Tanpa Perang Dingin Takkan Ada Pendaratan Manusia di Bulan

Tahun ini, tepatnya pada 21 Juli 2019 TU (Tarikh Umum) lalu, kita menyongsong setengah abad pendaratan manusia di Bulan dalam dunia yang sudah demikian berubah dan respon yang campur–aduk. Sebagian dari kita terkagum–kagum akan pencapaian ilmu pengetahuan dan teknologi yang menjadi tulang punggung mksi antariksa beresiko tersebut, yang dalam beberapa hal terlalu primitif untuk ukuran masakini. Misalnya, sistem komputer masa itu bertumpu pada prosesor yang selambat siput apabila dibandingkan yang ditanam pada gawai–gawai pintar masakini. Pun kameranya, yang selain lebih lebih berat juga jauh lebih kompleks dibanding kamera berkeping elektronik modern.

Sebaliknya sebagian lainnya mencibir, mencoba denial dan menganggapnya sekedar konspirasi. Pun di Indonesia, negeri yang baru saja melewati tahap demi tahap pemilihan umum 2019, kegiatan elektoral tingkat nasional yang penuh dengan gelimang hoaks. Cacat fotografi di Bulan, besarnya radiasi di sabuk van–Allen hingga kenapa tiada lagi astronot yang mendarat di sana meski sudah berlalu setengah abad lamanya kembali diperbincangkan.

Gambar 1. Pemandangan langka saat roket raksasa Saturnus 5 saat mulai mengangkasa dari landasan peluncuran no. 39A di pusat antariksa Kennedy, Tanjung Canaveral, Florida (Amerika Serikat) pada 16 Juli 1969 TU, diabadikan dari menara peluncuran. Bagian paling atas adalah menara penyelamat, tersambung langsung dengan modul komando wantariksa Apollo 11. Dibawahnya terdapat modul layanan yang berwarna keperakan. Sementara modul pendarat Bulan tersimpan aman dalam sungkup pelindung berbentuk kerucut terpancung, tepat di bawah modul layanan. Sumber: NASA, 1969.

Jarang sekali di antara kita yang mencoba menarik benang merah antara program pendaratan manusia di Bulan dengan dinamika Perang Dingin. Padahal tanpa berkecamuknya Perang Dingin, peristiwa pendaratan manusia di Bulan boleh jadi takkan pernah terjadi hingga masakini. Setidaknya hingga berakhirnya abad ke-20 TU.

Perang Dingin merupakan peningkatan tensi geopolitik yang membentuk perang urat syaraf modern dan mengharu–biru umat manusia sejak usainya Perang Dunia 2 hingga empat dasawarsa kemudian kemudian. Tepatnya sejak 1947 TU hingga tercapainya perjanjian Malta di tahun 1991 TU. Itulah masa tatkala dunia seakan dipaksa memilih untuk berkubu pada salah satu dari dua kekuatan adikuasa. Yaitu blok kapitalis di bawah pimpinan Amerika Serikat atau blok komunis yang digawangi Uni Soviet. Itulah pula rentang masa manakala aneka perseteruan bersenjata berlabel proxy war di antara kedua blok meletus. Mulai dari perang Korea, perang Arab Israel yang berbabak–babak, perang Vietnam, perang sipil Kamboja hingga transisi Orde Lama menuju Orde Baru yang berkuah darah di Indonesia.

Ketertinggalan

Perang dingin juga menjadi masa kala perlombaan senjata didorong jauh menjangkau titik paling ekstrim. Generasi kakek–nenek kita dan kedua orang tua kita menjadi saksi mata betapa kapal–kapal perang menjadi kian tambun yang berdaya gempur kian jauh, langit yang kian riuh oleh lesatan aneka pesawat tempur dan pengebom era jet dan pembangunan senjata–senjata mutakhir berkekuatan dahsyat menggentarkan seperti senjata nuklir. Dan perlombaan antariksa dimana pendaratan manusia di Bulan termasuk didalamnya, adalah turunan langsung dari perlombaan senjata.

Kala John F Kennedy menduduki tahta kepresidenan Amerika Serikat, adikuasa itu nyaris sepenuhnya tertinggal dalam penguasaan antariksa dibandingkan Uni Soviet. Negeri tirai besi, demikian julukan Uni Soviet kala itu, unggul dalam segala hal. Mereka lebih dulu meluncurkan satelit buatan pertama (Sputnik–1), meluncurkan makhluk hidup pertama (anjing bernama Laika), mengorbitkan manusia pertama ke langit (kosmonot Yuri Gagarin) dan bahkan menempatkan perempuan pertama ke orbit (kosmonot Valentina Tereshkova).

Gambar 2. Roket Soyuz-FG saat mulai lepas landas dari Kosmodrom Baikonur (Kazakhstan) pada 18 September 2006 TU mendorong wantariksa Soyuz TMA di hidungnya ke stasiun antariksa ISS. Kecuali sejumlah modifikasi di bagian atas, bentuk dasar roket ini diturunkan dari R-7 Semyorka, rudal balistik antarbenua operasional pertama milik Uni Soviet. Sumber: NASA, 2006.

Kelak mereka pun unggul dalam melakukan perjalanan antariksa pertama (kosmonot Alexei Leonov), mengirimkan wantariksa (wahana antariksa) pendarat pertama ke Bulan dengan selamat (Luna–9) dan mengirim wantariksa pengorbit Bulan pertama yang bekerja baik (Luna–10). Sebaliknya Amerika Serikat terseok–seok dan hanya unggul dalam hal fotografi Bumi pertama dari langit (Explorer 6) serta peluncuran teleskop landas–antariksa pertama (Orbital Solar Observatory).

Kennedy juga melihat Amerika Serikat tertinggal dalam kancah penguasaan rudal balistik antarbenua (ICBM/inter continental ballistic missile), jenis senjata roket baru berhulu ledak nuklir yang berkekuatan menggentarkan. Baik di Amerika Serikat maupun Uni Soviet, pengembangan rudal balistik antarbenua merupakan turunan senjata V-2/A-4 yang dibangun Jerman di masa Perang Dunia 2. Namun Uni Soviet melangkah lebih maju meski mereka tak memboyong insinyur-insinyur top Jerman pascaperang sebagaimana yang dilakukan Amerika Serikat. Analisis badan–badan intelejen menunjukkan hingga tahun 1963 TU Uni Soviet akan memiliki 1.500 butir ICBM, jauh melampaui Amerika Serikat yang diperkirakan baru akan sanggup membangun 130 ICBM saja.

Uni Soviet telah mendemonstrasikan kemampuannya dalam membangun R-7 Semyorka (SS-6 Sapwood), rudal balistik antarbenua operasional pertama di dunia. Awalnya R-7 mampu menghantam sasaran sejauh 6.000 km saat uji terbang di bulan Agustus 1957. Setahun kemudian Soviet bahkan mampu meningkatkan kemampuannya sehingga bisa menjangkau jarak 13.000 km. Soviet pun bereksperimen lebih lanjut dengan memodifikasi R-7 sebagai kuda beban pendorong Sputnik–1 dan wantariksa berikutnya ke orbit. Turunan teknologi rudal balistik R-7 inilah yang tetap dipergunakan hingga saat ini sebagai keluarga roket Soyuz yang mencetak rekor sebagai roket yang paling banyak diluncurkan, yakni lebih dari 1.840 peluncuran sejak 1966 TU. Roket Soyuz sekaligus merupakan roket yang paling andal dan termurah, khususnya sebelum tibanya era roket Falcon 9 dari SpaceX.

Keunggulan dalam hal penguasaan teknologi dan jumlah rudal balistik antarbenua tak sekedar mendemonstrasikan superioritas Soviet. Itu juga menciptakan kekhawatiran ketidakseimbangan kekuatan militer, yang secara langsung mengancam kepentingan Amerika Serikat dan sekutunya. Perasaan inferior itu tak hanya menjangkiti pucuk pimpinan Amerika Serikat, namun juga meluas hingga ke lapisan–lapisan masyarakat. Dan Kennedy ingin membalikkan situasi itu.

Gambar 3. SLBM, varian rudal balistik antarbenua yang diluncurkan dari kapal selam. Peluncuran rudal Trident yang berdaya jangkau 7.400 km ini adalah bagian dari ujicoba peluncuran 9 Oktober 1984 TU. Rudal diluncurkan dari kapal selam nuklir SSBN 658 Mariano G Vallejo milik Angkatan Laut Amerika Serikat. Sumber: US Navy, 1984.

Pertimbangan geopolitik dan strategis militer itulah yang menjadi landasan Kennedy menetapkan program pendaratan manusia di Bulan sebagai salah satu tujuan nasional Amerika Serikat yang baru. Orang Amerika Serikat harus mendarat di Bulan dan kembali lagi ke Bumi dengan selamat sebelum dekade 1960–an Tarikh Umum berakhir. Begitu tekatnya, berapapun biayanya. Program penerbangan antariksa Amerika Serikat pun bertransformasi dari sekedar upaya ala kadarnya berbumbu persaingan antar angkatan dalam tubuh militer menjadi sebuah usaha tersistematis dan massif di bawah administrasi sipil baru bernama NASA dengan tujuan sangat jelas : Bulan.

Program Apollo

Tembakan senapan runduk menutup usia Kennedy secara tragis di jalanan kota Dallas, Texas, pada 22 November 1963 TU. Namun bangunan dasar penerbangan antariksa Amerika Serikat tak berubah meski presidennya silih berganti. Lewat Program Ranger (1961–1965) yang setengah babak–belur, Amerika Serikat mendapatkan pelajaran berharga dalam mengorganisasi pengiriman wantariksa tak berawak ke Bulan. Program Surveyor (1966–1968) menumbuhkan dan melipatgandakan rasa percaya diri, dimana wantariksa tak hanya sekedar memotret namun juga memetakan sebagian wajah Bulan secara sistematis. Baik Program Ranger maupun Program Surveyor meletakkan anak–anak tangga yang dibutuhkan bagi Program Apollo, payung bagi pendaratan manusia Amerika Serikat di Bulan.



Gambar 4. Sebagian besar astronot Program Apollo dalam kesempatan reuni yang langka di NASA Johnson Space Center, Houston (Amerika Serikat) pada 21 Agustus 1978 TU menjelang paparan program antariksa ulang-alik Amerika Serikat. Astronot-astronot yang mendarat di Bulan dilabeli dengan angka merah, sementara yang mengorbit Bulan ditandai dengan angka kuning. Sumber : NASA, 1978.

Neil Armstrong dan Edwin Aldrin memang menjadi dua orang pertama yang menapakkan kaki di Bulan. Akan tetapi tak hanya mereka saja yang pernah berkeliaran di wajah sang candra. Secara keseluruhan terdapat dua belas orang yang pernah mendarat dan mengeksplorasi Bulan. Empat diantaranya masih hidup hingga saat ini. Sebaliknya juga ada dua belas orang pula yang pernah meninggalkan orbit Bumi guna mengorbit sang candra, dengan empat diantaranya telah berpulang.

Di balik langkah–langkah ke–24 orang tersebut, terhampar upaya pengerahan sumber daya manusia dan finansial dalam skala raksasa yang belum pernah terjadi sebelumnya. Dan belum pernah terulang lagi hingga masakini.

Fisika pendaratan manusia di Bulan dapat disederhanakan sebagai upaya memacu kecepatan sampai hampir melepaskan diri dari pengaruh gravitasi Bumi sembari mengarah ke kedudukan Bulan. Upaya tersebut akan mewujud dalam sebentuk orbit sangat lonjong (ellips) dengan titik terjauh dalam pengaruh kuat gravitasi Bulan. Selanjutnya giliran memperlambat kecepatan hingga bisa memasuki orbit Bulan dan lantas mendarat di paras Bulan dengan lembut.

Dalam praktiknya fisika pendaratan manusia di Bulan menyediakan tiga metode, yakni metode pendaratan langsung, metode perakitan di orbit Bumi dan metode perakitan di orbit Bulan. Metode pendaratan langsung bisa mengirimkan wantariksa berawak tiga astronot langsung ke permukaan Bulan dengan roket berkekuatan tinggi. Namun roket yang dibutuhkan bakal sangat besar. NASA pernah menyiapkan konsep roket Nova, yang diproyeksikan mampu mengangkut 74 ton muatan ke permukaan Bulan. Akan tetapi dengan bobot diperhtungkan hampir 4.500 ton saat peluncuran, Nova dipandang tidak layak secara teknis dan ongkos pembangunannya bakal sangat mahal.

Metode perakitan di orbit Bumi (EOR/earth orbit rendezvous) dipandang lebih murah, tetapi juga lebih kompleks. Pada dasarnya metode ini merupakan variasi dari metode pendaratan langsung, dimana komponen-komponen wantariksanya diluncurkan satu persatu ke orbit rendah Bumi untuk kemudian digandengkan satu dengan yang lain. Peluncuran tambahan harus dilakukan pula guna mengisi bahan bakar roket transfer yang bakal mendorong wantariksa yang sudah tergabung itu ke orbit Bulan. NASA memperhitungkan dibutuhkan 10 hingga 15 peluncuran dengan menggunakan roket Saturnus 1 yang sedang dibangun dan memiliki kapasitas angkut 9 ton ke orbit rendah.

Metode ini tidak menjadi pilihan, selain karena dipandang terlalu kompleks, juga ada kekhawatiran akan penguasaan teknologi penggandengan di langit (orbital rendezvous). Meski kekhawatiran terakhir itu terbukti tak beralasan setelah NASA mengujicobanya lewat misi antariksa berawak di bawah tajuk Program Gemini dengan hasil memuaskan.

Pada akhirnya metode ketiga-lah, yakni perakitan di orbit Bulan (LOR/lunar orbit rendezvous) yang dipilih. Selain yang termurah, metode ini juga hanya membutuhkan satu kali peluncuran roket sehingga jauh lebih efisien. Dengan metode ini pula diperhitungkan impian Kennedy dapat dilaksanakan sebelum dasawarsa 1960-an Tarikh Umum berakhir dengan tenggat waktu yang lebih rasional.

Lewat metode ini maka wantariksa Bulan terbagi atas modul komando, modul layanan dan modul pendarat. Modul pendaratnya dapat dibuat lebih kecil dan dirancang hanya beroperasi di lingkungan bergravitasi rendah seperti Bulan. Ketiganya diluncurkan secara bersama-sama dalam satu roket. Kala tahap transfer ke Bulan dimulai, ketiga modul itu pun digandengkan membuat ketiga astronot memiliki ruang gerak lebih leluasa selama 3 hari mengarungi langit saat berangkat ke Bulan.

Baru setibanya di orbit Bulan, modul pendarat memisahkan diri dan melaksanakan tugas pendaratan di Bulan dengan dua astronot. Usai bertugas, sebagian modul ini (khususnya bagian atas) akan mengangkasa kembali untuk bergandengan dengan modul komando. Begitu kedua astronot dan sampel-sampel batuan/tanah Bulan telah dipindahkan ke modul komando, sisa modul pendarat pun dilepaskan di orbit Bulan. Hanya modul komando inilah yang akhirnya kembali ke Bumi sementara modul layanan dilepaskan di orbit Bumi.

Gambar 5. Sketsa sederhana yang menggambarkan perbedaan besar ukuran wantariksa antara metode pendaratan langsung dengan metode perakitan di orbit Bulan. Dalam metode pendaratan langsung, modul komando dan modul layanan harus didaratkan di Bulan sehingga membutuhkan bahan bakar yang sangat banyak. Konsekuensinya roket pendorongnya harus sangat berat. Sebaliknya dalam metode perakitan di orbit Bulan, hanya modul pendarat saja yang akan mendarat di Bulan. Sehingga roket pendorongnya dapat lebih kecil. Sumber: NASA, 1979.

Sangat Mahal

Pilihan terhadap metode perakitan di orbit Bulan membuat NASA memutuskan membangun roket raksasa Saturnus 5, roket terbesar dan terkuat yang pernah dibuat manusia hingga masa kini. Sebagai roket bertingkat tiga yang menjulang setinggi 111 meter dan bobot 2.900 ton, Saturnus 5 memiliki kapasitas angkut 140 ton ke orbit rendah Bumi (ketinggian 170 km). Kapasitas tersebut mencukupi guna mendorong gabungan modul pendarat Bulan, modul layanan dan modul komando berbobot 30 ton ditambah roket transfer yang bobotnya 90 ton.

Daya dorong akumulatif 3.600 ton timbul kala kelima mesin roket jumbo di tingkat pertamanya dinyalakan. Gabungan kelima mesin itu sungguh rakus, menyedot tak kurang dari 12,5 ton campuran kerosen dan pengoksid dalam tiap detiknya. Daya dorong yang luar biasa itu membuat sensor–sensor pengukur gempa bumi yang berada di segenap daratan Amerika Serikat riuh bergetar manakala roket raksasa ini mulai mengangkasa dari landasan nomor 39A di kompleks peluncuran Tanjung Canaveral, Florida.

Meski telah memilih metode yang paling murah dan paling efisien, begitupun Program Apollo membuat Amerika Serikat harus merogoh koceknya dalam-dalam. Sempat terbelalak menatap usulan anggaran hampir US $ 90 milyar (berdasarkan nilai mata uang 2018) diajukan ke meja kerjanya di Gedung Putih, Kennedy lalu menandatanganinya tanpa banyak cingcong. Kelak anggaran program pendaratan manusia di Bulan membengkak hingga US $ 158 milyar. Itu belum terhitung anggaran Program Ranger (US $ 1 milyar) dan Program Surveyor (US $ 3 milyar). Bayangkan saja, untuk setiap peluncuran roket raksasa Saturnus 5 dibutuhkan dana US $ 1,16 milyar. Sementara Program Apollo meluncurkan 13 roket Saturnus 5 sepanjang periode 1967 hingga 1975 TU.

Gambar 6. Modul pendarat Bulan dari Apollo 11, beberapa jam setelah pendaratan berlangsung, diabadikan oleh Neil Armstrong. Nampak Edwin Aldrin sedang membuka ruang bagasi guna mengeluarkan instrumen ilmiah yang hendak dipasang di Bulan. Sumber: NASA, 1969.

Gambar 6. Modul pendarat Bulan dari Apollo 11, beberapa jam setelah pendaratan berlangsung, diabadikan oleh Neil Armstrong. Nampak Edwin Aldrin sedang membuka ruang bagasi guna mengeluarkan instrumen ilmiah yang hendak dipasang di Bulan. Sumber: NASA, 1969.

Jika kita rupiahkan, anggaran Program Apollo setara dengan Rp 2.200 trilyun (berdasarkan kurs 2018). Sehingga ongkos tiket setiap astronot yang terbang ke Bulan saat itu mencapai Rp 91 trilyun.

Selain dana luar biasa besar, Amerika Serikat juga mengerahkan sumber daya manusia terbaiknya dalam skala yang belum pernah ada. Pada puncaknya Program Apollo mempekerjakan 400.000 orang yang melibatkan 20.000 firma industri dan universitas di segenap penjuru. Di bawah pimpinan Wernher von Braun, pionir peroketan kelahiran Jerman yang bermigrasi ke Amerika Serikat di akhir era Perang Dunia 2, semua itu ditujukan membangun roket raksasa Saturnus 5 dengan modul pendarat, modul layanan dan modul komandonya beserta sistem komunikasi jarak jauh Bumi dan Bulan.

Mobil Bulan

Peluncuran Apollo 11 menyedot perhatian yang sangat besar. Lebih dari sejuta orang berjejalan di tepi pantai dan tepi jalan raya pada jarak yang aman dari landasan nomor 39A. Tokoh-tokoh penting sipil dan militer, termasuk para menteri, gubernur negara bagian, beberapa walikota, duta-dutabesar negara tetangga dan anggota Kongres hadir di panggung kehormatan menyaksikan peluncuran tersebut. Sekitar 25 juta warga Amerika Serikat menyaksikannya lewat siaran langsung stasiun-stasiun televisi. Dunia kian memperhatikannya manakala Armstrong menapakkan kaki di Bulan, disusul Edwin Aldrin. Meski hanya 21,5 jam di paras Bulan dengan hanya 2,5 jam diantaranya yang benar-benar digunakan untuk mengekplorasi wajah sang candra.

Penerbangan Apollo berikutnya tak pernah meraih perhatian sebesar yang diterima Apollo 11. Histeria massa tak terlihat dalam penerbangan Apollo 12 (14 – 24 November 1969 TU), meskipun peluncurannya jauh lebih dramatis (dihempas angin kencang 152 knot dan 2 kali disambar petir) serta mencatat prestasi baru sebagai pendaratan presisi pertama. Penerbangan Apollo 13 (11-17 April 1970 TU) sempat hendak bernasib serupa, sebelum tragedi meledaknya tanki Oksigen yang melumpuhkan total modul layanan menyedot perhatian besar. Misi antariksa berawak ke Bulan pun berubah menjadi misi penyelamatan para astronot. Dan pilihan metode perakitan di orbit Bulan menjadi salah satu kunci penyelamat. Modul pendarat yang nganggur memungkinkan para astronot memodifikasinya sebagai sekoci penyelamat sepanjang sisa misi antariksa yang nyaris berubah bencana itu.

Misi Apollo 14 dan misi-misi antariksa berawak ke Bulan berikutnya (hingga yang terakhir Apollo 17) dipandang sebagai rutinitas NASA belaka. Apollo 14 (31 Januari – 9 Februari 1971 TU) masih melanjutkan eksplorasi Bulan dengan berjalan kaki. Mulai misi Apollo 15 (26 Juli – 7 Agustus 1971 TU), NASA memanfaatkan mobil Bulan sebagai bagian eksplorasi. Mobil Bulan memungkinkan astronot menjelajah lebih jauh ketimbang berjalan kaki. Pada misi Apollo 15, mobil Bulan menempuh jarak hinga 27,8 km. Pada misi Apollo 16 (16-27 April 1972 TU), mobil Bulan menempuh jarak sedikit lebih pendek yakni 27,1 km. Dan pada misi yang terakhir yakni Apollo 17 (7 – 19 Desember 1972 TU), mobil Bulan menempuh jarak yang terjauh hingga 35,74 km. Apollo 17 sekaligus menjadi satu-satunya misi pendaratan manusia di Bulan yang membawa seorang astronot sipil. Yaitu ahli kebumian bernama Harrison Schmitt.

Mengalahkan Soviet

Dipandang dari perspektif politik dan strategi militer, program pendaratan manusia di Bulan pada dasarnya telah mencapai kulminasinya pada misi Apollo 11. Imajinasi bahwa Amerika Serikat telah menang dalam balapan manusia menuju ke Bulan menguasai dunia masa itu. Selepas itu perhatian mulai menyurut dan penerbangan antariksa berawak ke Bulan dipandang mulai menjadi rutinitas, terkecuali pada misi Apollo 13. NASA sendiri telah merencanakan 10 misi pendaratan manusia di Bulan, namun mereka pun mengantisipasi kemungkinan pemotongan anggaran.

Gambar 7. Perbandingan model roket Saturnus 5 milik Amerika Serikat (kiri) dengan roket N-1 milik Uni Soviet (kanan). 13 peluncuran roket Saturnus 5 berlangsung sukses meski dua diantaranya dihinggapi masalah teknis, sementara seluruh peluncuran roket N-1 berujung gagal. Sumber: Anonim, 2011.

Dan benarlah demikian. Di masa kepresidenan Nixon-lah nasib Program Apollo berakhir. Selain dihadapkan pada intensitas Perang Vietnam yang kian meningkat, kian mahal dan makin tak populer di dalam negeri, secara personal Nixon tak menyukai gemuruh penerbangan antariksa yang gemanya terlalu membahana layaknya Program Apollo. Nixon memang menyaksikan para astronot Amerika Serikat satu persatu mendarat di Bulan. Namun ia juga yang mengayunkan kapak pemotong anggaran NASA. Sehingga Program Apollo pun harus berakhir di Apollo 17 dengan Apollo 18 hingga Apollo 20 harus dibatalkan. Seolah meramalkan masa depan, Nixon berujar takkan lagi ada manusia yang mendarat di Bulan hingga abad ke-20 TU berakhir. Ia memang benar.

Nixon memang mengakhiri sebuah era yang dibiayai anggaran berskala raksasa dan ditenagai oleh sumber daya manusia yang tak kalah luar biasa. Sebuah era yang menjadi penanda bahwa Amerika Serikat telah mengungguli Uni Soviet dalam kancah eksplorasi manusia di Bulan. Tanpa tanding.

Di Uni Soviet, walaupun menampakkan kesan enggan berkompetisi sesungguhnya mereka diam–diam juga berupaya mendaratkan manusia di Bulan. Lewat dekrit Nikita Khruschev pada 1964 TU, negeri beruang merah itu memasang tahun 1967 TU sebagai tenggat waktu pendaratan kosmonotnya di Bulan. Tenggat itu lalu direvisi mundur setahun menjadi 1968. Namun dana yang terbatas, desain bangunan roket yang sangat kompleks, berpulangnya sang maestro Sergei Korolev (yang secakap von Braun) secara mendadak pada awal tahun 1966 dan gagalnya ujicoba penerbangan roket Bulannya secara berturut–turut membuat kosmonot Soviet tetap berkutat di titik nol. Tak pernah berhasil pergi ke Bulan.

Salah satu kegagalan yang menyesakkan terjadi hanya dua minggu jelang penerbangan Apollo 11. Roket N–1, sang raksasa bertingkat 5 dengan tinggi 105 meter dan bobot 2.750 ton yang dirancang bakal menjadi kuda beban Soviet ke Bulan, gagal terbang. Hanya 10 detik pasca lepas landas, manakala baru mencapai ketinggian 100 meter, mendadak 29 mesin roket tingkat pertamanya mati. Hanya tersisa sebuah mesin saja yang berfungsi normal. Akibatnya roket terberat kedua sedunia dengan daya dorong terbesar (4.600 ton) itu pun kembali mencium Bumi, meledak dan terbakar hebat selama berjam–jam kemudian hingga menghancurkan landasannya.

Gambar 8. Saat-saat roket raksasa N-1 mulai mengangkasa dari kosmodrom Baikonur, Kazakhstan (saat itu Uni Soviet). Kemungkinan dalam uji terbang yang kedua (3 Juli 1969 TU) atau yang ketiga (26 Juni 1971 TU). Sumber : Smithsonian, 2019.

Bencana ini menandai satu dari empat kegagalan ujicoba terbang roket N–1 selama kurun 1969 hingga 1972 TU. Setelah menyaksikan 12 astronot Amerika Serikat sukses mengeksplorasi Bulan, akhirnya Leonid Brezhnev sang supremo Soviet pasca Nikita memutuskan lempar handuk. Pada tahun 1974 TU ia menghentikan segenap upaya negara beruang merah itu untuk mengirim kosmonotnya ke Bulan. Dunia baru mengetahui semua cerita ini berbelas tahun kemudian, manakala Perang Dingin sudah berakhir dan Uni Soviet tepat di pintu keruntuhan.

Versi singkat artikel ini dipublikasikan di Kompas.com

Memotret Lubang Hitam, Menariknya Keluar dari Tirai Persembunyian

Sekilas pandang, citra/foto itu mengesankan baur, kurang fokus. Walaupun ketampakan lingkaran tebal jingga-kekuningan mirip donat itu masih bisa dilihat jelas. Siapa sangka, inilah salah satu citra terpenting dalam sejarah sains masakini. Bahkan mungkin akan menjadi yang terpenting di abad ke-21 TU (Tarikh Umum). Inilah (bayangan) wajah lubang hitam, yang berhasil dikuak lewat kerja keras konsorsium EHT (Event Horizon Telescope). Ketampakan tersebut dipamerkan dalam sebuah konferensi pers yang digelar secara simultan di berbagai tempat dalam koordinasi Dewan Ilmu Pengetahuan Nasional Amerika Serikat atau NSF (National Science Foundation) pada Rabu 10 April 2019 TU malam waktu Indonesia, atau siang hari waktu Amerika Serikat.

Lubang hitam, berdasarkan definisinya, adalah benda langit eksotik dengan gravitasi demikian besar yang menyebabkan ruang-waktu disekitarnya membengkok demikian dahsyat sampai membentuk sumur-tanpa-dasar (asimtot). Sehingga seberkas cahaya pun takkan sanggup meloloskan diri darinya. Jika cahaya saja, yang menjadi benda berkecepatan tertinggi sejagat raya, tak sanggup lolos dari lubang hitam, apalagi dengan benda lain. Makanya sekilas pandang tak ada cara untuk mencitra sebuah lubang hitam seiring tiadanya berkas cahaya maupun gelombang elektromagnetik yang bisa terlepas darinya.

Gambar 1. (Bayangan) lubang hitam raksasa M-87* di pusat galaksi Messier-87 yang berjarak 55 juta tahun cahaya dari Bumi. Citra ini adalah produk kerja keras konsorsium EHT (Event Horizon Telescope) yang mencapai puncaknya sejak tahun lalu. Nampak jelas struktur bayangan lubang hitam dalam bola cahaya superpanas dengan emisi sinkrotron. Sumber : Konsorsium EHT, 2019.

Lubang hitam selama ini dideduksi secara tak langsung, terutama dengan melihat pengaruh gravitasinya terhadap bintang kembarannya (jika bagian dari sistem bintang ganda), maupun pengaruhnya terhadap bintang-bintang disekelilingnya (jika berupa lubang hitam supermassif di pusat galaksi), atau dari gelombang gravitasi yang dilepaskannya kala dua lubang hitam bertabrakan. Deteksi tak langsung itulah yang mewarnai kisah interaksi umat manusia dengan lubang hitam sejak pengungkapan Cygnus X-1 sebagai lubang hitam pada 1973 TU silam.

Citra (bagian) lubang hitam yang dikuak konsorsium EHT tersebut sebelumnya sudah dikenal sebagai sumber sinar-X sangat kuat. Konsorsium EHT mengarahkan mata pembidiknya ke sebuah galaksi yang jauhnya 55 juta tahun cahaya dari Bumi kita. Yakni galaksi M87 (Messier 87) yang terletak di gugusan bintang Virgo. Pusat galaksi ini adalah sumber sinar-X selayaknya Cygnus X-1, namun jauh lebih kuat. Lubang hitam yang berhasil diungkap, yang dinamakan M-87* (Messier 87-star), memiliki massa 6,5 milyar kali lipat Matahari kita sehingga tergolong lubang hitam raksasa (supermassif).

Bayangan Lubang Hitam

Apa yang berhasil dicitra konsorsium EHT sejatinya adalah bayangan sang lubang hitam raksasa pada sebuah cakram bercahaya. Cakram ini berisikan gas-gas terionisasi superpanas dengan suhu hingga milyaran derajat Celcius. Ion-ion gas itu berputar mengelilingi sang lubang hitam raksasa pada kecepatan fantastis, yakni 1.000 km/detik. Cakram bercahaya tersebut sejatinya adalah bola superpanas raksasa dengan diameter 3.700 milyar kilometer, setara 24.700 SA (satuan astronomi). Bola raksasa ini adalah bagian terdalam cakram akresi yang tepat bersinggungan dengan horizon peristiwa, tapal batas sebuah lubang hitam. Keberadaan lubang hitam menyebabkan bola cahaya raksasa ini akan terlihat mirip donat raksasa yang gelap di bagian tengahnya, darimanapun kita memandangnya. Bagian gelap ini adalah bayangan sang lubang hitam, terjadi akibat bekerjanya dua fenomena sekaligus. Yakni pembelokan dramatis lintasan berkas cahaya akibat pembengkokan ruang-waktu ekstrim dan tangkapan foton di batas horizon persitiwa.

Gambar 2. Galaksi raksasa Messier 87 diabadikan dengan teleskop landas-antariksa Spitzer milik NASA (Amerika Serikat) dan konsorsium EHT. Nampak galaksi raksasa ini terlihat cukup terang dalam spektrum sinar inframerah. Foto kecil (inset) sebelah kanan atas memperlihatkan bagian pusat galaksi dengan sepasang struktur semburan jet yang khas, pertanda eksistensi lubang hitam raksasa. Dan foto kecil sebelah kanan bawah menunjukkan bayangan lubang hitam tersebut, sebagaimana diungkap konsorsium EHT. Sumber: NASA/JPL-Caltech, 2019 & Konsorsium EHT, 2019.

Lubang hitam merupakan benda langit eksotik yang sifatnya dapat diperkirakan lewat penurunan persamaan relativitas umum. Meskipun Einstein sendiri, sebagai pelopor relativitas umum, hingga akhir hayatnya tak pernah percaya lubang hitam benar-benar ada di jagat raya. Adalah Karl Schwarszchild, astrofisikawan Jerman, yang pertama kali memprakirakan keberadaan lubang hitam berdasarkan solusi persamaan relativitas umum pada tahun 1916 TU, hanya berselang setahun pasca publikasi relativitas umum. Prakiraan ini diperkuat Subrahmanyan Chandrasekhar melalui mekanika kuantum pada 1928 TU, selagi berlayar dari tanah India menuju Inggris guna meneruskan pendidikannya. Ia menemukan limit Chandrasekhar, yakni ambang batas massa minimum sebuah bintang untuk menjadi benda langit eksotik seperti bintang neutron setelah akhir hayatnya tiba. Pada bintang yang massanya jauh lebih besar ketimbang limit Chandrasekhar, pengerutan akibat gravitasinya sendiri akan demikian dahsyat hingga neutron pun takkan terbentuk. Pondasi tersebut lantas diperkuat oleh J.R. Oppenheimer, fisikawan yang lantas disibukkan dengan upaya raksasa dan super-rahasia dalam membangun bom nuklir pertama di bawah payung the Manhattan Project.

Tak Sungguh Hitam

Sesuai definisinya, lubang hitam tidaklah melepaskan obyek apapun (termasuk cahaya) keluar dari tapal batasnya (yakni horizon peristiwa). Akan tetapi Stephen Hawking menunjukkan lubang hitam sejatinya tidaklah hitam benar. Masih ada cahaya yang terlepas darinya, yang berasal dari ruang-waktu tepat di batas horizon peristiwa. Cahaya ini dinamakan radiasi Hawking dan menjadi sarana pelepasan massa dari lubang hitam yang membuat ukuran lubang hitam bisa mengecil. Lubang hitam, terutama bayangannya, ternyata bisa dilihat lewat cara lain. Sebuah lubang hitam, selalu diselubungi bola cahaya berisikan gas-gas superpanas terionisasi yang mengemisikan gelombang elektromagnetik lewat proses yang disebut emisi sinkrotron. Kombinasi pembelokan lintasan berkas cahaya akibat pelengkungan ruang-waktu yang ekstrim di dekat lubang hitam serta peristiwa tangkapan foton di horizon peristiwa akan membentuk bayangan lubang hitam. Sehingga bola cahaya itu akan terlihat selayaknya donat. Inilah obyek perburuan konsorsium EHT.

Upaya konsorsium EHT untuk melihat lubang hitam sejatinya berada dalam tanda kutip. Karena konsorsium EHT bertumpu pada teleskop radio, jenis teleskop yang hanya bekerja pada spektrum gelombang radio. Jadi bukan teleskop optik, yang bertulangpunggungkan spektrum cahaya tampak (panjang gelombang 4.000 hingga 7.000 Angstrom). Maka citra yang dipamerkan konsorsium EHT sejatinya adalah peta kerapatan (density map) yang divisualisasikan lewat teknik tertentu. Visualisasi ini selayaknya kita menyaksikan bagian dalam tubuh kita pada selembar foto Roentgen, dimana berkas sinar-X (yang juga tak kasat mata) mengalami serapan yang berbeda-beda saat menembus bagian-bagian tubuh kita. Sehingga manakala tiba di lapisan film khusus, akan terbentuk density map yang tervisualisasi.

Bagaimana cara para astronom mendapatkan citra lubang hitam ini?

Tantangan terbesar adalah membangun instrumen yang tepat dan memilah spektrum gelombang elektromagnetik yang tepat pula. Dibanding lubang hitam tunggal, lubang hitam supermassif di pusat galaksi yang berpilin dianggap lebih mudah dideteksi. Karena ukurannya jauh lebih besar dan emisi gelombang elektromagnetiknya memiliki intensitas jauh lebih besar. Teleskop radio dipilih karena memberikan keunggulan dibanding teleskop optik. Dengan memanfaatkan teknik interferometri, maka gabungan sejumlah teleskop radio yang tersebar pada area sangat luas akan membentuk satu teleskop radio maya (virtual) dengan piringan virtual sangat besar. Untuk itulah dibangun konsorsium EHT, yang memanfaatkan teleskop-teleskop radio di Hawaii dan Arizona (Amerika Serikat), Greenland (Denmark), Meksiko, Atacama (Peru), Spanyol dan Antartika. Dengan teknik VLBI (very long baseline interferometry), gabungan teleskop radio tersebut jika bekerja secara simultan akan membentuk satu teleskop radio virtual raksasa yang piringan parabolanya sedikit lebih besar ketimbang diameter Bumi (tepatnya 13.000 km).

Gambar 3. Jejaring teleskop radio yang menjadi bagian dari konsorsium EHT. Teleskop radio yang aktif pada observasi 2017 lalu ditandai dengan warna kuning yang tersebar lima lokasi berbeda, masing-masing Antartika (SPT), Kepulauan Hawaii (SMA & JCMT), daratan Amerika Serikat (SMT), Meksiko (LMT) dan Greenland (GLT). Sumber : Konsorsium EHT, 2019.

Pemilihan teleskop radio sebagai radas penelitian memiliki latar belakangnya sendiri. Astronomi telah banyak mempelajari lubang hitam raksasa lewat beragam spektrum gelombang elektromagnetik. Hasil observasi itu menunjukkan bahwa gelombang radio terutama gelombang pendek memberi peluang untuk menyibak rahasia terdalam lubang hitam. Khususnya gelombang submilimeter dengan panjang gelombang hanya 1,3 mm yang terbukti mampu menangkap emisi sinkrotron dari bayangan lubang hitam. Namun gelombang pendek ini terkenal sensitif akan uap air di atmosfer Bumi karena bisa diserap. Sehingga cuaca di masing-masing fasilitas teleskop radio harus benar-benar sempurna sebelum observasi diselenggarakan. Prakiraan cuaca berketelitian tinggi pun menjadi kebutuhan mutlak.

Konsekuensi lainnya, teknik interferometri membutuhkan sinkronisasi pada seluruh fasilitas teleskop radio yang berpartisipasi dalam kolaborasi EHT. Maka setiap teleskop harus dilengkapi dengan jam atom yang supersinkron satu dengan yang lain. Untuk itulah setiap fasilitas teleskop radio dalam konsorsium EHT dilengkapi dengan jam atom Maser Hidrogen, yang hanya akan berselisih 1 detik jika telah berjalan selama 100 juta tahun. Maser merupakan teknik penguatan/amplifikasi gelombang mikro dengan metode yang mirip Laser. Dan karena masing-masing teleskop radio mampu menghasilkan data digital amat sangat besar sementara kecepatan jaringan internet global saat ini terbatas, data dari setiap teleskop disimpan dalam harddisk berkapasitas tinggi. Selanjutnya setiap harddisk diterbangkan ke fasilitas Observatorium Haystack milik MIT (Massachusetts Institute of Technology) di Westford, negara bagian Massachussets (Amerika Serikat) dan fasilitas MPIfR (Max Planck Intstitute fur Radioastronomie) di Bonn (Jerman) untuk diolah.

Sifat

Dengan resolusi sudut gabungan teleskop konsorsium EHT yang mencapai 25 mikrodetik busur, maka pada obyek sejauh 55 juta tahun cahaya tingkat resolusinya setara 63,4 milyar kilometer (setara 424 SA). Dengan kata lain, benda-benda langit yang dimensinya kurang dari 63,4 milyar kilometer yang terletak pada jarak 55 juta tahun cahaya itu akan sulit dilihat teleskop virtual ini. Dengan kemampuan tersebut maka selama empat hari terpisah pada 5 hingga 17 April 2017 TU silam, konsorsium EHT mengamati galaksi Messier 87 (M 87) secara simultan. Secara keseluruhan 8 teleskop radio bergabung dalam aktivitas observasi ini dan secara keseluruhan menghasilkan sedikitnya 5 Petabyte data.

Jumlah datanya sangat besar untuk bisa dikirim memlalui jaringan internet global. Sehingga seluruh harddisk berisi data-data tersebut lantas diterbangkan ke Bonn (Jemran) dan selanjutnya Massachusetts (Amerika Serikat) untuk diolah. Superkomputer khusus bernama korelator dibangun di kedua lokasi tersebut. Sebuah tim beranggotakan 200 ilmuwan yang berasal dari 59 institusi penelitian dari 20 negara yang berbeda pun dibentuk. Pengolahan data meliputi pembersihan data dari derau (noise) akibat gangguan aktivitas manusia maupun sumber alamiah di Bumi, kalibrasi dengan algoritma tertentu, protokol validasi dan disusul dengan rekonstruksi citra dengan menyertakan teknik klasik maupun inovasi baru yang dikembangkan tim EHT.

Pada akhirnya lubang hitam raksasa M-87* yang ada di pusat galaksi Messier 87 pun berhasil ditampilkan. Dari citra ini dapat diketahui bahwa diameter lubang hitam raksasa ini, yakni ukuran horizon peristiwanya, adalah 39,8 milyar kilometer atau 266 SA (setara 1/200 ukuran tata surya kita). Dimensi yang besar menunjukkan bahwa lubang hitam raksasa ini tidak berperanan sebagai lubang cacing.

Gambar 4. Simulasi bagaimana jika awan gas raksasa bergerak terlalu dekat dengan lubang hitam raksasa di pusat sebuah galaksi. Lubang hitam raksasa menempati koordinat (0, 0). Awan gas raksasa npak berpilin dan terjebak di sekeliling lubang hitam raksasa hingga membentuk komponen piringan akresi. Sumber : Anninos dkk, 2012.

Dari citra yang sama pula massa lubang hitam raksasa M-87* dapat diketahui, yakni 6,5 milyar kali Matahari kita. Dilihat dari Bumi, lubang hitam raksasa M-87* berotasi searah jarum jam, menjadikannya bagian kelompok lubang hitam Kerr. Dan sebagai monster di pusat galaksi, ia tergolong rakus dengan melahap massa dalam jumlah tak kurang dari 90 massa Bumi kita per harinya. Massa yang disedot masuk ke lubang hitam raksasa ini hanyalah 10 % dari total massa yang ditarik-paksa dari lingkungan bintang-gemintang di sekelilingnya. Sisanya dipaksa berputar-putar tanpa daya dalam cakram akresi raksasa, sebelum dilemparkan kembali menjauhi sang lubang hitam raksasa. Dengan demikian dapat diperkirakan lubang hitam raksasa ini menyedot massa dalam jumlah tak kurang dari 900 massa Bumi kita per harinya ke dalam cakram akresinya.

Referensi :

The Event Horizon Telescope Collaboration. 2019. First M87 event Horizon Telescope result. I. The Shadow of Supermassive Blackhole. The Astrophysical Journal Letter, vol 875 no.L1 (17 halaman), 10 April 2019.

Kala Matahari Menjadi Dua, Asteroid Meledak di Udara dekat Kutub Utara

Peristiwa Bering 2018. Itulah namanya. Satu peristiwa ledakan-benda-langit-di-udara (airburst) yang sejatinya telah terjadi pada Rabu 19 Desember 2018 TU (Tarikh Umum) pukul 06:48 WIB mengambil tempat di atas Laut Bering beratus kilometer lepas pantai timur Semenanjung Kamchatka atau tak jauh dari perbatasan Russia dan Amerika Serikat. Tak kurang dari 96 kiloton energi ledakan dilepaskan airburst ini. Sementara energi totalnya sendiri diperhitungkan mencapai 173 kiloton TNT, membuatnya hampir seterang Matahari pada saat airburst terjadi. Andaikata di sekitar ground zero (yakni titik yang tepat berada di bawah lokasi airburst) terdapat pemukiman penduduk, niscaya mereka bakal terkesiap menyaksikan langit siang bolong (tepatnya pukul 11:48 waktu setempat) mendadak laksana berhias dua Matahari.

Gambar 1. Ilustrasi sebuah peristiwa airburst yang memvisualisasikan dengan jelas lintasan benda langit (kiri atas citra) hingga bola api airburst (tengah dan kanan citra) serta hempasan gelombang kejut dan sinar panas airburst ke paras Bumi yang berupa daratan berhutan belantara (bagian bawah citra). Peristiwa Bering 2018 pada dasarnya seperti ini, hanya saja terjadi di atas lautan pada ketinggian yang cukup besar. Sumber: atas perkenan Don Davis, tanpa tahun.

Dan andaikata pula Peristiwa Bering 2018 terjadi tiga dasawarsa silam, di tengah puncak Perang Dingin, niscaya alarm bahaya serangan nuklir Uni Soviet (pendahulu Russia) akan berdering-dering nyaring dan siaga nuklir mungkin akan segera diberlakukan. Dan dunia bakal selangkah lebih dekat lagi ke perang nuklir yang ditakuti siapapun. Beruntung Peristiwa Bering 2018 terjadi di masakini, kala pemantauan langit dan cara membedakan ledakan nuklir terhadap aksi pelepasan berenergi tinggi yang mirip telah bisa dilakukan dengan beragam metode.

Bhangmeter dan Mikrobarometer

Peristiwa Bering 2018 sejatinya langsung terdeteksi oleh setidaknya 3 instrumen (radas) berbeda. Dan segera diketahui oleh para cendekia yang berspesialisasi padanya. Namun memang baru dipublikasikan kepada umum dalam pertengahan Maret 2019 TU ini saja. Dari ketiga radas tersebut, yang pertama adalah satelit mata-mata yang dikelola Departemen Pertahanan Amerika Serikat. Satelit rahasia ini dilengkapi bhangmeter, instrumen pengukur tingkat energi melalui fluks cahaya inframerah yang dipancarkan. Bhangmeter memungkinkan mengukur energi optis dari kilatan cahaya Peristiwa Siberia 2018 sekaligus membedakannya dari kilatan cahaya ledakan nuklir. Pada ledakan nuklir, bhangmeter akan menampilkan kurva khas dengan dua bukit (double-peak) dan sebaliknya pada peristiwa non-nuklir tidak demikian.

Gambar 2. Saat-saat asteroid mini tanpa-nama mengalami airburst di atas Chelyabinsk (Russia) pada 15 Februari 2013 TU. airburst terjadi di ketinggian 30 km dpl dan demikian benderang hingga mencapai 30 kali lipat lebih terang dari Matahari pada puncaknya. Peristiwa Bering 2018 pada dasarnya serupa, hanya pelepasan energinya jauh lebih kecil. Sumber: NASA APOD, 2013.

Radas yang kedua adalah satelit Himawari-8 yang dikelola Badan Meteorologi Jepang, sebuah satelit cuaca berkemampuan tinggi yang dipangkalkan di orbit geostasioner (ketinggian 35.792 km dpl atas garis khatulistiwa) pada lokasi di Samudera Pasifik bagian barat. Sehingga Himawari 8 mampu menyajikan liputan dari sebagian besar daratan Asia, segenap Australia dan segenap perairan Samudera Pasifik. Dan yang ketiga adalah radas mikrobarometer di daratan yang terpsang di sebuah stasiun infrasonik yang bagian jaringan CTBTO (the Comprehensive nuclear Test Ban Treaty Organization), lembaga pengawas penegakan larangan ujicoba nuklir segala matra yang berada di bawah payung PBB (Perserikatan Bangsa-Bangsa). Meski sama-sama dirancang mengendus aktivitas peledakan nuklir khususnya matra atmosferik dan paras Bumi, berbeda dengan satelit mata-mata yang dilengkapi bhangmeter, radas mikrobarometer mengandalkan kemampuan mengendus gelombang infrasonik berpola khas. Detonasi senjata nuklir atmosferik dan permukaan bumi melepaskan gelombang kejut ke udara yang sebagian kecil diantaranya lantas bertransformasi menjadi gelombang infrasonik yang menjalar jauh dan bisa dideteksi.

Pada Peristiwa Bering 2018, bhangmeter sebuah satelit mata-mata merekam kilatan cahaya yang setara pancaran energi optis sebesar 130 TeraJoule. Kurva yang diperolehnya tidak mirip ledakan nuklir. Sehingga disimpulkan sebagai kejadian airburst sebuah benda langit, karena hanya tumbukan benda langit (asteroid atau komet) sajalah yang memiliki tingkat energi setara ledakan nuklir.

Peristiwa Bering 2018 juga dideteksi oleh setidaknya 10 stasiun infrasonik di berbagai penjuru, melewati gelombang infrasonik pada durasi lebih dari 10 detik. Misalnya pada stasiun infrasonik IS18 yang terpasang di pulau Greenland (Denmark). Sinyal infrasonik Peristiwa Bering 2018 yang terekam disini memiliki durasi 20 – 25 detik. Radas mikrobarometer tidak bisa menghasilkan perkiraan energi total sebuah peristiwa, mengingat akurasinya buruk. Peristiwa yang sama juga terpantau satelit Himawari 8 khususnya pada kanal cahaya tampak, Meskipun analisis citranya baru dilaksanakan pada pertengahan Maret 2019 TU ini. Pada citra satelit ini, Peristiwa Bering 2018 nampak sebagai garis berwarna kuning-jingga di antara taburan awan yang berwarna putih. Di samping garis kuning-jingga ini terdeteksi juga garis kehitaman, yang mengesankan sebagai jejak lintasan benda langit tersebut sebelum mengalami airburst.

Analisis Departemen Pertahanan Amerika Serikat yang kemudian dipublikasikan badan antariksa AS (NASA), sebagai bagian kerangka kerjasama yang terbentuk pasca Peristiwa Chelyabinsk 2013, menunjukkan Peristiwa Bering 2018 memiliki energi total 173 kiloton TNT. Hal senada juga diperlihatkan dari analisis sinyal infrasonik, yang menjumpai angka mendekati 200 kiloton TNT. Sehingga secara teknis relatif sama, terlebih mengingat akurasi pengukuran energi airburst lewat sinyal infrasonik yang cenderung buruk. Titik airburst terletak di ketinggian 26 km dpl. Dan benda langit yang terlibat melesat secepat 32 km/detik (115.200 km/jam) dengan membentuk sudut 70º terhadap bidang horizontal di titik targetnya.

Asteroid Mini

Apa penyebab Peristiwa Bering 2018?

Dalam hemat saya, asteroid lah biang keladinya. Analisis saya dengan memanfaatkan serangkaian persamaan matematis dari Collins dkk (Collins, 2005) mengindikasikan penyebab Peristiwa Bering 2018 adalah asteroid dengan komposisi menyerupai meteorit akondrit, tepatnya dengan massa jenis 4.000 kg/m3. Meteorit akondrit adalah salah satu tipe meteorit yang diduga berasal dari bagian kerak benda langit terestrial seperti Mars maupun Bulan. Mereka terlempar ke antariksa oleh rangkaian tumbukan benda langit mahadahsyat di masa silam, lantas melayang-layang layaknya asteroid pada umumnya di keluasan antariksa.

Jika dianggap berbentuk bulat seperti bola, asteroid penyebab Peristiwa Bering 2018 memiliki garis tengah 8,8 meter sehingga merupakan asteroid kecil. Maka massanya sekitar 1.400 ton. Statistik memperlihatkan meteoroid seukuran ini (baik asteroid kecil maupun kepingan komet) memasuki atmosfer Bumi sekali dalam rata-rata setiap 28 tahun.

Gambar 3. Potongan citra satelit Himawari 8 pada kanal cahaya tampak untuk kawasan Samudera Pasifik bagian utara. Jejak Peristiwa Bering 2018 nampak jelas sebagai titik-titik cahaya berwarna kuning-jingga membentuk sebuah garis di antara tebaran awan-awan putih (tanda panah). Jejak diperbesar dalam gambar inset. Sumber: Japan Meteorology Agency, 2018.

Saat memasuki atmosfer Bumi bagian atas, gerak dan kecepatan meteoroid ini menyebabkan kolom udara yang dilintasinya mengalami tekanan ram yang kian membesar. Selain membuatnya bertransformasi menjadi meteor super terang (superfireball), tekanan ram yang kian membesar pada akhirnya akan memecah-belah asteroid tersebut mulai dari ketinggian 54 km dpl. Pemecah-belahan ini terus berlangsung dan kian intensif seiring kian jauh superfireball memasuki atmosfer. Hingga pada ketinggian 26 km dpl terjadilah proses pemecah-belahan yang paling intensif, membuat pecahan-pecahan yang terbentuk sontak mengalami deselerasi besar laksana direm di udara. Timbullah airburst yang melepaskan energi hingga 96 kiloton TNT. Pada saat airburst ini terbentuk kilatan cahaya sangat terang dengan tingkat terang (magnitudo semu) setara 70 % Matahari.

Bagaimana Dampaknya?

Seberapa besar sih energi airburst ini? Ledakan bom nuklir Nagasaki berkekuatan 20 kiloton TNT, sehingga airburst tersebut hampir lima kali lipat lebih dahsyat ketimbang bom nuklir Nagasaki. Secara keseluruhan Peristiwa Bering 2018 ini delapan kali lipat lebih dahsyat ketimbang ledakan bom nuklir Nagasaki.

Adakah dampaknya?

Meski energinya terkesan sangat besar bagi kita, namun dengan titik pelepasan energi yang jauh di ketinggian (yakni 26 km dpl) membuat dampaknya ke paras Bumi boleh dikata minimal, bahkan nyaris tidak ada. Pada dasarnya dampak tumbukan benda langit (termasuk dalam peristiwa airburst) mirip dengan dampak ledakan nuklir pada titik yang sama. Dengan mengacu simulasi ledakan nuklir (Dolan dan Glasstone, 1977) maka diperhitungkan pada ground zero saja besarnya tekanan lebih (overpressure) dari gelombang kejut airburst ini hanyalah 183 Pa (atau 19 kg/m2). Ini masih di bawah nilai ambang batas yang besarnya 200 Pa, yakni overpressure minimum yang bisa menghasilkan kerusakan teringan akibat papasan gelombang kejut. Yakni berupa retaknya kaca jendela.

Demikian halnya dengan pelepasan sinar panasnya. Simulasi ledakan nuklir memang memperlihatkan potensi munculnya sinar panas (thermal rays) sebagai imbas terbentuknya bola api airburst. Bola api airburst ini diperhitungkan bergaris tengah 295 meter dan sangat panas (suhu lebih dari 3.000º C) namun umurnya sangat singkat (kurang dari 1 detik). Pada ground zero, fluks panas akibat pembentukan bola api airburst ini diperhitungkan hanya 4,63 kiloJoule/m2. Sementara ambang batas fluks panas bagi luka bakar paling ringan (yakni luka bakar tingkat satu) adalah 5,16 kiloJoule/m2. Sedangkan untuk bisa menghasilkan kerusakan fisik teringan (yakni dalam bentuk terbakarnya/hangusnya kulit batang pohon) dibutuhkan fluks panas minimal 9,93 kiloJoule/m2. Jadi, seperti halnya dalam aspek gelombang kejut, Peristiwa Bering 2018 tidak memberikan dampak dalam hal paparan sinar panasnya.

Gambar 4. Rekaman gelombang infrasonik produk Peristiwa Bering 2018 yang ditangkap oleh stasiun IS8 di pulau Greenland (Denmark), ribuan kilometer jauhnya dari ground zero. Sumber: Peter Brown, 2019.

Sehingga tidak ada dampak lebih lanjut yang dialami kawasan Laut Bering dan sekitarnya akibat Peristiwa Bering 2018. Berbeda halnya dengan Peristiwa Chelyabinsk 2013, yang memiliki ketinggian airburst relatif sama namun energinya jauh lebih besar (hampir 4 kali lipat lebih besar). Sehingga dampaknya ke ground zero dan sekitarnya cukup signifikan terutama dalam aspek gelombang kejut.

Adakah Meteoritnya?

Karena terjadi di tengah laut maka mustahil untuk mengetahui apakah Peristiwa Bering 2018 memproduksi meteorit yang bisa menjadikannya peristiwa boloid dan bukan hanya sekedar superfireball. Secara teoritis minimal 0,1 % dari massa meteoroid yang berbentuk asteroid mini akan selamat dari proses penghancuran di atmosfer Bumi dan melanjutkan perjalanannya hingga mendarat di paras Bumi sebagai meteorit. Untuk Peristiwa Bering 2018, maka sisa meteoroid itu akan setara dengan massa 1,4 ton. Garis tengahnya akan sebesar 0,88 meter, jika sisa meteoroid itu dianggap berbentuk bola sempurna.

Apabila meteorit itu jatuh sebagai bongkahan tunggal ke perairan Samudera Pasifik, maka kecepatannya saat menyentuh air masih 152 m/detik (546 km/jam). Tumbukan ini akan menciptakan tsunami kecil yang khas dengan panjang gelombang 129 meter dan menjalar melintasi perairan dengan kecepatan sekitar 122 km/jam. Tsunami ini demikian kecil sehingga dalam jarak 3 km saja dari titik tumbukannya hanya akan setinggi 0,15 meter. Faktanya sistem peringatan dini tsunami Pasifik tak mendeteksi usikan khas tsunami di Samudera Pasifik bagian utara. Ini menjadi indikasi bahwa kalaupun Peristiwa Bering 2018 memproduksi meteorit, maka meteorit itu jatuh tercebur ke laut bukn sebagai bongkahan tunggal (seperti halnya dalam peristiwa Chelyabinsk 2013). Melainkan sebagai kepingan-kepingan berukuran kecil yang sangat banyak sehingga tak berdampak serius kepada perairan yang dijatuhinya.

Referensi :

Collins dkk. 2005. Earth Impact Effects Program: A Web based Computer program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science no. 6 vo. 40 (2005), halaman 817-840.

Collins dkk. 2017. A Numerical Assessment of Simple Airblast Models of Impact Airbursts. Meteoritics & Planetary Science no. 8 vo. 52 (2017), halaman 1542-1560.

Dolan & Glasstone. 1977. The Effects of Nuclear Weapons. Washington DC (USA), Department of Defense and Energy, 3rd edition.