atau hanya 40.000 kilometer dari parasnya. Momen itu terjadi pada 7 Juli 1992 TU. Dengan jarak sedekat itu, gaya tidal Jupiter berdampak menghancurkan sehingga inti komet pun terpecah-belah ke dalam 21 keping besar. Analisis lebih lanjut juga memperlihatkan komet Shoemaker-Levy 9 mungkin telah mengedari Jupiter sejak 1970 TU. Yakni tatkala ia terperangkap gravitasi Jupiter akibat melintas terlalu dekat hingga dipaksa untuk berubah total menjadi mengedari Jupiter. Semula komet ini mengelilingi Matahari sebagai komet keluarga Jupiter. Sejak 1970 TU itu komet Shoemaker-Levy 9 telah menyelesaikan 9 putaran mengelilingi Jupiter dalam orbit yang ganjil, yakni sangat lonjong, berinklinasi sangat besar dan sangat takstabil. Sebelum terpecah-belah, inti komet Shoemaker-Levy 9 mungkin berdiameter 1,4 kilometer.

Gambar 4. Saat-saat salah satu keping inti komet Shoemaker-Levy 9 menumbuk Jupiter, menghasilkan bola api tumbukan yang sangat terang dalam spektrum cahaya inframerah (kiri). Titik terang di di sisi kanan cakram Jupiter adalah Io, salah satu satelit alamiahnya. Sumber; Max Planck Instutite for Astronomy, 1994.

Gambar 4. Saat-saat salah satu keping inti komet Shoemaker-Levy 9 menumbuk Jupiter, menghasilkan bola api tumbukan yang sangat terang dalam spektrum cahaya inframerah (kiri). Titik terang di di sisi kanan cakram Jupiter adalah Io, salah satu satelit alamiahnya. Sumber; Max Planck Instutite for Astronomy, 1994.

Tumbukan akhirnya terjadi pula sesuai dengan yang diprakirakan sebelumnya, yakni pada 16 hingga 22 Juli 1994 TU. Peristiwa ini menyedot perhatian yang teramat besar. Inilah untuk pertama kalinya umat manusia menyaksikan langsung kedahsyatan tubrukan kosmik kala benda langit mini (dalam hal ini komet) menumbuk sebuah planet dengan kedahsyatan yang tak pernah terbayangkan sebelumnya. Bumi mengalami kejadian serupa 65 juta tahun silam, yang melumat habis kehidupan kawanan dinosaurus hingga punah beserta 75 % kelimpahan makhluk hidup lainnya dalam momen yang dikenal sebagai Peristiwa Kapur-Tersier. Keping-keping komet Shoemaker-Levy 9 berjatuhan ke Jupiter dengan kecepatan 60 km/detik (216.000 km/jam). Total energi kinetik yang dilepaskannya mencapai 300 ribu megaton TNT, atau setara dengan kedahsyatan Letusan Toba Muda 74.000 tahun silam. Tumbukan menghasilkan bercak-bercak hitam mirip mata bengkak, terbesar selebar 12.000 kilometer atau seukuran Bumi kita! Bercak-bercak ini bertahan hingga berbulan-bulan kemudian. Sementara efek dari tumbukan itu sendiri bahkan masih bisa diamati dari Bumi hingga 15 tahun kemudian dalam bentuk melimpahnya kadar air di atmosfer belahan Jupiter bagian selatan.

Gambar 5. Jejak tumbukan komet Shoemaker-Levy 9 di Jupiter. Kiri: bercak-bercak hitam jejak tumbukan sejumlah kepingan inti komet (dilabeli dengan huruf-huruf tertentu) di hemisfer selatan Jupiter. Diabadikan teleskop antariksa Hubble dalam spektrum sinar ultraungu (panjang gelombang 2.550 Angstrom) pada 21 Juli 1994 TU. Kanan: distribusi kerapatan molekul air (per sentimeter persegi) di Jupiter pada 2009 TU, diabadikan dengan teleskop antariksa Herschel. Nampak konsentrasi molekul air di hemisfer selatan Jupiter, jejak yang masih tersisa dari peristiwa tumbukan dahsyat 15 tahun sebelumnya. Sumber: NASA, 1994 & ESA, 2009.

Gambar 5. Jejak tumbukan komet Shoemaker-Levy 9 di Jupiter. Kiri: bercak-bercak hitam jejak tumbukan sejumlah kepingan inti komet (dilabeli dengan huruf-huruf tertentu) di hemisfer selatan Jupiter. Diabadikan teleskop antariksa Hubble dalam spektrum sinar ultraungu (panjang gelombang 2.550 Angstrom) pada 21 Juli 1994 TU. Kanan: distribusi kerapatan molekul air (per sentimeter persegi) di Jupiter pada 2009 TU, diabadikan dengan teleskop antariksa Herschel. Nampak konsentrasi molekul air di hemisfer selatan Jupiter, jejak yang masih tersisa dari peristiwa tumbukan dahsyat 15 tahun sebelumnya. Sumber: NASA, 1994 & ESA, 2009.

Asteroid

Selain tumbukan komet Shoemaker-Levy 9 pada 1994 TU, Jupiter sesungguhnya telah teramati mengalami peristiwa tumbukan dengan benda langit mini hingga sedikitnya enam kali (terhitung sebelum 2016 TU). Peristiwa tumbukan pertama terjadi pada 5 Maret 1981 TU. Peristiwa itu sempat diindra wantariksa (wahana antariksa) Voyager 2 pasca melintas dekat Jupiter dalam perjalanannya mengarungi tata surya kita. Voyager 2 merekam kelipan redup, yang kemudian diidentifikasi sebagai meteor di Jupiter. Analisis memperlihatkan meteor tersebut semula adalah meteoroid yang mungkin berasal dari kepingan asteroid ataupun komet mati. Meteoroid ini kecil saja, diameternya hanya 44 sentimeter (apabila dari komet mati) dengan massa hanya 11 kilogram. Saat memasuki atmosfer Jupiter, ia melepaskan energi kinetik 5.000 kilogram TNT atau setara bom konvensional di Bumi.

Gambar 6. Dinamisnya bercak hitam jejak Tumbukan Wesley dalam 10 hari pertama, diabadikan teleskop IRTF NASA di Hawaii (Amerika Serikat) dan teleskop Carlos Sanchez di Canary (Spanyol) secara terpisah pada spektrum sinar inframerah dekat. Nampak perubahan bentuk bercak dari hari ke hari yang disebabkan oleh sirkulasi dalam atmosfer Jupiter. Sumber: Sanchez-Lavega dkk, 2011.

Gambar 6. Dinamisnya bercak hitam jejak Tumbukan Wesley dalam 10 hari pertama, diabadikan teleskop IRTF NASA di Hawaii (Amerika Serikat) dan teleskop Carlos Sanchez di Canary (Spanyol) secara terpisah pada spektrum sinar inframerah dekat. Nampak perubahan bentuk bercak dari hari ke hari yang disebabkan oleh sirkulasi dalam atmosfer Jupiter. Sumber: Sanchez-Lavega dkk, 2011.

Peristiwa kedua adalah tumbukan komet Shoemaker-Levy 9. Sementara peristiwa ketiga adalah kejadian 19 Juli 2009 TU, yang tak kalah menyita perhatian. Ia dikenal sebagai Tumbukan Wesley karena pertama kali dilaporkan Anthony Wesley, pemrogram komputer yang juga astronom amatir dari Murrumbateman (Australia). Selagi mengamati Jupiter dengan teleskop refraktor (pembias) berlensa obyektif 38 sentimeter yang terhubung kamera, Wesley menyadari hadirnya bercak hitam di hemisfer selatan Jupiter pada pukul 20:30 WIB. Observasi lebih lanjut melalui Teleskop Keck dan IRTF (infra red telescope facility) NASA, keduanya bertempat di puncak Gunung Manua Kea di Kepulauan Hawaii (Amerika Serikat), memastikan eksistensi bercak hitam yang dilaporkan Wesley. Bercak tersebut mengandung tanda-tanda yang serupa dengan bercak-bercak produk tumbukan komet Shoemaker-Levy 9 tepat 15 tahun sebelumnya. Sehingga jelas berasal dari peristiwa tumbukan.

Observasi lebih lanjut dan analisisnya memperlihatkan Tumbukan Wesley disebabkan oleh sekeping asteroid, terlihat dari jejak kaya silikat, silika dan hidrokarbon yang tertinggal dalam bercak serta minimnya karbon monoksida. Asteroid tersebut berukuran 500 meter dengan massa 65 juta ton. Ia jatuh menumbuk sisi jauh Jupiter, yakni hemisfer Jupiter yang sedang mengalami malam hari. Kejadian itu berlangsung dalam rentang waktu antara pukul 16:00 hingga 18:00 WIB. Wesley menjadi sosok pertama yang beruntung menyaksikan jejak tumbukannya. Tumbukan melepaskan energi luar biasa besar, yakni 28.000 megaton TNT atau hampir menyamai energi Letusan Tambora 1815. Tumbukan menciptakan bercak hitam seluas 190 juta kilometer persegi, atau seukuran Samudera Pasifik di Bumi. Area tersebut terpanaskan hingga 3° sampai 4° Celcius di atas suhu normalnya. Tumbukan Wesley sekaligus menjungkirbalikkan anggapan semula yang telah berakar kuat, dimana peluang guna mendeteksi peristiwa tumbukan di Jupiter berbasis teleskop kecil hingga medium (yang banyak digunakan kalangan astronom amatir) dianggap mustahil.

Wesley jugalah yang pertama kali mendeteksi adanya peristiwa tumbukan keempat. Yakni kala ia merekam kelipan cahaya singkat di dekat pinggir barat cakram Jupiter pada 4 Juni 2010 TU pukul 03:31 WIB. Wesley menggunakan radas (instrumen) yang sama persis dengan saat ia mendeteksi peristiwa tumbukan setahun sebelumnya. Namun berbeda dengan peristiwa Tumbukan Wesley, kali ini kelipan cahaya singkat itu tak diikuti munculnya fenomena bercak hitam atau sejenisnya. Mujurnya tak hanya Wesley yang merekam peristiwa ini. Seorang Christopher Go, astronom amatir dari Cebu (Filipina), pun mengamati Jupiter pada saat yang sama. Go bersenjatakan teleskop 28 sentimeter yang dilengkapi kamera. Rekamannya juga memperlihatkan kelipan cahaya singkat, pada waktu yang persis sama dengan hasil rekaman Wesley.

Gambar 7. Kelipan cahaya dari tumbukan 4 Juni 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Anthony Wesley (Australia) dan Christopher Go (Filipina) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Gambar 7. Kelipan cahaya dari tumbukan 4 Juni 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Anthony Wesley (Australia) dan Christopher Go (Filipina) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Berbekal dua rekaman video yang berbeda ini, maka kejadian tumbukan di Jupiter dapat dipastikan. Kelipan cahaya singkat tersebut adalah meteor-terang (fireball) di Jupiter. Semula ia merupakan meteoroid yang berasal dari kepingan asteroid ataupun komet mati. Diameter meteoroidnya adalah 18,2 meter (apabila dari komet mati), atau setara dengan meteoroid penyebab Peristiwa Chelyabinsk 2013. Dengan massa 790 ton, meteoroid ini melepaskan energi 340 kiloton TNT saat memasuki atmosfer Jupiter sebagai meteor-terang. Sukses Wesley dan Go memperlihatkan bahwa kini manusia memiliki peluang untuk mendeteksi tumbukan benda langit di Jupiter meski meteoroidnya relatif kecil.

Peristiwa tumbukan kelima juga terjadi pada 2010 TU, tepatnya pada 21 Agustus 2010 TU pukul 01:21 WIB. Kali ini giliran para astronom amatir Jepang yang tampil ke panggung. Awalnya Masayuki Takichawa dari Kumamoto yang melaporkan terdeteksinya kelipan cahaya singkat, pada posisi hampir di tengah cakram Jupiter, saat merekam planet itu dengan bersenjatakan teleskop refraktor berlensa obyektifnya 15 sentimeter dan terhubung kamera. Berjam-jam kemudian, konfirmasi datang dari dua astronom amatir berbeda, yakni dari Kazuo Aoki dari Tokyo dan Masayuki Ichimaru dari Toyama. Aoki dan Ichimaru masing-masing menggunakan teleskop refraktor berlensa obyektif berdiameter 23,5 sentimeter dan 12,5 sentimeter (!). Konfirmasi keempat datang dari Takanori Wakamatsu dari Arita. Dengan rekaman yang melimpah, kini dipahami bahwa peristiwa tersebut disebabkan oleh tumbukan meteoroid yang berasal dari kepingan asteroid ataupun komet mati. Diameternya sebesar 16,7 meter (apabila dari komet mati) dengan massa 608 ton. Saat masuk ke atmosfer Jupiter sebagai meteor-terang, ia melepaskan energi hingga 260 kiloton TNT atau 13 kali lebih dahsyat ketimbang letusan bom nuklir Hiroshima.

Gambar 8. Kelipan cahaya dari tumbukan 21 Agustus 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Masayuki Takichawa, Kazuo Aoki dan Masayuki Ichimaru (ketiganya dari Jepang). Ketiga citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Benda langit kecil di sisi kanan bawah citra Takichawa dan Aoki adalah Ganymede, satelit alamiah terbesar Jupiter. Sumber: Hueso dkk, 2013.

Gambar 8. Kelipan cahaya dari tumbukan 21 Agustus 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Masayuki Takichawa, Kazuo Aoki dan Masayuki Ichimaru (ketiganya dari Jepang). Ketiga citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Benda langit kecil di sisi kanan bawah citra Takichawa dan Aoki adalah Ganymede, satelit alamiah terbesar Jupiter. Sumber: Hueso dkk, 2013.

Dan peristiwa yang terakhir, yakni peristiwa tumbukan keenam, terjadi pada 2012 TU. Tepatnya pada 10 September 2012 pukul 18:35 WIB. Kali ini astronom-astronom amatir Amerika Serikat yang kebagian peranan. Dan berbeda dengan lima peristiwa sebelumnya, peristiwa keenam ini menjadi momen teramatinya tumbukan di Jupiter secara langsung (lewat mata) tanpa rekaman video. Adalah Dan Peterson dari kota kecil Racine (negara bagian Wisconsin) yang berkesempatan menyaksikannya melalui teleskop reflektor becermin obyektif 25 sentimeter. Kelipan cahaya singkat itu berdurasi 2 detik dan terjadi di tepi timur cakram Jupiter. Kelipan tersebut memiliki magnitudo semu sekitar +6, hampir setara magnitudo semu Europa (salah satu satelit alamiah Jupiter) yang ada didekatnya. Berjam-jam kemudian, rekaman videonya diunggah seorang George Hall dari kota Dallas (negara bagian Texas). Dengan rekaman ini maka kejadian tersebut dapat dianalisis lebih lanjut. Peristiwa tumbukan keenam tersebut disebabkan oleh meteoroid berdiameter 19,3 meter (apabila dari komet mati) dengan massa 940 ton yang masuk ke atmosfer Jupiter. Ia melepaskan energi hingga 405 kiloton TNT atau 20 kali lebih dahsyat ketimbang letusan bom nuklir Hiroshima.

Gambar 9. Kelipan cahaya dari tumbukan 10 September 2012 di Jupiter dalam citra yang diekstrak dari rekaman observasi George Hall (Amerika Serikat). Citra ini telah menjalani pemrosesan untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Gambar 9. Kelipan cahaya dari tumbukan 10 September 2012 di Jupiter dalam citra yang diekstrak dari rekaman observasi George Hall (Amerika Serikat). Citra ini telah menjalani pemrosesan untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Kekerapan

Rekaman hasil observasi Kernbauer dan McKeon memang belum masuk ke meja analisis. Tetapi karena mengandung ciri-ciri yang mirip dengan sedikitnya tiga peristiwa tumbukan terakhir di Jupiter, maka diduga kuat apa yang terekam dalam observasi Kernbauer dan McKeon adalah sebuah peristiwa tumbukan. Jika benar demikian, maka inilah peristiwa tumbukan ketujuh yang pernah teramati umat manusia di Jupiter.

Bagaimana nasib meteoroid, baik yang berasal dari komet maupun asteroid, kala menumbuk Jupiter? Meski dimensinya jauh lebih besar ketimbang Bumi dan demikian halnya massanya, Jupiter bukanlah planet seperti Bumi. Ia tidak memiliki paras (permukaan) keras layaknya Bumi. Struktur Jupiter berlapis-lapis, terbentuk oleh gas yang sifatnya bergantung pada tekanannya. Apa yang selama ini disebut paras Jupiter sejatinya adalah titik-titik yang memiliki tekanan gas 1 bar (setara tekanan atmosfer di paras Bumi). Dari paras ini hingga ke kedalaman tertentu Jupiter masih tetap merupakan lapisan gas. Tekanan gas dalam lapisan gas ini kian membesar sering bertambahnya kedalaman. Saat tekanannya cukup besar, di bawah lapisan gas ini mulailah eksis lapisan Hidrogen cair. Lapisan ini terbentuk tatkala besarnya tekanan gas menyebabkan molekul-molekul gas dipaksa saling mendekat sangat rapat. Di bawah lapisan Hidrogen cair ini terdapat lapisan Hidrogen metalik cair. Pada lapisan ini tekanan gasnya telah demikian besar, yakni minimal 250.000 atmosfer. Tekanan sebesar itu membuat Hidrogen cair mulai menampakkan sifat-sifat ikatan logam, karena inti-inti atom Hidrogennya telah kehilangan ikatan terhadap elektron-elektronnya. Lapisan ini bersifat penghantar listrik. Barulah di bawah lapisan ini, tepatnya di pusat Jupiter, kita akan bersua dengan satu-satunya bagian Jupiter yang padat. Yakni inti Jupiter.

Gambar 10. Bagaimana nasib sebuah meteoroid kecil yang menerobos masuk ke dalam atmosfer Jupiter dalam simulasi Hueso dkk (2013). 0,1 detik setelah memasuki atmosfer, meteoroid berubah menjadi meteor-terang dengan bentuk yang masih utuh di elevasi sekitar 204 kilometer dpj sembari mulai menghamburkan sebagian massanya dan hempasan gelombang kejut ke atmosfer. 0,5 detik setelah memasuki atmosfer, meteor-terang mulai memipih di elevasi sekitar 175 kilometer dpj. Kuantitas hamburan massa dan gelombang kejutnya kian meningkat. 0,75 detik setelah memasuki atmosfer, meteor-terang telah terfragmentasi demikian brutal di elevasi sekitar 160 kilometer dpj. 1,25 detik setelah memasuki atmosfer, meteor-terang telah teruapkan tak bersisa di elevasi sekitar 130 kilometer dpj. Hanya gelombang kejutnya yang masih menjalar. 1,6 detik setelah memasuki atmosfer, baik meteor-terang maupun gelombang kejutnya telah benar-benar menghilang di dalam atmosfer Jupiter. Sumber: Hueso dkk, 2013.

Gambar 10. Bagaimana nasib sebuah meteoroid kecil yang menerobos masuk ke dalam atmosfer Jupiter dalam simulasi Hueso dkk (2013). 0,1 detik setelah memasuki atmosfer, meteoroid berubah menjadi meteor-terang dengan bentuk yang masih utuh di elevasi sekitar 204 kilometer dpj sembari mulai menghamburkan sebagian massanya dan hempasan gelombang kejut ke atmosfer. 0,5 detik setelah memasuki atmosfer, meteor-terang mulai memipih di elevasi sekitar 175 kilometer dpj. Kuantitas hamburan massa dan gelombang kejutnya kian meningkat. 0,75 detik setelah memasuki atmosfer, meteor-terang telah terfragmentasi demikian brutal di elevasi sekitar 160 kilometer dpj. 1,25 detik setelah memasuki atmosfer, meteor-terang telah teruapkan tak bersisa di elevasi sekitar 130 kilometer dpj. Hanya gelombang kejutnya yang masih menjalar. 1,6 detik setelah memasuki atmosfer, baik meteor-terang maupun gelombang kejutnya telah benar-benar menghilang di dalam atmosfer Jupiter. Sumber: Hueso dkk, 2013.

Dengan dominasi gas di parasnya, bagaimana nasib sebuah meteoroid yang jatuh menumbuk Jupiter?

Pada dasarnya mirip dengan apa yang terjadi di Bumi. Saat sebuah meteoroid kecil, yakni yang diameternya kurang dari 20 meter, menerobos masuk atmosfer Jupiter maka simulasi Hueso dkk (2013) memperlihatkan ia akan mulai terpecah-belah (terfragmentasi) sejak elevasi sekitar 160 kilometer dpj (dari paras Jupiter). Fragmentasi itu kian brutal hingga mencapai puncaknya pada elevasi sekitar 120 kilometer dpj. Setiap pecahan lantas akan teruapkan oleh tekanan ram yang terbentuk. Pecahan terakhir akan sepenuhnya menghilang dalam rentang elevasi antara 100 hingga 80 kilometer dpj. Seluruh material meteoroid kecil lantas tercampur-baur dengan gas-gas dalam Jupiter. Pada meteoroid lebih besar atau bahkan raksasa, misalnya seperti dalam tumbukan komet Shoemaker-Levy 9, meteoroid menembus jauh lebih dalam lagi. Dan bahkan bisa mencapai paras Jupiter ataupun menembus lebih dalam lagi ke dalam lapisan gas. Namun tiadanya permukaan padat membuat hantaman meteroid raksasa pun tak meninggalkan jejak kawah. Hanya material meteoroidnya yang terdispersi ke dalam atmosfer atau lapisan gas untuk kemudian tersebar seiring dinamika atmosfer Jupiter.

Seberapa sering Jupiter menghadapi tumbukan meteoroid kecil? Menurut simulasi Hueso dkk, jika ukuran meteoroidnya ada di antara 5 hingga 20 meter dan bila menggunakan radas observasi astronomi amatir seperti saat ini, maka kekerapan tumbukan di Jupiter yang berpotensi untuk diamati adalah antara 12 hingga 60 kali per tahun. Sebanyak inilah jumlah kejadian tumbukan di Jupiter yang bisa disaksikan manusia, tentunya dalam kondisi ideal. Yakni kala langit benar-benar cerah dan gangguan polusi cahaya minimal.

Referensi :

Beatty. 2016. Another Impact on Jupiter? Sky & Telescope 29 March 2016, Observing News & Celestial Events.

Hueso dkk. 2013. Impact Flux on Jupiter, from Superbolides to Large Scale Collisions. Astronomy & Astrophysics vol. 560, no. A55 (2013), 14 pp.

Crawford. 1997. Comet Shoemaker-Levy 9 Fragment Size and Mass Estimates from Light Flux Observations. 28th Lunar and Planetary Science Conference, conference paper, p.267.

Cavalie dkk. 2013. Spatial Distribution of Water in the Stratosphere of Jupiter from Herschel HIFI and PACS Observations. Astronomy & Astrophysics vol. 553, no. A21 (2013), 16 pp.

Sanchez-Lavega dkk. 2011. Longterm Evolution of the Aerosol Debris Cloud Produced by the 2009 Impact of Jupiter. Icarus, vol. 214 no. 2 (August 2011), p 462-476.

Kupas-Hoax: Asteroid Besar Pemicu Kiamat Jatuh Sebentar Lagi?

Bangkok, Senin 7 September 2015 Tarikh Umum (TU) pagi. Denyut jantung kota metropolitan yang juga adalah ibukota Thailand itu mulai meninggi, layaknya hari-hari kerja biasanya di sebuah kota besar. Arus lalu lintas memadat dan kadang macet di jalan-jalan raya yang menjadi urat nadinya. Semua seakan berjalan seperti biasa. Terkecuali saat jarum jam tepat menunjuk pukul 08:40 setempat. Saat mendadak seberkas cahaya terang melesat dari timur ke barat, tepat di atas kota. Dengan langit kebiruan nan bersih nyaris tanpa tutupan awan, cahaya terang berwarna keputih-putihan itu amat jelas terlihat. Banyak orang menyaksikannya. Sejumlah mobil yang kebetulan dilengkapi kamera dasbor pun merekamnya. Hanya sejurus cahaya benderang itu nampak, berdetik kemudian ia kembali lenyap.

Peristiwa Senin pagi itu sontak menggegerkan Bangkok. Dan dalam beberapa jam kemudian peristiwa tersebut, yang lantas lebih dikenal sebagai Peristiwa Bangkok 2015, pun mendunia. Rekaman-rekaman kamera dasbor tentangnya segera menjadi viral. Spekulasi pun merebak. Apa yang sesungguhnya terjadi baru dipahami dalam berbelas jam kemudian. Diawali saat jejaring pengawasan penegakan larangan ujicoba nuklir global dalam segala matra yang bertajuk CTBTO (the Comprehensive nuclear Test Ban Treaty Organization) melansir temuannya. Peristiwa Bangkok 2015 terekam dalam jejaring mereka khususnya melalui radas (instrumen) mikrobarometer pada sedikitnya lima stasiun pemantau.

Gambar 1. Meteor-sangat terang pada Peristiwa Bangkok 2015, seperti terekam dalam kamera dasbor salah satu mobil yang sedang melaju ke utara di pinggiran kota Bangkok. Meteor-sangat terang ini kemungkinan besar berasal dari sebutir asteroid-tak-dikenal seukuran 3,7 meter yang memasuki atmosfer Bumi di atas Bangkok (Thailand) pada 7 September 2015 TU. Sumber Anonim, 2015.

Gambar 1. Meteor-sangat terang pada Peristiwa Bangkok 2015, seperti terekam dalam kamera dasbor salah satu mobil yang sedang melaju ke utara di pinggiran kota Bangkok. Meteor-sangat terang ini kemungkinan besar berasal dari sebutir asteroid-tak-dikenal seukuran 3,7 meter yang memasuki atmosfer Bumi di atas Bangkok (Thailand) pada 7 September 2015 TU. Sumber Anonim, 2015.

Radas mikrobarometer dalam CTBTO sejatinya ditujukan untuk mendeteksi aksi pelepasan energi tinggi yang menjadi salah satu ciri khas ledakan nuklir khususnya di matra atmosfer dengan cara mendeteksi gelombang infrasonik sebagai hasil transformasi dari gelombang kejut ledakan. Namun radas yang sama juga berkemampuan mendeteksi pelepasan energi tinggi dari sumber lain, misalnya dalam kejadian meteor-sangat terang (fireball) atau bahkan boloid (bolide). Dan lima stasiun CTBTO merekam penjalaran gelombang infrasonik yang konsisten dengan boloid dalam Peristiwa Bangkok 2015. Radas mikrobarometer terdekat yang mendeteksinya terletak di Pulau Cocos (Australia) di tengah-tengah Samudera Indonesia yang berjarak 2.900 kilometer dari Bangkok. Sedangkan mikrobarometer terjauh yang masih sanggup mengendusnya berada di Alaska (Amerika Serikat), yang berjarak 10.000 kilometer. Analisis terhadap gelombang-gelombang infrasonik ini memperlihatkan Peristiwa Bangkok 2015 melepaskan energi dalam perkiraan kasar antara 5 hingga 30 kiloton TNT.

Pasca CTBTO giliran badan antariksa Amerika Serikat (NASA) melansir temuannya melalui NASA Near Earth Object Program. Berbekal rekaman sensor optis satelit mata-mata rahasia milik Departemen Pertahanan Amerika Serikat, yang berbagi data astronomi untuk kepentingan sipil melalui NASA secara rutin pasca Peristiwa Chelyabinsk 2013, Peristiwa Bangkok dipastikan merupakan kejadian boloid. Sensor satelit mata-mata merekam pelepasan energi dalam spektrum cahaya tampak (visual) dengan pola menerus (‘zoo event‘) yang khas untuk kejadian meteor-sangat terang maupun boloid. Jadi berbeda dengan detonasi senjata nuklir atmosferik yang spektrumnya berpola diskret (dengan dua puncak). Boloid dalam Peristiwa Bangkok 2015 mengemisikan energi 1.798 Giga Joule dalam spektrum cahaya tampak. Pada saat itu obyek yang melepaskan energi tersebut terdeteksi melaju secepat 16 km/detik (57.600 km/jam).

Gambar 2. Posisi titik pelepasan energi meteor-sangat terang dalam Peristiwa Bangkok 2015 (lingkaran) berdasarkan rekaman gelombang infrasonik dari lima stasiun mikrobarometer yang berbeda dalam jejaring CTBTO. Analisis kasar terhadap data CTBTO memperlihatkan Peristiwa Bangkok 2015 melepaskan energi berkisar 5 hingga 30 kiloton TNT. Sumber: CTBTO, 2015.

Gambar 2. Posisi titik pelepasan energi meteor-sangat terang dalam Peristiwa Bangkok 2015 (lingkaran) berdasarkan rekaman gelombang infrasonik dari lima stasiun mikrobarometer yang berbeda dalam jejaring CTBTO. Analisis kasar terhadap data CTBTO memperlihatkan Peristiwa Bangkok 2015 melepaskan energi berkisar 5 hingga 30 kiloton TNT. Sumber: CTBTO, 2015.

Menggunakan rumus empiris dari Brown dkk (2002) maka diketahui Peristiwa Bangkok 2015 melepaskan energi 3,9 kiloton TNT. Pada dasarnya rekaman sensor satelit mata-mata menghasilkan akurasi jauh lebih tinggi ketimbang pembacaan radas mikrobarometer. Sehingga dapat dikatakan bahwa Peristiwa Bangkok 2015 melepaskan energi 3,9 kiloton TNT. Sejauh ini Peristiwa Bangkok 2015 adalah kejadian boloid paling energetik sepanjang tahun 2015 TU. Meski ia masih belum seberapa bila dibandingkan dengan Peristiwa Bone 2009 yang terjadi pada 8 Oktober 2009 TU di atas Kabupaten Bone, Sulawesi Selatan (Indonesia) dengan pelepasan energi 60 kiloton TNT. Apalagi bila dibandingkan dengan Peristiwa Chelyabinsk 2013 di sisi barat Pegunungan Ural (Russia) pada 13 Februari 2013 TU yang melepaskan energi 590 kiloton TNT. Sebagai pembanding, letusan bom nuklir Hiroshima di akhir Perang Dunia 2 melepaskan energi 20 kiloton TNT.

Gambar 3. Karakteristik rekaman satelit mata-mata akan pelepasan energi dalam peristiwa meteor-terang/sangat terang (zoo event) dibandingkan dengan ledakan nuklir dengan titik ledak di ketinggian atmosfer. Sumber: Weiss, 2012.

Gambar 3. Karakteristik rekaman satelit mata-mata akan pelepasan energi dalam peristiwa meteor-terang/sangat terang (zoo event) dibandingkan dengan ledakan nuklir dengan titik ledak di ketinggian atmosfer. Sumber: Weiss, 2012.

Berbekal data-data tersebut, simulasi sederhana menggunakan persamaan-persamaan matematis yang diakumulasikan Collins dkk (2005) memperlihatkan boloid itu semula adalah meteoroid yang berupa asteroid kecil. Dengan pelepasan energi maksimum di ketinggian 29 kilometer dpl, meteoroid itu tergolong padat dengan massa jenis sekitar 5 g/cc. Pada kecepatan 16 km/detik, maka massa minimum meteoroid adalah 130 ton. Jika ia berbentuk bola sempurna maka diameternya minimal 3,7 meter. Dianggap sudut antara lintasan meteoroid dengan paras bumi Bangkok adalah 45°, maka kala meteoroid itu memasuki atmosfer Bumi ia berubah menjadi boloid yang akan mencapai puncak kecerlangannya pada ketinggian sekitar 35 kilometer dpl. Selanjutnya ia bakal melepaskan hampir seluruh energi kinetiknya lewat mekanisme airburst (ledakan di udara) pada ketinggian 29 kilometer dpl. Meski nilai energi ini terkesan besar bagi manusia, karena setara kekuatan bom nuklir taktis atau setara seperlima bom nuklir Hiroshima, namun efek panas dan mekaniknya terlalu kecil untuk bisa menghasilkan kerusakan langsung di daratan Bangkok yang persis ada dibawahnya

Berselang setengah bulan kemudian, sebuah kejutan kecil kembali datang dari langit. Sebuah asteroid-tanpa-nama yang belum pernah diketahui sebelumnya melenggang begitu dekat dengan Bumi kita dalam perjalanannya mengelilingi sang Surya. Asteroid tersebut, yang diberi kode asteroid 2015 SK7, dua kali lipat lebih besar ketimbang asteroid-tanpa-nama yang menjadi penyebab Peristiwa Bangkok 2015. Yang mengejutkan, asteroid ini sempat melintas begitu dekat hingga hanya setinggi 20.260 kilometer dpl saja. Hal itu terjadi pada Rabu 23 September 2015 TU pukul 04:44 WIB di atas Samudera Indonesia di dekat Antartika. Sebagai pembanding, ketinggian orbit geostasioner/geosinkron bagi satelit-satelit komunikasi dan cuaca pada umumnya adalah 35.792 kilometer dpl. Yang lebih membuat kita terhenyak, umat manusia baru menyadari kehadiran asteroid 2015 SK7 ini dalam dua hari kemudian. Tepatnya kala sistem penyigi langit semi-otomatis Catalina Sky Survey merekamnya sebagai benda langit sangat redup dengan magnitudo semu +19,8.

Andaikata asteroid 2015 SK7 ini menerobos masuk ke dalam atmosfer Bumi seperti halnya asteroid-tanpa-nama penyebab Peristiwa Bangkok 2015, pemandangan menakjubkan bakal tercipta. Boloid bakal terbentuk dan pada puncaknya jauh lebih terang ketimbang boloid Peristiwa Bangkok 2015. Dengan diameter sekitar 7 meter maka massa asteroid 2015 SK7 berkisar antara 360 hingga 720 ton (dengan asumsi massa jenisnya 2 hingga 4 g/cc). Dan karena melaju secepat 16,8 km/detik (60.500 km/jam) maka energi kinetik yang bisa dilepaskannya berkisar antara 12 hingga 24 kiloton TNT. Atau tiga hingga enam kali lebih besar ketimbang Peristiwa Bangkok 2015. Namun seperti halnya kejadian di Bangkok, asteroid 2015 SK7 bakal keburu pecah berkeping-keping dan melepaskan seluruh energinya di ketinggian atmosfer. Titik pelepasan energi tersebut bakal berlokasi pada ketinggian antara 39 hingga 29 kilometer dpl. Sehingga efek panas dan mekaniknya pun terlalu kecil untuk bisa memproduksi kerusakan pada daratan dibawahnya.

Gambar 4. Peta proyeksi lintasan asteroid 2015 SK7 di paras Bumi, sejak 22 September 2015 TU 20:00 WIB hingga 23 September 2015 TU pukul 14:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Sedangkan lintasan dengan garis putus-putus menghubungkan proyeksi kedudukan asteroid per 10 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni hanya 20.260 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Gambar 4. Peta proyeksi lintasan asteroid 2015 SK7 di paras Bumi, sejak 22 September 2015 TU 20:00 WIB hingga 23 September 2015 TU pukul 14:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Sedangkan lintasan dengan garis putus-putus menghubungkan proyeksi kedudukan asteroid per 10 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni hanya 20.260 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Penyigi Langit

Di sisi lain, Peristiwa Bangkok 2015 dan melintas-sangat dekatnya asteroid 2015 SK7 menghadirkan sebersit tanya bagi sebagian kita. Ada apa dengan Bumi? Apalagi sejak awal tahun hingga puncaknya pada September 2015 TU kemarin, isu kiamat (lagi-lagi!) bergemuruh. Isu ini memang tak sederas isu Kiamat 2012 tempo hari, yang sempat demikian mengharu-biru dan bahkan dipercaya oleh tak kurang dari 20 % penduduk Indonesia menurut sebuah survey. Namun isu Kiamat September 2015 tetap menggamit perhatian sebagian kita. Isu tersebut memuncak terutama pada paruh kedua bulan September 2015 TU. Salah satunya pada tanggal 28 September 2015 TU, dimana terjadi peristiwa Gerhana Bulan Total yang diviralkan sebagai peristiwa saat Bulan menjadi memerah darah. Salah satu bagian dari isu Kiamat September 2015 itu adalah bakal ada asteroid raksasa yang jatuh menumbuk Bumi. Asteroid itu diklaim demikian besarnya hingga sama besarnya dengan Puerto Rico (Amerika Serikat). Atau hampir menyamai luas Pulau Bangka (Indonesia). Kalimat ‘sebesar Puerto Rico’ itu tak pelak menggamit kembali ingatan kita pada salah satu penggalan adegan film fiksi “Armageddon” besutan Hollywood tentang ‘asteroid sebesar Texas’ yang sedang menuju ke Bumi.

Bulan September 2015 TU telah berlalu. Dan tak ada asteroid raksasa yang jatuh ke Bumi. Tak ada pula bencana kosmik dalam skala luar biasa yang menerpa. Sebuah bencana alam dalam wujud gempa besar Illapel 2015 memang mendominasi paruh kedua September 2015. Gempa besar (magnitudo 8,3 SM) yang meletup di lepas pantai Chile pada 16 September 2015 TU itu lantas diikuti limburan tsunami yang menerpa sebagian pesisir Chile. Namun luar biasanya jumlah korban jiwa yang direnggutnya terhitung sangat kecil untuk ukuran bencana yang menghantam negara berkembang. Hanya 13 orang yang dinyatakan tewas dengan 6 orang lainnya masih dinyatakan hilang. Korban yang minimal dan di sisi lain sejuta penduduk kawasan pesisir sempat diungsikan, membuat banyak pihak mengacungkan jempol pada Chile. Negeri yang berhadapan langsung dengan salah satu zona megathrust (zona pembangkit gempa besar/akbar potensial) teraktif di Bumi itu dianggap sukses dalam memitigasi resiko gempa dan tsunami untuk saat ini.

Gambar 5. Peta proyeksi lintasan asteroid 2015 TC25 di paras Bumi pada 13 Oktober 2015 TU sejak pukul 06:00 hingga 24:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni 104.700 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Gambar 5. Peta proyeksi lintasan asteroid 2015 TC25 di paras Bumi pada 13 Oktober 2015 TU sejak pukul 06:00 hingga 24:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni 104.700 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Di atas itu semua alunan nada utama pertanyaannya masih bergaung: adakah asteroid berukuran besar (atau bahkan asteroid raksasa) yang siap menjatuhi Bumi dalam waktu dekat? Jawabannya adalah tidak. Sejauh ini tak ada asteroid besar/raksasa yang sedang menuju ke Bumi. Lebih spesifik lagi, sejauh ini tiada sebutir pun asteroid besar/raksasa yang orbitnya bersinggungan atau bahkan berpotongan dengan orbit Bumi.

Darimana jawaban tersebut diperoleh?

Uraiannya panjang. Pada masa sekarang ini astronomi telah mengembangkan sistem penyigi langit semi-otomatis yang bertujuan melacak benda-benda langit yang baru, dalam artian belum pernah terdeteksi sebelumnya sehingga belum terdapat dalam basisdata. Sistem semi-otomatik ini pada khususnya difokuskan guna melacak benda-benda langit seperti komet dan asteroid yang mungkin berada di dekat Bumi. Dalam sistem semacam ini, teleskop ‘menyapu’ (menyigi) langit secara rutin dari waktu ke waktu. Citra yang dihasilkannya lantas dianalisis secara semi-otomatis dengan sistem kecerdasan buatan, yang membandingkannya terhadap segenap asteroid/komet yang telah tercatat dalam basisdata. Apabila terdeteksi asteroid/komet baru, maka campurtangan manusia pun dperlukan untuk menganalisis dan memasukkan data asteroid/komet baru tersebut ke dalam basisdata. Dengan cara seperti ini maka asteroid/komet yang berpotensi melintas-dekat Bumi atau bahkan menuju ke Bumi dapat dideteksi lebih dini. Sistem penyigi langit semi-otomatik inilah yang kemudian menjadi sistem peringatan dini (early warning) bagi potensi bencana alam yang datang dari antariksa dalam rupa potensi peristiwa tumbukan benda langit.

Saat ini terdapat 14 sistem penyigi langit yang dioperasikan sejumlah negara. Selain program CSS (Catalina Sky Survey), Amerika Serikat juga mengoperasikan program LINEAR (Lincoln Near Earth Asteroids Research), Spacewatch, Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) dan WISE (Wide-field Infrared Survey Explorer). Negara-negara Eropa juga berpartisipasi. Baik atas nama Uni Eropa dengan EUNASO (European NEA Search Observatories) dan EURONEAR (European Near Earth Asteroid Research), maupun atas nama negara-negara tertentu. Misalnya Spanyol yang menggelar program TOTAS (Teide Observatory Tenerife Asteroid Survey) dan LSSS (La Sagra Sky Survey), Italia lewat CINEOS (Campo Imperatore Near Earth Object Survey) dan kolaborasi Italia-Jerman dalam program ADAS (Asiago DLR Asteroid Survey). Di Asia terdapat Cina yang mengoperasikan CNEOS/NEOST (China NEO Survey/NEO Survey Telescope) dan Jepang dengan JSGA (Japanese Space Guard Association). Dan di Amerika Selatan ada Brazil dengan IMPACTON. Kecuali WISE yang berpangkalan pada satelit, sisanya berbasiskan pada teleskop robotik di paras Bumi yang dilengkapi instrumen CCD sensitif, seperangkat pengolah citra, kecerdasan buatan dan seperangkat basis data yang memungkinkan mereka mendeteksi asteroid dekat Bumi yang baru secara semi-otomatis. Seluruh data pengamatan yang dihasilkan program-program tersebut ditabulasikan di institusi Minor Planet Center. Datanya bersifat terbuka sehingga bisa diakses oleh semua orang, lewat internet.

Selain mengakuisisi data-data asteroid/komet baru yang berkemungkinan melintas-dekat Bumi, astronomi juga telah mengklasifikasikan potensi bahayanya. Telah dikembangkan skala Torino, yakni pemeringkatan seriusnya resiko bahaya tumbukan benda langit (yang berhubungan dengan komet ataupun asteroid) tunggal yang mengombinasikan probabilitas statistik dan energi kinetik benda langit tersebut. Terdapat 11 peringkat dalam skala Torino, dengan peringkat terendah adalah skala 0 (nol) dan tertinggi 10 (sepuluh). Pada skala 0 Torino, asteroid/komet tersebut memiliki probabilitas sangat kecil untuk dapat menumbuk Bumi, atau berpeluang kecil untuk bisa memasuki atmosfer Bumi. Sebaliknya pada skala 10 Torino, asteroid/komet pasti akan menumbuk Bumi (probabilitas 100 %) dengan energi tumbukan begitu luar biasa besar sehingga bakal berdampak serius dalam skala global. Contoh kejadian dengan skala 0 Torino adalah Peristiwa Chelyabinsk 2013 silam. Dan peristiwa dengan skala 10 Torino adalah tumbukan asteroid 65 juta tahun silam yang membentuk Kawah raksasa Chicxulub dan memusnahkan 75 % kelimpahan makhluk hidup saat itu.

Gambar 6. Citra ikonik Peristiwa Chelyabinsk 2013, kala asteroid-tak-dikenal memulai tahap menuju Bumi dengan menembus atmosfer demikian jauh hingga menghasilkan kilatan cahaya yang lebih benderang ketimbang Matahari untuk sesaat. Peristiwa itu terjadi pada ketinggian 29,7 kilometer dpl. Garis putih lurus adalah awan debu lurus (train) produk khas boloid. Sumber: NASA APOD, 2013.

Tabel Resiko

Hingga 8 Oktober 2015 TU, kerja keras segenap sistem penyigi langit semi-otomatik di atas telah menemukan tak kurang dari 1.616 asteroid berpotensi bahaya atau PHA (Potentially Hazardous Asteroids). Asteroid berpotensi bahaya adalah kelompok asteroid dengan diameter minimal 100 meter dan memiliki konfigurasi orbit demikian rupa sehingga bisa melintas dalam jarak kurang dari 7,48 juta kilometer (19,5 kali lipat jarak rata-rata Bumi-Bulan). Dari 1.616 butir asteroid berpotensi bahaya itu, 154 butir diantaranya memiliki diameter lebih dari 1 kilometer. Yang terbesar adalah asteroid 4179 Toutatis, yang berbentuk lonjong dengan dimensi 4,75 x 2,4 kilometer. Namun dari seluruh asteroid berpotensi bahaya itu, tak satupun yang memiliki nilai skala Torino melebihi 0 Torino hingga 100 tahun ke depan.

Dan dari jumlah sebanyak itu, 576 asteroid diantaranya ditabulasikan tersendiri oleh NASA Near Earth Object Program dalam Sentry Risk Table. Inilah tabel dinamik yang secara otomatis memuat daftar asteroid-asteroid berpotensi bahaya yang memiliki nilai probabilitas menumbuk Bumi di atas nol untuk jangka waktu 100 tahun ke depan. Disebut tabel dinamik, karena asteroid yang terdaftar didalamnya bisa saja (di)-keluar-(kan) dari Sentry Risk Table khususnya saat terdapat data observasi tambahan yang secara akumulatif memperlihatkan probabilitas asteroid tersebut menumbuk Bumi turun menjadi nol.

Menariknya, dalam periode antara 2002 hingga 2015 TU, ternyata secara akumulatif tercatat ada 36 asteroid berpotensi bahaya yang menempati skala Torino bukan nol. Namun setelah observasi demi observasi dilakukan terhadap ke-36 asteroid tersebut, secara terpisah, analisis terhadap tambahan data tersebut menghasilkan perbaikan terhadap perkiraan masing-masing asteroid dengan akurasi lebih lagi. Dan dari orbit yang lebih akurat itu diketahui tak satupun yang bisa mempertahankan kedudukannya karena peluang untuk menumbuk Bumi sangat kecil. Sehingga seluruhnya kemudian diturunkan setingkat menjadi skala 0 Torino. Salah satu dari ke-36 asteroid tersebut adalah asteroid 99942 Apophis (2004 MN4). Ditemukan pada 19 Juni 2004 TU sebagai asteroid berdiameter 325 meter, ia sempat menghebohkan jagat pada penghujung tahun tersebut. Yakni tatkala NASA melansir asteroid ini memiliki probabilitas 1 banding 300 untuk menumbuk Bumi pada 13 April 2029 TU kelak. Maka asteroid Apophis pun ditempatkan ke dalam skala 2 Torino. Hanya beberapa jam kemudian, tambahan data observasi menghasilkan prediksi lebih mencemaskan, karena probabilitas tumbukan meningkat menjadi 1 banding 62. Apophis pun dinaikkan ke dalam skala 4 Torino. Segera Apophis menyedot perhatian besar dalam dunia astronomi. Observasi demi observasi pun dilakukan, termasuk dengan teleskop radar raksasa Arecibo yang demikian teliti. Sehingga diperoleh timbunan data yang menghasilkan probabilitas baru. Peluang tumbukan pada 2029 TU dieliminir.

Gambar 7. Tampilan Sentry Risk Table, tabel dinamik otomatik dari NASA Near Earth Object Program yang memuat daftar asteroid-asteroid berpotensi bahaya dengan nilai probabilitas menumbuk Bumi di atas nol untuk jangka waktu 100 tahun ke depan. Tabel tersebut dapat dilihat dengan meng-klik gambar ini. Sumber: NASA, 2015.

Gambar 7. Tampilan Sentry Risk Table, tabel dinamik otomatik dari NASA Near Earth Object Program yang memuat daftar asteroid-asteroid berpotensi bahaya dengan nilai probabilitas menumbuk Bumi di atas nol untuk jangka waktu 100 tahun ke depan. Tabel tersebut dapat dilihat dengan meng-klik gambar ini. Sumber: NASA, 2015.

Namun karena asteroid Apophis bakal berpotensi melintasi lubang-kunci gravitasi, yakni titik kritis dimana orbit asteroid bakal berubah dan menghasilkan berpotensi tumbukan ke depan, muncul peluang terjadinya tumbukan pada 13 April 2036 TU. Namun data-data yang terkumpul hingga Februari 2005 TU memperlihatkan probabilitas tumbukan 2036 sebesar 1 banding 13.000. Sehingga Apophis tetap menempati skala 1 Torino. Observasi yang terus berlangsung hingga 2013 TU pada akhirnya membuat asteroid Apophis diturunkan setingkat ke skala 0 Torino. sebab probabilitas terbaru tentang tumbukan 2036 telah menyusut demikian drastis hingga tinggal 7,07 banding 1.000.000.000. Pada saat itu Apophis bakal melintas-dekat Bumi dalam jarak terdekat 22,4 juta kilometer. Atau masih 58 kali lebih jauh ketimbang Bulan.

Tentu, sebagaimana bentuk teknologi lainnya sebagai produk inovasi insani, sistem penyigi langit semi-otomatik pun tidaklah sempurna. Sampai saat ini ia hanya berkemampuan menyigi bagian kecil langit saja. Ia juga tak sanggup mendeteksi asteroid yang elongasinya terhadap Matahari terlalu kecil, sehingga nampak terlalu dekat dengan Matahari. Maka jangan heran, meskipun sistem semacam ini sejatinya cukup sensitif untuk mendeteksi asteroid-asteroid kecil yang melintas-dekat Bumi dengan diameter kurang dari 10 meter, bahkan hingga 1 meter sekalipun dalam kasus deteksi asteroid 2011 CQ1 (melintas hanya setinggi 5.500 kilometer di atas Samudera Pasifik pada 4 Februari 2011 TU), namun ia tak sanggup mendeteksi asteroid-tak-dikenal yang menjadi penyebab Peristiwa Chelyabinsk 2013. Pun demikian halnya dengan asteroid-kecil-tak-dikenal yang bertanggung jawab pada Peristiwa Bangkok 2015. Tetapi di tengah keterbatasan itu, sistem penyigi langit juga telah mencetak sukses dalam mendeteksi sekurangnya dua buah asteroid sebelum mereka benar-benar jatuh ke Bumi. Yakni asteroid 2008 TC3 (diameter 4 meter) yang terdeteksi pada 6 Oktober 2008 TU dan jatuh menumbuk Bumi 19 jam kemudian. Serta asteroid 2014 AA (diameter 3 meter) yang ditemukan pada 1 Januari 2014 TU dan jatuh 21 jam kemudian.

Terlepas dari keterbatasan tersebut, sistem-sistem penyigi langit yang telah beroperasi telah memberikan gambaran besar terkait lingkungan sekitar Bumi kita. Dengan data yang ada hingga sejauh ini, dapat dikatakan bahwa meski banyak asteroid berukuran besar yang siap melintas-dekat Bumi kita telah ditemukan, namun tak satupun yang memiliki probabilitas untuk menubruk Bumi setidaknya hingga 100 tahun ke depan. Di sisi lain, dengan kemampuan sistem penyigi langit yang ada pada saat ini, maka andaikata terdapat sebuah asteroid besar (diameter lebih dari 100 meter) yang sedang melaju ke Bumi, ia bakal terdeteksi dalam kurun waktu cukup lama sebelum tanggal kejatuhannya. Dengan antariksa yang tak hanya dipelototi oleh satu negara dan bahkan juga menjadi bahan pelototan sehari-hari individu astronom amatir serta tumbukan benda langit dikategorikan sebagai bencana, informasi seperti ini takkan bisa disembunyikan.

Tidak Ada Asteroid Besar yang Sedang Menuju Bumi

Bahwa tumbukan benda langit berukuran besar bisa berujung pada bencana, hal itu tak diragukan lagi. Contoh terpopuler adalah musnahnya kawanan dinosaurus (khususnya dinosaurus non-burung) dan 75 % kelimpahan makhluk hidup sezaman akibat tumbukan asteroid raksasa yang membentuk kawah Chicxulub, 65 juta tahun silam. Namun pada saat ini dalam pandangan ilmu pengetahuan terkait dengan tingkat kepercayaan yang tinggi dapat dikatakan bahwa hingga kurun 100 tahun ke depan tidak ada asteroid dengan diameter melebihi 100 meter yang sedang mengarah ke Bumi.

Gambar 8. Kawah raksasa Chicxulub, terlihat sangat jelas dalam peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara. Inilah kawah yang dibentuk oleh tumbukan asteroid raksasa 65 juta tahun silam, peristiwa yang memusnahkan dinosaurus. Sumber Hildebrand dkk, 1990.

Dengan demikian dapat dikatakan bahwa “informasi” mengenai asteroid besar, apalagi sekelas asteroid-pemusnah-dinosaurus, yang siap menghantam Bumi dalam waktu dekat bisa dikategorikan sebagai kabar-bohong (hoax). Inilah salah satu jenis kabar-bohong yang kerap bermutasi alias digoreng ulang. Kabar-bohong dengan nada mirip telah muncul berkali-kali dalam dua dasawarsa terakhir. Misalnya pada 2003 TU tersiar kabar bahwa asteroid/komet raksasa bakal menjatuhi Bumi. Namun tahun itu pun terlewat tanpa bencana kosmik apapun. Lantas pada 2006 TU kembali tersiar isu asteroid/komet raksasa bakal menjatuhi Bumi. Tepatnya di akhir Mei 2006 TU dengan titik tumbukan disebut-sebut di Samudera Pasifik. Namun Mei 2006 TU pun berlalu tanpa peristiwa langit yang dimaksud. Bencana alam memang terjadi, tetapi dalam rupa Gempa Yogya 2006 (6,4 skala magnitudo) di Indonesia yang merenggut lebih dari 5.000 nyawa.

Bertahun kemudian, isu sejenis dalam bentuk lain kembali menghampiri dalam tajuk Kiamat 2012. Isu tentang benda langit seukuran planet yang sangat gelap, yang disebut Nibiru, bakal menghantam Bumi begitu mengharu-biru. Pun variannya dalam bentuk benda langit sejenis komet yang disebut komet Elenin, yang juga diisukan bakal menghantam Bumi. Dalam realitanya Nibiru itu sendiri tidak pernah ditemukan (karena memang tidak ada). Sebaliknya komet Elenin nyata adanya, namun faktanya jauh panggang dari api. Titik terdekat orbit komet ini terhadap Bumi masih berjarak 34,98 juta kilometer atau hampir 91 kali lipat lebih jauh ketimbang Bulan. Komet Elenin seharusnya akan lewat di titik ini pada 16 Oktober 2011 TU. Namun dua bulan sebelumnya, yakni pada Agustus 2011 TU, komet tersebut dihantam oleh partikel-partikel badai Matahari dengan sangat telak. Sehingga praktis remuk berkeping-keping menjadi bubuk dan praktis kehilangan identitasnya sebagai komet. Menghilangnya komet Elenin ditambah dengan fakta bahwa orbitnya tak berdekatan/memotong orbit Bumi membuat ramalan Kiamat 2012 pun terjungkirbalik.

Sebagai kabar-bohong yang cukup populer, kabar-bohong tentang asteroid/komet raksasa yang bakal menjatuhi Bumi dalam waktu sebentar lagi tentu akan terus berulang di masa depan. Bakal ada kalangan yang menggorengnya kembali, baik dalam versi utuh maupun yang bermutasi. Sepanjang tidak ada konfirmasi dari individu maupun institusi yang berkompeten penuh didalamnya, kabar-bohong seperti ini tak perlu dihiraukan.

Referensi :

Brown dkk. 2002. The Flux of Small Near-Earth Objects Colliding with the Earth. Nature, vol. 420, 21 Nov 2002, 294-296.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Weiss. 2012. The Vela Event of 1979. Conference of the Historical Dimensions of South Africa’s Nuclear Weapons Program, 10 Desember 2012.

Menemukan Chicxulub, di Balik Perburuan Kawah Pembunuh Dinosaurus

Tiap kali berbincang akan benda langit anggota tata surya yang berjuluk asteroid dan komet, di benak saya langsung terbayang sosok-sosok dinosaurus. Ya, pada kawanan hewan-hewan purba yang selama ini dipersepsikan berbadan besar dan tambun, meski sesungguhnya tidak seluruhnya demikian. Dinosaurus merajai seluruh benua selama ratusan juta tahun semenjak zaman Trias, tepatnya semenjak 231 juta tahun silam. Namun fosil-fosil mereka mendadak tak lagi dijumpai di lapisan-lapisan batuan yang berasal dari zaman Tersier awal, tepatnya mulai 65 juta tahun silam (atau dalam penelitian termutakhir, mulai 66 juta tahun silam). Dinosaurus tak menghilang sendirian. Dalam kurva kelimpahan genera makhluk hidup dari masa ke masa sepanjang 250 juta tahun terakhir yang disusun palentolog Jack Sepkoski dan David Raup yang dipublikasikan pada 1982 Tarikh Umum (TU) silam, jelas terlihat dinosaurus adalah bagian dari 76 % makhluk hidup sezaman yang mendadak menghilang. Selain dinosaurus, sejumlah anggota genera nanoplankton, tumbuhan darat, binatang laut dan darat tak bertulang belakang dan amfibi pun turut punah. Bedanya, mereka masih menyisakan sejumlah genera lainnya khususnya yang bertubuh kecil untuk bertahan hidup, sehingga tetap muncul dan bahkan berkembang pesat pada zaman geologi sesudahnya. Sementara sisanya beserta segenap dinosaurus, khususnya dinosaurus non burung, tak lagi dijumpai dalam kala dan zaman geologi sesudahnya.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Dinosaurus dan 76 % makhluk hidup sezaman itu menjadi korban dari peristiwa pemusnahan massal dalam skala global yang amat mencekik. Mulai dasawarsa 1980-an pencarian akan penyebab peristiwa dramatis tersebut mewarnai dunia ilmu pengetahuan yang terus berlanjut hingga ke abad ke-21 TU. Pencarian pun mengerucut pada dua kandidat. Yang pertama adalah dugaan peristiwa tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub (baca : chic-sa-lube) di sebagian Semenanjung Yucatan dan Teluk Meksiko (kini bagian dari Meksiko). Sementara kandidat kedua adalah dugaan letusan mahadahsyat gunung berapi areal yang memuntahkan magma basaltik dalam volume gigantis yang memproduksi Dataran Tinggi Dekan (kini bagian dari India). Keduanya terjadi pada rentang waktu hampir bersamaan dalam skala waktu geologi, yakni di perbatasan zaman Kapur dan Tersier sekitar 65 juta tahun silam. Sifat kedua kandidat itu sangat berbeda. Tumbukan pembentuk kawah Chicxulub berlangsung sangat singkat, hanya dalam waktu beberapa detik hingga beberapa jam saja. Sementara letusan gigantis Dataran Tinggi Dekan berlangsung dalam waktu hingga sejuta tahun

Setiap kandidat memiliki pendukungnya masing-masing. Namun hampir tiga dasawarsa kemudian, tepatnya pada tahun 2010 TU, terbentuk konsensus yang menyimpulkan tumbukan asteroid sebagai pembunuh dinosaurus dan pemusnah 76 % kelimpahan makhluk hidup sezaman. Setelah menganalisis seluruh literatur ilmiah terkait beserta segenap buktinya yang telah dihasilkan dalam dua dasawarsa terakhir, 41 ilmuwan prestisius dari berbagai disiplin ilmu seperti astronomi, kebumian dan geofisika menyepakati kesimpulan tersebut. Sebagai konsekuensinya, letusan gigantis Dataran Tinggi Dekan tak lagi dianggap sebagai penyebab peristiwa kepunahan massal 65 juta tahun silam. Meski mungkin berkontribusi dalam memperparah dampak lingkungan global akibat tumbukan asteroid raksasa tersebut.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Kawah raksasa Chicxulub adalah jejak paling jelas dari peristiwa tumbukan asteroid raksasa itu. Kawah tumbukan ini demikian akbar, berbentuk membulat dengan garis tengah tak kurang dari 170 kilometer. Namun ukuran sesungguhnya mungkin lebih besar lagi karena ada juga yang berpendapat terdapat tanda-tanda bahwa diameter kawah ini mencapai 300 kilometer. Kawah raksasa Chicxulub lahir kala asteroid raksasa bergaris tengah antara 5 hingga 15 kilometer jatuh menumbuk Bumi 65 juta tahun silam dalam peristiwa tumbukan benda langit. Tumbukan ini melepaskan energi kinetik yang sungguh luar biasa besar. Paling tidak 100 juta megaton energi dilepaskan, yang setara dengan peletusan 5 milyar bom nuklir Hiroshima secara serempak. Jika dibandingkan dengan energi letusan Gunung Toba 74.000 tahun silam, maka letusan gunung berapi terdahsyat di Bumi dalam 27 juta tahun terakhir itu hanyalah seper duaratus energi tumbukan asteroid raksasa ini. Apalagi jika dibandingkan dengan Peristiwa Chelyabinsk 2013 kemarin. Jelas sudah, inilah bencana alam terdahsyat dengan skala yang luar biasa !

Asteroid raksasa itu jatuh di perairan Teluk Meksiko purba yang adalah laut dangkal dengan kedalaman sekitar 150 meter. Maka megatsunami pun tercipta dan segera berderap mengarungi samudera. Gelombang setinggi ratusan meter menderu membanjiri pesisir-pesisir Amerika purba yang berhadapan. Bahkan di Eropa dan Afrika purba yang sudah cukup jauh dari lokasi tumbukan, tinggi megatsunami itu masih sekitar 100 meter kala tiba di pesisir.Namun bukan megatsunaminya yang menjadi masalah global yang sangat serius. Pembentukan kawah raksasa Chicxulub dibarengi semburan milyaran ton debu hingga jauh tinggi ke atmosfer. Pada saat yang sama, bongkah-bongkah batuan produk tumbukan yang terlontar ke angkasa sebagian berjatuhan lagi ke Bumi menjadi meteor dalam jumlah luar biasa besar. Udara pun terpanaskan hebat hingga kebakaran hutan spontan pun terjadilah dimana-mana bersamaan dengan badai api. Sebagai hasilnya milyaran ton jelaga pun terhembus ke udara. Selain debu dan jelaga, milyaran ton aerosol sulfat pun terlepas. Sulfat ini berasal dari gas belerang (sulfur dioksida), yang terbebaskan saat asteroid raksasa menumbuk dasar Teluk Meksiko yang dipenuhi endapan gipsum. Gas Belerang yang terproduksi segera bertemu uap air di atmosfer menjadi aerosol sulfat.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Ketiganya membumbung tinggi hingga memasuki lapisan stratosfer dan terdistribusikan ke segala arah. Karena berada di lapisan stratosfer, mereka tak bisa terlarut dan turun bersama air hujan. Hanya gravitasi yang mampu menurunkannya kembali ke permukaan Bumi. Namun dengan ukuran butir-butir debu, jelaga dan aerosol sulfat yang kecil, butuh waktu bertahun-tahun bagi gravitasi untuk bekerja mengendapkannya. Sepanjang waktu itu milyaran ton debu halus, jelaga dan aerosol sulfat terus melayang-layang dalam lapisan stratosfer. Tak sekedar melayang, mereka berkoalisi membentuk lapisan tabir surya alamiah khas produk tumbukan. Aerosol sulfat merupakan penyerap sinar Matahari yang efektif. Sementara debu dan jelaga menjadi pemantul sinar Matahari yang tak kalah efektifnya. Kehadiran ketiganya dalam jumlah luar biasa besar sebagai tabir surya alamiah di lapisan stratosfer menghalangi pancaran sinar Matahari yang seharusnya tiba di paras Bumi. Selain diserap, tabir surya tersebut juga memantulkan kembali sejumlah sinar Matahari ke angkasa, yang membuat albedo Bumi meningkat. Kombinasi kedua efek tersebut membuat intensitas sinar Matahari yang diterima di daratan dan lautan merosot demikian dramatis. Sehingga Bumi menjadi remang-remang gulita. Simulasi menunjukkan bahkan di siang bolong sekalipun situasinya masih lebih gelap ketimbang malam berhias Bulan purnama di hari yang normal.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Akibatnya sungguh buruk. Selain membuat suhu rata-rata paras Bumi anjlok dramatis dan jumlah penguapan pun berkurang dramatis dengan segala implikasinya ke sistem iklim dan cuaca Bumi, minimnya sinar Matahari juga memaksa tumbuh-tumbuhan darat dan fitoplankton di lautan berhenti berfotosintesis. Pelan namun pasti produsen makanan itu pun mati. Imbasnya segera merambat ke rantai makanan dan jaring-jaring makanan di segenap penjuru. Hewan-hewan yang menjadi konsumen, baik konsumen tingkat 1, 2 maupun 3 segera menyusul bergelimpangan akibat kelaparan. Dapat dikatakan segenap makhluk hidup yang bobotnya lebih dari 20 kilogram tewas bertumbangan. Hanya hewan-hewan kecil dan tumbuh-tumbuhan perintis saja yang sanggup bertahan.

Gravitasi dan Magnetik

Tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub mendorong kehidupan di Bumi memasuki saat-saat terpedihnya. Di era kontemporer, khususnya semenjak dasawarsa 1990-an, kengerian akan peristiwa ini mulai mengetuk pintu kesadaran umat manusia akan Bumi yang tidaklah steril dari hantaman komet dan asteroid, sebagaimana yang juga dialami planet-planet lainnya. Wajah Bumi pun pernah diwarnai kawah-kawah raksasa produk tumbukan, meski perjalanan waktu membuatnya dipahat erosi intensif atau bahkan terkubur di bawah ketebalan sedimen. Mata dunia semakin terbuka setelah menyaksikan untuk pertama kalinya bagaimana tumbukan benda langit bekerja, di planet lain. Selama tujuh hari berturut-turut semenjak 16 hingga 22 Juli 1994 TU, dunia menyaksikan bagaimana 21 fragmen komet Shoemaker-Levy 9 berjatuhan ke planet Jupiter. Secara akumulatif energi yang dilepaskannya pun mencapai ratusan juta megaton TNT, sebanding dengan peristiwa tumbukan asteroid raksasa 65 juta tahun silam. Kini asteroid dan komet pun dipandang dalam perspektif baru. Komet misalnya, tak lagi hanya dilihat sebagai benda langit eksotik yang mempunyai ‘ekor’ mempesona, namun juga menjadi salah satu potensi bahaya bagi Bumi meski dalam perspektif yang sangat berbeda dibanding ungkapan Aristoteles 2.000 tahun silam.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Namun jarang diketahui bahwa upaya pencarian, penemuan dan hubungan antara kawah raksasa Chicxulub dengan peristiwa pemusnahan massal 65 juta tahun silam berjalan dalam rangkaian yang mirip kisah-kisah detektif. Di dalamnya ada luapan energi dan semangat para pencarinya, yang ditingkahi pula dengan penolakan demi penolakan hingga hampir tiga dasawarsa seiring benturan asimetrik antara ‘kubu’ amatir vs profesional, sebelum kemudian bukti-bukti yang meyakinkan datang.

Ilmu tumbukan benda langit merupakan salah satu cabang ilmu pengetahuan yang usianya masih sangat muda. Secara formal cabang ilmu ini lahir pada 1963 TU seiring kerja keras Eugene M. Shoemaker, Nicholas M. Short, Edward Chao, B.M. French dan W. von Engelhardt dalam menganalisis dampak ledakan nuklir di medan percobaan nuklir Nevada (Amerika Serikat). Kala sebuah bom nuklir yang berjuluk Sedan (kekuatan 104 kiloton TNT) diledakkan di kedalaman 192 meter dari paras Bumi pada 5 Juli 1962 TU dan membentuk lubang kawah yang besar, Shoemaker sangat tertarik dengan morfologi kawahnya. Kawah produk ledakan Sedan memiliki diameter 426 meter dengan kedalaman 107 meter. Ia pun segera membandingkan kawah Sedan dengan kawah Barringer (Meteor) di Arizona (juga di Amerika Serikat) yang telah lama mengundang kontroversi akan asal-usulnya.

Perbandingan itu menunjukkan kawah Barringer nampaknya terbentuk oleh pelepasan energi 3,5 megaton TNT. Sementara analisis petrologi oleh M. Short menyimpulkan mineral-mineral kuarsa di dasar kawah Sedan telah mengalami metamorfosis dinamik tingkat tinggi akibat hadirnya tekanan sangat tinggi, minimal 200 ribu ton per meter persegi. Sementara di Arizona, analisis petrologi serupa yang dilakukan trio Chao, French dan Engelhardt di dasar kawah Barringer pun menemukan pola metamorfosis kuarsa yang sama. Ini memperlihatkan kawah Barringer juga dibentuk oleh aksi pelepasan energi yang melibatkan tekanan sangat tinggi. Secara alamiah hal semacam itu hanya bisa dihasilkan oleh tumbukan komet atau asteroid ke Bumi. Inilah tonggak berdirinya cabang ilmu tumbukan benda langit, sebagai hasil perkawinan silang antara ilmu kebumian dengan astronomi. Mulai saat itu para geolog harus lebih berhati-hati dalam mendeskripsikan morfologi cekungan bulat (bowl-shaped) di paras Bumi, tidak lagi sekedar mengidentifikasinya sebagai kawah maar, dolina, kaldera mud volcano ataupun erosi kubah garam.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Pada tahun 1966 TU pemuda belia Robert Baltosser yang juga geofisikawan yunior di Seismographic Service Corp, Tulsa (Amerika Serikat) berangkat ke Meksiko. Ia bertugas menganalisis data gravitasi PEMEX (perusahaan perminyakan nasional Meksiko) di kawasan Semenanjung Yucatan bagian utara, seiring terpilihnya tempat kerjanya sebagai salah satu kontraktor PEMEX. Sudah hampir dua dasawarsa PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan. Selama lima tahun sejak 1947 TU, PEMEX telah melakukan survei gravitasi di kawasan ini dengan harapan menemukan cekungan-cekungan potensial kaya minyak bumi. Mereka berhasil mengidentifikasi pola aneh setengah-melingkar di Semenanjung Yucatan bagian utara. Pola seperti itu biasanya menunjukkan ada sesuatu yang terpendam di dalam tanah. Berharap menjumpai cadangan minyak baru, PEMEX mengebor bagian utara kawasan berpola aneh tersebut di dua titik berbeda, yakni di Chicxulub Puerto dan Sacapuc. Sayangnya pengeboran yang menembus kedalaman hampir 1.000 meter itu tidak menghasilkan setetes minyak pun. Namun geolog yang mengawasi pengeboran itu mencatat satu hal yang aneh. Jika pada 800 meter pertama pemboran hanya menembus sedimen karbonat dan gipsum yang cerah, sejak kedalaman 800 meter pengeboran mulai menembus batuan beku kegelapan. Geolog itu menginterpretasikannya sebagai andesit, batuan beku khas di gunung berapi. Maka PEMEX pun berkesimpulan sumurnya telah menembus gunung berapi purba yang telah lama mati. Sumur pun ditutup dan pemburu minyak beralih ke lokasi lain.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Dua dasawarsa kemudian, pola setengah-melingkar itu tetap mengusik benak geofisikawan PEMEX. Apalagi harga minyak sedang meningkat sehingga penemuan cekungan-cekungan baru menjadi kebutuhan mendesak. Maka dipanggillah perusahaan yang mempekerjakan Baltosser. Kebetulan pemuda ini baru saja usai memetakan struktur Wells Creek di Tennesse (Amerika Serikat) secara gravitasi. Wells Creek adalah sebuah struktur bergaris tengah 13 kilometer yang sudah dipastikan sebagai produk tumbukan asteroid/komet, seiring telah teridentifikasinya kuarsa termetamorfosis dinamik tingkat tinggi didasarnya. Survei gravitasi Baltosser mengukuhkan hal itu, khususnya melalui peta anomali gravitasinya. Tatkala geofisikawan PEMEX menyodorkannya peta gravitasi Semenanjung Yucatan, Baltosser segera menyadari pola aneh setengah-melingkar itu memiliki banyak kemiripan dengan Wells Creek, hanya saja ukurannya 10 kali lebih besar. Maka spontan Baltosser pun berargumen pola setengah-melingkar di Semenanjung Yucatan itu jejak kawah tumbukan.

Namun sebuah perubahan dramatis tak terduga datang menerpa. Manajemen PEMEX sedang melaksanakan reorganisasi disertai perampingan pada semua lini. Geofisikawan PEMEX yang menjadi partner Baltosser turut diberhentikan. PEMEX juga menerapkan peraturan baru yang lebih ketat. Sehingga semua data hasil survei, termasuk peta yang dilihat Baltosser, tidak diperbolehkan keluar dari lingkungan PEMEX apalagi digandakan dan disebarluaskan. Baltosser pun pulang ke Tulsa sembari memendam rasa penasaran akan apa yang dilihatnya. Namun tanpa data di tangan untuk dianalisis, ia tak bisa berbuat apa-apa.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Bonanza minyak pasca berkecamuknya Perang Arab-Israel 1973 membuat permintaan minyak dunia kian melonjak. Seperti perusahaan minyak lainnya, PEMEX pun kian agresif mencari cekungan-cekungan minyak yang baru untuk mempertahankan dan bahkan meningkatkan produksinya. Segera PEMEX kembali mendiskusikan pola setengah-melingkar yang unik di Semenanjung Yucatan. Meski satu dasawarsa sebelumnya Baltosser menganggapnya sebagai kawah tumbukan, tak satupun geolog dan geofisikawan PEMEX yang sepaham. Mereka tetap memperkukuhi argumen gunung berapi purba dan menyebut kawasan Semenanjung Yucatan itu sebagai Central Yucatan Igneous Zone. Atas nama profesionalitas, mereka mengabaikan pendapat Baltosser dan menganggapnya sebagai sekedar imajinasi anak muda amatiran yang penuh energi menggelegak, masih idealis dan belum tahu apa-apa tentang realitas dunia. Namun PEMEX tetap membutuhkan survei baru sebagai pembanding guna mengetahui lebih lanjut apa yang tersembunyi di bawah Semenanjung Yucatan dan kawasan lepas pantainya. Syukur-syukur ada prospek minyak yang bisa dibor.

Maka pada 1978 TU datanglah perusahaan survei Western Geophysical (juga dari Amerika Serikat) sebagai pemain baru. Dalam rombongan ini terdapat pula Glenn Penfield, seorang geofisikawan ingusan namun sudah berpengalaman dengan pengukuran dan pembuatan peta magnetik kawasan. Selama tiga bulan di tahun 1976 TU Penfield menghabiskan waktunya di Alaska untuk melaksanakan survei aeromagnetik menggunakan radas magnetometer yang diterbangkan pesawat. Lebih dari 25.000 kilometer lintasan penerbangan ditempuhnya, beberapa melalui gunung-gemunung berapi besar di Alaska. Sehingga bagaimana anomali magnetis khas gunung berapi telah menjadi pengetahuannya, baik gunung berapi aktif yang tersingkap di paras Bumi maupun gunung berapi purba yang terpendam jauh di dalam tanah.

Divisi Aerosurvey perusahaan Western Geophysics mulai melaksanakan survei aeromagnetik di Semenanjung Yucatan sejak April 1978 TU. Selama berbulan-bulan kemudian Penfield dan rekan-rekannya menghabiskan waktu untuk terbang di atas kawasan pada altitud 5.000 meter dpl dengan lintasan barat-timur sejauh 400 kilometer. Lintasan terbang selanjutnya hanya bergeser 4 kilometer di sebelah lintasan terbang sebelumnya. Setelah usai, rute pesawat diubah menjadi berarah utara-selatan juga sejauh 400 kilometer, Namun selisih antar lintasan kali ini lebih lebar, yakni 20 kilometer. Dengan cara ini maka dihasilkan peta magnetik Teluk Meksiko dengan resolusi hingga 30 meter. Secara akumulatif panjang lintasan penerbangan survei tersebut mencapai kurang lebih 25.000 kilometer.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Sejak hari pertama survei aeromagnetik, Penfield sudah mendeteksi anomali medan magnetik di titik tertentu. Anomalinya memang kecil, antara 1 hingga 5 nanoTesla di atas rata-rata. Namun cakupan areanya cukup besar. Titik-titik anomali tersebut dijumpai di hampir setiap lintasan penerbangan survei, sepanjang April hingga Agustus 1978 TU. Setelah penerbangan usai, mulailah analisis dilakukan dalam periode September 1978 hingga Maret 1979 TU. Titik-titik anomali tiap lintasan penerbangan survei dimasukkan dalam perangkat lunak pengolah data Western Geophysics. Perangkat lunak itu juga memadukannya dengan peta topografi daratan Semenanjung Yucatan dan batimetri Teluk Meksiko. Hasilnya, ditemukanlah sebuah kawasan anomali magnetik yang sangat besar. Kawasan tersebut terkonsentrasi dalam sebuah struktur sirkular mengesankan berdiameter lebih dari 90 kilometer dan berimpit dengan Central Yucatan Igneous Zone.

Selain memanfaatkan perangkat lunak, Penfield juga menggunakan cara konvensional. Mereka mengeplot titik-titik anomali tersebut ke dalam peta kawasan. Keduanya merasa takjub saat melihat sejumlah titik di peta ternyata membentuk pola setengah-melingkar. Penfield pun berbagi cerita dengan rekan geofisikawannya di PEMEX. Si rekan, yang sama takjubnya, segera menggali timbunan arsip dan menyodorkan peta gravitasi Semenanjung Yucatan yang dilihat Baltosser satu dasawarsa sebelumnya. Kala dua peta ini digabungkan, jelas terlihat terlihat bagaimana pola setengah-melingkar peta gravitasi dan pola setengah-melingkar peta aeromagnetik membentuk satu kesatuan struktur sirkular bergaris tengah lebih dari 100 kilometer. Sama persis dengan hasil olahan perangkat lunak. Mengacu pengalamannya selama di Alaska, pola anomali magnetik berskala besar di Semenanjung Yucatan sangat berbeda dengan yang umumnya dijumpai di gunung berapi, baik aktif maupun purba. Penfield pun sependapat dengan Baltosser, bahwa Central Yucatan Igneous Zone lebih mungkin merupakan kawah tumbukan raksasa yang terpendam. Maka, sejak Agustus 1978 TU nama Struktur Chicxulub pun mulai bergaung.

Tapi senasib dengan Baltosser, PEMEX pun mengabaikan pendapat Penfield dan melemparkan laporannya ke kolong arsip di gudang data. Sesuai kebijakannya, PEMEX juga melarang Penfield memublikasikan apapun yang berbasis data PEMEX. Pada 1979 TU, PEMEX kembali mengebor daratan Yucatan di Yaxcopoil. Pengeboran sedalam 1.800 meter itu lagi-lagi tidak menemukan minyak, sehingga sumur pun ditutup dan ditinggalkan. Namun geolog yang menyupervisi pengeboran, yakni Burkhard Dressler dan David Kring, menjumpai keanehan yang mirip dengan temuan di sumur Chicxulub Puerto dan Sacapuc tiga dasawarsa sebelumnya. Pada kedalaman 800 meter tidak lagi dijumpai sedimen karbonat dan gipsum, namun justru ditemukan bebatuan mirip breksi, sejenis batuan sedimen yang tersusun dari bongkahan-bongkahan batu bersudut tajam. Breksi juga biasa dijumpai di kawasan gunung berapi, sehingga PEMEX tanpa ragu mengatakan sumur Yaxcopoil pun menembus gunung berapi purba di Central Yucatan Igneous Zone.

Menemukan Chicxulub

Selagi PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan namun sibuk memperkukuhi argumen gunung berapi purba, satu kuartet ilmuwan menggoncangkan dunia ilmu geologi, astronomi, biologi dan fisika lewat publikasi menggemparkan. Dalam bulan Juni 1980 TU kuartet ilmuwan Luis W. Alvarez, Walter Alvarez, Frank Asaro dan Helen Michel dari University of California (Berkeley) mengumumkan temuan tentang hubungan peristiwa pemusnahan massal 65 juta tahun silam dengan sumber ekstraterestrial berupa tumbukan komet/asteroid. Lewat analisis terhadap lapisan lempung hitam tipis yang terjepit di antara sedimen zaman Kapur dan Tersier dari sejumlah singkapan seperti di Gubbio (Italia), Stevns Klint (Denmark) dan Woodside Creek (Selandia Baru), mereka menemukan konsentrasi Iridium cukup pekat. Yakni antara 30 hingga 160 kali di atas normal. Iridium adalah salah satu logam yang ditemukan berlimpah dalam meteorit namun tidak di paras Bumi. Sehingga jika di daratan atau lautan terdapat temuan konsentrasi Iridium nan pekat, jelas sumbernya adalah debu-debu meteor dari langit. Jika Iridium di lempung hitam tipis tersebut dianggap berasal dari pengendapan debu-debu antariksa, maka butuh waktu setidaknya 500 ribu tahun untuk mencapai konsentrasi sepekat itu. Namun berselang setahun kemudian lewat analisis singkapan Caravaca (Spanyol), Jan Smit menyimpulkan deposisi lempung hitam berlangsung jauh lebih cepat yakni hanya dalam waktu sekitar 50 tahun.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Karena lapisan lempung hitam sejenis tersingkap pula di berbagai penjuru (dalam catatan terkini, ditemukan di lebih dari 350 singkapan di lima benua) Alvarez dkk meyakini skala peristiwa yang menyebabkannya bersifat global. Perhitungan Alvarez dkk menyimpulkan bahwa lempung hitam tipis tersebut hanya bisa dibentuk oleh tumbukan komet/asteroid berdiameter 10 +/- 4 km. Tumbukan komet/asteroid sebesar itu bakal menimbulkan kawah tumbukan raksasa bergaris tengah tak kurang dari 200-an kilometer. Tumbukan seukuran ini memproduksi debu sangat banyak yang terhambur ke atmosfer dan berperan sebagai tabir surya sehingga intensitas sinar Matahari di di paras Bumi turun drastis. Perhitungan menunjukkan pada puncaknya intensitas sinar Matahari yang diterima paras Bumi tinggal sepersepuluh juta dari normalnya. Maka fotosintesis akan terhenti, yang segera membunuh fitoplankton dan flora berdaun hijau. Selanjutnya giliran kawanan fauna yang tumbang berkalang tanah. Sayangnya Alvarez dkk tidak bisa menyodorkan bukti dimana lokasi kawah raksasa tersebut. Belakangan pada tahun 1984 TU Bruce Bohor dkk dari United States Geological Survey memperkuat argumen Alvares dkk. Bohor dkk menemukan butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi dalam lempung hitam di tepi Madrid Road, Colorado (Amerika Serikat). Setahun kemudian giliran Wendy Wolbach yang menemukan bahwa lapisan lempung hitam itu sangat kaya dengan butir-butir karbon mikro hasil kebakaran hutan konifer dalam skala global.

Penfield menyimak publikasi menggemparkan tersebut dan segera menyadari Struktur Chicxulub mungkin adalah kawah raksasa yang dibicarakan Alvarez dkk. Berdasar ketebalan sedimen di atas batuan mirip andesit/breksi di sumur Chicxulub Puerto dan Yaxcopoil, Penfield mengetahui umur struktur itu sekitar 80 juta tahun. Namun jika betul kawah tumbukan, umurnya bisa lebih muda karena faktor deposisi sedimen dasar kawah. Sehingga umur 65 juta tahun adalah masuk akal. Dengan rasa gembira meluap Penfield menghubungi Antonio Camargo, koleganya di Meksiko, menceritakan apa yang diketahuinya. Mereka akhirnya bersepakat untuk melaporkan Struktur Chicxulub serta kemungkinannya sebagai kawah raksasa penyebab pemusnahan massal 65 juta tahun silam dalam pertemuan ilmiah. Yang dituju adalah temu ilmiah geofisikawan dibawah tajuk Society of Exploration Geophysicist di Los Angeles (Amerika Serikat) pada bulan Oktober 1981. Di forum ini Penfield dan camargo memaparkan apa yang selama ini dikenal sebagai Central Yucatan Igneous Zone merupakan Struktur Chicxulub yang adalah kawah raksasa produk tumbukan komet/asteroid dan berkaitan dengan pemusnahan massal 65 juta tahun silam.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber:  Wilson, 2010.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber: Wilson, 2010.

Namun pertemuan Society of Exploration Geophysicist berlangsung bersamaan dengan pertemuan lain yang lebih presitisius, yakni Snowbird Conference di Utah (juga di Amerika Serikat). Berbeda dengan Society of Exploration Geophysicist, Snowbird conference dihadiri oleh para ilmuwan keplanetan, palentolog dan geolog yang secara khusus membahas peristiwa pemusnahan massal dan tumbukan komet/asteroid. Maka kala presentasi Penfield dan Camargo di Los Angeles ditanggapi dengan biasa-biasa saja dan bahkan cenderung dingin, konferensi di Utah justru begitu bersemangat menunggu pemaparan penyelidikan kandidat-kandidat kawah raksasa produk tumbukan yang memicu pemusnahan massal. Utah tak mengetahui sedikitpun bahwa Struktur Chicxulub sedang dipaparkan di Los Angeles. Nestapa Penfield bertambah setelah pejabat PEMEX mengecamnya secara terbuka. PEMEX kecewa data anomali magnetik milik mereka ternyata menjadi basis pemaparan di di Los Angeles.

Tapi Los Angeles jugalah yang mempertemukan Penfield dengan Carlos Byars, wartawan Houston Chronicle dan satu-satunya orang yang tertarik dengan presentasinya. Tanpa membuang waktu, Houston Chronicle edisi 13 Desember 1980 TU memajang artikel Penfield dan Camargo di halaman pertama dengan judul provokatif, lengkap dengan peta Struktur Chicxulub. Byars juga mempublikasikan tulisannya di majalah astronomi prestisius Sky and Telescope edisi Maret 1982 TU. Belakangan editor Sky and Telescope memangkas habis-habisan tulisannya sehingga hanya ditempatkan pada kolom singkat di halaman 249 dan 250. Byars pun khawatir tidak semua orang membacanya. Penfield sendiri terbang ke Houston (juga di Amerika Serikat) dan bertemu dengan pakar-pakar keplanetan di NASA Johnston Spaceflight Center. Salah satunya William Phinney. Phinney menekankan bahwa gagasan Struktur Chicxulub tidak akan dianggap remeh jika Penfield sanggup memperlihatkan bukti batuan metamorf dinamik tingkat tinggi dari struktur tersebut.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Saran Phinney membakar obsesi Penfield. Segera ia terbang ke Meksiko dan mencari sampel batuan khususnya di sekitar sumur-sumur yang pernah dibor PEMEX, atas biaya sendiri. Setelah tahu batuan dari sumur yang dibor di dasawarsa 1970-an dikirim ke Quetzalcoalcos, ia pun menyewa taksi dan pergi ke sana, hanya untuk mendapati gudang penyimpanan batuan sudah dibongkar dan diratakan dengan tanah. Tanpa patah semangat, Penfield menyigi jengkal demi jengkal puing-puing gudang guna mencari sisa-sisa batuan, namun tanpa hasil. Pencarian ke seluruh penjuru hingga 600 kilometer dari Merrida, dengan meneliti setiap cenote (telaga dolina) yang ada pun tidak mendapati batuan andesit/basalt yang dicarinya. Dari Merrida, ia pergi ke Sacapuc. Lokasi sumur Sacapuc ternyata sudah berubah jadi kandang babi dan berada di bawah timbunan kotoran. Mengabaikan bau kotoran dan rasa jijik, ia menggali hingga posisi sumur ketemu dan mencari batuan yang diinginkannya, lagi-lagi tanpa hasil. Lantas pergilah ia ke sumur di Chicxulub Puerto. Ketika sumur digali, disinilah bongkahan-bongkahan batuan yang dicarinya dijumpai sebagai penutup sumur. Penfield mengambil sampel seberat 9 kilogram, membersihkannya dari sisa-sisa semen penutup sumur dan segera dikirim ke Houston.

Lidah memang tak bertulang. Kerja keras Penfield tidak diapresiasi Phinney. Rupanya argumen gunung api purba di Semenanjung Yucatan juga telah merasuki benak ilmuwan-ilmuwan keplanetan NASA. Lebih dari itu, ilmuwan-ilmuwan itu pun terhinggapi penyakit profesionalitas layaknya geolog dan geofisikawan PEMEX. Mereka menganggap, sebagai profesional, merekalah yang lebih paham akan sifat dan dinamika kawah tumbukan. Apalagi dengan gencarnya misi antariksa antarplanet sejak dasawarsa 1960-an. Sementara Penfield yang hanya anak bawang. Sehingga meski Penfield datang membawa gagasan Stuktur Chicxulub dan segerobak sampel, ia hanyalah sosok amatir yang dianggap tidak memahami persoalan dan apa yang diungkapkannya sendiri, apalagi mengaitkannya dengan pemusnahan massal. So, genta perang amatir vs profesional kembali ditabuh. Sampel kiriman Penfield dicueki di Houston dan ilmuwan-ilmuwan NASA menganggap teka-teki Yucatan sudah usai dengan penjelasan tentang gunung api purba (Central Yucatan Igneous Zone).

Perang serupa juga dialami Byars. Setiap tahun, sebagai jurnalis, ia menghadiri pertemuan demi pertemuan di bawah Lunar and Planetary Science Conference (LPSC) di Houston. Dalam setiap sesi ia selalu berupaya meyakinkan ilmuwan yang dijumpainya mengenai Struktur Chicxulub, namun selalu ditolak. Byars dianggap sebagai jurnalis ilmiah yang baik, namun pembahasan kawah tumbukan dianggap bukan kompetensinya. Dalam salah satu pertemuan bahkan tulisan tentang Struktur Chicxulub yang disiapkannya langsung diserahkan seorang ilmuwan kepada mahasiswa S-1 binaannya. Belakangan sang mahasiswa malah menghilangkan tulisan tersebut. Situasi tak berubah memasuki tahun 1988 TU kala Snowbird Conference kedua diselenggarakan, juga mengambil tempat di Utah. Kelak Penfield menyebut periode sulit sepanjang Maret 1979 hingga Februari 1990 TU sebagai tahun-tahun yang penuh kebisuan.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Pada bulan Maret 1990 TU, kegigihan Byars menemukan hasilnya, Ia bersua Alan Hildebrand, pemuda tanggung lulusan University of Arizona yang sedang bersemangat mencari kawah tumbukan penyebab pemusnahan massal 65 juta tahun silam tanpa sponsor siapapun. Hildebrand sudah mendengar dari Jan Smit bahwa lapisan lempung hitam di Karibia lebih tebal dibanding tempat lain dimanapun, sehingga kawah tumbukan yang dicari tentu berada di dekat Kini. Hildebrand sebelumnya meneliti lapisan serupa di Beloc (Haiti) yang tebalnya mencapai 1 meter. Dari koleganya William Boynton, Hildebrand juga tahu lempung hitam tebal juga dijumpai di Texas, namun tidak setebal di Beloc. Esktrapolasi ketebalan lempung Texas, Beloc dan Karibia membuat Hildebrand dan Boynton berpendapat kawah raksasa itu mungkin saja ada di Colombia. Mereka segera menulis makalah ilmiah tentangnya yang akan dikirim ke jurnal Science. Menjelang pengiriman, Byars mempertemukannya dengan Penfield dan segera keduanya terlibat diskusi intensif akan Struktur Chicxulub. Hildebrand terpukau dengan teori Penfield dan mencantumkannya dalam tulisannya di Science.

Saat mengikuti wawancara kerja di Geological Survey of Canada, Hildebrand menyadari institusi ini menyimpan peta-peta gravitasi seluruh benua Amerika, termasuk Colombia dan Semenanjung Yucatan. Hildebrand agak kecewa ketika menemukan Colombia ternyata tidak memiliki anomali gravitasi yang diharapkannya. Sebaliknya justru di Semenanjung Yucatan-lah anomali gravitasi tersebut berada. Segera benaknya berbinar dengan satu nama : Penfield. Tanpa membuang waktu, Hildebrand terbang kembali ke Amerika Serikat untuk berdiskusi panjang lebar dengan Boynton, Penfield dan Camargo dengan disaksikan Byars. Akhirnya disusunlah makalah tentang Struktur Chicxulub. Pada April 1990 TU ia dikirim ke Nature, hanya untuk menerima penolakan langsung dari juri. Hildebrand menyadari salah satu alasan penolakan adalah tiadanya bukti langsung tentang Struktur Chicxulub sebagai kawah tumbukan.

Hildebrand segera bertanya-tanya pada semua orang yang dianggapnya tahu tentang nasib batuan hasil pengeboran PEMEX di dasawarsa 1970-an. Akhirnya didapat informasi akurat bahwa sebagian sampel batuan itu dikirim PEMEX ke Al Weidie di University New Orleans. Rupanya sampel-sampel itu dijadikan bahan untuk mempelajari sistem air bawah tanah di Semenanjung Yucatan. Begitu dikabarkan ke Penfield, segera ia terbang ke New Orleans dan berhasil memperoleh 600 kotak sampel yang dimaksud. Tanpa membuang waktu ia mengirimkan beberapa kotak ke Hildebrand. Hildebrand segera mengirimnya lagi ke Arizona dimana David Kring, mantan supervisor sumur Yaxcopoil yang kemudian bekerja di University of Arizona, telah menunggu bersama partnernya Jacobsen dan Pilkington. Segera terkuak bahwa sampel itu memang mengandung butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi. Inilah bukti yang dicari-cari itu. Struktur Chicxulub memang dibentuk oleh tumbukan komet/asteroid raksasa.

Kini teori Struktur Chicxulub telah menemukan bukti penyokong terkuatnya. Namun masih ada satu halangan menghadang: perang amatir vs profesional. Hildebrand segera menulis makalah ilmiah tentang bukti Struktur Chicxulub sebagai kawah tumbukan dengan menyertakan Penfield, Camargo, Boynton, Kring, Jacobsen dan Pilkington sebagai penulis tambahan. Makalah segera dikirimkan ke Nature, namun kembali juri menolaknya kali ini tanpa alasan yang jelas. Tapi alasannya diduga sangat personal, terkait status Hildebrand dkk yang dianggap amatiran. Tak menyerah dengan penolakan Nature, Hildebrand mengirimkan makalahnya ke jurnal lain, Geology, yang akhirnya memuatnya di edisi September 1991 TU. Dengan cepat publikasi ini memukau dunia. Ibarat bak air yang lepas sumbatnya, publikasi ini segera memantik perhatian besar akan Struktur Chicxulub.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Satu demi satu dukungan pun berdatangan. Carl C. Swisher dari Berkeley datang menyodorkan hasil pertanggalan radioaktif berbasis Kalium-Argon dengan kesimpulan umur struktur itu memang 65 juta tahun. Di tahun yang sama, 1991, Kevin Pope bersama Adriana Ocampo dan Charles Duller menuturkan pola sebaran cenote di Semenanjung Yucatan ternyata sangat dipengaruhi Stuktur Chicxulub. Konsentrasi terbesar cenote terletak di atas tepi kawah (cincin kawah) dan sebagian lagi di luar tepi kawah dimana produk tumbukan sebagian besar diendapkan. Hanya sebagian kecil saja yang dijumpai di dalam kawah, yakni di dalam area yang disebut puncak pusat (central peak). Jika Struktur Chicxulub tidak ada, cenote-cenote tersebut pun tak terbentuk. Implikasinya bakal membuat umat manusia mulai dari masa peradaban Maya di masa silam hingga sekarang sulit berkembang.

Referensi :

Penfield. 2009. Finding Chicxulub.

Verschuur. 1996. Impact! The Threat of Comets and Asteroids. Oxford University Press, New York, USA.

French. 1998. Traces of Catastrophe, A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar Planetary Institute, Arizona, USA.

Schulte dkk. 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 327, 5 March 2010, pp 1214-1218 + Supporting Materials .

Brien. 2006. Raton Basin Field Trip, Southern Colorado / Northern New Mexico, September 28 – October 1, 2006. Lunar Planetary Institute, Arizona, USA.

Wilson. 2010. The Best Cretaceous-Paleogene Boundary Yet. Wooster Geologist Blog.

Hildebrand dkk. 1990. Chicxulub Crater Size and Structure as Revealed by Horizontal Bouguer Gravity Gradients and Cenote Distribution. Lunar & Planetary Science XXVI, 603-604.

Mengabadikan Komet Lovejoy, Tamu Purba dari Tepi Tata Surya

Tamu itu bernama Lovejoy. Tidak. Namanya tidaklah beraroma romantis yang berkelindan di seputar cinta (love) maupun kegembiraan (joy). Ia mendapatkan nama megahnya dari sesosok Australia paruh baya bernama lengkap Terry Lovejoy, orang pertama yang menyaksikan eksistensinya. Terry Lovejoy adalah seorang insinyur informatika yang tak kepalang tanggung menceburkan diri dalam jagat astronomi di waktu senggangnya. Sebagai astronom amatir, yakni astronom yang tak berlatar-belakang pendidikan astronomi secara formal, nama Terry Lovejoy mendunia melalui modifikasinya terhadap kamera-kamera digital untuk keperluan pemotretan/pencitraan astronomi (astrofotografi). Modifikasi tersebut membuat para astronom amatir mampu memuaskan hasratnya mengabadikan benda-benda langit khususnya obyek jauh seperti galaksi, gugus bintang (cluster) dan awan gas (nebula) dengan leluasa tanpa harus merogoh kocek terlalu dalam.

Selain inovasi tersebut, dalam jagat astronomi nama Terry Lovejoy juga dikenal sebagai penemu komet. Menyapu langit secara rutin dari kawasan pedesaan negara bagian Queensland (Australia), sejauh ini sosok Terry Lovejoy telah menemukan lima buah komet baru semenjak 2007 Tarikh Umum (TU). Prestasi ini layak diacungi jempol, mengingat upaya penemuan komet-komet baru pada masa kini harus bersaing dengan sejumlah sistem penyigian langit semi-otomatis seperti Spacewatch, LINEAR (Lincoln Near Earth Asteroids Research), Catalina Sky Survey, Siding Spring Survey maupun Pan–STARRS (Panoramic Survey Telescope and Rapid Response System). Sesuai dengan tatanama komet yang diberlakukan IAU (International Astronomical Union), sebuah komet baru akan diberi nama sesuai dengan nama penemunya ataupun nama sistem penyiginya. Dengan demikian kelima komet baru yang ditemukan Terry Lovejoy pun menyandang nama Lovejoy.

Gambar 1. Komet C/2014 Q2 Lovejoy dalam observasi hari pertama di tengah gelimang cahaya Bulan pasca purnama dan awan-awan tipis yang berarak-arak. Atas: kedudukan komet (tanda panah) dalam citra bidang lebar rasi bintang Taurus dan Waluku. Bawah: detil posisi komet dan bintang-bintang disekelilingnya, sebagai perbesaran dari kotak kuning dalam citra diatasnya. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Gambar 1. Komet C/2014 Q2 Lovejoy dalam observasi hari pertama di tengah gelimang cahaya Bulan pasca purnama dan awan-awan tipis yang berarak-arak. Atas: kedudukan komet (tanda panah) dalam citra bidang lebar rasi bintang Taurus dan Waluku. Bawah: detil posisi komet dan bintang-bintang disekelilingnya, sebagai perbesaran dari kotak kuning dalam citra diatasnya. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Untuk membedakan satu dengan lainnya, komet-komet yang bernama serupa tersebut juga memiliki identitas tersendiri sesuai dengan sistem penandaan yang diberlakukan IAU bagi komet. Dalam hal komet Lovejoy, kelima komet tersebut beridentitas sebagai C/2007 E2 Lovejoy (ditemukan 15 Maret 2007 TU), C/2007 K5 Lovejoy (ditemukan 26 Mei 2007 TU), C/2011 W3 Lovejoy (ditemukan 27 November 2011 TU), C/2013 R1 Lovejoy (ditemukan 7 September 2013 TU) dan yang terakhir C/2014 Q2 Lovejoy (ditemukan 17 Agustus 2014 TU).

Tamu purba dari tepi tata surya yang kita bicarakan di sini adalah komet C/2014 Q2 Lovejoy. Saat pertama kali disaksikan Terry Lovejoy melalui teleskop reflektor Schmidt-Cassegrain 20 cm, komet ini masih demikian redup hingga lebih redup ketimbang planet-kerdil Pluto. Pada 17 Agustus 2014 TU itu sang komet masih melata pelan di latar depan rasi Cetus. Ia berjarak 423 juta kilometer dari Bumi kita, atau di antara orbit Mars dan Jupiter. Observasi demi observasi berikutnya menghasilkan segudang data yang memperlihatkan bahwa komet C/2014 Q2 Lovejoy ini adalah komet periodik yang berperiode sangat panjang. Orbitnya sangat lonjong (sangat ellips) dengan perihelion sejarak 193 juta kilometer (orbit Bumi = 149,6 juta kilometer). Sementara aphelionnya lebih jauh lagi, yakni terletak pada jarak 172,9 milyar kilometer, atau hampir 30 kali lipat lebih besar ketimbang jarak rata-rata Matahari ke planet-kerdil Pluto. Dengan profil orbit sedemikian, jelas bahwa komet C/2014 Q2 Lovejoy merupakan komet yang bersumber dari awan komet Opik-Oort di tepian tata surya kita. Butuh waktu hingga 13.900 tahun lamanya bagi sang komet untuk menyelesaikan sekali putaran mengelilingi Matahari dalam orbitnya.

Komet Terang

Gambar 2. Komet C/2014 Q2 Lovejoy dalam observasi hari kedua dalam kondisi langit sempurna. Kiri: kedudukan komet (tanda panah) dalam citra bidang lebar rasi bintang Taurus dan Waluku. Kanan: detil posisi komet dan bintang disekelilingnya, sebagai perbesaran dari kotak kuning dalam citra sebelah kiri. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Gambar 2. Komet C/2014 Q2 Lovejoy dalam observasi hari kedua dalam kondisi langit sempurna. Kiri: kedudukan komet (tanda panah) dalam citra bidang lebar rasi bintang Taurus dan Waluku. Kanan: detil posisi komet dan bintang disekelilingnya, sebagai perbesaran dari kotak kuning dalam citra sebelah kiri. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Dapat kita bayangkan pada saat komet ini melintasi perihelionnya sebelum kali ini, ia melihat Bumi dalam situasi 13.900 tahun silam. Yakni Bumi yang (setengah) mengigil kedinginan di tengah periode dingin Older Dryas penghujung zaman es terakhir yang juga penghujung kala Pleistosen dalam skala waktu geologi. Leluhur kita saat itu, yakni generasi Homo sapiens, memang sudah ada namun masih melakoni kehidupan berburu dan meramu serta masih berpindah-pindah tempat tinggal. Kebudayaan mereka masih berkutat di kebudayaan batu paleolitikum atas akhir. Kini saat komet yang sama kembali ke lingkungan dekat Bumi dalam perjalanannya menuju perihelionnya, ia mungkin akan tercengang demikian rupa menyaksikan planet biru kita telah berubah demikian dramatis.

Sedari awal ditemukannya disadari komet C/2014 Q2 Lovejoy memang berpotensi menjadi komet terang. Perhitungan astronomis menunjukkan komet ini bakal tiba di titik perihelionnya pada 30 Januari 2015 TU mendatang. Namun komet bakal tiba di titik terdekatnya ke Bumi pada 7 Januari 2015 TU pukul 15:27 WIB. Saat ini komet C/2014 Q2 Lovejoy ini berjarak 70 juta kilometer dari Bumi kita dan melejit dengan kecepatan relatif 43,2 kilometer/detik (~155.500 kilometer/jam) terhadap Bumi kita. Pada jarak tersebut, tak ada potensi tumbukan antara komet ini dengan Bumi. Sebaliknya sang komet bakal menyajikan pemandangan langit yang mengesankan. Pada awalnya diprediksikan bahwa sepanjang Januari 2015 TU ini komet C/2014 Q2 Lovejoy bakal berbinar dengan magnitudo semu +6.

Magnitudo semu +6 adalah batas kemampuan penglihatan mata manusia khususnya di kawasan yang betul-betul gelap (bukan pedesaan, apalagi perkotaan) di bawah langit yang cemerlang sempurna (tanpa awan sama-sekali) dan tidak sedang Bulan purnama. Pada magnitudo tersebut, komet C/2014 Q2 Lovejoy mudah untuk disaksikan dengan alat bantu sederhana seperti binokuler ataupun teleskop kecil, asal diarahkan ke posisi yang tepat. Namun prediksi demikian tidak selalu menghasilkan kenyataan. Pengalaman menunjukkan sebuah komet dapat saja lebih terang dibanding prediksi awalnya, namun bisa pula terjadi sebuah komet justru lebih redup dibanding prediksi awal.

Gambar 3. Kiri: komet C/2014 Q2 Lovejoy (tanda panah) dalam citra bidang lebar rasi bintang Taurus dan Eridanus. Kanan: detil posisi komet dan bintang disekelilingnya, sebagai perbesaran dari kotak kuning dalam citra sebelah kiri. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Gambar 3. Kiri: komet C/2014 Q2 Lovejoy (tanda panah) dalam citra bidang lebar rasi bintang Taurus dan Eridanus. Kanan: detil posisi komet dan bintang disekelilingnya, sebagai perbesaran dari kotak kuning dalam citra sebelah kiri. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Posisi Indonesia terhadap kedudukan komet ini sungguh unik dan menjanjikan. Kombinasi sudut antara orbit komet dan ekliptika (bidang edar Bumi dalam mengelilingi Matahari) yang sebesar 80 derajat dengan sejumlah kekhasan lainnya dan posisi Indonesia membuat komet ini akan muncul di langit timur dalam kedudukan cukup tinggi segera setelah mentari terbenam. Dan ia baru menghilang (terbenam) pada waktu dinihari, beberapa jam jelang Matahari terbit kembali. Dengan demikian tersedia waktu hingga berjam-jam lamanya untuk mencermati sang komet. Kondisi ini sangat berbeda bila dibandingkan komet-komet lain yang pernah singgah di lingkungan dekat Bumi dan diamati sebelumnya. Komet-komet tersebut umumnya hanya bisa diamati dalam tempo sangat singkat di Indonesia. Yakni hanya berpuluh menit jelang Matahari terbit ataupun beberapa puluh menit setelah sang surya kembali ke peraduan, masing-masing pada ketinggian yang cukup rendah dari kaki langit.

Namun keunggulan dari segi posisi ini harus berhadapan dengan prediksi pesimistik yang tak terkait benda langit secara langsung, namun sangat menentukan kualitas pengamatan. Yakni cuaca. Umumnya bulan Januari di Indonesia adalah bulan kalender dimana langit selalu diselimuti awan. Awan hujan atau bahkan awan badai pun kerap terbentuk pada saat-saat ini, yang menghasilkan hujan dengan intensitas cenderung deras. Dampak ikutannya seperti bencana banjir atau gerakan tanah/longsor pun kerap terjadi. Awalnya Januari 2015 TU pun disangka bakal demikian. Sehingga meski komet C/2014 Q2 Lovejoy sedang cantik-cantiknya di langit, astronom amatir dan profesional di Indonesia mungkin bakal gigit jari dengan awan dan hujan dari hari ke hari.

Tetapi realitas kerap bertolak belakang dibanding prediksi, terlebih pada peristiwa sekompleks cuaca. Setelah dihajar hujan relatif deras di hari-hari Desember 2014 TU yang mendatangkan bencana banjir dan tanah longsor dimana-mana, siapa sangka di dasarian (persepuluhan hari) pertama Januari 2015 TU sebagian Indonesia justru cerah. Khususnya pulau Jawa dan sekitarnya. Tumbuh dan berkembangnya dua pusat tekanan rendah di selatan Indonesia, masing-masing di Australia dan Samudera Indonesia (Hindia) adalah penyebabnya. Dua pusat tekanan rendah itu seakan menyedot sebagian besar uap air di sebagian Indonesia. Akibatnya muncullah situasi unik: hari-hari yang panas terik (dan gerah) mirip kemarau. Dan di malam harinya langit demikian cerah tanpa/dengan sedikit sapuan awan. Inilah kesempatan untuk menyaksikan tamu purba dari tepi tata surya yang menjanjikan.

Observasi

Gambar 4. Komet C/2014 Q2 Lovejoy bersama dengan gugus bintang Pleiades atau Tujuh Dara. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Gambar 4. Komet C/2014 Q2 Lovejoy bersama dengan gugus bintang Pleiades atau Tujuh Dara. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Saya mempersiapkan dua instrumen sederhana guna menyambut tamu ini. Instrumen pertama adalah teleskop pembias (refraktor) yang memiliki lensa obyektif berdiameter 70 mm dengan penyangga (mounting) ekuatorial manual. Dan yang kedua adalah sebuah kamera DSLR kelas konsumen bermerek Nikon D60 dengan lensa bawaannya. Adapter kamera-teleskop juga disiapkan, namun tidak diniatkan untuk digunakan. Musababnya dengan posisi komet yang cukup tinggi di langit pada saat pengamatan, yakni di sekitar titik zenith, penggabungan kamera DSLR dengan teleskop menimbulkan kesulitan teknis tersendiri mengingat bobot kamera yang relatif besar. Karena itu kamera dipasang tersendiri pada tripodnya, dengan lensa diatur pada bukaan terbesar (f-ratio terkecil) untuk setiap panjang fokus antara 18 mm hingga 55 mm. Fokus diatur secara manual. ISO dipilih pada nilai yang cukup besar, dalam hal ini saya menggunakan ISO 1600. Waktu penyinaran (pencahayaan) diatur antara 20 detik hingga 30 detik.

Observasi dilakukan dari halaman belakang rumah antara Jumat (9 Januari 2015 TU) hingga Minggu (11 Januari 2015 TU) malam, untuk kemudian dilanjutkan kembali pada Kamis 15 Januari 2015 TU. Semuanya berlangsung pada selang waktu antara pukul 21:00 hingga 00:00 WIB. Di hari pertama observasi terganggu oleh terangnya langit akibat pencahayaan Bulan yang baru saja lepas dari status purnama. Selain itu gangguan juga datang dari awan-awan tipis yang berarak-arak. Namun di hari kedua dan seterusnya, kedua gangguan tersebut relatif sangat berkurang. Sehingga observasi bila dilangsungkan dengan leluasa. Meski terletak di pinggiran kota, namun polusi cahaya relatif minimal sehingga tidak mengganggu.

Gambar 5. Komet C/2014 Q2 Lovejoy menggantung di langit barat dengan latar depan pohon mangga, pada observasi hari ketiga. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Gambar 5. Komet C/2014 Q2 Lovejoy menggantung di langit barat dengan latar depan pohon mangga, pada observasi hari ketiga. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Komet C/2014 Q2 Lovejoy relatif mudah ditemukan. Patokannya adalah rasi bintang Waluku (Orion), rasi bintang yang sangat populer dalam masyarakat agraris Indonesia sebagai penanda musim tanam padi di sawah/ladang pada waktu-waktu tertentu. Tepat di sebelah barat Waluku ini berdampingan dengan rasi bintang lain yang tak kalah populernya, yakni Taurus. Selain mengandung bintang raksasa merah Aldebaran yang menggetarkan (dimensinya 100 kali lipat lebih besar ketimbang Matahari dengan pelepasan energi 1.000 kali lipat lebih tinggi), Taurus juga dikenal dengan Tujuh Dara-nya atau Pleiades. Inilah gugus bintang yang secara kasat mata terdiri dari tujuh bintang lumayan terang, namun jika ditelaah lebih lanjut dengan teleskop termutakhir ternyata berisikan tak kurang dari 500 buah bintang. Posisi komet C/2014 Q2 Lovejoy tepat berada di rasi Taurus, sembari berangsur-angsur menjauhi Waluku.

Komet C/2014 Q2 Lovejoy terabadikan dalam kamera DSLR meski cukup redup. Ia hanya nampak sebagai bintik cahaya mirip bintang, namun bintik tersebut baur seakan berselimutkan kabut. Ini sangat berbeda dibandingkan bintang-bintang umumnya, yang tampil sebagai bintik cahaya tegas. Kabut tersebut menjadi penanda atmosfer temporer (coma) sang komet. Ciri menonjol lainnya adalah warnanya yang kehijauan, bertolak belakang dengan bintang-bintang umumnya yang putih kebiruan hingga kemerahan. Warna kehijauan ini merupakan produk dari eksitasi elektron-elektron dalam molekul karbon diatom (C2) dan sianogen (CN) di coma akibat pengaruh cahaya Matahari.

Gambar 6. Kiri: komet C/2014 Q2 Lovejoy pada observasi hari keempat, nampak menggantung di langit barat dengan latar depan pohon mangga. Kanan: perbesaran citra untuk area komet dan sekitarnya. Dibanding hari-hari sebelumnya, observasi di hari keempat ini menunjukkan komet berada dalam kondisi paling terang. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Gambar 6. Kiri: komet C/2014 Q2 Lovejoy pada observasi hari keempat, nampak menggantung di langit barat dengan latar depan pohon mangga. Kanan: perbesaran citra untuk area komet dan sekitarnya. Dibanding hari-hari sebelumnya, observasi di hari keempat ini menunjukkan komet berada dalam kondisi paling terang. Diabadikan dengan Nikon D60 dan diolah dengan GIMP 2. Sumber: Sudibyo, 2015.

Pun demikian dalam teleskop. Komet C/2014 Q2 Lovejoy terlihat kasat mata menyerupai awan/kabut kecil yang tipis kehijauan, kontras dengan bintang-bintang umumnya yang selalu terlihat sebagai titik cahaya tegas. Perbandingan dengan bintang-bintang disekitarnya, baik dalam kamera DSLR maupun teleskop, mengindikasikan komet C/2014 Q2 Lovejoy memiliki magnitudo semu berkisar antara +5 (hari pertama) hingga +4 (hari terakhir). Sebagai pembanding, observasi Ehsan Rostamizadeh di Bidkhoun (Iran) pada 15 Januari 2015 TU menunjukkan komet C/2014 Q2 Lovejoy memiliki magnitudo semu +3,8. fakta ini menunjukkan bahwa komet C/2014 Q2 Lovejoy ternyata sedikit lebih terang dibanding apa yang semula diprediksikan.

Observasi komet C/2014 Q2 Lovejoy yang saya lakukan memang belum sanggup menguak ciri khas terpenting komet, yakni ekor baik dalam rupa ekor gas maupun debu. Komet C/2014 Q2 Lovejoy merupakan salah satu komet dengan ekor lumayan panjang, yang merentang sepanjang hingga 10 derajat di langit. Namun ekor ini sangat redup. Butuh teknik astrofotografi tersendiri untuk memunculkannya, yang tidak bisa dilakukan hanya dalam bingkai (frame) tunggal seperti yang saya lakukan. Terlepas dari keterbatasan tersebut, hasil-hasil observasi ini menunjukkan bahwa dengan instrumen yang sederhana dan biaya yang relatif terjangkau, komet C/2014 Q2 Lovejoy ternyata dapat diamati dengan baik dari hari ke hari.

Gambar 7. komet C/2014 Q2 Lovejoy (warna hijau) dalam sketsa, berdampingan dengan sebuah bintang redup anggota rasi bintang Taurus saat diamati dengan teleskop pada observasi hari keempat. Sumber: Sudibyo, 2015.

Gambar 7. komet C/2014 Q2 Lovejoy (warna hijau) dalam sketsa, berdampingan dengan sebuah bintang redup anggota rasi bintang Taurus saat diamati dengan teleskop pada observasi hari keempat. Sumber: Sudibyo, 2015.

Dalam catatan saya pribadi, komet C/2014 Q2 Lovejoy merupakan komet kedua yang pernah saya amati baik melalui teleskop maupun kamera DSLR setelah komet ISON (C/2012 S1) pada November 2013 TU silam.

60 Jam Hidup Singkat (di Inti Komet) Setelah Mendarat Tanpa Penambat dan Sempat Melompat

Drama tujuh jam itu akhirnya berakhir (separuh) bahagia. Setelah berharap-harap cemas semenjak robot pendarat Philae melepaskan diri dan melayang pelan dari wahana takberawak Rosetta, para pengendali misi di pusat operasi European Space Agency (ESA) di Darmstadt (Jerman) bersorak gembira dalam suasana emosional. Badan antariksa gabungan negara-negara Eropa tersebut secara resmi menyatakan bahwa pada Rabu 12 November 2014 Tarikh Umum (TU) pukul 23:08 WIB robot Philae telah berlabuh dengan selamat di tanah intikomet Churyumov-Gerasimenko. Inilah momen bersejarah, untuk pertama kalinya sebuah obyek cerdas buatan manusia berhasil melabuhkan diri secara perlahan (soft-landing) ke permukaan intikomet dan tetap berfungsi. Kini kita hidup di bawah bayang-bayang mendarat dan beroperasinya sebuah robot semi-otomatis di intikomet.

Gambar 1. Simulasi saat-saat robot pendarat Philae tepat menyentuh tanah intikomet Churyumov-Gerasimenko untuk berlabuh. Dalam kenyataannya, akibat tidak berfungsinya dua unit pembantu pendaratan membuat Philae langsung melompat (terpental) kembali ke angkasa hingga dua kali begitu menyentuh tanah intikomet. Philae akhirnya benar-benar berlabuh pada titik yang jauhnya sekitar 1.000 meter dari lokasi yang direncanakan. Sumber: ESA, 2014.

Gambar 1. Simulasi saat-saat robot pendarat Philae tepat menyentuh tanah intikomet Churyumov-Gerasimenko untuk berlabuh. Dalam kenyataannya, akibat tidak berfungsinya dua unit pembantu pendaratan membuat Philae langsung melompat (terpental) kembali ke angkasa hingga dua kali begitu menyentuh tanah intikomet. Philae akhirnya benar-benar berlabuh pada titik yang jauhnya sekitar 1.000 meter dari lokasi yang direncanakan. Sumber: ESA, 2014.

Berlabuhnya Philae bukanlah pendaratan yang sempurna. Kala ESA melakukan pengecekan jarak jauh terakhir sebelum pelepasan Rosetta dan Philae, baru ketahuan sistem pendorong mini di punggung Philae tak berfungsi. Padahal perannya krusial. Seharusnya saat Philae tepat menyentuh tanah intikomet, sistem pendorong akan otomatis menyala selama beberapa saat. Sehingga Philae tetap tertekan ke tanah dan tak berpotensi melompat (terpental) kembali ke langit. Namun begitu pengendali misi tetap memberikan lampu hijau bagi Philae untuk berangkat ke tujuan. Problem ini segera disusul masalah berikutnya yang tak kalah peliknya, yakni tidak berfungsinya sistem penambat otomatis. Seharusnya saat Philae tepat menyentuh tanah intikomet dan sedang tertekan ke bawah seiring aktifnya sistem pendorong punggung, ketiga kakinya akan otomatis menancapkan jangkar tombak berpengait ke tanah. Maka begitu sistem pendorong punggung berhenti beroperasi, Philae telah kokoh berlabuh.

Tak berfungsinya dua unit pembantu pendaratan ini membuat Philae ibarat katak. Begitu menyentuh tanah intikomet, ia melompat-lompat hingga sedikitnya dua kali sebelum benar-benar berhenti. Philae sesungguhnya telah menyentuh tanah intikomet Churyumov-Gerasimenko pukul 22:33 WIB, atau 30 menit lebih awal dari pengumuman resmi ESA. Namun segera ia melesat lagi ke angkasa pada kecepatan 38 cm/detik (1,4 km/jam) untuk melambung setinggi sekitar 1.000 meter di atas tanah intikomet sebelum turun kembali. Begitu menyentuh tanah intikomet yang kedua kalinya, Philae kembali melenting. Namun kali ini dengan kecepatan jauh lebih rendah yakni hanya 3 cm/detik (0,11 km/jam) dan melambung hingga setinggi 20 meter di atas tanah intikomet. Barulah saat turun kembali, Philae sepenuhnya berhenti di posisi terakhirnya, meski dalam kondisi miring dan salah satu kakinya tak menapak tanah. Pendaratan yang melompat-lompat ini juga membuat posisi terakhir Philae meleset hingga sedikitnya 1.000 meter dari titik target pendaratannya semula.

Gambar 2. Estimasi lintasan yang ditempuh Philae kala dua kali melompat di atas tanah intikomet Churyumov-Gerasimenko sebelum benar-benar berlabuh. Dimodelkan melalui gerak parabola dengan asumsi nilai percepatan gravitasi setempatnya tetap meski melambung hingga ketinggian tertentu di atas intikomet. Dalam kenyataannya mungkin tidak demikian. Sumber: Sudibyo, 2014 dengan data dari ESA.

Gambar 2. Estimasi lintasan yang ditempuh Philae kala dua kali melompat di atas tanah intikomet Churyumov-Gerasimenko sebelum benar-benar berlabuh. Dimodelkan melalui gerak parabola dengan asumsi nilai percepatan gravitasi setempatnya tetap meski melambung hingga ketinggian tertentu di atas intikomet. Dalam kenyataannya mungkin tidak demikian. Sumber: Sudibyo, 2014 dengan data dari ESA.

Awalnya Philae direncanakan berlabuh di titik J yang belakangan diberi nama titik Agilkia/Agilika. Namun akibat lompatan-lompatan tersebut, kini Philae diyakini berada di sekitar titik B. Titik B adalah cekungan besar yang dasarnya relatif datar dipagari tebing-tebing melingkar di tepinya yang relatif curam. Sesungguhnya tempat ini ideal untuk pendaratan Philae. Tetapi kombinasi lokasi geografisnya dengan posisi komet Churyumov-Gerasimenko saat ini terhadap Matahari membuat kondisi pencahayaan Matahari di sini sangat buruk, dibandingkan di titik Agilkia.

Hibernasi

Meski dimana persisnya Philae berlabuh belum benar-benar diketahui, namun sejauh ini (hingga Sabtu 15 November 2014 TU) robot pendarat itu dalam kondisi normal. Sejumlah radas ilmiahnya diketahui berfungsi dengan baik. Salah satunya adalah radas MUPUS (Multi Purpose Sensor for Surface and Subsurface Science) yang membawa pasak sehingga akhirnya salah satu kaki Philae bisa tertambat ke tanah setelah pasak berhasil dibenamkan. Radas bor SD2 (drill sample and distribution subsystem) juga berfungsi dan bekerja mengebor hingga kedalaman 23 cm, membuat Philae kian kokoh tertambat. Radas-radas kamera pun berfungsi.

Dari citra-citra yang berhasil dikirimkan diketahui bahwa Philae mendarat di lereng sebuah tebing tinggi di sisi titik B. Ini mendatangkan masalah sangat serius, sebab Philae hanya tersinari cahaya Matahari selama sekitar 1,5 jam saja dari seharusnya 6 jam (periode rotasi intikomet Churyumov-Gerasimenko 12 jam). Akibatnya ia kekurangan sinar Matahari yang mencukupi guna mengisi baterenya lewat panel surya. Tanpa diisi memadai, batere Philae akan kehabisan daya listrik. Problem ini diperparah oleh lokasi titik B yang demikian rupa, sehingga ia baru akan mendapatkan pencahayaan Matahari penuh mulai Agustus 2015 TU mendatang.

Gambar 3. Sekuens citra (foto) yang diambil wahana Rosetta melalui radas kamera NavCam antara sebelum dan sesudah robot Philae menyentuh tanah intikomet Churyumov-Gerasimenko untuk pertama kalinya (12 November 2014 TU pukul 22:33 WIB). Philae menyentuh tanah intikomet tepat di sebelah kiri bongkahan batu besar di tengah citra ini. Philae akhirnya baru benar-benar berlabuh di titik sejauh sekitar 1.000 kilometer dari titik ini setelah melompat (melambung) hingga dua kali. Sumber: ESA, 2014.

Gambar 3. Sekuens citra (foto) yang diambil wahana Rosetta melalui radas kamera NavCam antara sebelum dan sesudah robot Philae menyentuh tanah intikomet Churyumov-Gerasimenko untuk pertama kalinya (12 November 2014 TU pukul 22:33 WIB). Philae menyentuh tanah intikomet tepat di sebelah kiri bongkahan batu besar di tengah citra ini. Philae akhirnya baru benar-benar berlabuh di titik sejauh sekitar 1.000 kilometer dari titik ini setelah melompat (melambung) hingga dua kali. Sumber: ESA, 2014.

Maka dalam kondisi tak tersinari cahaya Matahari mencukupi, Philae bakal berhibernasi di permukaan tanah intikomet Churyumov-Gerasimenko begitu tenaga baterenya sangat menipis. Ini bakal terjadi di sekitar 64 jam pasca berlabuh. Tak menutup kemungkinan Philae bisa mati beku, mengingat permukaan intikomet Churyumov-Gerasimenko demikian dinginnya dengan suhu bervariasi antara minus 68 hingga minus 43 derajat Celcius. Sedangkan pemanas di tubuh Philae bergantung pasokan listrik dari baterenya. Bila misalnya pencahayaan Matahari tidak berubah hingga Agustus 2015 TU mendatang, tenaga listrik yang tersimpan di batere Philae bisa terkuras habis. Pertimbangan politis membuat Philae tak bisa membawa pemanas independen (yang tak tergantung listrik) semisal RHU (radioisotope heater unit) sebagaimana digunakan robot-robot pendarat/penjelajah dari Amerika Serikat. Pertimbangan yang sama juga membuat Philae bergantung sepenuhnya pada cahaya Matahari guna memasok listrik dan mengisi baterenya, ketimbang sumber listrik independen seperti RTG (radioisotope thermoelectric generator). Berhadapan dengan seluruh situasi tak menguntungkan ini, pengendali misi di Darmstadt telah menyiapkan diri untuk mengantisipasi bilamana Sabtu 15 November 2014 TU menjadi hari terakhir Philae dalam kondisi hidup. Pengendali misi telah mengirimkan perintah kepada robot semi-otomatis itu untuk berputar sedikit (hingga 35 derajat) guna memperbesar kemungkinan mengoptimalkan panel suryanya menghadap ke Matahari.

Meski nampaknya bakal berumur singkat, namun robot Philae bersama wahana Rosetta bakal menulis bab baru yang mempertebal buku pengetahuan tata surya kita khususnya bagi salah satu anggota eksotisnya, komet. Lewat radas APXS (Alpha Proton X-ray Spectrometer), kita akan mengetahui komposisi unsur-unsur secara langsung di tanah intikomet. Dengan radas Ptolemy, rasio isotop-isotop stabil dalam substansi mudah menguap (volatil) di tanah komet bisa diketahui. Bagaimana sifat-sifat fisis tanah intikomet bisa terkuak melalui kinerja radas-radas MUPUS dan SD2. Struktur internal intikomet pun bisa diungkap melalui aksi radas CONSERT (COmet Nucleus Sounding Experiment by Radiowave Transmission), dengan mendeteksi gelombang radar yang dipancarkan wahana Rosetta dan dipantulkan oleh internal inti komet. Dan seperti apa karakteristik medan magnet lemah di intikomet beserta interaksinya dengan angin Matahari menjadi subyek penyelidikan radas ROMAP (Rosetta Lander Magnetometer and Plasma Monitor). Serta bagaimana panorama permukaan intikomet Churyumov-Gerasimenko telah diabadikan oleh radas kamera CIVA (Comet Nucleus Infrared and Visible Analyzer) dan ROLIS (Rosetta Lander Imaging System). Seluruh radas tadi telah bekerja dan telah mengirim data-data hasil kerjanya ke Bumi.

Gambar 4. Pemandangan di sekitar titik berlabuhnya Philae di permukaan intikomet Churyumov-Gerasimenko seperti diabadikan radas kamera CIVA. Karena kedudukan Philae miring dengan salah satu kakinya tidak menapak tanah, maka salah satu dari 6 kamera CIVA mengarah ke langit. Ia memperlihatkan butir-butir debu yang beterbangan dari tanah, sebuah ciri khas intikomet. Citra ini pun memperlihatkan betapa Philae mendarat di lokasi yang remang-remang, dengan sinar Matahari hanya terlihat di bagian kanan bawah citra. Sumber: ESA, 2014 dengan label oleh Sudibyo, 2014.

Gambar 4. Pemandangan di sekitar titik berlabuhnya Philae di permukaan intikomet Churyumov-Gerasimenko seperti diabadikan radas kamera CIVA. Karena kedudukan Philae miring dengan salah satu kakinya tidak menapak tanah, maka salah satu dari 6 kamera CIVA mengarah ke langit. Ia memperlihatkan butir-butir debu yang beterbangan dari tanah, sebuah ciri khas intikomet. Citra ini pun memperlihatkan betapa Philae mendarat di lokasi yang remang-remang, dengan sinar Matahari hanya terlihat di bagian kanan bawah citra. Sumber: ESA, 2014 dengan label oleh Sudibyo, 2014.

Butuh waktu berbulan-bulan ke depan bagi para astronom dan geolog keplanetan untuk menganalisis seluruh data yang dikirim Philae tersebut sebelum dipublikasikan. Namun jika dihitung semenjak Juni 2014 TU, yakni semenjak wahana Rosetta mulai mendekati inti komet Churyumov-Gerasimenko hingga sedekat 100 kilometer atau lebih dekat lagi, sejumlah fakta baru yang menarik tentangnya telah terungkap. Benda langit ini terkesan sebagai dua bulatan besar yang melekat menjadi satu membentuk geometri mirip bebek. Bulatan yang kecil berperan sebagai ‘kepala bebek’ yang dimensinya 2,5 km 2,5 km x 2 km. Sedangkan bulatan yang besar membentuk ‘badan bebek’ dan berukuran 4,1 km x 3,2 km x 1,3 km. Antara ‘kepala bebek’ dan ‘badan bebek’ dihubungkan oleh ‘leher’ yang adalah kawasan yang paling aktif mengemisikan gas dan debu di intikomet itu. Akankah bentuk unik ini dikarenakan ia sebagai benda langit kembar dempet (contact binary) ataukah sebagai benda langit biasa (tunggal) yang terpahat bagian tengahnya oleh semburan gas dan debu yang terfokus di sini sampai membentuk ‘leher’, masih menjadi bahan perdebatan.

Rosetta menunjukkan intikomet Churyumov-Gerasimenko bermassa sekitar 10 milyar metrik ton. Namun kerapatannya (massa jenisnya) cukup kecil, yakni hanya 4 gram 0,4 gram dalam setiap sentimeter kubiknya. Maka bila benda langit ini dibawa ke Bumi dan diletakkan dengan hati-hati di perairan Samudera Indonesia (Hindia) ataupun Pasifik, ia akan terapung. Sebagai imbasnya percepatan gravitasi di permukaan intikomet Churyumov-Gerasimenko ini pun sangat kecil. Akibat bentuknya yang mirip bebek, gravitasinya bervariasi di setiap titik di permukaanya. Konsekuensinya kecepatan lepas dari intikomet ini pun kecil, yakni sekitar 40 cm/detik (1,5 km/jam) atau lebih sedikit.

Gambar 5. Geometri intikomet Churyumov-Gerasimenko yang mirip bebek lengkap dengan 'kepala', 'leher' dan 'badan'-nya, berdasarkan observasi wahana Rosetta melalui radas kamerta NavCam. Agilkia terlerak di 'kepala' dan menjadi lokasi yang paling diunggulkan untuk berlabuhnya Philae. Namun tidak berfungsinya dua unit pembantu pendaratan membuat Philae berlabuh di luar dari kawasan ideal ini dan justru kemungkinan berlokasi di lereng tebing terjal sejauh sekitar 1.000 meter dari pusat Agilkia. Sumber: ESA, 2014 dengan label oleh Sudibyo, 2014.

Gambar 5. Geometri intikomet Churyumov-Gerasimenko yang mirip bebek lengkap dengan ‘kepala’, ‘leher’ dan ‘badan’-nya, berdasarkan observasi wahana Rosetta melalui radas kamerta NavCam. Agilkia terlerak di ‘kepala’ dan menjadi lokasi yang paling diunggulkan untuk berlabuhnya Philae. Namun tidak berfungsinya dua unit pembantu pendaratan membuat Philae berlabuh di luar dari kawasan ideal ini dan justru kemungkinan berlokasi di lereng tebing terjal sejauh sekitar 1.000 meter dari pusat Agilkia. Sumber: ESA, 2014 dengan label oleh Sudibyo, 2014.

Morfologi intikomet Churyumov-Gerasimenko terdiri atas lima bagian utama, yakni depresi (cekungan) berskala besar, kawasan terkonsolidasi, kawasan singkapan, kawasan dataran halus dan kawasan rapuh yang tertutupi debu tipis. Kekuatan tarik tanahnya sangat kecil yakni hanya sekitar 20 Pascal. Kolam-kolam material terlihat dimana-mana, mengingatkan pada bentuk gunung lumpur (mud volcano) di Bumi. Terdapat banyak retakan panjang hingga sepanjang ratusan meter, yang diduga terbentuk akibat pemuaian termal. Namun tidak terjadi perubahan bentang lahan di intikomet ini sepanjang kurun Juni hingga Oktober 2014 TU. Ada juga sejumlah bukit pasir, yang nampaknya terbentuk melalui proses saltasi saat debu-debu halus tertiup aliran gas hingga melayang ke satu tempat. Tapi tak ada singkapan/massa es di permukaan tanah intikomet. Bongkahan-bongkahan es hanya terlihat tatkala terjadi tanah longsor di lereng. Dan sebagai ciri khasnya, tanah intikomet Churyumov-Gerasimenko pun melepaskan uap air dalam jumlah jumlah yang dinamis, sebanding dengan jaraknya ke Matahari.

Pada Juni 2014 TU silam, Rosetta mendeteksi intikomet Churyumov-Gerasimenko melepaskan 0,3 liter uap air dalam setiap detiknya. Dua bulan kemudian, yakni Agustus 2014 TU saat komet berjarak 538 juta kilometer (3,6 SA) dari Matahari, uap air yang diproduksi setiap detiknya meningkat menjadi 1 liter. Dan dalam tiga bulan kemudian yakni November 2014 TU, jumlah uap air setiap detiknya melonjak jadi 6 liter, dengan komet berjarak 431 juta kilometer (2,9 SA) dari Matahari. Rosetta juga memperlihatkan produksi uap air ini dipengaruhi oleh kondisi siang ataupun malam di intikomet, dengan produksi uap air di kala siang lebih besar. Uniknya, benda langit ini memiliki albedo 5,3 % atau hanya memantulkan 5,3 % cahaya Matahari yang menerpanya. Dengan demikian intikomet Churyumov-Gerasimenko sama gelapnya dengan batubara ataupun aspal di jalan raya. Ini juga menjadikan benda langit ini sebagai salah satu benda langit tergelap dalam tata surya kita. Sebagai pembanding, Bulan masih memantulkan 12 % cahaya Matahari yang mengenainya sementara Bumi bahkan lebih besar lagi, yakni 30 %.

Perjalanan Panjang

Berlabuhnya Philae menjadi kulminasi dari perjuangan panjang dalam seperempat abad terakhir guna mewujudkannya dari mimpi menjadi nyata. Perjuangan keras itu secara akumulatif melibatkan tak kurang dari 2.000 orang serta terus-menerus berhadapan dengan perubahan konsep, cekaknya anggaran, problem teknis, berbagai penundaan, rute yang kompleks, manuver-manuver yang menyerempet bahaya dan waktu yang panjang dalam mengarungi langit sebelum tiba di tujuan.

Gambar 6. Lintasan kompleks yang harus ditempuh wahana Rosetta dan robot pendarat Philae semenjak diluncurkan dari Bumi hingga tiba di intikomet Churyumov-Gerasimenko. Perjalanan panjang ini menempuh jarak tak kurang dari 7.100 juta kilometer dan memakan waktu tak kurang dari 10,5 tahun. Sumber: ESA, 2014 dengan modifikasi ke bahasa Indonesia oleh Sudibyo, 2014.

Gambar 6. Lintasan kompleks yang harus ditempuh wahana Rosetta dan robot pendarat Philae semenjak diluncurkan dari Bumi hingga tiba di intikomet Churyumov-Gerasimenko. Perjalanan panjang ini menempuh jarak tak kurang dari 7.100 juta kilometer dan memakan waktu tak kurang dari 10,5 tahun. Sumber: ESA, 2014 dengan modifikasi ke bahasa Indonesia oleh Sudibyo, 2014.

Semula ESA merancang misi antariksa ke komet sebagai program yang lebih ambisius, yakni pergi ke intikomet lantas mengebor tanahnya untuk mengambil sampel dan membawanya pulang kembali ke Bumi sehingga sampel tersebut bisa dianalisis leluasa. Namun pada 1993 TU ambisi ini berbenturan dengan terbatasnya dana. Sementara di seberang Samudera Atlantik badan antariksa Amerika Serikat (NASA) yang sedang mengembangkan misi antariksa sejenis di bawah tajuk CRAF (Comet Rendezvous Asteroid Flyby) bahkan memutuskan untuk membatalkan rencananya, juga atas alasan terbatasnya dana. Situasi ini memaksa ESA mengubah desain misi antariksanya secara radikal, sehingga hanya akan mendarat dan menganalisis sampel di tempat (in-situ) saja. Mulai saat inilah misi tersebut menemukan bentuknya dan diberi nama Rosetta, mengacu pada prasasti berhuruf hiroglif yang ditemukan di kota Rosetta (Mesir) dan menjadi kunci terpenting guna memahami peradaban Mesir Kuno. Sementara robot pendaratnya diberi nama Philae, yang merujuk pada nama sebuah pulau kecil di tengah-tengah Sungai Nil, di kompleks Bendungan Aswan, yang kaya akan bangunan-bangunan purbakala era Mesir Kuno namun kini sudah terendam air. Jauh kemudian hari, sebuah titik di intikomet dimana Philae direncanakan hendak berlabuh pun diberi nama Agilkia/Agilika, berdasarkan nama sebuah pulau kecil di dekat pulau Philae yang menjadi tempat bangunan-bangunan kuno dari pulau Philae dipindahkan dan direkonstruksi.

Masalah berikutnya yang menghantam Rosetta adalah bencana yang menimpa roket Ariane 5 pada 11 Desember 2002 TU, saat roket jumbo ini terpaksa diledakkan kala terbang hingga ketinggian 69 km akibat gangguan mesin. Padahal roket ini yang akan mengantar Rosetta menuju orbit Bumi pada 12 Januari 2003 TU. Akibatnya peluncuran Rosetta terpaksa ditunda hingga dua kali guna memastikan masalah yang menghinggapi Ariane 5 bisa dibereskan. Penundaan ini memaksa pengendali misi mengubah sasaran Rosetta dari semula komet Wirtanen (46P) menjadi komet Churyumov-Gerasimenko (67P), dengan waktu berlabuh pun berubah dari semula 2011 TU menjadi 2014 TU.

Gambar 7. Wajah intikomet Churyumov-Gerasimenko dari dekat khususnya pada kawasan 'leher'-nya, diabadikan oleh wahana Rosetta dengan radas kamera Osiris yang beresolusi tinggi. Nampak tebing curam dengan garis-garis paralel membatasi 'kepala' dengan 'leher.' Garis-garis tersebut adalah retakan dan diduga merupakan kekar kolom. Didasarnya terdapat kolam-kolam material yang mengesankan menyerupai tumpukan sedimen gunung lumpur (mud volcano) di Bumi. Sumber: ESA, 2014.

Gambar 7. Wajah intikomet Churyumov-Gerasimenko dari dekat khususnya pada kawasan ‘leher’-nya, diabadikan oleh wahana Rosetta dengan radas kamera Osiris yang beresolusi tinggi. Nampak tebing curam dengan garis-garis paralel membatasi ‘kepala’ dengan ‘leher.’ Garis-garis tersebut adalah retakan dan diduga merupakan kekar kolom. Didasarnya terdapat kolam-kolam material yang mengesankan menyerupai tumpukan sedimen gunung lumpur (mud volcano) di Bumi. Sumber: ESA, 2014.

Wahana Rosetta dan robot pendarat Philae akhirnya terbang ke langit dengan digendong roket Ariane 5 pada 2 Maret 2004 TU, setahun lebih telat dari jadwal semula. Awalnya menempati orbit lonjong dengan perigee 200 km dan apogee 4.000 km, mesin roket pendorong lantas dinyalakan penuh yang membawa Rosetta keluar dari pengaruh gravitasi Bumi. Namun kecepatannya tidaklah cukup untuk menjangkau komet Churyumov-Gerasimenko. Rosetta harus bolak-balik di antara Bumi dan Mars guna memperoleh tambahan kecepatan dengan memanfaatkan gravitasi kedua planet tersebut, dimana Rosetta layaknya dilontarkan dari ketapel dan melesat lebih cepat tanpa harus menyalakan mesin roketnya. Rosetta harus lewat di dekat Bumi hingga tiga kali (masing-masing 4 Maret 2005 TU, 13 November 2007 TU dan 13 November 2009 TU) serta sekali di dekat Mars (25 Februari 2007 TU). Barulah selepas perlintasan dekat Bumi-nya yang ketiga, Rosetta menyusuri orbit yang langsung mengantarnya ke komet Churyumov-Gerasimenko. Saat itu Rosetta mendapatkan tambahan kecepatan 13.000 km/jam dan telah menempuh 4.500 juta kilometer dari 7.100 juta kilometer jarak yang harus direngkuhnya untuk tiba di tujuan.

Pada 7 Mei 2014 TU silam, saat tinggal berjarak 2 juta kilometer saja dari intikomet Churyumov-Gerasimenko, kecepatan relatif Rosetta terhadap sang komet masih sebesar 775 meter/detik (2.790 km/jam). Mulailah Rosetta menyalakan mesin roketnya yang diposisikan berlawanan dengan arah gerak Rosetta, sehingga kecepatannya melambat. Secara keseluruhan Rosetta menyalakan dan mematikan mesin roketnya secara berulang-ulang hingga 8 kali, sehingga pada 23 Juli 2014 TU kecepatan relatifnya terhadap intikomet tinggal 7,9 meter/detik (28,5 km/jam) dengan jarak tinggal 4.000 km. Pengereman terakhir berlangsung pada 6 Agustus 2014 TU, sehingga kecepatan relatif Rosetta tinggal 1 meter/detik (3,6 km/jam) terhadap intikomet dengan jarak tinggal 100 km.

Gambar 8. Ukuran intikomet Churyumov-Gerasimenko jika dibandingkan dengan sebagian bentang lahan Jakarta. Bila komet ini dianggap bisa 'diapungkan' di atas pesisir utara Jakarta dan dipandang dari arah puncak Monumen Nasional. Dengan panjang 4 kilometer, maka praktis intikomet ini telah menutupi segenap kawasan Ancol. Sumber: Mutoha Arkanuddin, 2014.

Gambar 8. Ukuran intikomet Churyumov-Gerasimenko jika dibandingkan dengan sebagian bentang lahan Jakarta. Bila komet ini dianggap bisa ‘diapungkan’ di atas pesisir utara Jakarta dan dipandang dari arah puncak Monumen Nasional. Dengan panjang 4 kilometer, maka praktis intikomet ini telah menutupi segenap kawasan Ancol. Sumber: Mutoha Arkanuddin, 2014.

Meski kini Philae telah terlelap dalam hibernasinya dan bahkan berkemungkinan akan tertidur hingga mati, namun Rosetta akan terus melanjutkan penyelidikannya hingga setahun mendatang. Wahana ini akan terus mengawal intikomet Churyumov-Gerasimenko hingga setahun ke depan sembari memonitor segala perubahan di sang intikomet kala ia terus mendekat ke Matahari hingga melintasi titik perihelionnya.

Tulisan sebelumnya.

Mission Impossible, Mendarat di Inti Komet.

Inti Komet yang Mirip Bebek.

Mengedari Busa Padat Kosmik, Jelang Rosetta Mendarat di Komet Churyumov-Gerasimenko.

Referensi :

Lakdawalla. 2014. Report from Darmstadt: Philae Status and Early Rosetta Results from DPS. Planetary.org, 11 November 2014.

Amos. 2014. Rosetta: Battery Will Limit Life of Philae Comet Lander. BBC News, 13 November 2014.

ESA. 2014. Rosetta, Press Kit 12 November 2014 Landing on a Comet.

Bila Mars Diterpa Badai Meteor Spektakuler

Ia berdiri di tempat yang tepat di permukaan planet Mars pada Minggu 19 Oktober 2014 Tarikh Umum (TU) lalu, tentu saja dengan peralatan pendukung kehidupan yang memadai. Begitu Matahari merembang petang, segera ia dibuat terkesiap oleh pemandangan menakjubkan di langit Mars. Ada sebintik cahaya yang taktegas namun terang, lebih benderang ketimbang planet Venus yang pernah disaksikannya saat dilihat dari Bumi. Begitu langit kian menggelap, badai seakan-akan mengguyur dari langit. Namun bukan air yang dicurahkan darinya, melainkan titik-titik cahaya yang melesat cepat saling berkejaran dan susul menyusul sebagai meteor demi meteor. Ribuan meteor seakan membanjir langit malam Mars saat itu dalam setiap jamnya. Dalam beberapa jam kemudian badai meteor ini mereda. Namun di hari berikutnya, kala Matahari kembali terbenam di tempatnya berdiri, langit Mars menyajikan pemandangan menakjubkan lainnya dalam rupa cahaya kekuning-kuningan aneh yang menyemburat di ufuk. Ini mirip dengan panorama semburat cahaya senja yang tak biasa di Bumi, yang pernah terdokumentasikan pasca letusan dahsyat gunung berapi seperti Letusan Krakatau 1883 dan Letusan Pinatubo 1991.

Gambar 1. Sebuah ilustrasi dari Robert King yang menggambarkan langit malam Mars di lokasi pendaratan robot Curiosity dipenuhi ribuan meteor perjamnya sebagai imbas dari melintas-dekatnya komet Siding-Spring. Badai meteor tersebut memang sungguh-sungguh terjadi, namun tak ada seorang pun yang berkesempatan menyaksikannya. Sumber: King, 2014.

Gambar 1. Sebuah ilustrasi dari Robert King yang menggambarkan langit malam Mars di lokasi pendaratan robot Curiosity dipenuhi ribuan meteor perjamnya sebagai imbas dari melintas-dekatnya komet Siding-Spring. Badai meteor tersebut memang sungguh-sungguh terjadi, namun tak ada seorang pun yang berkesempatan menyaksikannya. Sumber: King, 2014.

Narasi di atas separuhnya fiktif. Hingga kini belum ada satupun manusia yang pernah didaratkan di planet Mars. Langkah menuju ke sana pun masih jauh. Planet Mars memang menjadi target eksplorasi antariksa masa kini yang paling seksi. Tapi sejauh ini umat manusia lebih suka mengirimkan wahana takberawak yang mengedari planet ini, ataupun robot penjelajah yang menyusuri daratan berdebu di permukaannya. Meski kemampuannya terbatas, eksplorasi Mars model ini menelan biaya jauh lebih murah dan memiliki durasi jauh lebih lama ketimbang mendaratkan sesosok manusia di Mars. Maka hingga saat ini impian umat manusia untuk melangkahkan kakinya di daratan planet Mars masih sebatas angan.

Gambar 2. Komet Siding-Spring dan planet Mars dalam warna nyata, diabadikan dari observatorium Imah Noong oleh astronom amatir Muflih Arisa Adnan dalam 18 jam pasca komet mencapai titik terdekatnya ke planet Mars. Komet ditandai dengan panah, sementara Mars adalah obyek sangat terang di kiri atas bidang foto. Sumber: Imah Noong, 2014.

Gambar 2. Komet Siding-Spring dan planet Mars dalam warna nyata, diabadikan dari observatorium Imah Noong oleh astronom amatir Muflih Arisa Adnan dalam 18 jam pasca komet mencapai titik terdekatnya ke planet Mars. Komet ditandai dengan panah, sementara Mars adalah obyek sangat terang di kiri atas bidang foto. Sumber: Imah Noong, 2014.

Namun sebagian narasi tersebut adalah fakta. Planet ini memang baru saja diguyur meteor-meteor dalam jumlah teramat banyak hingga mencapai ribuan per jamnya dalam sebuah kejadian badai meteor. Tak ada seorang pun yang sempat menyaksikan peristiwa ini. Pun demikian wahana-wahana takberawak penyelidik Mars yang masih aktif seperti Mars Odyssey, Mars Reconaissance Orbiter (MRO), Mars Express, Mars Atmosphere and Volatile Evolution (MAVEN) maupun Manglayaan/Mars Orbiter Mission (MOM). Juga robot-robot penjelajah aktif di Mars seperti Opportunity (Mars Exploration Rover-B) dan Curiosity (Mars Science Laboratory). Memang tak satupun dari mereka yang menyaksikan secara langsung apalagi memfoto (mencitra) kilatan cahaya meteor di langit Mars saat itu. Sebaliknya beberapa dari mereka, khususnya wahana MAVEN, MRO dan Mars Express, menyajikan bukti tak langsung yang berlimpah akan peristiwa badai meteor ini.

Gambar 3. Komet Siding-Spring dan planet Mars, diabadikan saat komet mencapai titik terdekatnya ke planet merah itu oleh teleskop antariksa Hubble melalui kamera WFPC-3 (Wide Field & Planetary Camera-3) dan UVIS (Ultraviolet Imaging Spectograph). Pada saat itu Mars sesungguhnya 10.000 kali lebih terang dibanding sang komet, sehingga citra ini dibuat lewat dua observasi berbeda pada panjang gelombang 7.750 Angstrom (komet) serta 4.100 dan 6.730 Angstrom (Mars) untuk digabungkan secara digital sebagai citra komposit. Sumber: NASA, 2014.

Gambar 3. Komet Siding-Spring dan planet Mars, diabadikan saat komet mencapai titik terdekatnya ke planet merah itu oleh teleskop antariksa Hubble melalui kamera WFPC-3 (Wide Field & Planetary Camera-3) dan UVIS (Ultraviolet Imaging Spectograph). Pada saat itu Mars sesungguhnya 10.000 kali lebih terang dibanding sang komet, sehingga citra ini dibuat lewat dua observasi berbeda pada panjang gelombang 7.750 Angstrom (komet) serta 4.100 dan 6.730 Angstrom (Mars) untuk digabungkan secara digital sebagai citra komposit. Sumber: NASA, 2014.

Inilah badai meteor yang disebabkan oleh melintasnya komet Siding-Spring (C/2013 A1). Sang komet melintas hingga jarak yang teramat dekat ke planet Mars, setidaknya dalam skala astronomi. Yakni hanya 131.800 kilometer di atas paras planet merah itu. Badai meteor tersebut sungguh spektakuler. Di Bumi kejadian tersebut hanya hanya bisa disebandingkan dengan badai meteor Leonids 1866 dengan tak kurang dari 5.000 meteor mengerjap di langit malam dalam setiap jamnya.

Debu dan Ion

Kala pada Jumat 7 November 2014 TU lalu memublikasikan hasil awal sejumlah wahana penyelidik dan robot penjelajah Mars-nya yang khusus memonitor ‘duet maut’ planet Mars dan komet Siding-Spring, badan antariksa Amerika Serikat (NASA) menyebut komet Siding-Spring ternyata menyemburkan debu dan kerikil dalam jumlah lebih banyak ketimbang semula diduga. Partikel debu dan kerikil komet yang memasuki atmosfer Mars saja minimal berjumlah hingga beberapa ton. Debu dan kerikil yang disemburkan komet itu memiliki ukuran beragam, seperti diperlihatkan oleh radas spektrometer CRISM yang ditenteng wahana MRO. Secara umum mereka berukuran mulai dari sekecil 1/1.000 milimeter hingga sebesar 10 milimeter. Meski mengguyur sangat intensif, namun seluruh wahana penyelidik NASA, juga milik NASA dan India, tetap berfungsi normal. Inilah buah keberhasilan dari strategi ‘menyembunyikan’ semua wahana di hemisfer Mars yang berbeda kala komet mencapai titik terdekatnya.

Gambar 4. Dua jenis partikel berbeda ukuran yang disemburkan komet Siding-Spring sebagaimana dicitrakan oleh radas spektrometer CRISM di wahana MRO, masing-masing dalam warna merah dan biru. Komet ini menghamburkan partikel seukuran debu 1/1.000 milimeter hingga kerikil sebesar 10 milimeter. Sumber: NASA, 2014.

Gambar 4. Dua jenis partikel berbeda ukuran yang disemburkan komet Siding-Spring sebagaimana dicitrakan oleh radas spektrometer CRISM di wahana MRO, masing-masing dalam warna merah dan biru. Komet ini menghamburkan partikel seukuran debu 1/1.000 milimeter hingga kerikil sebesar 10 milimeter. Sumber: NASA, 2014.

Dengan beberapa ton debu dan kerikil komet memasuki atmosfer Mars, maka timbul meteor dalam jumlah yang sangat besar. Adanya meteor dalam jumlah spektakuler pada saat bersamaan menjadikan peristiwa itu memiliki kualifikasi sebagai badai meteor, jenis hujan meteor yang tergolong amat langka. Meski sangat intensif, badai meteor dalam ‘duet maut’ komet Siding-Spring dan planet Mars ini hanya terjadi selama beberapa jam saja. Meteor yang berasal dari debu tergerus menjadi bubuk di lapisan udara Mars yang lebih tinggi. Sebaliknya meteor yang berasal dari kerikil akan menembus lebih jauh ke dalam atmosfer Mars, namun pada akhirnya hancur tergerus juga di ketinggian. Sebagai hasilnya maka udara Mars pun ketambahan partikel-partikel debu mikroskopis. Awalnya mereka terserak di sepanjang lintasan tiap meteor, namun arus-arus udara menjadikan debu-debu mikroskopis ini tersebar ke segenap penjuru dalam selimut udara Mars.

Wahana MAVEN melalui radas (instrumen) spektroskop ultraungu (IUVS) serta spektrometer gas netral dan ion (NGIMS) berhasil mendeteksi eksistensi debu mikroskopis ini kala bermanuver ‘mencicipi’ lapisan atas atmosfer Mars pasca perlintasan dekat komet Siding-Spring. Wahana MAVEN memang dirancang bisa menyusuri orbit sangat lonjong sehingga ia berkemampuan lewat di dalam lapisan atmosfer atas Mars yang kandungan udaranya sangat tipis. Dengan cara ini MAVEN melalui radas-radasnya dapat memerikan (mendeskripsikan) komposisi atmosfer atas Mars secara langsung pada saat itu. Sehingga dinamikanya dari waktu ke waktu dapat diketahui.

Gambar 5. Delapan jenis atom logam beserta isotop-isotopnya yang berhasil dideteksi di udara Mars oleh wahana MAVEN pasca perlintasan dekat komet Siding-Spring. Normalnya logam-logam ini tidak ada dalam atmosfer Mars. Seluruh atom logam ini menghilang dari udara Mars sekitar 24 jam setelah perlintasan dekat sang komet. Sumber: NASA, 2014.

Gambar 5. Delapan jenis atom logam beserta isotop-isotopnya yang berhasil dideteksi di udara Mars oleh wahana MAVEN pasca perlintasan dekat komet Siding-Spring. Normalnya logam-logam ini tidak ada dalam atmosfer Mars. Seluruh atom logam ini menghilang dari udara Mars sekitar 24 jam setelah perlintasan dekat sang komet. Sumber: NASA, 2014.

Jejak debu mikroskopis yang terbentuk dari badai meteor Siding-Spring ini diendus wahana MAVEN lewat lonjakan kadar atom-atom logam tertentu. Pasca mendekatnya komet Siding-Spring hingga berbelas jam kemudian, MAVEN mendeteksi keberadaan logam-logam Natrium, Kalium, Mangan, Nikel, Magnesium, Kromium, Besi dan Seng di udara Mars. Normalnya logam-logam tersebut tidak ada dalam atmosfer Mars. Di antara kedelapan logam itu, Magnesium adalah yang paling berlimpah disusul dengan Besi. Baik Magnesium maupun Besi merupakan atom logam yang umum dijumpai dalam meteorit, sehingga memperkuat kesimpulan bahwa logam-logam tersebut hadir di udara Mars lewat meteor-meteor Siding-Spring. Menariknya, kedelapan logam ini menghilang dari udara Mars hanya dalam waktu sekitar 24 jam setelah komet Siding-Spring melintas dekat. Fenomena ini berbeda dengan di Bumi kita, yang mengindikasikan bahwa proses-proses kimiawi yang bekerja dalam atmosfer Mars berbeda dengan di Bumi.

Gambar 6. Atas: spektrum atmosfer Mars yang diindra radas IUVS wahana MAVEN antara sebelum dan sesudah perlintasan dekat komet Siding-Spring. Sebelum komet melintas, kurva spektrumnya diberi warna biru. Sementara setelah komet melintas, kurva spektrumnya diwarnai merah. Nampak kedua kurva nyaris berimpit, kecuali pada sejumlah puncak dengan dua diantaranya menunjukkan kehadiran logam Magnesium dan Besi dari komet Siding-Spring. Bawah: Sebaran ion-ion Magnesium dalam udara Mars pasca perlintasan dekat komet Siding-Spring seperti diindra wahana MAVEN. Sumber: NASA, 2014.

Gambar 6. Atas: spektrum atmosfer Mars yang diindra radas IUVS wahana MAVEN antara sebelum dan sesudah perlintasan dekat komet Siding-Spring. Sebelum komet melintas, kurva spektrumnya diberi warna biru. Sementara setelah komet melintas, kurva spektrumnya diwarnai merah. Nampak kedua kurva nyaris berimpit, kecuali pada sejumlah puncak dengan dua diantaranya menunjukkan kehadiran logam Magnesium dan Besi dari komet Siding-Spring. Bawah: Sebaran ion-ion Magnesium dalam udara Mars pasca perlintasan dekat komet Siding-Spring seperti diindra wahana MAVEN. Sumber: NASA, 2014.

Selain dari komposisi logam-logamnya, eksistensi debu mikroskopis meteor-meteor Siding-Spring juga terendus melalui ion-ionnya. Benturan dengan sesamanya dan dengan molekul-molekul udara Mars yang ditambah rejaman sinar dan angin Matahari membuat atom-atom dalam partikel debu mikroskopis tersebut terionisasi. Terbentuklah ion-ion positif dan elektron-elektron bebas khususnya pada ketinggian 100 hingga 400 kilometer dari paras Mars. Normalnya lapisan udara Mars di ketinggian tersebut memang mengandung ion-ion yang membentuk ionosfer Mars. Namun begitu radar yang ditenteng wahana MRO dan Mars Express berhasil merekam adanya lapisan tambahan dalam ionosfer Mars, yang hanya bisa dideteksi lewat gelombang radio berfrekuensi sangat rendah. Lapisan tambahan ini muncul sekitar 7 jam pasca komet Siding-Spring melintas dekat planet merah itu dan bertahan hingga berbelas jam kemudian untuk kemudian lenyap. Dapat dipastikan lapisan tambahan yang temporer dalam ionosfer Mars ini adalah ion-ion dalam debu-debu mikroskopis dari meteor-meteor Siding-Spring.

Sepanjang debu mikroskopis ini masih berada di udara Mars, ia mengemisikan cahaya berwarna kekuning-kuningan tatkala tersinari Matahari. Cahaya ini berasal dari atom-atom Natrium yang tereksitasi. Di siang hari ia tak kelihatan, kalah jauh dengan benderangnya cahaya Matahari. Namun begitu sang surya menuju ke peraduannya di balik cakrawala, semburat cahaya kekuning-kuningan ini pun mulai terlihat dan mendominasi langit hingga beberapa lama. Gemerap cahaya kekuning-kuningan yang mewarnai langit Mars di dekat cakrawala inilah yang nampaknya menjadi penyebab mengapa robot Curiosity tidak bisa mencitra komet Siding-Spring dengan leluasa. Padahal robot penjelajah ini berada di tempat terbaik untuk mengabadikan sang komet.

Gambar 7. Komet Siding-Spring diabadikan dari robot penjelajah Curiosity (Mars Science Laboratory) pada saat komet mencapai titik terdekatnya ke Mars. Meski berada di tempat terbaik, namun Curiosity nyaris gagal mengamati komet ini (tanda panah, diperbesar dalam kotak). Kemungkinan semburat cahaya kekuning-kuningan yang merajai langit Mars, yang bersumber dari debu-debu mikroskopis meteor Siding-Spring, membuat langit tetap benderang meski Matahari telah terbenam. Sumber: NASA, 2014.

Gambar 7. Komet Siding-Spring diabadikan dari robot penjelajah Curiosity (Mars Science Laboratory) pada saat komet mencapai titik terdekatnya ke Mars. Meski berada di tempat terbaik, namun Curiosity nyaris gagal mengamati komet ini (tanda panah, diperbesar dalam kotak). Kemungkinan semburat cahaya kekuning-kuningan yang merajai langit Mars, yang bersumber dari debu-debu mikroskopis meteor Siding-Spring, membuat langit tetap benderang meski Matahari telah terbenam. Sumber: NASA, 2014.

Kesempatan Unik

Selain berhasil mengungkap adanya badai meteor spektakuler di Mars, karakteristik komet Siding-Spring kini pun telah diketahui lebih baik. Lewat radas kamera HiRISE yang ditenteng wahana MRO dan sanggup menyajikan citra beresolusi tinggi, diketahui bahwa inti komet Siding-Spring berotasi pada sumbunya dengan periode rotasi sekitar 8 jam. Sehingga sehari semalam di inti komet ini hanya berlangsung selama 8 jam saja. Namun tidak demikian dengan ukuran sang inti komet. Sebelumnya NASA cukup percaya diri dengan menyebut dimensi inti komet Siding-Spring berkisar 400 meter atau kurang (dari terkaan semula 700 meter berdasarkan observasi berbasis teleskop antariksa Swift). Namun kini tidak demikian. Diameter inti komet ini tak bisa ditentukan dengan pasti seiring pekatnya debu dan kerikil yang menyelimutinya, namun diperkirakan antara 300 hingga 1.200 meter.

Gambar 8. Inti komet Siding-Spring diabadikan kamera resolusi tinggi Hi-RISE di wahana MRO dalam kesempatan berbeda di sekitar saat-saat komet mencapai titik terdekatnya dengan planet Mars. Dari sekuensi citra ini diketahui komet berotasi dengan periode 8 jam. Namun ukuran inti komet belum bisa ditentukan dengan pasti, hanya diperkirakan antara 300 hingga 1.200 meter. SUmber: NASA, 2014.

Gambar 8. Inti komet Siding-Spring diabadikan kamera resolusi tinggi Hi-RISE di wahana MRO dalam kesempatan berbeda di sekitar saat-saat komet mencapai titik terdekatnya dengan planet Mars. Dari sekuensi citra ini diketahui komet berotasi dengan periode 8 jam. Namun ukuran inti komet belum bisa ditentukan dengan pasti, hanya diperkirakan antara 300 hingga 1.200 meter. SUmber: NASA, 2014.

Para astronom masih akan melanjutkan analisis mereka berbasis data-data yang diproduksi para wahana dan robot penjelajah Mars ini selama observasi komet Siding-Spring. Hasilnya mungkin akan dipublikasikan dalam beberapa bulan mendatang dan bakal menambah pengetahuan kita tentang salah satu benda langit unik anggota tata surya ini. Namun yang istimewa, melintas-dekatnya komet Siding-Spring ke planet Mars menjadikan umat manusia untuk pertama kalinya (dan secara tak terduga) mampu mengeksplorasi sebuah komet yang datang dari wilayah paling pinggir dalam tata surya kita: awan komet Opik-Oort.

Referensi :

King. 2014. Spectacular Meteor Storm Lights up Mars during Recent Comet Flyby. AstroBob.

Menembus Batas, Mengamati Komet Siding-Spring dari Indonesia

Peristiwa langka itu pun terjadilah. Komet Siding-Spring (C/2013 A1) akhirnya lewat juga di titik terdekatnya ke planet Mars pada Senin dinihari 20 Oktober 2014 Tarikh Umum (TU) waktu Indonesia. Observasi dari sekujur penjuru Bumi selama hari-hari menjelang peristiwa langka ini secara substansial telah menambahkan jumlah data posisi komet. Sehingga orbit komet dapat diperhitungkan dengan tingkat ketelitian jauh lebih baik. Sebagai implikasinya waktu saat sang komet tiba di titik terdekatnya ke planet merah pun sedikit mengalami revisi dari semula pukul 01:29 WIB menjadi 01:27 WIB atau dua menit lebih awal.

Gambar 1. Duet komet Siding-Spring dan planet Mars, diabadikan dari observatorium Imah Noong, Lembang, Kab. Bandung Barat (Jawa Barat) pada dua kesempatan berbeda menggunakan radas yang sama yakni teleskop refraktor Explore Scientific Triplet Apo 80 mm (f-ratio 6) dan kamera Nikon D5100 pada ISO 400. Inilah satu-satunya citra duet komet Siding-Spring dan planet Mars yang diabadikan dari Indonesia, di luar Observatorium Bosscha. Sumber: Imah Noong, 2014 diabadikan oleh Muflih Arisa Adnan & dilabeli oleh Muh. Ma'rufin Sudibyo.

Gambar 1. Duet komet Siding-Spring dan planet Mars, diabadikan dari observatorium Imah Noong, Lembang, Kab. Bandung Barat (Jawa Barat) pada dua kesempatan berbeda menggunakan radas yang sama yakni teleskop refraktor Explore Scientific Triplet Apo 80 mm (f-ratio 6) dan kamera Nikon D5100 pada ISO 400. Inilah satu-satunya citra duet komet Siding-Spring dan planet Mars yang diabadikan dari Indonesia, di luar Observatorium Bosscha. Sumber: Imah Noong, 2014 diabadikan oleh Muflih Arisa Adnan & dilabeli oleh Muh. Ma’rufin Sudibyo.

Peristiwa langit yang disebut-sebut sebagai peristiwa teramat langka yang belum tentu terulang kembali dalam ratusan atau bahkan ribuan tahun mendatang ini pun berlangsung relatif mulus. Sejumlah wahana antariksa aktif milik NASA (Amerika Serikat) di Mars, mulai dari si veteran Mars Odyssey dan Mars Reconaissance Orbiter hingga Mars Atmosphere and Volatile Environment (MAVEN) yang baru datang dilaporkan dalam keadaan sehat. Pun demikian wahana antariksa milik ESA (gabungan negara-negara Eropa) dan India, masing-masing Mars Express dan Manglayaan/Mars Orbiter Mission. Tak satupun dari kelimanya yang mengalami gangguan oleh semburan partikel-partikel debu berkecepatan sangat tinggi dari sang komet. Rupanya strategi penyelamatan yang telah diperbincangkan selama berbulan-bulan dan mencapai kulminasinya pada workshop Juni 2014 TU silam meraih suksesnya. Kala komet Siding-Spring melintasi titik terdekatnya ke planet Mars, seluruh wahana antariksa tersebut telah bermanuver demikian rupa menggunakan cadangan bahan bakar roketnya. Sehingga mereka semua berlindung di balik tubuh planet Mars tatkala memasuki saat-saat kritis.

Sembari bermanuver melindungi diri, mereka juga sempat mengamati komet Siding-Spring dari jarak dekat. Ini adalah kesempatan teramat langka yang setaraf nilainya dengan misi-misi antariksa terdahulu yang memang khusus ditujukan ke komet. Apalagi komet Siding-Spring merupakan komet yang diindikasikan berasal dari tepi tata surya, yakni dari awan komet Opik-Oort yang demikian besar dan dipenuhi oleh bayi-bayi komet yang siap melejit. Indikasi tersebut terlihat dari orbit komet ini yang begitu lonjong, dengan jarak rata-rata ke Matahari (setengah sumbu orbit) demikian besar hingga jauh melampaui benda langit anggota tata surya lainnya (kecuali komet) yang telah kita kenal. Karena orbitnya demikian rupa maka tak mengherankan bila periodenya amat sangat panjang. Komet Siding-Spring butuh waktu berjuta-juta tahun lamanya guna mengelilingi Matahari sekali putaran. Ia menghabiskan hampir seluruh waktunya melata di kegelapan tepian tata surya kita yang dingin membekukan. Karena itu peristiwa duet komet Siding-Spring dan planet Mars memberikan keberuntungan kosmik yang memungkinkan manusia menyelidiki sebuah komet dari awan komet Opik-Oort secara mendetail, untuk pertama kalinya. Seluruh misi antariksa ke komet terdahulu hanyalah ditujukan ke komet-komet yang berasal dari lingkungan lebih dekat ke kawasan planet-planet, yakni dari sabuk Kuiper-Edgeworth. Komet-komet dari sabuk yang mirip sabuk asteroid ini dikenal sebagai komet berperiode pendek dan berkecepatan jauh lebih rendah sehingga lebih mudah dijangkau.

Gambar 2. Komet Siding-Spring diamati dari jarak 138.000 kilometer oleh wahana Mars Reconaissance Orbiter. Setiap piksel citra ini mewakili 138 meter. Bagian terterang yang mengindikasikan inti komet dalam citra ini hanya mencakup area tiga piksel, menandakan bahwa inti komet Siding-Spring mungkin hanya berukuran 400 meter saja atau separuh lebih kecil dari yang semula diduga. Sumber: NASA, 2014.

Gambar 2. Komet Siding-Spring diamati dari jarak 138.000 kilometer oleh wahana Mars Reconaissance Orbiter. Setiap piksel citra ini mewakili 138 meter. Bagian terterang yang mengindikasikan inti komet dalam citra ini hanya mencakup area tiga piksel, menandakan bahwa inti komet Siding-Spring mungkin hanya berukuran 400 meter saja atau separuh lebih kecil dari yang semula diduga. Sumber: NASA, 2014.

Sejauh ini baru wahana Mars Reconaissance Orbiter yang sudah melaporkan hasil observasinya. Ia mengamati komet Siding-Spring pada jarak 138.000 kilometer dan menyajikan gambaran lebih utuh akan komet itu. Jika semula kita menduga ukuran inti komet siding-Spring sekitar 700 meter, maka kini lewat Mars Reconaissance Orbiter kita tahu ukurannya lebih kecil lagi, yakni berkisar 400 meter atau kurang. Komet yang cemerlang dengan inti komet relatif kecil menunjukkan bahwa komet Siding-Spring ternyata lebih aktif dibanding yang semula diduga. Sehingga menguatkan dugaan bahwa komet ini memang baru pertama kali berkunjung tata surya bagian dalam setelah dihentakkan keluar dari kungkungan awan komet Opik-Oort dalam berjuta tahun silam. Selain wahana Mars Reconaissance Orbiter, salah satu robot penjelajah aktif di Mars juga menyajikan hasil observasi yang positif akan komet itu. Adalah Opportunity (Mars Exploration Rover-B), robot penjelajah veteran yang telah lebih dari satu dekade ‘hidup’ di Mars, yang berhasil mengamati komet Siding-Spring tinggi di langit Mars. Ia mencitra lewat radas PanCam (Panoramic Camera), sepasang lensa kamera berdiameter 2,15 mm dengan f-ratio 20 yang sejatinya tidak dirancang untuk mengamati benda langit dari permukaan Mars. Di luar dugaan, ternyata ia mampu mengabadikan komet Siding-Spring dengan baik.

Gambar 3. Komet Siding-Spring diamati dari permukaan planet Mars oleh radas PanCam pada robot penjelajah Opportunity dengan waktu penyinaran 50 detik. Citra ini dibuat dalam 2,5 jam sebelum sang komet mencapai titik terdekatnya ke planet merah itu. Komet nampak cemerlang dibanding beberapa bintang terang yang ada dilatarbelakangnya. Inilah untuk pertama kalinya sebuah komet berhasil diamati dari permukaan planet lain. Sumber: NASA, 2014 dilabeli oleh Muh. Ma'rufin Sudibyo.

Gambar 3. Komet Siding-Spring diamati dari permukaan planet Mars oleh radas PanCam pada robot penjelajah Opportunity dengan waktu penyinaran 50 detik. Citra ini dibuat dalam 2,5 jam sebelum sang komet mencapai titik terdekatnya ke planet merah itu. Komet nampak cemerlang dibanding beberapa bintang terang yang ada dilatarbelakangnya. Inilah untuk pertama kalinya sebuah komet berhasil diamati dari permukaan planet lain. Sumber: NASA, 2014 dilabeli oleh Muh. Ma’rufin Sudibyo.

Selain dari wahana dan robot penjelajah di Mars, citra-citra duet komet Siding-Spring dan planet Mars dari berbagai observatorium atau titik pengamatan di sekujur penjuru Bumi pun membanjiri linimasa media sosial. Nah adakah yang berasal dari Indonesia?

Menembus Batas

Beberapa titik pengamatan di Indonesia telah menyiapkan diri dalam menyambut duet komet Siding-Spring dan planet Mars yang langka ini. Antara lain Observatorium Bosscha di Lembang, Bandung Barat (Jawa Barat), observatorium pribadi Imah Noong di Kampung wisata Areng (juga di Lembang) dan observatorium pribadi Jogja Astro Club di Yogyakarta (DIY).

Persiapan pengamatan duet komet Siding-Spring dan planet Mars di observatorium Imah Noong telah dikerjakan semenjak beberapa waktu sebelumnya oleh astronom amatir Muflih Arisa Adnan. Imah Noong adalah observatorium pribadi yang berlokasi di kediaman Hendro Setyanto, astronom yang pernah bertugas di Observatorium Bosscha. Ia terletak di kampung wisata Areng, desa Wangunsari, Lembang, Kab, Bandung Barat (Jawa Barat). Radas yang disiapkan untuk mengamati duet komet Siding-Spring dan planet Mars adalah teleskop refraktor Explore Scientific Triplet Apo dengan lensa obyektif berdiameter 80 mm (8 cm). Teleskop ini memiliki dudukan (mounting) GOTO sehingga dapat mengikuti gerak benda langit yang disasarnya secara otomatis seiring waktu, sepanjang benda langit tersebut ada dalam basisdatanya. Teleskop kemudian dirangkai dengan radas kamera Nikon D5100 dengan teknik fokus prima yang disetel pada ISO 400 dan waktu penyinaran 15 detik.

Sedangkan penulis bertugas membantu identifikasi sang komet. Radas yang digunakan adalah komputer jinjing (laptop) yang terkoneksi ke internet. Laman Astrometry menjadi salah satu rujukan untuk mengidentifikasi posisi benda langit yang menjadi target, pun demikian laman-laman institusi/pribadi yang sedari awal sudah memproklamirkan akan menggelar siaran langsung observasi duet komet Siding-Spring dan planet Mars.

Teleskop berlensa 80 mm secara teoritis tak memungkinkan untuk mengidentifikasi komet Siding-Spring. Saat mencapai titik terdekatnya ke Mars, konsorsium Coordinated Investigations of Comets (CIOC) memprediksi magnitudo semunya berkisar +11 hingga +12. Sebaliknya teleskop 80 mm, di atas kertas, hanya akan sanggup menyasar benda langit seredup +10,5 saja. Sehingga masih ada defisit minimal +0,5 magnitudo. Namun di sisi lain penggunaan kamera yang disetel untuk waktu penyinaran cukup lama, setidaknya dibandingkan selang waktu kedipan mata manusia pada umumnya, mungkin mampu mengatasi defisit tersebut. Apalagi sensor kamera digital masakini bersifat mengumpulkan cahaya, sehingga obyek yang semula redup bakal terkesan menjadi lebih terang. Sifat ini berbeda dengan syaraf-syaraf penglihatan manusia, yang tak bersifat mengumpulkan cahaya, sehingga benda langit redup pun akan tetap terlihat redup meski telah kita tatap selam berjam-jam. Maka dapat dikatakan upaya mengamati komet Siding-Spring dengan radas-radas tersebut merupakan percobaan untuk menembus batas.

Gambar 4. Proses identifikasi komet Siding-Spring dengan membandingkan citra hasil observasi Peter Lake (kiri) dan Imah Noong (kanan). Keduanya berselisih waktu 3 jam saat pemotretan. Label HD 159865 dan HD 159845 adalah untuk dua bintang yang tercantum dalam katalog bintang. Sementara label A, B, C, D, E dan F adalah versi penulis untuk bintang-bintang yang tak tercantum dalam katalog. Bila antara bintang HD 159865, HD 159845 dan B ditarik garis lurus khayali (digambarkan sebagai garis putus-putus), maka komet berada di sekitar pertengahan garis ini. Komet ditandai dengan panah merah. SUmber: Sudibyo, 2014.

Gambar 4. Proses identifikasi komet Siding-Spring dengan membandingkan citra hasil observasi Peter Lake (kiri) dan Imah Noong (kanan). Keduanya berselisih waktu 3 jam saat pemotretan. Label HD 159865 dan HD 159845 adalah untuk dua bintang yang tercantum dalam katalog bintang. Sementara label A, B, C, D, E dan F adalah versi penulis untuk bintang-bintang yang tak tercantum dalam katalog. Bila antara bintang HD 159865, HD 159845 dan B ditarik garis lurus khayali (digambarkan sebagai garis putus-putus), maka komet berada di sekitar pertengahan garis ini. Komet ditandai dengan panah merah. SUmber: Sudibyo, 2014.

Percobaan pertama berlangsung pada Minggu 19 Oktober 2014 TU pukul 19:00 WIB, bertepatan dengan saat momen pra perlintasan-dekat komet Siding-Spring ke Mars. Seperti halnya langit bagian barat pulau Jawa pada umumnya, langit Lembang pun bertaburan awan yang berarak-arak. Namun masih tersisa celah-celah sempit diantaranya, sehingga Mars masih bisa dilihat meski hanya untuk selang waktu pendek. Pada salah satu momen teleskop berhasil menjejak Mars untuk waktu yang relatif lumayan sehingga kamera bisa merekam Mars dan lingkungannya dalam 8 frame secara berturut-turut, setara dengan waktu penyinaran (exposure time) 90 detik. Kedelapan citra yang didapat lantas digabungkan menjadi satu lewat teknik stacking.

Awalnya cukup sulit untuk mengidentifikasi komet Siding-Spring di percobaan pertama ini. Namun beruntung terdapat hasil observasi di mancanegara yang membantu mempercepat identifikasi. Berselang 3 jam sebelum observasi percobaan pertama di Imah Noong, astronom amatir Peter Lake juga mengamati duet komet Siding-Spring dan planet Mars dengan mengambil lokasi di observatorium iTelescope.net (Q62) dalam kompleks Observatorium Siding Spring (Australia), tempat sang komet terlihat manusia untuk pertama kalinya secara resmi. Peter Lake bersenjatakan teleskop Planewave dengan cermin obyektif berdiameter 50 cm yang secara teoritis mampu menyasar benda langit hingga seredup magnitudo +14,5 sehingga cukup mudah mendeteksi komet Siding-Spring. Ia membagikan hasil observasinya lewat Google+ dalam sebuah siaran langsung. Setelah dibandingkan dengan citra Peter Lake, kejutan pun terkuak. Komet Siding-Spring ternyata terekam dalam citra percobaan pertama tersebut! Komet terlihat sangat redup, ada di sebelah kiri (selatan) dari Mars dan nyaris tak terbedakan dibanding bintang-bintang disekelilingnya. Baru setelah dicermati lebih lanjut terlihat bahwa titik cahaya komet Siding-Spring tidaklah setegas bintang-bintang pada umumnya dan terkesan berkabut.

Gambar 5. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan pertama, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Gambar 5. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan pertama, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Sukses dengan percobaan pertama, percobaan kedua pun digelar pada Senin 20 Oktober 2014 TU, juga pada pukul 19:00 WIB. Momen observasi kali ini merupakan momen pasca perlintasan-dekat komet Siding-Spring dengan planet Mars. Kali ini observatorium pribadi Imah Noong ‘ditemani’ Observatorium Bosscha, yang juga mengarahkan teleskop reflektor Schmidt Bimasakti (diameter cermin 71 cm), meski masing-masing tetap bekerja sendiri-sendiri. Kali ini juga langit Lembang jauh lebih baik ketimbang sehari sebelumnya. Teleskop pun menjejak dan merekam Mars beserta lingkungannya dalam 9 frame berturut-turut, yang setara dengan waktu penyinaran 105 detik. Sama seperti sehari sebelumnya, kesembilan citra ini pun langsung digabungkan menjadi satu lewat teknik stacking.

Gambar 6. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan kedua, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Gambar 6. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan kedua, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Langit yang jauh lebih bagus kali ini membuat kualitas citra hasil percobaan kedua pun lebih baik ketimbang sebelumnya. Bintang-gemintang yang padat sebagai bagian dari selempang Bima Sakti pun terlihat jelas di latar belakang. Komet pun jauh lebih mudah diidentifikasi. Komet Siding-Spring teramati berada di sebelah kanan (utara) dari planet Mars. Sama seperti sebelumnya, komet juga tetap terlihat sebagai titik cahaya taktegas yang terkesan berkabut. Namun kali ini ekor komet bisa diidentifikasi. Pun demikian dengan warna kehijauan yang menyelubungi komet. Cahaya kehijauan ini diemisikan oleh senyawa karbon diatom (C2) dan sianogen (CN) yang berada dalam atmosfer temporer (coma) sang komet.

Gambar 7. Dua wajah berbeda komet Siding-Spring kala diabadikan dari observatorium Imah Noong saat langit kurang mendukung (kiri) dan saat relatif lebih mendukung (kanan). Kala langit lebih mendukung, komet nampak jelas berwarna kehijauan, sebagai hasil emisi senyawa-senyawa karbon diatom dan sianogen. KOmet juga mudah dibedakan dari bintang dilatarbelakangnya (misalnya HD 159746). Bintang terlihats ebagai titik cahaya tegas, sementara komet lebih samar dan seakan berkabut. Sumber: Imah Noong, 2014.

Gambar 7. Dua wajah berbeda komet Siding-Spring kala diabadikan dari observatorium Imah Noong saat langit kurang mendukung (kiri) dan saat relatif lebih mendukung (kanan). Kala langit lebih mendukung, komet nampak jelas berwarna kehijauan, sebagai hasil emisi senyawa-senyawa karbon diatom dan sianogen. Komet juga mudah dibedakan dari bintang dilatarbelakangnya (misalnya HD 159746). Bintang terlihats ebagai titik cahaya tegas, sementara komet lebih samar dan seakan berkabut. Sumber: Imah Noong, 2014.

Selain turut berpartisipasi dalam pengamatan duet komet Siding-Spring dan planet Mars, yang hasilnya pun telah dipublikasikan di laman konsorsium Coordinated Investigations of Comets dan mendapat sambutan cukup baik, pengamatan ini juga menunjukkan suksesnya upaya menembus batas. Dengan menggunakan radas yang lebih sederhana, yang secara teoritis takkan sanggup mendeteksi komet Siding-Spring saat itu, ternyata sang komet bisa diamati.