Asteroid 2018 LA (ZLAF9B2) : Diprediksi Jatuh di Indonesia, Mendarat di Afrika Selatan

Kalender menunjukkan Sabtu 2 Juni 2018 TU (Tarikh Umum) dan kian larut saat kami, saya dan pak Mutoha Arkanuddin, berbincang di markas Jogja Astro Club. Sebagai sesama pegiat di klub astronomi kota Yogyakarta yang kesohor itu, beliau adalah pendiri sekaligus mahagurunya sementara saya ke-dhapuk sebagai salah satu pembinanya, kami ngobrol ngalor-ngidul akan banyak hal. Mulai masalah sehari-hari, ilmu falak, astronomi hingga Gunung Merapi yang sedang menggeliat dan menggamit ingatan peristiwa-peristiwa sebelumnya.

Mendadak satu notifikasi masuk. Astronom mancanegara mengabarkan baru saja ditemukan satu asteroid dengan identitas (sementara saat itu) ZLAF9B2. Diameternya antara 2 hingga 5 meter, jika dianggap berbentuk bola sempurna. Yang mengejutkan, asteroid ini akan melintas sangat dekat dengan Bumi kita. Yakni hanya sejarak orbit satelit geostasioner (36.000 kilometer di atas parasbumi). Dengan memperhitungkan nilai ketidakpastian orbitnya berdasarkan jumlah data yang terkumpul pada saat itu, maka terdapat potensi asteroid mini ini akan jatuh ke Bumi. Atau teknisnya akan masuk ke dalam atmosfer Bumi dan berubah menjadi meteor superterang (superfireball). Dan yang kian mengejutkan lagi, perpotongan lintasan asteroid tersebut dengan ketinggian 120 kilometer di atas parasbumi membentang di sebagian wilayah Indonesia. Jika sebuah benda langit menyentuh batas ketinggian tersebut, hampir pasti ia akan masuk ke dalam atmosfer dengan segala akibatnya.

Gambar 1. Asteroid 2018 LA saat ditemukan melalui teleskop reflektor 1,5 m dilengkapi kamera CCD 10K yang terpasang di Observatorium Gunung Lemmon dalam program Catalina Sky Survey. Asteroid nampak sebagai garis dalam lingkaran berwarna ungu. Titik-titik putih adalah bintang-bintang latar belakang. Sumber: Catalina Sky Survey, 2018.

Tabuh menunjukkan pukul 23:00 WIB saat kami bergegas naik ke anjungan observasi di lantai tiga. Langit malam Yogyakarta sangat cerah. Bulan merajai angkasa, didampingi Mars dan Saturnus serta Jupiter yang agak menjauh. Bintang terang seperti Altair di rasi Aquilla dan Vega di rasi Lyra mudah kami identifikasi. Demikian halnya rasi bintang Pari dan alfa Centauri (rasi Centaurus) yang bertahta di langit selatan. Beberapa meteor sempat melintas. Namun asteroid ZLAF9B2, setidaknya superfireball-nya, tak terdeteksi sama sekali.

Ini wajar. Dengan prakiraan orbit yang masih kasar pada saat itu, selalu tersedia zona ketidakpastian dalam meramal kedudukan asteroid tersebut untuk satu masa. Berselang beberapa jam kemudian kami membaca telah terjadi sesuatu di Botswana. Tepatnya peristiwa langit yang mengambil lokasi di perbatasan antara Botswana dan Afrika Selatan, dua negara yang terletak di ujung selatan benua Afrika.

Asteroid 2018 LA

International Astronomical Union (IA) melabeli asteroid ZLAF9B2 ini sebagai asteroid 2008 LA. Ia baru ditemukan hanya dalam tujuh jam sebelum kami naik ke dek pengamatan, menyapu setiap jengkal langit Yogyakarta. Adalah sistem penyigian langit Catalina Sky Survey yang bersenjatakan teleskop kuat dan sistem identifikasi semi-otomatis di Observatorium Gunung Lemmon di kawasan Pegunungan Catalina, Arizona (Amerika Serikat) yang pertama kali mendeteksinya pada 2 Juni 2018 TU pukul 15:22 WIB. Berbekal hanya 12 data hasil pengamatan yang diperoleh selama hanya 3,5 jam saja dari berbagai penjuru, sebagian sifat asteroid 2018 LA pun terkuak. Ia menjadi bagian asteroid kelas Apollo, kelompok asteroid dekat-Bumi yang bergentayangan di antara orbit Venus dan Mars sehingga punya peluang untuk memotong orbit Bumi. Ia mengelilingi Matahari dengan periode 1,61 tahun dan kemiringan orbit (inklinasi) hanya 4º.

Gambar 2. Prakiraan awal rentang waktu dan rentang lokasi jatuh asteroid 2018 LA, dengan waktu dalam UTC (WIB – 7). Nampak bahwa Indonesia tercakup dalam prakiraan tersebut khususnya bilama asteroid jatuh antara pukul 22:00 WIB hingga 22:30 WIB. Sumber: Bill Gray/ProjectPluto.com, 2018.

Sedari awal ditemukan, pergerakan asteroid 2018 LA terlihat berbeda dibanding asteroid-asteroid yang baru ditemukan lainnya di lingkungan dekat-Bumi. Asteroid terabadikan sebagai garis dengan prakiraan magnitudo +18 (64 kali lebih redup ketimbang Pluto). Jadi bukan berupa bintik cahaya redup. Ketampakan ini mengesankan asteroid 2018 LA bergerak cukup cepat dan mungkin berada sangat dekat dengan Bumi. Analisis lebih lanjut membenarkan hal tersebut, asteroid 2018 LA memang bakal lewat sangat dekat dan bahkan berpotensi besar jatuh ke Bumi, dengan probabilitas jatuh hingga 85 %.

Asteroid 2018 LA berpotensi jatuh di Indonesia pada rentang masa antara pukul 22:00 hingga 22:30 WIB. Prakiraan titik jatuhnya merentang mulai dari pulau Irian di timur hingga di pulau Sumba, untuk kemudian melaju menyeberangi Samudera Indonesia. Diprakirakan saat lewat di selatan pulau Jawa, asteroid ini memiliki magnitudo semua sekitar +11 hingga +12. Jelas, jikalau kami bisa mengarahkan teleskop padanya pun ia akan sangat sulit terdeteksi di tengah penjajahan gelimang cahaya Bulan dan parahnya polusi cahaya bagi langit malam Yogyakarta.

Gambar 3. Jejak meteor terang yang kemudian berkembang menjadi superfireball sebagaimana diabadikan Dhiraj S di Gaborone, Botswana, pada pukul 23:44 WIB. Meteor terang ini dipastikan merupakan asteroid 2018 LA yang sedang menerobos masuk ke atmosfer Bumi. Dipublikasikan oleh American Meteor Society. Sumber: Dhiraj S/AMS, 2018.

Kurang dari 1,5 jam setelah diprediksi menembus langit Indonesia, seorang Dhiraj S di Gaborone (Botswana) melaporkan ke American Meteor Society (AMS) tentang ketampakan sebuah superfireball. Ia berhasil mengabadikannya dalam citra (foto) dengan waktu papar 2 detik pada pukul 23:44 WIB. Citranya memperlihatkan garis terang khas meteor sepanjang sekitar 10º. Yang mengejutkan, namun tak terekam foto, sesaat kemudian meteor ini berkembang menjadi superfireball berwarna kekuning-kuningan, penanda mengandung banyak Natrium, dengan perkiraan magnitudo visual -27 pada puncaknya. Artinya ia sempat lebih terang ketimbang Matahari!

Laporan lain datang dari negeri tetangganya. Barend Swanepoel, pemilik peternakan di Ottosdal (Afrika Selatan) melaporkan sistem kamera sirkuit tertutup (CCTV)-nya merekam peristiwa langit tak biasa. Terdeteksi sebuah benda langit yang bergerak melintas sembari kian terang pada sekitar pukul 23:49 WIB. Pada puncaknya ia demikian benderang, setara atau melebihi terangnya Matahari, manakala hampir mendekati horizon.

Gambar 4. Potongan rekaman kamera sirkuit tertututp (CCTV) pada suatu lahan pertanian di Ottosdal (Afrika Selatan). Bintik cahaya terang di latar belakang adalah superfireball dari asteroid 2018 LA. Dipublikasikan oleh Barend Swanepoel. Sumber: Swanepoel, 2018.

Analisis memperlihatkan apabila lintasan potensi jatuh yang ada di Indonesia dikembangkan ke arah barat, maka perpanjangan tersebut akan tepat bertemu dengan perbatasan Botswana dan Afrika Selatan. Tak ada keraguan, superfireball itu memang asteroid 2018 LA yang jatuh ke Bumi. Berikut adalah rekaman videonya, juga dari CCTV di Ottosdal namun bersumber dari Mellisa Delport di pertanian lain :

Dampak

Pada masakini upaya deteksi peristiwa jatuhnya benda langit ke Bumi tak lagi hanya mengandalkan ketampakan visual. Namun juga memanfaatkan sinyal-sinyal gelombang yang tak kasat mata atau bahkan tak terdengar umat manusia. Inilah yang dilakukan the Comprehensive nuclear Test Ban Treaty Organization (CTBTO), institusi di bawah payung Perserikatan Bangsa-Bangsa (PBB) yang ditegakkan untuk mengawasi perjanjian internasional larangan ujicoba nuklir segala matra baik di antariksa, atmosfer, parasbumi, bawah tanah dangkal, bawah tanah dalam, bawah laut dangkal dan bawah laut dalam. Meski deikian CTBTO juga sanggup mengendus aneka peristiwa pelepasan energi-mirip-ledakan-nuklir atmosferik. Terutama dengan dua jenis radas (instrumen) andalannya, yakni radas mikrobarometer untuk menangkap sinyal-sinyal gelombang infrasonik dan radas seismometer guna merekam sinyal seismik.

Gambar 5. Sinyal infrasonik produk masuknya asteroid 2018 LA ke dalam atmosfer Bumi sebagaimana terekam mikrobarometer di stasiun IS47, Afrika Selatan. Usikan tersebut berkorelasi dengan pelepasan energi antara 0,3 hingga 0,5 kiloton TNT. Dipublikasikan oleh Peter Brown. Sumber: Brown, 2018.

Itulah yang ditangkap radas mikrobarometer pada stasiun IS47 yang terletak di Afrika selatan. Usikan gelombang infrasonik cukup kuat terekam di stasiun ini pada beberapa saat pasca terekamnya superfireball di Ottosdal. Analisis Peter Brown, astronom yang berspesialisasi pada meteor, menunjukkan usikan tersebut setara dengan pelepasan energi 0,3 hingga 0,5 kiloton TNT.

Dari data ini bisa diperkirakan seberapa besar asteroid 2018 LA. Dari orbitnya kita tahu bahwa asteroid ini memiliki kecepatan bebas (vinf) 15,8 kilometer/detik (56.900 kilometer/jam) sehingga saat tepat masuk ke atmosfer Bumi memiliki kecepatan relatif (vgeo) 19,4 kilometer/detik (69.700 kilometer/jam). Dengan rentang energi kinetik antara 0,3 hingga 0,5 kiloton TNT, maka diameter asteroid 2018 LA adalah antara 1,7 hingga 2 meter. Sementara massanya antara 9,5 hingga 15,5 ton. Diameter dan massa ini diperoleh dengan asumsi bahwa asteroid 2018 LA memiliki komposisi yang identik dengan meteorit kondritik (massa jenis 3,7 gram/cm3).

Analisis lebih lanjut, dengan memanfaatkan persamaan dan model yang dihimpun Collins dkk (2005), memperlihatkan beberapa hal menarik. Misalnya, sebelum memasuki atmosfer Bumi asteroid ini memiliki energi potensial antara 0,4 hingga 0,7 kiloton TNT. Begitu memasuki atmosfer Bumi, kecepatannya melambat akibat gesekan dengan molekul-molekul udara yang sekaligus menghasilkan tekanan ram. Tekanan ini memecah-belah asteroid sekaligus sangat memperlambatnya mulai ketinggian 40 kilometer dari parasbumi. Inilah peristiwa airburst (mirip ledakan-di-udara) yang membuat energi kinetik superfireball pun terbebaskan ke udara sekitar. Transfer energi ini mewujud dalam, salah satunya, energi akustik. Inilah yang direkam oleh radas mikrobarometer di stasiun IS47.

Gambar 6. Orbit asteroid 2018 LA di antara planet-planet terestrial dalam tata surya kita pada waktu sebulan sebelum jatuh ke Bumi. Nampak orbitnya merentang di antara orbit Venus hingga Mars, suatu ciri khas asteroid dekat-Bumi kelas Apollo. Disimulasikan dengan Stellarium.

Dengan energi hanya 0,3 sampai dengan 0,5 kiloton TNT, jatuhnya asteroid 2018 LA tidak menimbulkan dampak fisik yang nyata di parasbumi dibawahnya. Sebab gelombang kejut yang diproduksinya masih cukup lemah untuk bisa menimbulkan kerusakan. Apalagi sinar panasnya yang jauh lebih lemah lagi. Karena itu jatuhnya asteroid 2018 LA tidak berdampak secara nyata pada situasi di parasbumi yang menjadi titik targetnya.

Yang Ketiga

Asteroid 2018 LA adalah asteroid ketiga yang berhasil ditemukan sebelum jatuh mencium Bumi dalam sejarah astronomi kiwari. Dua asteroid sebelumnya masing-masing adalah asteroid 2008 TC3 dan asteroid 2014 AA.

Asteroid 2008 TC3 (diameter 4 meter, massa 83 ton) ditemukan pada 6 Oktober 2008 TU atau 20 jam sebelum jatuh. Ia ditemukan saat berposisi sejarak 500.000 kilometer dari Bumi kita dan diamati oleh tak kurang dari 26 observatorium, membuahkan tak kurang dari 800 data pengamatan yang sangat berharga. Asteroid anggota asteroid-dekat Bumi kelas Apollo ini memasuki atmosfer Bumi juga di atas Afrika, tepatnya di atas perbatasan Sudan dan Mesir. Energi kinetiknya terukur antara 1,1 hingga 2,1 kiloton TNT. Ia menghasilkan meteorit yang sangat banyak, hingga tak kurang dari 600 buah, yang dikenal sebagai meteorit Almahatta Sitta.

Sementara asteroid 2014 AA (diameter 3 meter, massa 38 ton) ditemukan pada 1 Januari 2014 TU dalam 23 jam sebelum jatuh. Ia juga ditemukan saat sejarak 500.000 kilometer dari Bumi kita, namun lebih jarang yang berhasil melakukan pengamatan atasnya. Asteroid ini jugalah anggota asteroid-dekat Bumi kelas Apollo. Ia memasuki atmosfer Bumi di atas Samudera Atlantik dengan energi kinetik sekitar 4 kiloton TNT. Karena jatuh di tengah-tengah keluasan samudera, tak sebutir pun meteoritnya yang ditemukan.

Gambar 7. Lintasan aktual asteroid 2018 LA dan proyeksi lintasannya di parasbumi (groundpath) sebagaimana dipublikasikan Jet Propulsion Laboratory NASA. Sumber: NASA, 2018.

Sukses deteksi ketiga asteroid tersebut menunjukkan kemajuan astronomi dalam mengidentifikasi ancaman tumbukan benda langit. Meski kemampuan ini masihlah terbatas efektivitasnya dan masih banyak yang harus diperbaiki. Keterbatasan tersebut masih menghasilkan celah besar dalam hal deteksi semua asteroid dekat Bumi meskipun mereka akan melintas sangat dekat atau bahkan akan jatuh ke Bumi.

Beberapa kali celah besar ini membawa akibat pelik. Contoh teraktual adalah peristiwa Chelyabinsk, saat asteroid-tanpa-nama yang tak terdeteksi (meski diameternya ~17 meter dengan massa 10.000 ton) mengalami airburst di atas kawasan Siberia (Rusia) pada 13 Februari 2013 TU. Energi kinetik 500 kiloton TNT terlepas, memproduksi gelombang kejut dan gelombang panas ringan yang merusak kota Chelyabinsk dan sekitarnya. Ribuan orang terluka dan ribuan bangunan rusak dengan total kerugian hingga milyaran rupiah. Pun demikian kala asteroid-tanpa-nama lainnya, dengan diameter ~10 meter, mengalami airburst di atas Kabupaten Bone, Sulawesi Selatan (Indonesia) pada 8 Oktober 2009 TU yang melepaskan energi kinetik 60 kiloton TNT. Demikian pula kala asteroid-tanpa-nama lainnya, kali berdiameter ~1 meter, menumbuk paras Bumi pada 15 September 2007 TU. Tumbukan terjadi di dataran tinggi tepian danau Titicaca dan membentuk lubang besar (kawah) seukuran 13,5 meter di tepi desa Carancas (Peru).

Referensi :

NASA. 2018. Tiny Asteroid Discovered Saturday Disintegrates Hours Later Over Southern Africa. NASA Jet Propulsion Laboratory, diakses 4 Juni 2018 TU.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Guido. 2018. Small Asteroid 2018 LA impacted Earth on 02 June. Comet & Asteroids, diakses 4 Juni 2018 TU.

American Meteor Society. 2018. Report 1924c (Events 1924 – 2018).

Peter Brown. 2018. komunikasi personal.

Iklan

Akankah Stasiun Antariksa Tiangong-1 Jatuh di Indonesia?

Penghujung Maret 2018 TU (Tarikh Umum) menjadi hari-hari terakhir bagi sampah antariksa Tiangong-1 (baca: Tian Gong satu). Bangkai stasiun antariksa pertama milik Cina ini tinggal menunggu waktu saja untuk jatuh memasuki atmosfer Bumi (reentry). Orbitnya kian menurun saja. Hingga Kamis 29 Maret 2018 TU pukul 21:00 WIB, orbit Tiangong-1 sudah turun demikian rupa dengan perigee tinggal 186,7 kilometer dan apogee tinggal 201,7 kilometer, semuanya dari paras air laut rata-rata (dpl). Dan hingga 29 Maret 2018 TU itu prediksi waktu jatuh Tiangong-1 adalah sebagai berikut :

  • Aerospace Corporation = 1 April 2018 TU pukul 17:30 WIB ± 16 jam.
  • US Strategic Command = 1 April 2018 TU pukul 07:52 WIB ± 15 jam.
  • Marco Langbroek = 1 April 2018 TU pukul 16:36 WIB ± 19 jam.
  • Joseph Remis = 1 April 2018 TU pukul 17:40 WIB ± 15 jam.

Dengan nilai ketidakpastian masih cukup besar, yakni antara 15 hingga 19 jam, maka pada dasarnya masih sangat sulit untuk menentukan lokasi titik jatuh Tiangong-1. Ini mengingat bangkai stasiun antariksa itu melejit secepat 7,8 kilometer/detik atau sekitar 28.000 kilometer/jam. Maka ketidakpastian sebesar semenit saja akan setara dengan pergeseran jarak sebesar 467 kilometer.

Gambar 1. Jejak lintasan sampah antariksa Tiangong-1 diabadikan pada Kamis pagi 22 Maret 2018 TU dengan kamera pada waktu papar 8 detik. Tiangong-1 bergerak cukup cepat sehingga saat direkam kamera selama 8 detik nampak sebagai garis bercahaya samar. Sumber: Sudibyo, 2018.

Meski amat menyedot perhatian dunia, Tiangong-1 (massa 8,5 ton) sesungguhnya bukanlah sampah antariksa terberat. Ia masih berada dalam nilai rata-rata massa dari sampah-sampah antariksa signifikan sepanjang satu dekade terakhir. Semenjak tahun 2000 TU hingga saat ini, sampah antariksa terberat masih ditempati oleh wantariksa (wahana antariksa) Phobos-Grunt, yang jatuh ke sisi timur Samudera Pasifik pada 15 Januari 2012 TU silam. Russia meluncurkan Phobos-Grunt (13,5 ton) menuju Mars, namun cacat pada sistem pemrograman membuat sistem komputernya terus bermasalah. Sehingga Phobos-Grunt terperangkap dalam orbit Bumi tanpa daya hingga akhirnya jatuh.

Dalam pandangan ESA (European Space Agency atau badan antariksa gabungan negara-negara Eropa) Tiangong-1 memiliki massa dan dimensi mirip ATV (Automated Transfer Vehicle), wantariksa kargo yang dibangun ESA untuk mengirim muatan ke stasun antariksa internasional ISS. Pasca bertugas di ISS selama jangka waktu tertentu, ATV pun dijatuhkan secara terkendali ke kawasan Samudera Pasifik dengan proses yang terdokumentasi dengan baik (pada ATV Jules Verne). Karena itu apa yang akan terjadi pada Tiangong-1 saat jatuhnya nanti kemungkinan akan mirip dengan ATV.

Tatkala Tiangong-1 mulai menuruni lapisan atmosfer yang lebih padat dengan kecepatan 28.000 kilometer/jam, gesekan dengan udara di sekelilingnya menyebabkan kecepatan Tiangong-1 berkurang dengan pasti. Pengurangan ini mentransfer energi ke udara, menghasilkan tekanan ram yang kian menguat. Awalnya sepasang panel surya Tiangong-1 yang terlepas. Sementara badan Tiangong-1 terus terpanaskan dan ditekan sangat hebat seiring kian memasuki lapisan udara yang lebih padat. Pada ketinggian beberapa puluh kilometer dpl, tekanan hebat itu membuat badan Tiangong-1 terpecah-belah. Pemecah-belahan ini menandai titik mulai punahnya kecepatan asli Tiangong-1 (kecepatan yang dibawanya dari antariksa).

Selanjutnya gravitasi Bumi mengambil-alih sehingga masing-masing pecahan menjalani gerak jatuh bebas pada lintasannya sendiri-sendiri. Keping-keping Tiangong-1, dengan massa total tinggal sekitar 100 kilogram, lantas akan berjatuhan pada wilayah sepanjang sekitar 2.000 kilometer dan lebar sekitar 70 kilometer. Kecepatan jatuhnya (saat menyentuh paras Bumi) tergolong kecil, tinggal sekitar beberapa puluh kilometer per jamnya. Dan tak perlu cemas berlebihan. Peluang keping-keping Tiangong-1 untuk jatuh di kawasan berpenduduk padat sangat kecil. Hanya 1 berbanding beberapa trilyun.

Video berikut dari Aerospace Corporation menyimulasikan proses jatuhnya Tiangong-1 :

Melintas di Indonesia

Sebelum jatuh, sampah antariksa Tiangong-1 masih akan terlihat melayang menyusuri orbitnya. Hanya beberapa lokasi yang berkesempatan menyaksikan Tiangong-1 di langit menjelang kejatuhannya. Misalnya kota Tokyo (Jepang) dan Cape Town (Afrika Selatan), masing-masing berkesempatan menyaksikan Tiangong-1 pada saat fajar dan senja Kamis 29 Maret 2018 TU. Sementara Athena (Yunani) dan Roma (Italia) berpeluang melihat Tiangong-1 pada saat fajar Jumat 30 Maret 2018 TU.

Bagaimana dengan Indonesia?

Peluang terlihatnya Tiangong-1 di langit Indonesia kala fajar ataupun senja telah tertutup. Indonesia berkesempatan menyaksikannya pada minggu lalu tepatnya antara tanggal 19 hingga 24 Maret 2018 TU. Sedikitnya ada dua observasi yang berhasil mengamati Tiangong-1 di langit, misalnya oleh saya sendiri dan oleh Eko Hadi G dari klub astronomi Penjelajah Langit (Yogyakarta).

Gambar 2. Jejak lintasan sampah antariksa Tiangong-1 diabadikan pada Selasa sore 20 Maret 2018 TU oleh Eko Hadi G dengan kamera pada waktu papar 10 detik. Tiangong-1 bergerak cukup cepat sehingga saat direkam kamera selama 8 detik nampak sebagai garis bercahaya samar. Sumber: Penjelajah Langit/Eko Hadi G, 2018.

Namun sejatinya Tiangong-1 tetap melintas di atas wilayah Indonesia meski tak bisa disaksikan lagi. Dalam setiap harinya Tiangong-1 berkesempatan dua kali melintas di atas Indonesia, masing-masing di malam hari dan di siang hari. Perlintasan pada malam hari selalu dari arah barat daya menuju ke timur laut. Sebaliknya perlintasan di siang hari selalu dari arah barat laut menuju tenggara. Dengan luasnya wilayah Indonesia, maka dalam sehari terjadi lima hingga enam kali perlintasan Tiangong-1 dalam setiap harinya.

Perlintasan-perlintasan itu membentuk pola yang khas sebagai berikut :

  • Pulau Sumatra, perlintasan Tiangong-1 terjadi di malam hari pada koridor antara sekitar kota Natal (Sumatra Utara) hingga sekitar kota Bagan Siapi-api (Riau).
  • Pulau Jawa, koridornya adalah di sekitar kota Tulungagung hingga sekitar kota Sumenep (semuanya di propinsi Jawa Timur) dengan perlintasan pada malam hari.
  • Pulau Kalimantan, perlintasan Tiangong-1 terjadi di siang hari dengan koridor antara sekitar kota Pontianak (Kalimantan Barat) hingga sekitar kota Sampit (Kalimantan Tengah).
  • Pulau Sulawesi, koridor perlintasan Tiangong-1 adalah dari sekitar kota Palu (Sulawesi Tengah) hingga sekitar kota Gorontalo (Gorontalo) yang terjadi di malam hari.
  • Pulau Irian memiliki dua koridor perlintasan Tiangong-1. Masing-masing dari sekitar kota Manokwari (Irian Jaya Barat) hingga sekitar kota Merauke (Papua) di siang hari. Dan dari sekitar kota Agats hingga sekitar kota Jayapura (keduanya di propinsi Papua) di malam hari.

Berikut adalah peta perlintasan Tiangong-1 di Indonesia dari hari ke hari semenjak Jumat 30 Maret 2018 TU hingga Senin 2 April 2018 TU :

Gambar 3. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Jumat 30 Maret 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Gambar 4. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Sabtu 31 Maret 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Gambar 5. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Minggu 1 April 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Gambar 6. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Senin 2 April 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Akankah Tiangong-1 jatuh di Indonesia? Peluangnya sangat kecil. Sejauh ini seluruh prediksi yang ada tidak menempatkan prakiraan titik jatuh Tiangong-1 dalam kawasan Indonesia. Namun dengan nilai ketidakpastian yang masih besar, maka peluang jatuh di salah satu koridor perlintasan Tiangong-1 di wilayah Indonesia juga tetap terbuka, meski sangat kecil.

Pembaharuan : Prediksi Terakhir Waktu dan Titik Jatuh

Per 1 April 2018 TU pukul 18:00 WIB, Joseph Remis menyajikan prediksi terakhir waktu dan posisi titik jatuh Tiangong-1. Waktu jatuh adalah pada Senin 2 April 2018 TU pukul 05:46 WIB ± 4 jam. Sehingga waktu jatuh adalah pada saat kapanpun di antara rentang waktu antara pukul 01:46 WIB hingga 09:46 WIB pada 2 April 2018 TU.

Lokasi titik jatuh, jika terjadi pada pukul 05:46 WIB maka akan berada di tengah-tengah Samudera Pasifik pada koordinat 13,23 LS 142,85 BB. Namun dalam rentang waktu antara pukul 01:46 hingga 09:46 WIB, terbuka kemungkinan Tiangong-1 bisa jatuh di daratan dari negara-negara Myanmar, Cina, Jepang, Peru, Argentina, Afrika Selatan, India, Ethiopia, Yaman, Iran, Arab Saudi, Irak, Kazakhstan, Brazil, Italia dan Turki. Berikut petanya :

Pembaharuan 2 : Tiangong-1 Telah Jatuh!

Sampah antariksa yang juga stasiun antariksa Tiangong-1 dipastikan telah jatuh pada Senin 2 April 2018 TU pukul 07:16 WIB ± 1 menit menurut JFSCC (Joint Force Space Component Command) pada Komando Strategis (US Strategic Command/USStratcom) Kementerian Pertahanan Amerika Serikat. Tiangong-1 jatuh di kawasan Samudera Pasifik bagian selatan, tepatnya di antara koordinat 14 LS 162 BB hingga 24 LS 150 BB. Koridor ini membentang mulai dari sebelah barat daya hingga sebelah selatan Tahiti.

Meski tiada rekaman yang memperlihatkan detik-detik jatuhnya Tiangong-1, namun JFSCC memastikan hal tersebut terjadi melalui pantauan satelit militer Amerika Serikat, kemungkinan SBIRS (Space Based Infra Red System). Satelit mata-mata yang bertumpu pada spektrum sinar inframerah ini ditujukan untuk menyigi jejak inframerah dari aktivitas peluncuran rudal, namun juga bisa mengendus aktivitas lain. Termasuk jatuhnya sampah antariksa berukuran besar.

Rekonstruksi memperlihatkan, saat menempuh orbit terakhirnya sebelum kemudian jatuh, Tiangong-1 lewat di atas benua Amerika bagian selatan (yakni Chile dan Argentina), benua Afrika bagian tengah dan utara (masing-masing Gabon, Kamerun, Republik Afrika Tengah dan Sudan) dan benua Asia (Saudi Arabia, Iran, Kazakhstan, Cina dan Jepang). Di Saudi Arabia, Tiangong-1 lewat di atas kotasuci Madinah. Gambar berikut adalah peta lima lintasan terakhir yang dijalani sampah antariksa Tiangong-1, yakni sejak 7 jam 20 menit sebelum waktu jatuh :

Berikut adalah hasil rekonstruksi lintasan terakhir Tiangong-1 dalam aplikasi pemetaan Google Maps. Nampak 44 menit sebelum jatuh, Tiangong-1 melintas di atas kotasuci Madinah (Saudi Arabia) :


Referensi :

The Aerospace Corporation. 2018. Tiangong-1 Reentry. Diakses pada 29 Maret 2018 TU.

Joseph Remis. 2018. komunikasi pribadi.

Marco Langbroek. 2018. komunikasi pribadi

Mau Jatuh Dimana, (Stasiun Antariksa) Tiangong-1?

Bagaimana perasaanmu jika tahu sebongkah benda seukuran bus tingkat bersiap jatuh dari langit dalam waktu dekat? Namun itulah yang akan dialami Tiangong-1. Sampah antariksa sepanjang 10,5 meter yang bergaris tengah 3,4 meter itu sedang bersiap-siap mengakhiri perjalanannya dan akan memasuki atmosfer Bumi kita, proses yang dikenal sebagai reentry. Lebih menyesakkan lagi, Tiangong-1 bakal jatuh dalam kondisi uncontrolled reentry atau jatuh ke Bumi secara tak terkendali sehingga dimana ia bakal memasuki atmosfer belum bisa ditentukan pada saat ini.

Tiangong-1 diprediksi akan jatuh pada minggu pertama April 2018 TU (Tarikh Umum). Per 16 Maret 2018 TU, Aerospace Corporation (Amerika Serikat) memprakirakan peristiwa tersebut akan terjadi pada 4 April 2018 TU ± 7 hari. Sedangkan Joseph Remis, peneliti sampah antariksa dari Perancis, menempatkan prediksinya pada 3 April 2018 TU ± 7 hari. Dan Marco Langbroek, astronom amatir Belanda yang berspesialisasi pada pengamatan satelit-satelit buatan, memprakirakan akan terjadi pada 4 April 2018 TU ± 4 hari. Besarnya angka ketidakpastian dari prediksi-prediksi ini adalah imbas dari variasi sifat lapisan atmosfer teratas kita dari satu titik ke titik lain. Juga dari tidak diketahuinya posisi aktual dan kecepatan aktual sampah antariksa tersebut. Padahal inilah yang sangat menentukan kapan Tiangong-1 akan jatuh kembali ke Bumi.

Gambar 1. Tiangong-1 di orbitnya, dalam gambaran artis yang dipublikasikan badan antariksa nasional Cina. Nampak pintu labuh dengan sistem penambat APAS di sisi kiri, tempat taikonot memasuki prototip stasiun antariksa ini. Raksasa seberat 8,5 ton inilah yang akan jatuh kembali ke Bumi secara tak terkendali pada awal April 2018 TU kelak. Sumber: CNSA, 2011.

Nilai ketidakpastian tersebut juga berimbas pada lebarnya prediksi titik jatuh Tiangong-1. Dengan inklinasi orbit 42,8º maka pada dasarnya setiap titik di paras Bumi yang ada di antara garis lintang 42,8 LU hingga 42,8 LS berpotensi menjadi titik jatuh Tiangong-1. Berdasarkan pengalaman selama ini, titik koordinat mana yang tepatnya akan menjadi titik jatuh Tiangong-1 baru akan diketahui sehari sebelum terjadi. Akan tetapi karena bentuk orbitnya pula, daerah-daerah yang terletak di sekitar atau di sepanjang garis lintang 42,8 LU dan di garis lintang 42,8 LS memiliki peluang menjadi titik jatuh yang lebih tinggi (yakni sekitar 3 %) dibandingkan dengan daerah-daerah yang berada di lingkungan garis khatulistiwa (yakni kurang dari 0,5 %).

Dengan prediksi demikian maka Indonesia pun tidak dikecualikan. Sepanjang tiga tahun terakhir, Indonesia telah mengalami dua kejadian benda jatuh antariksa (BJA), dimana sisa-sisa sampah antariksa jatuh di dekat rumah penduduk. Yakni di pulau Madura (propinsi Jawa Timur) pada tahun 2016 TU dan di tepi Danau Maninjau (propinsi Sumatra Barat) pada tahun 2017 TU. BJA di pulau Madura adalah sisa upperstage roket Falcon 9 Full Thrust milik perusahaan SpaceX (Amerika Serikat) sementara BJA di tepi danau Maninjau adalah sisa upperstage roket Long March-3A milik pemerintah Cina.


Gambar 2. Dua kejadian benda jatuh antariksa (BJA) di Indonesia akibat jatuhnya sampah antariksa. Masing-masing sisa upperstage Long March-3A di tepi Danau Maninjau (atas) dan sisa upperstage Falcon 9 Full Thrust di pulau Madura (bawah). Sumber: Piliang, 2017 & Tribunnews, 2016.

Spesifikasi

Sebelum menjadi sampah antariksa, Tiangong-1 adalah stasiun antariksa pertama Cina sebagai bagian dari program Tiangong. Stasiun antariksa Tiangong-1 diluncurkan ke orbit pada 30 September 2011 TU lewat dorongan kuat roket Long March 2F/G. Roket dan muatannya lepas landas dari landasan nomor 4/landasan selatan pada kompleks Pusat Peluncuran Jiuquan di sisi barat laut padang pasir Gobi, propinsi otonom Mongolia Dalam. Long March 2F/G menempatkan Tiangong-1 pada orbit sirkular setinggi 343 kilometer.

Begitu mencapai orbit, stasiun antariksa berbobot 8,5 ton itu segera membuka sepasang sayap panel suryanya. Masing-masing panel surya memiliki panjang 10 meter dan lebar 3,1 meter. Arus listrik dengan daya rata-rata 2.500 watt dan daya puncak 6.000 watt pun mengalir deras darinya. Sebagian mengalir ke batere kering perak-seng, catudaya untuk situasi malam orbital, Interior Tiangong-1 terdiri atas dua ruang, masing-masing ruang hunian/orbital dan ruang layanan/sumberdaya.

Ruang hunian memiliki panjang 5 meter dan lebar 3,4 meter dengan volume total 15 meter3 dan berisi udara bertekanan 1 atmosfer. Didalamnya terdapat dua ranjang tidur dilengkapi dapur dan sistem toilet. Ruang ini dilengkapi dengan sistem pembuang panas ke lingkungan, yang mampu melepaskan panas yang diproduksi di dalam ruangan hingga sebesar 2.000 watt termal. Di ujungnya, yang juga adalah ujung Tiangong-1, terpasang pintu masuk dilengkapi sistem penambat APAS (Androgynous Peripheral Attach System). Sistem penambat ini serupa dengan yang digunakan pada stasiun-stasiun antariksa lainnya.

Sementara ruang layanan memiliki panjang 3,3 meter namun lebarnya hanya 2,5 meter. Di pusat pantat ruang ini, yang juga adalah pantat Tiangong-1, terpasang dua mesin roket utama. Selain guna menempatkan diri ke orbit kedua mesin ini juga digunakan untuk keperluan manuver pemulihan orbit. Di sisi luarnya, melingkari mesin roket utama, terpasang 8 mesin roket vernier. Mereka berguna untuk penyesuaian orbit yang sangat halus. Dan di sisi terluar terdapat empat set mesin roket kendali (reaction control system), masing-masing set terpisah 90º antara satu dengan yang lain. Dalam setiap set terdapat dua mesin roket kecil. Mesin roket kendali ini berguna untuk manuver anjak (pitch) dan belok (yaw). Dan bersama-sama dengan mesin roket vernier juga digunakan untuk manuver putaran (roll).

Gambar 3. Liu Yang, taikonot perempuan pertama Cina, mendemonstrasikan salah satu gerakan tai chi untuk pertama kalinya di antariksa saat berada dalam Tiangong-1 pada misi antariksa Shenzou 9 yang berlangsung antara 16 hingga 23 Juni 2012 TU. Gambar dari stasiun televisi nasional Cina (CNTV). Sumber: CNTV, 2012.

Beragam mesin roket tersebut ditenagai bahan bakar Hidrazin dan pengoksid Nitrogen Tetroksida. Mereka disimpan dalam empat tanki berbeda, masing-masing berkapasitas 230 liter yang sanggup memuat 1 ton bahan bakar atau pengoksid. Ada lagi dua buah tanki lebih kecil sferis dengan dinding didesain menahan tekanan tinggi. Takni kecil dengan kapasitas masing-masing 20 liter ini ditujukan untuk menampung gas (mungkin Helium) bertekanan tinggi guna mendorong bahan bakar dan pengoksid ke mesin roket yang dituju.

Hidup di Tiangong-1

Pembangunan dan pengoperasian Tiangong-1 adalah demonstrasi kedigdayaan Cina dalam pentas program antariksa global. Cina merintis program antariksanya bersamaan dengan Indonesia, yakni mulai dasawarsa 1960-an TU. Dalam periode yang sama negeri tirai bambu itu nyaris tenggelam seiring salah urus dalam eksperimen pertanian dan industri khas komunisme lewat program Lompatan Jauh ke Depan yang disusul huruhara Revolusi Kebudayaan. Bencana kelaparan meletup dimana-mana dan merenggut tak kurang dari 30 juta jiwa.

Hingga satu dasawarsa kemudian Cina layaknya ‘planet mati’, diemohi orang dan nampaknya bakal menjadi negara gagal. Namun kini situasinya telah sangat berbeda. Cina telah pulih dan bahkan melesat cukup jauh dalam berbagai bidang, termasuk program antariksanya. Sebaliknya Indonesia hingga kini masih tetap berkutat di titik nol dalam membangun kendaraan untuk menuju ke langit.

Program Tiangong adalah jawaban Cina kepada dunia setelah tawarannya bergabung dengan program stasiun antariksa internasional (ISS) bertepuk sebelah tangan. Sebagian negara partisipan ISS, dimotori Amerika Serikat, tidak ingin Cina bergabung atas alasan politis. Tiangong pun dibangun dan diparalelkan dengan Program Shenzou, program penerbangan antariksa berawak Cina. Tiangong-1 merupakan prototip stasiun antariksa moduler, tipe stasiun antariksa yang bisa bertumbuh/dikembangkan di orbit lewat menggabung-gabungkan aneka modul secara bertahap. Sebagai prototip, tujuan utama Cina adalah menguji coba kemampuan menambat (rendezvous) dan berlabuh antara Tiangong-1 dengan wantariksa (wahana antariksa) lain. Baik wantariksa berawak maupun tidak.

Ujicoba itu terlaksana beberapa bulan kemudian. Pada 31 Oktober 2011 TU wantariksa Shenzou 8 lepas landas dari Pusat Peluncuran Jiuquang menuju Tiangong-1. Dua hari berikutnya Shenzou 8 berhasil berlabuh di Tiangong-1 secara otomatis. Peristiwa ini terjadi dalam situasi malam orbital Tiangong-1 guna menghindari pengaruh gemerlap sinar Matahari terhadap radas navigasi dan penambat yang sensitif. Shenzou 8 berlabuh hingga 11 hari berikutnya, lantas melepaskan diri. Proses tersebut lantas diulangi kembali, tapi kali ini dalam situasi siang hari Tiangong-1. Tujuannya guna mengecek akurasi dan daya pakai radas-radas terkait di lingkungan terang benderang. Hasilnya memuaskan, Shenzou 8 tetap dapat berlabuh hingga hampir 2 hari kemudian ketika ia kembali melepaskan diri.

Misi berawak pertama ke Tiangong-1 berlangsung mulai 16 Juni 2012 TU dengan penerbangan wantariksa Shenzou 9 yang mengangkut tiga taikonot, istilah Cina untuk antariksawan. Yakni Jin Haipeng, Liu Wang dan Liu Yang. Dua hari kemudian Shenzou 9 berhasil berlabuh di Tiangong-1. Ketiga taikonot menghabiskan waktu hampir 4 hari. Liu Yang menyedot perhatian dunia karena selain menjadi taikonot perempuan pertama juga mendemonstrasikan gerak tai chi untuk pertama kalinya di antariksa.

Gambar 4. Tiangong-1 (kiri) dalam proses menambat dengan wantariksa berawak Shenzou (kanan) dalam gambaran artis yang dipublikasikan badan antariksa nasional Cina. Sebagai prototip stasiun antariksa moduler, dimensi Tiangong-1 tidak lebih panjang ketimbang Shenzou. Karena yang diuatamakan adalah ujicoba kemampuan tambat dan berlabuh, baik secara otomatis ataupun manual. Sumber: CNSA, 2012.

Sementara misi berawak kedua terlaksana setahun berikutnya. Pada 11 Juni 2013 TU wantariksa Shenzou 10 lepas landas dengan mengangkut tiga taikonot masing-masing Nie Haisheng, Zhang Xiaoguang dan Wang Yaping. Dua hari kemudian Shenzou 10 berlabuh aman di Tiangong-1 selama 12 hari berikutnya. Pada hari ketujuh Wang Yaiping, taikonot perempuan kedua, menggelar pengajaran dari langit yang disiarkan langsung ke 60 juta siswa-siswi di Cina. Pada pengajaran itu didemonstrasikan empat percobaan, mulai dari penimbangan berat badan, ayunan pendulum, sifat-sifat giroskop hingga tegangan permukaan air. Shenzou 10 adalah kunjungan wantariksa terakhir bagi Tiangong-1. pengajaran tersebut dapat disaksikan dalam video berikut ini :

Peluruhan Orbit

Setiap wantariksa di orbit rendah, yakni antara ketinggian 300 hingga 2.000 kilometer, pada dasarnya menempati pucuk lapisan teratas atmosfer Bumi kita. Yakni lapisan eksosfer. Di sini kondisinya tidak benar-benar hampa, masih terdapat molekul-molekul udara meski kerapatannya sangat kecil apabila dibandingkan lapisan-lapisan atmosfer yang lebih rendah. Gaya gesek molekul-molekul udara nan renggang ini membuat kecepatan wantariksa berkurang dan implikasinya orbitnya pun menurun. Ini disebut peluruhan orbit. Peluruhan orbit tak penting artinya bila misi antariksa berlangsung singkat, dalam beberapa hari hingga minggu. Namun jika misi antariksanya berjangka panjang, hingga bertahun-tahun lamanya, maka peluruhan orbit akan sangat terasa dan bisa berbahaya bila dibiarkan.

Gambar 5. Dinamika ketinggian orbit Tiangong-1 dari sejak diluncurkan hingga Januari 2018 TU sebagaimana dihimpun Aerospace Corporation berdasarkan data dari Celestrak. Garis putus-putus menandakan saat-saat manuver pemulihan orbit/penyesuaian orbit dilakukan. Manuver terakhir terjadi pada 16 Desember 2015 TU. Setelah itu orbit Tiangong-1 terus meluruh. Sumber: Aerospace Corporation, 2018.

Untuk itulah setiap stasiun antariksa yang pernah diterbangkan ke orbitnya selalu dibekali mesin roket. Dalam periode tertentu ia dinyalakan selama beberapa saat, sehingga stasiun antariksa akan bergerak naik kembali ke posisi orbit semula. Aktivitas ini disebut manuver pemulihan orbit. Dampaknya mudah diamati kasat mata lewat perubahan kecil dalam orbitnya. Terutama oleh pengamat langit berpengalaman.

Demikian halnya Tiangong-1. Sejak mulai menempati orbitnya hingga 4 tahun kemudian, tepatnya hingga Desember 2015 TU, Tiangong-1 telah mengalami 14 kali manuver pemulihan orbit. Ini menunjukkan stasiun antariksa tersebut tetap bisa berkomunikasi dua-arah dengan pengendalinya di Bumi. Meskipun tak pernah lagi dikunjungi pasca Shenzou 10. Manuver ini membuat sikap dan orbit Tiangong-1 tetap bisa dikendalikan sembari Cina menyiapkan rencana penjatuhan terkendali baginya.

Situasi berubah dramatis di 2016 TU. Pada 21 Maret 2016 TU pemerintah Cina secara resmi menyatakan komunikasi dengan Tiangong-1 terputus. Pengamatan independen menunjukkan manuver pemulihan orbit terakhir Tiangong-1 terjadi pada 16 Desember 2015 TU. Selepas itu tak ada apa-apa lagi sehingga orbit Tiangong-1 terus meluruh. Maka Tiangong-1 pun akan jatuh tak terkendali. Awalnya pemerintah Cina menyatakan reentry Tiangong-1 akan terjadi antara Juli hingga Desember 2017 TU. Pada Desember 2017 TU prediksi ini direvisi kembali menjadi antara Maret hingga April 2018 TU, yakni dalam jawaban Cina kepada Perserikatan Bangsa-Bangsa (PBB). Cina juga menyampaikan komunikasi dengan Tiangong-1 tidaklah terputus total meski sangat bermasalah. Mereka masih bisa mengendalikan sikap Tiangong-1.

Di awal 2018 TU, orbit Tiangong-1 telah meluruh demikian rupa sehingga turun ke ketinggian 280 kilometer dari normalnya 300 kilometer. Dan di awal Maret 2018 TU tinggal setinggi 250 kilometer. Berdasarkan prediksi-prediksi yang tertera di awal tulisan ini dan memperhitungkan ketidakpastiannya, bisa dikatakan bahwa Tiangong-1 masih akan tetap ada di antariksa hingga setidaknya 27 Maret 2018 TU. Cukup menarik bahwa pada rentang waktu 18 hingga 24 Maret 2018 TU, Tiangong-1 diprakirakan akan melintas di atas Indonesia terutama pada saat fajar dan senja. Sehingga memungkinkan melihat saat-saat terakhir Tiangong-1 di langit. Tentu saja sepanjang cuaca cerah.

Peluang Kecil

Jatuhnya Tiangong-1 akan seperti sampah-sampah antariksa lainnya yang telah lebih dulu berjatuhan. Begitu tiba di ketinggian 105 kilometer, udara lebih rapat membuat Tiangong-1 akan sangat diperlambat. Sehingga ia mulai turun dan terus menurun memasuki lapisan atmosfer lebih rapat dan lebih rendah. Kecepatannya yang masih sangat tinggi akan menghasilkan tekanan ram pada kolom udara disekelilingnya, memproduksi suhu tinggi. Komponen-komponen Tiangong-1 akan mulai pecah dan terkikis suhu tinggi. Maka ia akan terlihat mirip meteor dalam jumlah banyak. Sebagian besar komponennya akan menguap habis di atmosfer. Hanya bagian yang paling kuat dengan massa total sekitar 100 kilogram yang akan mendarat di paras Bumi.

Gambar 6. Area yang berpotensi menjadi titik jatuh sampah antariksa Tiangong-1 beserta probabilitas (peluang) jatuh berdasarkan garis lintang menurut badan antariksa gabungan negara-negara Eropa (ESA). Nampak peluang jatuh di sekitar garis lintang 42,8 LU dan 42,8 LS lebih besar. Sumber: ESA, 2018.

Apakah sisa-sisa Tiangong-1 bisa menjatuhi manusia di Indonesia? Peluang itu ada, namun sangat kecil. Seperti dipaparkan di atas, peluang Tiangong-1 jatuh di kawasan khatulistiwa lebih kecil dibanding di sekitar garis lintang 42,8 LU dan 42,8 LS. Hingga saat ini secara global hanya ada satu peristiwa dimana sisa-sisa sampah antariksa menimpuk seseorang. Yakni pada 22 Januari 1997 TU saat Lottie Williams ketimpuk sekeping logam bersisi hangus 15 sentimeter kala berada di taman publik di kota Tulsa, negara bagian Oklahoma (Amerika Serikat). Itu adalah sisa-sisa upperstage roket Delta II 7920-10 yang lepas landas pada 24 April 1996 TU mengangkut satelit militer MSX (Midcourse Space Experiment). Lottie Williams tidak menderita luka-luka karenanya.

Tiangong-1 bukanlah sampah antariksa terberat yang pernah jatuh. Jika kita batasi sampah antariksa hanya pada bekas stasiun antariksa dan yang jatuhnya tak terkendali, masih ada Skylab dan Salyut 7. Skylab adalah stasiun antariksa 74 ton milik Amerika Serikat yang mengorbit mulai 14 Mei 1973 TU. Sempat dihuni selama 171 hari, Skylab akhirnya terjun ke Bumi seiring meningkatnya aktivitas Matahari yang membuat lapisan eksosfer cukup mengembang. Bakal jatuhnya Skylab sempat menjadi insiden internasional yang membikin panik banyak orang, terutama di Filipina. Skylab jatuh pada 11 Juli 1979 TU dengan sisa-sisanya terserak di daratan sepanjang Esperance hingga Rawlina, sebelah timur kota Perth (Australia).

Gambar 7. Proyeksi lintasan Tiangong-1 di paras bumi Indonesia dan sekitarnya pada rentang waktu antara 31 Maret 2018 TU pukul 00:00 WIB hingga 6 April 2018 TU pukul 14:00 WIB menurut SatFlare. Pada rentang waktu itulah Tiangong-1 diprediksi akan jatuh. Nampak proyeksi lintasan Tiangong-1 mengenai pulau Irian bagian barat, kepulauan Bali dan Nusatenggara, pulau Sulawesi, pulau Kalimantan dan pulau Sumatra. Sementara pulau Jawa terbebas darinya. Sumber: SatFlare, 2018.

Salyut 7 lebih dramatis lagi. Stasiun antariksa milik eks-Uni Soviet ini diluncurkan pada 19 April 1982 TU dan sempat dihuni selama 816 hari. Mengikuti nasib nasib Skylab, Salyut 7 pun akhirnya jatuh tak terkendali. Sisa-sisanya menyirami kota Capitan Bermudez di propinsi Santa Fe (Argentina) pada 7 Februari 1991 TU. Beruntung dalam dua kejadian tersebut tak ada bangunan yang terkena secara langsung, apalagi manusia.

Ground track dari stasiun antariksa Tiangong-1 dapat disaksikan misalnya pada peta Lizard Tail.

Referensi:

The Aerospace Corporation. 2018. Tiangong-1 Reentry. Diakses pada 15 Maret 2018 TU.

Dickinson. 2017. China’s Tiangong-1 Space Station to Burn Up. Sky and Telescope, 10 November 2017. Diakses pada 15 Maret 2018 TU.

Daniel. 2018. Tiangong-1 Frequently Asked Questions. Space Debris Office, European Space Agency. Diakses pada 15 Maret 2018 TU.

Spaceflight101. t.t. Tiangong-1 Spacecraft Overview. Diakses pada 15 Maret 2018 TU.

SatFlare. 2018. Tiangong-1 NORAD 37820. Diakses pada 15 Maret 2018 TU.

Joseph Remis. 2018. komunikasi pribadi.

Marco Langbroek. 2018. komunikasi pribadi.

Asteroid Phaethon yang Lewat Dekat dan Hujan Meteor Terderas

Harinya hari Minggu 17 Desember 2017 TU (Tarikh Umum), jamnya jam 06:00 WIB. Itulah kala sebongkah batu raksasa yang luar biasa berada pada titik terdekatnya dengan Bumi kita dalam perjalanannya mengembara angkasa sebagai anggota tata surya. Jaraknya ke Bumi kita saat itu adalah 10,3 juta kilometer. Atau nyaris 27 kali lebih jauh ketimbang posisi Bulan (rata-rata). Untuk ukuran kita manusia, jarak ini tergolong jauh. Namun dalam perspektif astronomi, mendekatnya bongkah batu raksasa ini tergolong ‘sangat dekat.’ Untungnya ia tak membawa potensi bahaya (baca : tumbukan kosmik dengan Bumi), setidaknya hingga 400 tahun ke depan.

Gambar 1. Wajah buram asteroid Phaethon saat melintas di dekat Bumi pada 10 Desember 2007 TU silam pada jarak 18 juta kilometer dalam citra radar dari teleskop radio Arecibo di Puerto Rico (AS). Gangguan instrumen dan pendeknya waktu pengamatan membuat resolusi citra cukup rendah dan penuh derau (noise). Garis putus-putus ditambahkan untuk menyajikan kesan bentuk asteroid. Sumber: Arecibo/Cornell, 2007 dalam Sky & Telescope, 2017.

Bongkah batu segedhe gunung itu bernama asteroid Phaethon, formalnya (3200) Phaethon. Angka 3200 adalah nomor urut asteroid tersebut berdasarkan tatanama IAU (International Astronomical Union). Diameternya 5,1 kilometer. Jika bentuknya dianggap berbentuk bola sempurna dan strukturnya batuan (dengan massa jenis antara 2 hingga 4 gram/cm3), maka massanya antara 139 hingga 278 milyar ton. Saat melintas pada titik terdekatnya, asteroid Phaethon melesat dengan kecepatan hampir 115.000 km/jam. Sehingga ia mengangkut energi potensial sebesar antara 19 juta hingga 38 juta megaton TNT. Itu setara dengan 1,3 milyar hingga 2,6 milyar butir bom nuklir Hiroshima yang diledakkan serentak. Beruntung asteroid ini tidak meluncur menuju Bumi dalam perjalanannya, karena pelepasan energi sebesar itu di Bumi akan berujung pada malapetaka kehidupan yang amat kolossal berskala global. Peristiwa semacam itu terakhir terjadi pada 65 juta tahun silam yang menyapu bersih kehidupan kawanan dinosaurus.

Aasteroid Phaethon kerap dijuluki asteroid aneh karena dua alasan. Pertama, karena bentuk orbitnya yang demikian lonjong membuatnya memintas empat orbit planet sekaligus. Dan yang kedua, karena hingga sejauh ini asteroid Phaethon adalah satu diantara hanya dua asteroid yang menjadi induk dari peristiwa hujan meteor utama. Dalam hal ini asteroid Phaethon adalah sumber dari peristiwa hujan meteor Geminids yang aktif setiap bulan Desember. Sementara asteroid satunya lagi, yakni asteroid (196256) 2003 EH, adalah sumber hujan meteor Quadrantids yang aktif setiap bulan Januari.

Asteroid Phaethon ditemukan pada 11 Oktober 1983 TU melalui observasi teleskop landas-antariksa IRAS (Infra Red Astronomical Satellite). Adalah duo astronom Simon F. Green dan John K. Davies yang pertama menyaksikannya kala menganalisis citra-citra bidikan IRAS untuk mencari benda-benda langit yang bergerak relatif cepat. Penemuan ini sekaligus menjadikan Phaethon sebagai asteroid pertama yang ditemukan lewat teleskop landas-antariksa. Asteroid-asteroid yang ditemukan sebelumnya melulu merupakan produk observasi landas-bumi.

Sedari awal disadari asteroid Phaethon adalah unik. Orbitnya sangat lonjong dengan kelonjongan orbit (eksentrisitas) sebesar 0,889. Perihelionnya saja hanya sejarak 0,14 SA (satuan astronomi) atau 21 juta kilometer dari Matahari. Ini jauh lebih dekat ke sang surya ketimbang orbit Merkurius (0,4 SA). Sementara aphelionnya menjulur demikian jauh hingga sejarak 2,4 SA (359 juta kilometer) dari Matahari, atau sudah berada di dalam kawasan Sabuk Asteroid Utama yang menjadi kawasan hunian asteroid pada umumnya.

Dengan orbit begitu lonjong, yang tidak umum untuk kalangan asteroid namun sebaliknya banyak dijumpai di kalangan komet, ada dugaan bahwa asteroid Phaethon semula adalah komet. Setelah kehabisan materi mudah menguap ia lantas bertransformasi menjadi asteroid. amun ada pula yang menduga bahwa asteroid ini adalah salah satu bongkahan hasil pemecah-belahan asteroid yang lebih besar, yakni asteroid Pallas purba. Bongkahan terbesar dari asteroid purba itu masih ada pada saat ini sebagai asteroid Pallas (diameter 544 kilometer).

Orbit yang sangat lonjong juga membuat asteroid ini pada dasarnya memintas orbit empat planet sekaligus. Masing-masing orbit Merkurius, Venus, Bumi dan Mars. Untungnya inklinasi orbit Phaethon juga cukup besar, yakni 22,5º terhadap ekliptika. Sementara orbit planet-planet Merkurius, Venus, Bumi dan Mars mengumpul di bidang ekliptika. Karenanya potensi untuk berbenturan dengan salah satu planet tersebut adalah cukup kecil.

Gambar 2. Asteroid Phaethon saat berada di sekitar perihelionnya pada 2009 TU silam, diamati oleh satelit STEREO. Meski resolusinya cukup rendah, dapat dilihat bahwa Phaethon nampak lonjong. Garis-garis memperlihatkan kontur kelonjongan tersebut. Analisis menunjukkan bagian lonjong ini adalah ‘ekor’ Phaethon, yang merentang sepanjang 250.000 kilometer dengan massa total debu didalamnya mencapai 300 ton. Sumber: NASA/STEREO, 2013 dalam Sky & Telescope, 2017.

Asteroid Phaethon membutuhkan waktu 524 hari (1,43 tahun) untuk menyusuri orbitnya sekali putaran. Saat ia berada di sekitar perihelionnya, penyinaran Matahari sangat intensif memanasi pemukaannya demikian hebat hingga suhu parasnya mencapai lebih dari 700º Celcius. Ini hampir menyamai titik leleh beberapa logam tertentu. Sebagai akibatnya paras Phaethon menjadi retak-retak, persis seperti tanah sawah yang mengering retak-retak di musim kemarau. Retakan-retakan ini membuat debu-debu halus yang ada di bawah parasnya tersembur keluar seiring tekanan angin Matahari.

Fenomena inilah yang teramati melalui satelit pengamat Matahari STEREO pada 2009 TU dan 2012 TU silam. Meski digolongkan sebagai asteroid, saat itu Phaethon (yang sedang berada di dekat perihelionnya) menampakkan panorama mirip-komet dengan ekornya yang khas. Analisis memperlihatkan panjang ‘ekor’ Phaethon saat itu adalah 250.000 kilometer dengan massa total ‘ekor’ sekitar 300.000 kilogram (jika tersusun dari butir-butir debu berdiameter 1 mikron). Debu-debu inilah yang kelak di kemudian hari, melalui evolusi orbital nan dinamis, memasuki Bumi sebagai meteor-meteor Geminids.

Geminids

Hujan meteor adalah masuknya meteoroid seukuran debu hingga butir pasir dalam jumlah tertentu ke atmosfer Bumi pada rentang waktu tertentu yang tetap dalam setiap tahunnya. Ukuran meteoroid cukup kecil sehingga kala sudah masuk ke atmosfer Bumi, ia sepenuhnya habis tersublimasi pada ketinggian 70 hingga 90 kilometer sembari menyajikan pemandangan meteor. Kita di permukaan Bumi menyaksikan meteor-meteor tersebut seakan-akan datang dari satu titik yang terletak dalam rasi bintang tertentu. Itulah sebabnya nama hujan meteor mengacu kepada nama rasi bintang yang (seakan) menjadi titik kemunculannya.

Meteoroid-meteoroid dalam suatu hujan meteor umumnya merupakan remah-remah yang dilepaskan suatu komet tatkala mendekati Matahari dalam perjalanan menyusuri orbitnya. Tekanan angin Matahari memanasi paras inti komet sehingga retak-retak di bagian yang paling lemah. Akibatnya materi mudah menguap yang ada dibawahnya tersublimasi menjadi gas dan menyembur keluar sembari mengangkut butir-butir debu dan pasir, kadang malah bongkahan batu. Mekanisme ini serupa dengan letusan gunung berapi.

Gambar 3. Orbit asteroid Phaethon terhadap orbit keempat planet terdalam tata surya kita secara 3-dimensi. Nampak meski orbit asteroid ini memintas orbit keempat planet tersebut, besarnya inklinasi orbit Phaethon membuatnya membentuk sudut yang cukup besar terhadap bidang orbit keempat planet tersebut. Sehingga peluangnya untuk berbenturan dengan satu dari mereka menjadi sangat kecil. Sumber: Sky & Telescope, 2017.

Tekanan angin Matahari membuat gas yang tersembur lantas menuju arah berlawanan dengan Matahari. Sementara butir-butir debu dan pasir yang ikut tersembur terserak di lintasan komet sebagai remah-remah komet. Oleh gangguan gravitasi Bumi dan planet-planet tetangga, remah-remah komet ini lantas berevolusi secara dinamis. Bilamana orbit kometnya berdekatan dengan orbit Bumi, maka terbuka peluang remah-remah komet ini tertarik gravitasi Bumi sehingga memasuki atmosfer menjadi meteor.

Dari dua belas hujan meteor utama pada setiap tahunnya, dua diantaranya bersumber bukan dari remah-remah komet. Melainkan dari remah-remah asteroid. Hujan meteor Geminids adalah salah satunya. Disebut Geminids karena ia (seakan-akan) berasal dari rasi Gemini. Hujan meteor Geminids aktif setiap 4 hingga 17 Desember dengan puncaknya pada 13 dan 14 Desember. Pada puncaknya, meteor-meteor Geminids bisa sebanyak 120 meteor/jam, menjadikannya salah satu hujan meteor paling intensif selain Quadrantids dan Perseids. Meteor-meteor Geminids melesat secepat 35 km/detik. Dengan elemen orbital meteor rata-rata relatif sama dengan elemen orbital asteroid Phaethon, inilah bukti bahwa meteor-meteor Geminids berasal dari remah-remah asteroid tersebut.

Terdekat

Sebagai asteroid yang memintas orbit Bumi, jarak terdekat antara orbit asteroid Phaethon terhadap orbit Bumi atau MOID (minimum orbit intersection distance) adalah sebesar 2,9 juta kilometer. Dengan demikian asteroid Phaethon tergolong ke dalam kelompok asteroid berpotensi Bahaya bagi Bumi atau PHA (potentially hazardous asteroids) karena MOID-nya lebih kecil dari ambang batas 7,5 juta kilometer. Meski demikian dengan orbit yang telah diketahui cukup baik seiring rentang waktu pengamatan yang panjang, yakni 30 tahun lebih, maka telah diketahui bahwa tidak ada potensi bagi asteroid Phaethon untuk berbenturan dengan Bumi hingga kurun 400 tahun mendatang.

Gambar 4. Proyeksi lintasan asteroid Phaethon di paras Bumi pada 16-17 Desember 2017 TU waktu Indonesia, mulai dari pukul 23 WIB hingga 13 WIB hari berikutnya. Nampak titik terdekat asteroid ke Bumi ada di Samudera Atlantik bagian barat berdekatan dengan kawasan Karibia. Sumber: Sudibyo, 2017 berbasis NASA Solar System Dynamics, 2017.

Pada 17 Desember 2017 TU asteroid Phaethon akan berada pada jarak terdekatnya ke Bumi. Ini adalah jarak terdekat kedua bagi asteroid di sepanjang abad ini, setelah jarak terdekat pada 14 Desember 2093 TU kelak dimana saat itu Phaethon hanya berjarak 2,9 juta kilometer dari Bumi. Lintasan Phaethon tidak berpotongan dengan lintasan Bumi, sehingga tidak ada potensi tubrukan antara keduanya. Maka kejadian mendekatnya asteroid Phaethon dikategorikan sebagai perlintasan-dekat atau papasan-dekat (apparition) yang teramat langka. Asteroid ini jauh lebih kecil daripada Bumi, sehingga kala melintas pada jarak 10,3 juta kilometer itu tidak ada dampak yang Bumi rasakan. Sebaliknya Bumi justru mengenakan gravitasi besarnya kepada sang asteroid, membuat orbit asteroid ini bisa sedikit berubah dari semula meski perubahan itu relatif kecil.

Saat berada pada jarak terdekatnya ke Bumi, asteroid Phaethon secara harfiah ada di atas kawasan Samudera Atlantik bagian barat tepatnya di atas titik koordinat 27º 30′ LU 65º 30′ BB. Dalam jarak tersebut, magnitudo semunya diprakirakan sebesar +10,8. Maka ia hanya bisa disaksikan dengan menggunakan teleskop. Itupun dengan diameter lensa obyektif (untuk teleskop reflektor) atau cermin obyektif (untuk teleskop refraktor) minimal 100 mm. Namun pengalaman observasi komet Siding Spring pada 2014 TU silam menunjukkan obyek seredup itu masih bisa difoto oleh kamera DSLR berlensa 80 mm, asal mengikuti gerak langit dan waktu paparannya cukup lama.

Gambar 5. Posisi asteroid Phaethon di langit pada 12-17 Desember 2017 TU pukul 21:00 WIB. Nampak posisi asteroid ke Bumi ada di langit bagian utara, dengan sejumlah bintang terang disekitarnya. Sumber: Sudibyo, 2017 berbasis NASA Solar System Dynamics, 2017 dan Starry Night Backyard 3.0.

Selain bakal diamati dengan teleskop-teleskop optik yang bekerja pada spektrum cahaya tampak, asteroid Phaethon juga bakal menjadi target pengamatan teleskop-teleskop radio yang bekerja pada spektrum gelombang radar. Langkah ini pernah dilakukan melalui teleskop radio Arecibo di Puerto Rico (Amerika Serikat) pada saat asteroid Phaethon juga mendekati Bumi sepuluh tahun silam. Namun saat itu resolusinya cukup rendah. Kini harapan untuk melakukan observasi serupa dengan tingkat resolusi jauh lebih tinggi dibebankan kepada dua teleskop radio, masing-masing teleskop radio Arecibo dan Goldstone. Teleskop Arecibo diharapkan memperoleh citra dengan resolusi hingga 15 m/piksel. Sementara teleskop Goldstone yang menjadi bagian fasilitas NASA di California (Amerika Serikat) dengan antenna parabola 70 meter diharapkan mendapatkan resolusi hingga 75 m/piksel. Kedua teeskop radio ini akan mengamati asteroid Phaethon dalam rentang waktu 11 hingga 21 Desember 2017 TU.

King. 2017. Asteroid 3200 Phaethon: Geminid Parent at Its Closest and Brightest!. Sky & Telescope Online, 29 November 2017, Diakses 1 Desember 2017.

Bila Cassini Menjadi Bola Api (di Saturnus)

Saat terakhir itu terjadi pada Jumat 15 September 2017 TU (Tarikh Umum) pukul 17:32:20 WIB. Yakni kala Cassini, salah satu wantariksa (wahana antariksa) penyelidik planet nan legendaris, mengakhiri masa tugasnya. Pada saat itulah Cassini mulai menjadi kobaran api kala tiba di ketinggian 1.650 kilometer dari paras Saturnus pada garis 10º LU. Inilah perjalanan terakhir Cassini yang dilakukannya terjun bebas menembus lapisan demi lapisan udara Saturnus, planet raksasa gas bercincin eksotis yang telah dikawalnya dengan setia dalam 13 tahun terakhir. Namun gelombang elektromagnetik terakhirnya baru diterima Bumi pukul 18:55:46 WIB, seiring demikian jauhnya jarak Saturnus ke Bumi (yakni 1.500 juta kilometer).

Gambar 1. Sepasang foto terakhir hasil bidikan wantariksa Cassini dalam beberapa belas jam sebelum terjun bebasnya ke Saturnus. Kiri: Enceladus yang berfasa sabit hampir terbenam dengan Saturnus di latar depan. Kanan: bayangan struktur cincin Saturnus (sebagai jalur kehitaman di tengah foto) di badan planet raksasa tersebut. Di sebelah utara (atas) pita hitam itulah Cassini menerjunkan dirinya. Sumber: NASA/JPL/SSI, 2017.

Saat terjun bebas sebagai bola api, Cassini mencatatkan diri sebagai salah satu penyelidik planet bermasa tugas cukup lama. Ia tiba di lingkungan Saturnus pada 1 Juli 2004 TU dan terus bertahan dengan kinerja nyaris sempurna hingga 15 September 2017 TU. Jika dihitung sejak lepas landasnya, yakni pada 15 Oktober 1997 TU, maka Cassini telah berada di antariksa selama hampir 20 tahun. Sebagai pembanding Galileo, wantariksa ‘saudara’-nya yang bertugas menyelidiki Jupiter, hanya bertahan hampir 14 tahun saja di antariksa.

Purna tugasnya Cassini juga menjadi penanda bagi berakhirnya satu era menggelegak dalam khasanah penjelajahan antariksa. Yakni era wantariksa berukuran besar (dan sangat mahal) sekaligus wantariksa penyelidik planet yang lebih jauh ketimbang Mars. Era yang dipelopori oleh Pioneer 10 dan Pioneer 11 (meluncur tahun 1972 TU dan 1973 TU) dan mencapai puncaknya dengan Voyager 1 dan Voyager 2 nan fenomenal (keduanya meluncur tahun 1977 TU). Lewat dua Voyager ini praktis tak hanya Jupiter dan Saturnus yang ‘diaduk-aduk’ tetapi juga dua planet besar lainnya yakni Uranus dan Neptunus. Dalam hal ini baik Cassini maupun Galileo merupakan ‘keturunan langsung’ Voyager.

Zuhal nan Ganjil

Gambar 2. Saturnus dalam bidikan teleskop refraktor berdiameter 70 mm dari Bumi pada 4 Agustus 2014 TU silam. Meski terlihat kecil, namun bentuk cincin yang menjadi ciri khasnya terlihat jelas. Sumber: Sudibyo, 2014

Saturnus telah dikenal umat manusia sejak peradaban bermula karena dapat dilihat mata tanpa bantuan alat optik apapun. Mitologi Yunani menyebutnya Kronus dan dianggap pelindung dunia pertanian mereka, mungkin karena tampilan warna kekuningannya yang mengingatkan akan gandum. Bangsa Romawi kuno melabelinya sebagai Saturnus, dengan fungsi mirip Kronus. Di Timur, Bangsa Cina menyebutnya Tu-xing yang bermakna ‘bintang tanah.’ Tanah merupakan salah satu dari lima elemen dasar semesta dalam filosofi Cina selain air, api, logam dan kayu. Bagi bangsa Jepang kuno, planet ini dinamakan Do-sei yang juga adalah ‘bintang tanah.’ Di India kuno, Saturnus dinamakan Shani dan dikaitkan dengan pengadil segala perbuatan baik dan buruk. Dan bagi bangsa Arab, Saturnus memiliki nama Zuhal atau Zohal yang berkaitan dengan otoritas dan kekuasaan.

Meski demikian sifat-sifat fisis Saturnus baru mulai diketahui dalam empat abad terakhir. Tepatnya setelah Galileo Galilei (Italia) mengarahkan teleskop panggung rakitannya pada tahun 1610 TU. Apa yang dilihatnya mengejutkan. Saturnus seakan-akan dihiasi sepasang telinga di kiri dan kanannya. Butuh setengah abad lebih untuk menguak misteri ‘sepasang telinga’ tersebut, yakni lewat tangan Christiaan Huygens (Belanda) dengan teleskop rakitan berkemampuan pembesaran 50 kali pada tahun 1665 TU. ‘Sepasang telinga’ itu ternyata struktur cincin raksasa, sehingga kosakata planet bercincin pun sontak melekat pada Saturnus. Meski di kemudian hari, tepatnya jelang akhir abad ke-20 TU diketahui bahwa seluruh planet raksasa dalam tata surya kita (Jupiter, Saturnus, Uranus dan Neptunus) ternyata memiliki cincinnya masing-masing. Huygens juga menemukan satelit alamiah terbesar Saturnus, yang dinamakan Titan. Satelit-satelit lainnya seperti Iapetus, Rhea, Tethys dan Dione ditemukan secara berturut-turut oleh Giovanni Domenico Cassini (Italia).

Gambar 3. Saturnus dalam pandangan mata inframerah Cassini. Warna biru dan hijau masing-masing menunjukkan sinar inframerah yang berasal dari Matahari pada panjang gelombang 2 dan 3 mikron. Sementara warna merah adalah pancaran panas dari interior Saturnus, yang hanya bisa dilihat pada panjang gelombang 5 mikron. Diabadikan pada 1 November 2008 TU. Sumber: NASA/JPL/SSI, 2008.

Akan tetapi hampir semua informasi detil tentang Saturnus dan lingkungannya baru diperoleh dalam setengah abad terakhir. Yakni dalam era penerbangan antariksa, tepatnya melalui wantariksa Pioneer 11, Voyager 1 dan Voyager 2. Meski ketiganya hanya sempat berada di dekat Saturnus dalam tempo sangat singkat karena sifat misi antariksanya sebagai misi terbang-lintas dekat (flyby). Barulah Cassini, lengkapnya misi antariksa Cassini-Huygens, yang menjalankan peran sebagai misi pengorbit Saturnus dengan beredar mengelilingi planet bercincin itu lewat orbit yang senantiasa berubah seiring waktu sesuai dengan desain observasi yang telah ditentukan. Cassini-Huygens menyajikan informasi luar biasa besarnya, sehingga mendorong lahirnya lebih dari 1.000 makalah ilmiah dan sejumlah buku.

Kini kita tahu planet Saturnus adalah 9 kali lebih besar dan 95 kali lebih massif ketimbang Bumi. Ia butuh waktu 29,46 tahun untuk menyelesaikan gerak mengelilingi Matahari sekali putaran. Maka setahun bagi Saturnus setara dengan 29,46 tahun di Bumi. Akan tetapi planet ini berputar pada sumbunya pada kecepatan yang jauh lebih besar ketimbang Bumi, yakni hanya dalam tempo 10,55 jam. Jadi sehari di Saturnus adalah kurang dari setengah hari di Bumi.

Banyak hal ganjil di Saturnus. Salah satunya adalah kerapatan (densitas)-nya yang sangat kecil, yakni 690 kilogram/meter3 (rata-rata). Sebagai pembanding, densitas air murni 1.000 kilogram/meter3. Karenanya Saturnus akan terapung bilamana diletakkan dengan hati-hati di sebuah samudera mahaluas. Rendahnya densitas Saturnus disebabkan oleh dominannya Hidrogen dan Helium sebagai penyusun planet ini. Bagian yang relatif padat hanyalah inti Saturnus, berupa gumpalan padat berbatu yang 2 kali lebih besar dan 9 hingga 22 kali lebih massif ketimbang Bumi. Inti ini bersuhu sangat tinggi, hingga 11.700º C.

Gambar 4. Saturnus dan lingkungannya diabadikan Cassini jauh tinggi di atas kutub utaranya. Nampak badai raksasa unik berbentuk segienam yang mengamuk di area kutub utara Saturnus. Badai permanen ini diperkirakan telah berhembus sejak masa bayi Saturnus dengan pasokan tenaga berlimpah dari interior Saturnus. Diabadikan pada 10 Oktober 2013 TU. Sumber: NASA/JPL/SSI, 2013.

Inti Saturnus dikelilingi lapisan es dan Hidrogen/Helium metalik. Yakni lapisan dengan tekanan sangat tinggi sehingga Hidrogen/Helium tertekan hebat, membuatnya berbentuk cair dan bisa menghantarkan listrik layaknya logam. Dari lapisan inilah medan magnet Saturnus bermula. Lapisan ini diselubungi lagi oleh lapisan tebal berisi Hidrogen/Helium cair tanpa sifat metalik. Dan lapisan terluar Saturnus adalah lapisan gas Hidrogen (dengan sangat sedikit Helium) yang mempunyai ketebalan 1.000 kilometer. Interior seperti ini adalah hal yang umum pada planet raksasa gas. Jadi tidak ada permukaan padat layaknya Bumi. Apa yang disebut sebagai paras (permukaan) Saturnus merupakan himpunan titik-titik pada lapisan terluar yang memiliki tekanan 1 bar (100 kPa atau 100 kN/m2), yakni tekanan yang hampir sama dengan tekanan 1 atmosfer di Bumi.

Tekanan luar biasa besar yang diderita inti Saturnus memproduksi mekanisme Kelvin-Helmholtz yang menghasilkan panas. Pada lapisan lebih luar, tepatnya di batas antara lapisan Hidrogen/Helium metalik dengan lapisan Hidrogen/Helium cair, panas juga muncul melalui hujan Helium. Yakni saat butir-butir Helum cair dari lapisan luar jatuh (turun) menembusi Hidrogen dibawahnya, sehingga saling bergesekan. Lewat dua sumber panas ini Saturnus memancarkan energi luar biasa besar ke lingkungan sekitarnya, dalam jumlah 2,5 kali lipat lebih besar dari energi sinar Matahari yang diterimanya. Badai unik di Saturnus, yakni badai raksasa heksagonal (berbentuk segienam) permanen yang ada di kutub utara Saturnus, demikian halnya badai raksasa di kutub selatannya, diyakini mendapatkan tenaganya dari panas internal ini. Hal serupa juga dijumpai pada Jupiter. Bedanya pancaran energi dari interior Saturnus tidak berdampak pada meraksasanya medan magnet Saturnus.

Lautan Minyak dan Air Mancur Raksasa

Gambar 5. Sejumlah satelit alamiah Saturnus berada dalam satu medan pandang mata tajam Cassini. Mulai dari Titan yang terbesar, Janus (diameter 181 kilometer), Prometheus (diameter 102 kilometer) dan Mimas (diameter 397 kilometer). Sebagian Saturnus nampak di sisi kanan, dengan bayang-bayang struktur cincin dengan beberapa bagiannya tercetak jelas dibadannya. Diabadikan pada 26 Oktober 2007 TU. NASA/JPL/SSI, 2007.

Keganjilan berikutnya adalah Saturnus memiliki satelit alamiah luar biasa banyak, yakni 62 buah. Ini menjadikannya planet terkaya kedua akan satelit alamiah setelah Jupiter (dengan 69 satelit alamiah). Tetapi Saturnus juga dikitari oleh ratusan bongkahan-bongkahan berdimensi 40 hingga 500 meter yang terselip di dalam cincinnya. Mereka disebut satelit alamiah mini atau satelit mini atau moonlet. Namun diyakini moonlet tidak tergolong ke dalam satelit alamiah yang sesungguhnya. Dimensi moonlet demikian kecil sehingga mata tajam Cassini sekalipun tak dapat menyaksikannya. Moonlet hanya bisa dideteksi berdasarkan gangguannya terhadap bagian cincin Saturnus disekelilingnya, yang menampakkan panorama baling-baling (propeller).

Gambar 6. Cincin A Saturnus dalam pandangan tajam Cassini dari jarak dekat. Nampak sejumlah gejala eksistensi satelit alamiah mini (moonlet) dalam wujud panorama mirip baling-baling (propeller). Diabadikan pada 19 April 2017. Sumber: NASA/JPL/SSI, 2017.

Dari 62 satelit alamiah itu 53 diantaranya telah bernama dan 48 diantaranya memiliki diameter kurang dari 50 kilometer. Titan adalah yang paling gede (diameter 5.150 kilometer), bahkan sedikit lebih gede ketimbang Merkurius. Karenanya memiliki cukup gravitasi untuk menyekap atmosfer, menjadikannya satu-satunya satelit alamiah yang beratmosfer di tata surya kita. Atmosfer Titan cukup tebal, dua kali lipat tebal atmosfer Bumi, dan dijejali kabut merah kekuningan tak tembus pandang. Sehingga upaya eksplorasi Titan, baik dengan teleskop dari Bumi maupun dengan penerbangan antariksa sebelumnya, tidak sanggup menguak paras Titan. Barulah setelah Cassini meluncurkan pendarat Huygens ke benda langit ini di awal 2005 TU serta berulang-ulang melintasinya sembari mengamatinya dengan gelombang radar dan pencahayaan inframerah maka rahasia Titan mulai terkuak.

Gambar 7. Panorama salah satu bagian bentanglahan Titan dari dua ketinggian berbeda, diabadikan pendarat Huygens dalam perjalanannnya menuju daratan Titan. Nampak lembah besar dengan bekas delta (muara sungai) yang diapit dua perbukitan di kedua sisinya. Pada salah satu dasar anak sungai dalam bekas delta inilah Huygens mendarat. Diabadikan pada 14 Januari 2005 TU. Sumber: ESA/Huygens, 2005.

Titan ternyata memiliki paras yang mencengangkan mirip Bumi kita, bergunung-gunung dan berlembah-lembah. Sebagian lembah raksasanya terisi cairan sebagai laut dan danau yang luasnya beragam. Ada juga sungai yang panjangnya hampir menyamai Bengawan Solo. Cairan pengisi laut, danau dan sungai Titan bukanlah air, melainkan metana dan etana cair. Di Bumi kedua senyawa itu dikenal sebagai komponen minyak (bumi). Laut, danau dan sungai Titan disokong daur hidrologis mirip di Bumi, bedanya di sini melibatkan metana cair. Hujan deras yang megguyurkan metana cair kerap terjadi, juga disertai sambaran petir. Hujan membasahi daratan Titan yang tersusun dari bongkahan es bercampur minyak. Cairan minyak di Titan demikian berlimpah, sekitar 300 kali lebih banyak ketimbang cadangan minyak yang kita miliki di Bumi.

Gambar 8. Pemandangan daratan Titan di lokasi mendaratnya Huygens. Nampak bongkahan-bongkahan batu yang tersusun dari es bercapur minyak dan menampakkan tanda-tanda erosi, jejak dari aliran fluida permukaan di masa silam. Lokasi pendaratan Huygens adalah dasar sebuah sungai kering. Diabadikan pada 14 Januari 2005 TU. Sumber: ESA/Huygens, 2005.

Selain Titan, Enceladus juga cukup menarik. Dimensinya hanyalah sepersepuluh Titan, namun sajian fenomenanya tak kalah mencengangkan. Pada 2005 TU Cassini mengungkap adanya semburan luar biasa laksana air mancur raksasa, yang muncrat dari kawasan kutub selatan secara terus menerus. Materi semburan melesat secepat 4.500 kilometer/jam hingga ke ketinggian 500 kilometer. Materi tersebut adalah adalah air (sebanyak 250 kilogram/detik) berbentuk uap yang bercampur dengan karbondioksida dan beberapa senyawa karbon seperti metana, propana, asetilena dan formaldehida. Semburan raksasa ini adalah pertanda adanya samudera bawahtanah di interior Enceladus. Samudera berair asin (kadar Natrium antara 0,5 hingga 2 %) itu bagian dari lapisan selubung yang berada di bawah lapisan kerak es, yakni pada kedalaman 30 hingga 40 kilometer dari paras Enceladus. Tebal lapisan selubung ini diperkirakan 30 kilometer.

Gambar 9. Semburan dahsyat yang menyeruak dari kutub selatan Enceladus, laksana air mancur raksasa yang memuntahkan 250 kilogram air per detik secara terus menerus. Selain jejak aktivitas vulkanisme dingin, semburan ini juga pertanda eksistensi samudra bawahtanah berair asin di satelit alamiah Saturnus yang satu ini. Nampak pula daratan di lokasi semburan yang penuh retakan di sana sini. Diabadikan pada 30 November 2010 TU. Sumber: NASA/JPL/SSI, 2010.

Semburan raksasa di Enceladus merupakan pertanda aktivitas vulkanisme dingin. Selain Enceladus, jejak vulkanisme dingin juga berhasil diungkap Cassini di tempat lain. Yakni di Titan, tepatnya pada Gunung Doom dengan kaldera Sotra Patera di kakinya (lebar kaldera 7 kilometer dan kedalaman 1,7 kilometer). Di lerengnya dijumpai jejak aliran mirip lava yang berstruktur menjemari dengan ketebalan sekitar 100 meter. Lava tersebut mungkin tersusun dari air bercampur amonia dan senyawa karbon kompleks seperti polietilena, parafin dan aspal.

Planet Bercincin

Struktur cincin raksasa adalah keganjilan Saturnus yang paling menonjol. Cassini berkesempatan mengamatinya dari jarak dekat secara berulang-ulang selama bertahun-tahun. Dan di tahun terakhirnya bahkan berkesempatan lewat di antara sela-sela cincin maupun di bagian yang paling tipis.

Cincin Saturnus merentang dari ketinggian 7.000 kilometer hingga 420.000 kilometer di atas khatulistiwa’. Namun bagian terpadat hanya sampai ketinggian 80.000 kilometer. Cincin Saturnus terbagi menjadi 9 bagian berbeda. Dari yang terdekat hingga terjauh dari Saturnus masing-masing adalah cincin D (lebar 7.500 kilometer), cincin C (lebar 17.500 kilometer), cincin B (lebar 25.500 kilometer), cincin A (lebar 14.600 kilometer), cincin F (lebar 30 – 500 kilometer), cincin Janus-Epimetheus (lebar 5.000 kilometer), cincin G (lebar 9.000 kilometer), cincin Pallene (lebar 2.500 kilometer) dan yang terluar sekaligus terlebar adalah cincin E (lebar 300.000 kilometer). Cincin B dan cincin A dipisahkan oleh ruang selebar 4.700 kilometer yang disebut divisi Cassini, sementara antara cincin A dan cincin F terdapat divisi Roche (lebar 2.600 kilometer).

Gambar 10. Bumi dalam mata tajam Cassini saat mengabadikan Saturnus dan Matahari dalam garis syzygy. Saat itu Cassini berposisi 2,2 juta kilometer di ‘belakang’ Saturnus. Sehingga mampu menguak pemandangan segenap lingkungan Saturnus termasuk hampir seluruh cincinnya. Diabadikan pada 15 September 2006 TU. Sumber: NASA/JPL/SSI, 2006.

Pada dasarnya cincin Saturnus merupakan cakram raksasa yang ketebalannya bervariasi mulai dari 10 meter hingga 1.000 meter. Cakram raksasa ini didominasi oleh butir-butir es yang ukurannya mulai dari sekecil butir pasir hingga sebesar kerikil (diameter 1 hingga 10 sentimeter). Namun di tempat-tempat tertentu terdapat pula bongkahan besar lonjong mirip jarum raksasa dengan panjang hingga 2,5 kilometer. Komposisi cincin Saturnus didominasi air (99,9 %) dengan sedikit senyawa pengotor seperti silikat. Meski strukturnya luar biasa besar massa keseluruhan materi cincin Saturnus cukup kecil. Yakni hanya seper 820 massa Bulan kita.

Sebagian besar cincin Saturnus diperkirakan terbentuk pada masa bayi Saturnus. Dulu diduga ada satu satelit alamiah sebesar Titan atau lebih besar lagi. Karena orbitnya tak stabil, ia terus bergeser hingga akhirnya terlalu dekat ke Saturnus. Segera gaya tidal Saturnus meremukkannya menjadi kerikil dan debu. Bagian yang lebih ringan, yakni butir-butir es, terserak dan seiring waktu perlahan-lahan membentuk struktur cincin Saturnus. Sementara bagian lebih padat, yakni butir-butir batuan, juga terserak layaknya butir-butir esnya. Namun mereka perlahan-lahan saling menempel kembali, menggumpal hingga akhirnya membentuk gumpalan besar. Di kemudian hari gumpalan-gumpalan besar itu adalah segenap satelit alamiah yang jaraknya lebih jauh dari Tethys.

Gambar 11. Struktur unik dalam cincin Saturnus, tepatnya di tepi cincin B. Yakni jajaran bongkahan besar sangat lonjong mirip jarum-jarum raksasa yang menjulang hingga setinggi 2,5 kilometer sehingga menampakkan bayang-bayangnya di bagian cincin lainnya kala tersinari Matahari. Nampak celah Huygens dan celah Herschel yang menjadi bagian dari divisi Cassini. Diabadikan pada 26 Juli 2009 TU. Sumber: NASA/JPL/SSI, 2009.

Sementara sebagian kecil cincin Saturnus dibentuk oleh materi yang tersembur dari satelit-satelit alamiahnya. Misalnya cincin E, mendapatkan pasokan debu dari semburan Enceladus. Juga cincin Janus-Epimetheus, ditemukan pada 2006 TU, dengan pasokan debu dari Janus (diameter 200 kilometer) dan Epimetheus (diameter 130 kilometer). Janus dan Epimetheus adalah sepasang satelit alamiah yang menempati orbit yang sama sehingga bisa saling bertukar posisi. Benturan mikrometeoroid dengan Janus dan Epimetheus melesatkan debu yang membentuk cincin ini. Demikian halnya cincin G, khususnya bagian dalam, dengan pasokan debu dari Aegaeon. Baru ditemukan pada 2008 TU, Aegaeon adalah satelit alamiah Saturnus yang terkecil sekaligus terganjil karena sangat lonjong (panjang 1,4 kilometer lebar 0,5 kilometer).

Begitu pula cincin Pallene dengan pasokan debu dari Pallene (diameter 6 kilometer), satelit alamiah yang baru ditemukan pada 2004 TU. Cincin F pun demikian. Perhitungan menunjukkan cincin ini dibentuk oleh debu-debu produk benturan kosmik antara Prometheus dan Pandora di masa silam. Akibat benturan tersebut, maka baik Prometheus maupun Pandora dipahat hingga menjadi berbentuk lonjong (masing-masing memiliki panjang 136 kilometer dan 104 kilometer. Prometheus lantas berperan sebagai ‘penggembala’ agar cincin ini tetap utuh di lokasinya.

Gambar 12. Transparannya cincin Saturnus, sebagai konsekuensi dari ketebalan cincin yang kecil (sekitar 10 meter), materi yang kecil (seukuran butir pasir hingga kerikil) dan tembus pandang (air yang membeku) terlihat di sini. Bagian Saturnus di latar belakangnya pun dapat dilihat dengan mudah. Diabadikan pada 4 November 2006 TU. Sumber: NASA/JPL/SSI, 2006.

Campurtangan satelit-satelit alamiah Saturnus juga berperan membentuk keganjilan lainnya. Yakni busur cincin, bentangan materi mirip bagian cincin namun tidak sampai membentuk kurva tertutup seperti lingkaran. Cassini mengungkap Saturnus memiliki sedikitnya dua busur cincin. Yang pertama adalah busur cincin Methone, ditemukan pada September 2006 TU dengan panjang bentangan 34.000 kilometer. Busur cincin ini dibentuk oleh debu yang dilepaskan Methone (diameter 3,9 kilometer) seiring tumbukan dengan mikrometeoroid. Methone sendiri baru ditemukan saat Cassini baru tiba di Saturnus. Dan yang kedua adalah busur cincin Anthe yang jauh lebih panjang (69.000 kilometer) dan ditemukan pada Juni 2007 TU. Ia bersumber dari Anthe (diameter 2 kilometer) yang juga ditemukan pada 2007 TU. Baik busur cincin Methone maupun Anthe dikontrol sepenuhnya oleh gravitasi Mimas (diameter 396 kilometer) sehingga bentuknya tetap terjaga meski dipaksa berayun-ayun ke utara dan ke selatan secara teratur.

Opsi Uranus

Layaknya Saturnus, perjalanan Cassini menuju planet bercincin tujuannya pun tak kalah ganjilnya. Dibangun bersama oleh tiga badan antariksa, masing-masing dari Amerika Serikat (NASA), gabungan negara Eropa (ESA) dan Italia (ASI), Cassini mewujudkan diri sebagai wantariksa terberat kedua yang pernah diluncurkan. Massa Cassini adalah 2.125 kilogram dan pendarat Huygens 319 kilogram. Ditambah dengan 3.132 kilogram bahan bakar dan 132 kilogram adapter, maka massa total Cassini-Huygens mencapai 5.712 kilogram. Cassini sekaligus menjadi wantariksa termahal. Mulai dari tahap pembangunan hingga peluncurannya saja Cassini-Huygens menelan ongkos Rp 42,5 trilyun (berdasar kurs 2017 TU) dengan 80 % diantaranya ditanggung NASA.

Gambar 13. Wantariksa Cassini dan pendarat Huygens saat hendak menjalani rangkaian tes getaran dan panas di fasilitas Jet Propulsion Laboratory NASA, negara bagian California (AS) pada 31 Oktober 1996 TU. Tes ini wajib dilakukan sebelum Cassini-Huygens didorong ke langit. Sumber: NASA/JPL/SSI, 1996.

Hanya roket angkut terkuatlah yang bisa mendorong Cassini ke antariksa dan pada dekade 1990-an TU itu hanya berarti satu: roket Titan IV. Begitupun Titan IV tak cukup bertenaga untuk melontarkan Cassini langsung ke Saturnus. Kombinasi Titan IV dan upperstage Centaur hanya sanggup menghasilkan tambahan kecepatan heliosentris 4 kilometer/detik (relatif ke Matahari). Padahal untuk bisa langsung ke Saturnus butuh tambahan kecepatan heliosentris hingga 17 kilometer/detik (relatif ke Matahari). Agar bisa melejit secepat itu, maka Cassini harus mengonsumsi tak kurang 75.000 kilogram bahan bakar. Ini teramat berat sehingga tak mungkin untuk diangkut berdasarkan teknologi peroketan saat ini. Sebab untuk mengangkat massa seberat itu butuh roket angkut yang berkali lipat lebih jumbo ketimbang roket raksasa Saturnus V, roket terbesar sepanjang sejarah (kini telah pensiun). Dan jelas membuat biaya peluncuran menjadi ‘menyentuh langit’ (sangat mahal).

Untung tersedia solusi alamiah yang jauh lebih murah: daya lontar gravitasi atau ketapel gravitasi (gravity assist). Saat sebuah benda kecil (misalnya komet, asteroid atau wantariksa) lewat dalam jarak sangat dekat ke sebuah planet dan arah kedatangannya sejajar dengan arah gerak planet itu dalam mengelilingi Matahari, maka terjadi transfer momentum yang membuat kecepatan benda kecil itu (relatif ke Matahari) meningkat pesat. Ketapel ini memungkinkan sebuah wantariksa melesat cepat dengan meminjam tenaga Bumi (dan planet-planet lain) tanpa harus menyalakan mesin roketnya. Penjelajahan Cassini membutuhkan ketapel berganda yang melibatkan tiga planet: Bumi, Venus dan Jupiter. Sehingga lahirlah istilah VVEJGA (Venus-Venus-Earth-Jupiter Gravity Assist) karena Cassini harus menjalani empat daya lontar berbeda, yakni dua kali dengan Venus, satu kali dengan Bumi dan satu kali dengan Jupiter.

Maka saat Cassini meluncur dengan roket Titan IV dari Cape Canaveral, negara bagian Florida (Amerika Serikat) pada 15 Oktober 1997 TU pukul 15:43 WIB, ia justru diarahkan menuju Venus. Cassini pun melintas dalam jarak hanya 284 kilometer dari paras Venus pada 26 April 1998 TU. Daya lontar gravitasi Venus membuat Cassini kini melaju 6 kilometer/detik (relatif ke Matahari). Selanjutnya pada 24 Juni 1999 TU, Cassini kembali lewat di dekat Venus dalam jarak hanya 623 kilometer. Kembali daya lontar gravitasi Venus bekerja dan Cassini dipercepat melaju 9,5 kilometer/detik (relatif ke Matahari) sekaligus menempuh lintasan lonjong menuju Bumi. Pada 18 Agustus 1999 TU, Cassini lewat hanya dalam jarak 1.171 kilometer dari paras Bumi dan mengalami daya lontar gravitasi. Kini tambahan kecepatan heliosentrisnya meningkat pesat hingga 16 kilometer/detik dan menempuh lintasan baru ke Jupiter. Akhirnya saat melintas pada jarak 9,7 juta kilometer dari Jupiter pada 30 Desember 2000 TU, bekerjalah ketapel gravitasi yang terakhir yakni dari Jupiter. Sehingga pada akhirnya Cassini memiliki kecepatan akhir mencukupi untuk terbang ke Saturnus.

Gambar 14. Lintasan rumit yang harus ditempuh Cassini semenjak meluncur dari Bumi (1997 TU) hingga akhirnya tiba di Saturnus (2004 TU). Lintasan ini harus dijalani agar Cassini tak harus mengangkut 75.000 klogram bahan bakar, hal yang mustahil dalam teknologi peroketan saat ini. Dengan lintasan ini maka Cassini memanfaatkan daya lontar gravitasi dari tiga planet sekaligus: Venus, Bumi dan Jupiter. Sumber: NASA/JPL, 1998.

Ketapel gravitasi memang tak membutuhkan apapun. Namun agar teknik ini bekerja baik hingga ke ambang batas teknis yang diperkenankan, dibutuhkan serangkaian manuver. Dan itu mengonsumsi bahan bakar Cassini karena mesin roketnya harus dinyalakan sesuai kebutuhan. Sehingga saat tiba di Saturnus, Cassini telah menghabiskan 1.135 kilogram bahan bakarnya untuk rangkaian manuver itu. Selanjutnya agar gravitasi Saturnus bisa menangkap dan memaksanya beredar mengelilingi planet cincin itu dengan orbit tertentu, Cassini kembali harus menyalakan roketnya dan kali ini untuk mengerem. Pengeremen ini mengonsumsi sekitar 1.200 kilogram bahan bakar. Sehingga pada awal 2005 TU sisa persediaan bahan bakar Cassini tinggal sekitar seperempatnya saja (sekitar 800 kilogram).

Beruntung Saturnus memiliki Titan. Lewat teknik daya lontar gravitasi pula, Cassini berulang-ulang dilewatkan di dekat Titan. Selain menambah kecepatan dan sangat menghemat penggunaan bahan bakar, Cassini juga bisa mengubah orbitnya mengikuti desain observasi yang dibebankan padanya. Sehingga meski hanya dirancang untuk bertugas selama empat tahun, sisa bahan bakar yang masih cukup banyak memungkinkan masa tugas Cassini diperpanjang. Awalnya selama dua tahun dalam misi Cassini Equinox Mission (2008-2010 TU), dimana Cassini memusatkan perhatiannya pada momen eukinoks Saturnus (Matahari tepat di atas khatulistiwa’ Saturnus) yang terjadi pada 9 Agustus 2009 TU. Lalu diperpanjang tujuh tahun lagi di bawah tajuk Cassini Solstice Mission (2010-2017 TU) guna menyongsong momen titik balik musim panas (solstice) Saturnus yang terjadi pada 23 Mei 2017 TU. Selama dua misi tambahan itu berlangsung, Cassini lebih banyak memusatkan perhatiannya pada Titan dan Enceladus.

Gambar 15. Salah satu usulan opsi untuk perjalaan Cassini selanjutnya pasca menjalani misi utamanya di Saturnus. Dengan memanfaatkan daya lontar gravitasi Titan dan Jupiter, maka Cassini bisa diarahkan untuk meneliti Uranus dan Neptunus. Namun opsi ini ditolak NASA. Sumber: Kloster dkk, 2009.

Sejak misi utamanya berakhir pada 2008 TU, NASA telah mendiskusikan bagaimana mengoptimalkan Cassini hingga bahan bakarnya habis kelak. Beragam opsi disajikan. Salah satunya, yang paling menantang, adalah bagaimana memanfaatkan Cassini untuk mengeksplorasi dua planet raksasa terluar: Uranus dan Neptunus. Dalam opsi ini, bilamana Cassini bisa meninggalkan Saturnus pada 19 Februari 2014 TU (dengan kombinasi penyalaan mesin dan daya lontar gravitasi Titan) menuju Jupiter guna memanfaatkan daya lontar gravitasinya (yang akan terjadi pada 10 Agustus 2021 TU), maka Cassini tiba di lingkungan Uranus pada 2 Agustus 2029 TU. Dan selanjutnya dengan memanfaatkan daya lontar gravitasi Uranus, maka Cassini bisa tiba di Neptunus pada 12 Februari 2061 TU. Opsi ini membutuhkan serangkaian manuver sudah harus dilakukan sejak 2,4 hingga 1,4 tahun sebelum 19 Februari 2014 TU.

Meski sangat menantang, terlebih hingga saat ini belum ada rencana baru penerbangan antariksa untuk mengeksplorasi Uranus dan Neptunus pasca Voyager 2, namun opsi ini tidak dipilih. Dengan pertimbangan nilai ilmiah, biaya dan ketersediaan waktu, maka NASA memilih opsi untuk menjatuhkan Cassini secara terkontrol (controlled reentry) ke Saturnus. Opsi ini juga dipilih sebagai bentuk kepatuhan atas etika penerbangan antariksa yang ditegakkan Planetary Protocol, yakni agar tidak mengontaminasi benda langit yang memiliki kemungkinan untuk menyemaikan kehidupan. Untuk lingkungan Saturnus, benda langit tersebut adalah Enceladus. Jika Cassini dibiarkan terus beredar dalam orbitnya mengelilingi Saturnus dengan bahan bakar yang sudah habis, maka ia takkan lagi bisa dikendalikan dan berpeluang jatuh ke Titan maupun Enceladus (uncontrolled reentry).

Referensi :

NASA. 2017. The Saturn System Through The Eyes of Cassini.

Goodson dkk. 1998. Cassini Manuver Experience, Launch and Early Cruise. Guidance, Navigation and Control Conference, American Institute of Aeronautics and Astronautics, 10-12 August 1998.

Kloster dkk. 2009. Saturn Escape Options for Cassini Encore Missions. Journal of Spacecraft and Rockets, vol. 46 (2009) no.4, 874-882.

Bagaimana Nasibmu, (Satelit) Telkom-1 ?

Menit demi menit semburan itu terekam oleh sebuah teleskop optis dari Australia bagian timur. Teleskop itu bagian dari sebuah jaringan pemantau satelit yang beranggotakan 165 teleskop dari berbagai observatorium di segenap penjuru paras Bumi, yang dikelola oleh sebuah perusahaan pelacak satelit dari Amerika Serikat bernama ExoAnalytic Solutions. Apa yang direkamnya menakjubkan, memperlihatkan sebintik cahaya (yang adalah satelit Telkom-1) berdampingan dengan bintik cahaya lain (yang adalah satelit NSS-11, tetangga terdekat Telkom-1 pada orbit yang sama) dengan latar belakang bintang-bintang yang nampak bergaris-garis, pertanda setiap citra (foto) yang membentuk video rekaman ini dihasilkan dari pemotretan dengan waktu paparan (exposure) yang relatif panjang.

Gambar 1. Momen peristiwa semburan yang dialami satelit Telkom-1 pada 25 Agustus 2017 TU lalu seperti direkam oleh jaringan teleskop pemantau satelit di Australia timur dan dianalisis ExoAnalytic Solutions. Nampak tetangganya, satelit komunikasi NSS-11 yang juga sama-sama berusia tua. Sumber: ExoAnalytic Solutions, 2017.

Dalam satu kesempatan, yang bertepatan dengan Jumat 25 Agustus 2017 TU (Tarikh Umum) sore waktu Indonesia, bintik cahaya satelit Telkom-1 mempertontonkan perilaku ganjil. Sesuatu mendadak tersembur darinya, awalnya melejit ke dua arah berbeda namun untuk selanjutnya hanya ke satu arah. Semburan itu mirip kabut yang selanjutnya menyelubungi bintik cahaya Telkom-1 hingga membuatnya lebih redup ketimbang tetangganya. Di paras Bumi khususnya di Indonesia, momen tersebut ditandai oleh sekitar 8.000 buah titik ATM (anjungan tunai mandiri) dari beberapa bank yang mendadak keluar dari jaringan (offline) dan tak bisa digunakan, mulai pukul 18:00 WIB. Tiga hari kemudian manajemen PT Telkom Indonesia, selaku pemilik satelit, merilis kabar satelit Telkom-1 telah mengalami gangguan (anomali) yang membuat antenna-nya tidak lagi mengarah ke kawasan yang selama ini dilayaninya.

Berdasarkan rekamannya, ExoAnalytic Solutions tak hanya menegaskan terjadinya gangguan pada satelit Telkom-1 namun juga mengklaim satelit itu telah berkeping di langit. Klaim tersebut belakangan dibantah PT Telkom, terutama karena stasiun bumi Cibinong masih dapat berkomunikasi dengan satelit ini meski tak lagi bisa mengontrol gerakannya.

Orbit Geostasioner

Satelit Telkom-1 adalah sebuah satelit buatan yang dibangun untuk tujuan memperlancar telekomunikasi. Satelit ini ditempatkan pada orbit geostasioner di garis bujur 108º BT. Orbit geostasioner adalah wilayah khayali yang menghubungkan titik-titik yang yang terbentang tepat di atas garis khatulistiwa’ pada ketinggian 35.792 kilometer dari paras air laut rata-rata (dpl). Sebuah satelit buatan yang ditempatkan persis pada salah satu dari titik-titik ini akan memiliki periode revolusi (periode orbit) yang tepat sama dengan periode rotasi Bumi yakni 23 jam 56 menit 4,0906 detik (1.436,068 menit). Sehingga satelit buatan tersebut terlihat seakan-akan berada pada satu titik yang tetap (stasioner) di langit, dilihat dari paras Bumi manapun. Kondisi ini sangat menguntungkan karena antenna-antenna komunikasi yang diarahkan ke satelit buatan itu bisa diset untuk hanya menuju satu arah yang tetap, tak perlu berubah-ubah. Ini menjadikan orbit geostasioner sebagai salah satu sumberdaya antariksa yang paling berharga bagi umat manusia di era ini.

Gambar 2. Gambaran sederhana orbit geostasioner, yakni wilayah khayali dengan titik-titik yang bila ditempati oleh satelit buatan maka satelit tersebut akan memiliki periode revolusi yang tepat sama dengan periode rotasi Bumi. Sumber: Anonim.

Satelit Telkom-1 dirancang sebagai satelit geostasioner yang melanjutkan tugas satelit Palapa nan legendaris, khususnya satelit Palapa B2R. Satelit Palapa B2R, yang terkenal dengan sejarah dramatisnya dalam khasanah penerbangan antariksa, berakhir tugasnya pada bulan Desember 2000 TU setelah melayani Indonesia 10 tahun penuh. Sebagai penggantinya dibangunlah generasi satelit komunikasi yang baru yang juga mengemban nama baru. Pemilihan nama Telkom dan bukannya melanjutkan nama legendaris Palapa merupakan konsekuensi dari dialihkannya pengelolaan satelit ini dari manajemen Telkom ke Satelindo, yang di kemudian hari diakuisisi Indosat.

Berbeda dengan generasi satelit Palapa, generasi satelit Telkom ini (yang mendapat nama Telkom-1) dibangun dengan mengacu tren baru dunia persatelitan. Yakni dengan jumlah transponder lebih besar dan umur teknis lebih lama. Lockheed Martin membangun Telkom-1 dengan basis spacebus A2100A. Ia memiliki massa 2.763 kilogram dengan 1.063 kilogram diantaranya bahan bakar. Ia berbentuk kubus besar dengan sepasang ‘sayap’ di kiri-kanan, yang adalah panel surya untuk memasok 4.000 watt listrik. Ia memiliki 36 transponder berupa 24 transponder pada frekuensi C-band standar dan 12 transponder pada frekuensi C-band tambahan, dua pita frekuensi yang dikenal tangguh terhadap cuaca (khususnya hujan). Ia sengaja dirancang untuk bisa melayani titik-titik dengan antenna parabola berukuran kecil yang dikenal sebagai VSAT (very small apperture terminal), sehingga titik sekecil ATM pun dapat menggunakannya. Dan akhirnya, ia juga dirancang untuk bertugas lebih lama, dengan umur teknis 15 tahun.

Gambar 3. Satelit Telkom-1 saat selesai dibangun dan dites sebelum dikirim ke pusat peluncuran Kourou. Sumber: Lockheed Martin, 1998.

Satelit Telkom-1 meluncur ke langit dengan digendong oleh roket Ariane-42P pada 12 Agustus 1999 TU. Roket Ariane-42P meluncur mulus, mulai dari lepas landas di pangkalan peluncuran Kourou yang dikelola badan antariksa Eropa (ESA) di Guyana Perancis hingga mendorong Telkom-1 ke orbit transfer geosinkron yang bentuknya sangat lonjong. Dari titik apogee (titik terjauh dari pusat Bumi) orbit ini, Telkom-1 kemudian bermanuver dengan menggunakan mesin roketnya sendiri untuk menempati slot orbit geostasioner yang telah diatur.

Baru setelah tiba di slot lokasinya, dijumpai masalah. Yakni motor pada salah satu ‘sayap’ panel suryanya, tepatnya ‘sayap’ yang mengarah ke selatan, ternyata tidak berfungsi. Masalah yang berakar dari proses manufaktur satelit itu membuat ‘sayap’ panel surya sebelah selatan tak bisa mengikuti gerakan Matahari kala satelit beredar dalam orbitnya. Namun masalah ini tidak mengganggu pasokan daya listrik ke satelit, apalagi berdampak problem lain. Sehingga Telkom-1 pun tetap bisa berfungsi sesuai tujuan semula.

Telkom-1 berkedudukan tepat di atas titik koordinat 0º LU 108º BT (atau 0º LS 108º BT), titik yang secara geografis berada di Selat Karimata sejarak 160 kilometer sebelah barat kota Pontianak (Kalimantan Barat). Dengan demikian segenap Asia dan Australia serta sebagian kecil Afrika, Eropa dan Antartika dapat menyaksikan satelit ini di langitnya. Namun cakupan kerja Telkom-1 dibatasi hanya untuk kawasan Asia Tenggara, Papua Nugini serta sebagian Australia, sebagian India dan sebagian Cina.

Gambar 4. Saat roket Ariane-42P yang menggendong muatan satelit Telkom-1 di hidungnya mulai menyala dalam proses lepas landas di pangkalan peluncuran Kourou, pada 12 Agustus 1999 TU malam waktu setempat. Sumber: Arianespace, 1999.

Selain guna berpindah dari orbit transfer ke orbit geostasioner, bahan bakar pada Telkom-1 juga ditujukan untuk menjaga stabilitas satelit itu selama bertugas. Sebab setiap satelit buatan yang ditempatkan dalam orbit geostasioner sejatinya selalu mengalami gangguan dari tetangga Bumi kita, khususnya dari Bulan dan Matahari. Gangguan gravitasi Bulan dan Matahari menyebabkan satelit buatan di orbit geostasioner ‘berayun-ayun’ pada arah utara-selatan membentuk pola yang berulang setiap 24 jam. Gangguan juga datang dari bentuk Bumi yang menggelembung di area khatulistiwa’-nya (dan pepat di kedua kutubnya), medan gravitasi Bumi yang tidak homogen serta tekanan segala gelombang elektromagnetik dari Matahari. Tiga gangguan terakhir ini menyebabkan satelit ‘berayun-ayun’ dalam arah barat-timur, juga dalam pola yang berulang.

Telkom-1 pun menderita dua jenis ‘ayunan’ ini. Padahal secara teknis ia hanya boleh bergeser maksimal 0,05º saja dari posisinya. Artinya, Telkom-1 akan dikatakan stabil jika ia hanya bergeser-geser dalam sebuah kotak persegi yang dibatasi koordinat 0,05º LU 107,995º BT dan 0,05º LS 107,995º BT pada sisi barat serta koordinat 0,05º LU 108,05º BT dan 0,05º LS 108,05º BT di sisi timur. Menjaga stabilitas Telkom-1 membutuhkan manuver kendali sikap (attitude). Untuk itulah Telkom-1 dibekali juga dengan mesin-mesin roket mini (thruster) bagi keempat arah mataangin. Perhitungan menunjukkan setiap tahunnya Telkom-1 mengonsumsi ~ 45 kilogram bahan bakar Hidrazin untuk keperluan manuver tersebut.

Gambar 5. Cakupan tugas satelit Telkom-1 dalam frekuensi C-band standar dan C-band tambahan. Meski satelit bisa dilihat dari sepertiga belahan Bumi, namun cakupannya dibatasi hanya untuk kawasan Asia Tenggara, Papua Nugini serta sebagian Australia, sebagian India dan sebagian Cina. Sumber: SatBeam, 2017.


Perubahan Orbit

Jumlah bahan bakar Hidrazin inilah yang membatasi umur teknis sebuah satelit. Telkom-1 memiliki umur teknis 15 tahun, sebab khusus untuk melakukan manuver kendali sikap ia hanya dibekali ~ 650 kilogram bahan bakar Hidrazin. Saat tanki Hidrazin dalam Telkom-1 kosong, oleh sebab apapun, maka praktis satelit itu takank bermanfaat lagi karena tak bisa lagi dikendalikan sikapnya meskipun seluruh subsistem lainnya masih berfungsi.

Akan tetapi meski di atas kertas umur teknisnya ‘hanya’ 15 tahun, perhitungan bersama Lockheed Martin dan Telkom sebelum tahun 2014 TU berdasarkan data-data manuver kendali sikap Telkom-1 menunjukkan sisa bahan bakar Hidrazin ternyata masih banyak, yakni ~ 250 kilogram. Hal ini bisa terjadi karena dalam praktiknya konsumsi bahan bakar Hidrazin Telkom-1 lebih kecil. Sehingga disimpulkan satelit Telkom-1 masih bisa dimanfaatkan hingga tahun 2019 TU mendatang, sembari menunggu penggantinya (yakni satelit Telkom-4) yang rencananya akan diluncurkan pada 2018 TU mendatang.

Gambar 6. Bagaimana orbit satelit Telkom-1 berubah dramatis antara sebelum dan sesudah semburan. Selama 6 hari pertama (hingga 25 Agustus 2017 TU), satelit Telkom-1 sangat stabil di orbitnya dengan perigee 35.781 dan apogee 35.793 (masing-masing dalam kilometer dpl). Pasca semburan perigeenya menurun sementara apogeenya justru bertambah tinggi, indikasi bahwa orbit satelit telah lebih lonjong dan mulai takstabil. Sumber: Sudibyo, 2017 berdasar data Celestrak, 2017.

Sisa Hidrazin inilah yang menyembur keluar dalam kejadian 25 Agustus 2017 TU lalu. Semburan menandakan ada kebocoran, entah pada tanki bahan bakar, saluran bahan bakar maupun thruster satelit Telkom-1. Kebocoran ini praktis menamatkan riwayat satelit uzur tersebut. Sebab selain menghabiskan simpanan bahan bakarnya, kebocoran dalam wujud semburan juga menghasilkan dorongan gaya yang tak dikehendaki bagi satelit. Akibatnya Telkom-1 dibikin berguling-guling tanpa bisa distabilkan lagi. Tak hanya itu, gaya yang sama juga berakibat pada berubahnya orbit dan kedudukan satelit Telkom-1.

Sebelum 25 Agustus 2017 TU, satelit Telkom-1 memiliki orbit stabil dengan apogee 35.793 kilometer dpl dan perigee (titik terdekat dalam orbitnya ke Bumi) 35.781 kilometer dpl. Selisih ketinggian antara perigee dan apogee pun stabil pada angka 12 kilometer. Demikian halnya kedudukannya, yang stabil di atas koordinat 0º LU 108º BT. Namun pasca kejadian 25 Agustus 2017 TU, satelit ini mulai mengalami perubahan orbit dramatis. Sehingga delapan hari pasca kejadian, orbit Telkom-1 menjadi lebih lonjong dengan perigee lebih rendah, yakni pada 35.757 kilometer dpl. Sebaliknya apogee-nya melambung lebih tinggi, yakni setinggi 35.799 kilometer dpl. Selisih ketinggian perigee terhadap apogee pun membengkak hingga 84 kilometer. Kedudukan satelit ini juga telah bergeser jauh, kali ini di atas koordinat 0,03º LU 106,45º BT. Sehingga satelit telah bergeser 1,55º dari ke barat lokasi seharusnya. Jika dirata-ratakan maka satelit Telkom-1 telah ‘hanyut’ ke arah barat dengan kecepatan rata-rata 0,19º perhari.

Gambar 7. Perubahan kedudukan satelit Telkom-1 antara sebelum dan sesudah kejadian semburan. Pada 25 Agustus 2017 TU pagi, Telkom-1 berada lebih dekat ke pulau Kalimantan. Dalam delapan hari kemudian, satelit Telkom-1 bergeser perlahan-lahan ke barat sehingga lebih mendekat ke pulau Sumatra. Sumber: Sudibyo 2017 berdasar data Celestrak, 2017.

Maka, satelit Telkom-1 praktis sudah tak bisa diselamatkan lagi. Ia sudah menyandang status sampah antariksa. Dengan kecepatan ‘hanyut’-nya saat ini maka tinggal menunggu waktu saja bagi bangkai satelit Telkom-1 untuk melintas di slot satelit geostasioner tetangga, yakni satelit penginderaan jauh Gaofen 4 dan satelit komunikasi AsiaSat 7 (keduanya milik Cina), yang masing-masing berada di atas garis bujur 105,7º BT dan 105,45º BT pada orbit geostasioner.

Masih harus dilakukan evaluasi lebih lanjut apakah sampah antariksa terbaru ini berpotensi mengganggu satelit-satelit aktif yang ada dalam orbit geostasioner. Sebab orbit yang sangat bernilai ini seharusnya bebas dari sampah antariksa. Di sisi lain, butuh waktu hingga ribuan tahun lagi sebelum sampah antariksa Telkom-1 ini jatuh kembali ke Bumi.

Referensi :

Celestrak. 2017. Telkom-1 (Object 25580), 19 Aug 2017 to 2 Sep 2017. komunikasi pribadi.

Spaceflight101. 2017. More Trouble in GEO, Indonesia’s Telkom 1 Satellite Shed Debris Start Drifting, diakses 30 Agustus 2017 TU.

SatBeam. 2017. Telkom-1 (25580), diakses 2 September 2017.

Mari Simak Gerhana Bulan Seperempat 15 Zulqaidah 1438 H

Silahkan tandai waktunya dalam kalender maupun gawai (gadget) anda: Senin-Selasa dinihari, 7-8 Agustus 2017 TU (Tarikh Umum). Atau bertepatan dengan tanggal 15 Zulqaidah 1438 H dalam penanggalan Hijriyyah. Bilamana langit cerah, kita akan menyaksikan Bulan berkedudukan cukup tinggi di langit dengan wajah bundar penuh sebagai purnama. Namun sesuatu akan terjadi sejak pukul 22:50 WIB hingga lima jam kemudian. Sisi selatan Bulan akan ‘robek’ yang berangsur-angsur kian membesar saja hingga mencapai puncaknya sekitar pukul 01:20 WIB. Selepas itu ‘robekan’ yang samasedikit demi sedikit mengecil kembali hingga menghilang. Pada puncaknya, ‘robekan’ tersebut akan memiliki luasan setara dengan seperempat bundaran Bulan. Inilah Gerhana Bulan Seperempat 7-8 Agustus 2017.

Gerhana Bulan Seperempat ini sejatinya adalah peristiwa Gerhana Bulan Sebagian (Parsial). Ia masih menjadi bagian dari musim gerhana tahun 2017 TU ini yang terdiri dari empat gerhana, masing-masing dua Gerhana Matahari dan dua Gerhana Bulan. Seluruh Gerhana Bulan tersebut dapat disaksikan dari Indonesia, karena negeri ini berada dalam cakupan wilayah kedua gerhana. Sebaliknya seluruh Gerhana Matahari tersebut tak berkesempatan ‘menyentuh’ wilayah Indonesia. Dalam hal Gerhana Bulan, hanya saja gerhana Bulan pertama di musim ini adalah gerhana Bulan yang pemalu karena bersifat Gerhana Bulan Penumbral. Sehingga sangat sulit untuk disaksikan secara kasat mata.

Gambar 1. Wajah Bulan purnama yang tinggal separo dengan separo sisanya telah ‘robek’ dalam sebuah peristiwa Gerhana Bulan. Diabadikan pada Gerhana Bulan Total 16 Juni 2011 di Gombong, Kebumen (Jawa Tengah). Pada puncak Gerhana Bulan Seperempat 7-8 Agustus 2017, wajah Bulan akan seperti ini hanya bagian yang ‘robek’ lebih kecil. Sumber: Sudibyo, 2011.

Dalam Gerhana Bulan Seperempat ini cakram Bulan takkan sepenuhnya menghilang. Ia masih ada, hanya ‘kehilangan’ seperempat bagian wajahnya saja. Bagian yang ‘menghilang’ itu pun sejatinya juga tak sepenuhnya gelap. Karena dalam kondisi yang tepat bagian tersebut akan nampak kemerah-merahan (merah darah). Sebab meski bagian yang ‘menghilang’ itu tak terpapar cahaya Matahari sepenuhnya, ia tetap mendapatkan pencahayaan dari sinar Matahari yang dibiaskan atmosfer Bumi. Khususnya cahaya dalam spektrum warna merah atau inframerah.

Sebagian

Konfigurasi benda langit yang membentuk peristiwa Gerhana Bulan Seperempat ini identik dengan yang memproduksi Gerhana Bulan pada umumnya. Gerhana Bulan terjadi tatkala Matahari, Bulan dan Bumi tepat berada dalam satu garis lurus dalam konfigurasi yang menghasilkan fase Bulan purnama. Namun konfigurasi tersebut bersifat syzygy, yakni segaris lurus ditinjau dari segenap arah tiga dimensi. Di tengah-tengah konfigurasi tersebut bertenggerlah Bumi. Sementara Bulan menempati salah satu dari dua titik nodal, yakni titik potong orbit Bulan dengan ekliptika (bidang orbit Bumi mengelilingi Matahari). Akibatnya pancaran sinar Matahari yang seharusnya tiba di paras Bulan menjadi terhalangi Bumi.

Mengingat diameter Matahari jauh lebih besar ketimbang Bumi kita, yakni 109 kali lipat lebih besar, maka Bumi tak sepenuhnya menghalangi pancaran cahaya Matahari. Sehingga terbentuk umbra dan penumbra. Umbra adalah kerucut bayangan inti, yakni kerucut imajiner di belakang Bumi yang sepenuhnya tak mendapat pencahayaan Matahari. Sedangkan penumbra adalah kerucut bayangan samar/tambahan, yakni kerucut imajiner di belakang Bumi kita yang ukurannya jauh lebih besar ketimbang umbra dan masih mendapatkan cukup banyak pencahayaan Matahari.

Gambar 2. Bulan dalam peristiwa Gerhana Bulan Penumbral (Gerhana Bulan Samar), yang hanya bisa disaksikan secara leluasa dengan menggunakan teleskop. Diabadikan dalam momen Gerhana Bulan Penumbral 16-17 September 2016. Dalam Gerhana Bulan Seperempat, sebagian tahap gerhana akan lebih mudah disaksikan kasat mata. Sumber: Sudibyo, 2016.

Pada dasarnya tidak setiap kejadian Bulan purnama bersamaan dengan peristiwa Gerhana Bulan. Sebaliknya suatu peristiwa Gerhana Bulan pasti terjadi bertepatan dengan saat Bulan purnama. Musababnya adalah orbit Bulan yang tak berimpit dengan bidang edar Bumi mengelilingi Matahar), melainkan menyudut sebesar 5o. Hanya ada dua titik dimana Bulan berpeluang tepat segaris lurus syzygy dengan Bumi dan Matahari, yakni di titik nodal naik dan titik nodal turun. Dan dalam kejadian Bulan purnama, mayoritas terjadi tatkala Bulan tak berdekatan ataupun berada dalam salah satu dari dua titik nodal tersebut. Inilah sebabnya mengapa tak setiap saat Bulan purnama kita bersua dengan Gerhana Bulan.

Bagaimana Bulan berperilaku terhadap umbra dan penumbra Bumi menentukan jenis gerhananya. Ada tiga jenis Gerhana Bulan. Pertama ialah Gerhana Bulan Total (GBT), terjadi kala cakram Bulan sepenuhnya memasuki umbra Bumi tanpa terkecuali. Kedua adalah Gerhana Bulan Sebagian (GBS), terjadi kala umbra tak sepenuhnya menutupi cakram Bulan. Akibatnya pada puncak gerhananya Bulan hanya akan lebih redup (ketimbang saat GBT) dan ‘robek’ di salah satu sisinya. Dan yang terakhir adalah Gerhana Bulan Penumbral (GBP) atau gerhana Bulan samar, yang bisa terjadi kala hanya penumbra Bumi yang menutupi cakram Bulan baik sepenuhnya maupun hanya separuhnya. Tiada umbra Bumi yang turut menutupi. Dalam gerhana Bulan yang terakhir ini, Bulan masih tetap mendapatkan sinar Matahari sehingga sekilas nampak tak berbeda dibanding Bulan purnama umumnya.

Tahap dan Wilayah

Dalam kasus Gerhana Bulan Seperempat ini, pada puncaknya sebanyak 24,6 % wajah Bulan berada dalam umbra. Sebagai akibatnya Bulan yang sejatinya sedang berada dalam fase purnama pun menjadi temaram dan ‘robek’ seperempat bagiannya. Gerhana Bulan Seperempat ini terdiri dari lima tahap. Tahap pertama adalah awal gerhana atau kontak awal penumbra (P1) yang akan terjadi pada 7 Agustus 2017 TU pukul 22:50 WIB. Lalu tahap kedua adalah awal gerhana kasat mata atau kontak awal umbra (U1) yang terjadi pada pukul 00:23 WIB. Berikutnya adalah tahap ketiga yang berupa puncak gerhana, terjadi pada pukul 01:20 WIB. Selanjutnya tahap keempat berupa kontak akhir umbra (U4) atau akhir gerhana kasat mata, yang terjadi pada pukul 02:18 WIB. Dan yang terakhir adalah kontak akhir penumbra (P4) atau akhir gerhana, terjadi pada pukul 03:51 WIB.

Satu aspek istimewa dari Gerhana Bulan adalah bahwa tahap-tahap gerhananya secara umum terjadi pada waktu yang sama di setiap titik yang berada dalam wilayah gerhana. Jika ada perbedaan antara satu titik dengan titik lainnya hanyalah dalam orde detik. Dengan demikian durasi gerhana Bulan di setiap titik pun dapat dikatakan adalah sama. Durasi Gerhana Bulan Seperempat ini adalah 5 jam 1 menit. Namun durasi gerhana yang kasat mata lebih singkat, yakni hanya 1 jam 55 menit.

Sedikit berbeda dengan Gerhana Matahari, Gerhana Bulan memiliki wilayah gerhana cukup luas meliputi lebih dari separuh bola Bumi yang sedang berada dalam situasi malam hari. Wilayah Gerhana Bulan Sebagian 7-8 Agustus 2017 melingkupi seluruh benua Asia, Australia, Afrika, Eropa dan sebagian kecil Brazil di benua Amerika. Hanya mayoritas benua Amerika yang tak tercakup ke dalam wilayah gerhana ini. Wilayah gerhana terbagi menjadi tiga, yakni wilayah yang mengalami gerhana secara utuh, wilayah yang mengalami gerhana secara tak utuh (saat Bulan mulai terbenam maupun mulai terbit) dan yang terakhir wilayah yang tak mengalami gerhana sama sekali.

Gambar 3. Peta wilayah Gerhana Bulan Seperempat 15 Zulqaidah 1438 H dalam lingkup global. Perhatikan bahwa segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara utuh. Sehingga seluruh tahap gerhana bisa disaksikan, sepanjang langit cerah. Sumber: Sudibyo, 2017.

Segenap tanah Indonesia juga tercakup ke dalam wilayah gerhana ini. Kabar baiknya, segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara utuh, kecuali kota Jayapura (propinsi Papua). Di Jayapura, Matahari telah terbit dalam waktu 3 menit sebelum gerhana berakhir (tepatnya sebelum tahap P4 berakhir).

Shalat Gerhana

Gerhana Bulan Seperempat ini merupakan gerhana Bulan yang kasat mata. Sehingga dapat kita amati tanpa bantuan alat optik apapun, sepanjang langit cerah. Namun penggunaan alat bantu optik seperti kamera dan teleskop akan menyajikan hasil yang lebih baik. Sepanjang dilakukan dengan pengaturan (setting) yang tepat sesuai dengan tahap-tahap gerhana. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :

Bagi Umat Islam terdapat anjuran untuk menyelenggarakan shalat gerhana baik di kala terjadi peristiwa Gerhana Matahari maupun Gerhana Bulan. Hal tersebut juga berlaku dalam kejadian Gerhana Bulan Seperempat ini. Musababnya gerhana Bulan ini dapat diindra dengan mata manusia secara langsung. Sementara dasar penyelenggaraan shalat gerhana adalah saat peristiwa tersebut dapat disaksikan (kasat mata), seperti dinyatakan dalam hadits Bukhari, Muslim dan Malik yang bersumber dari Aisyah RA. Pendapat ini pula yang dipegang oleh dua ormas Islam terbesar di Indonesia, yakni Nahdlatul ‘Ulama dan Muhammadiyah. Mengingat durasi gerhana yang kasatmata adalah dari tahap U1 hingga tahap U4, yakni dari pukul 00:23 WIB hingga pukul 02:18 WIB, maka shalat Gerhana Bulan seyogyanya juga diselenggarakan pada rentang waktu tersebut. Berikut adalah infografis tatacara pelaksanaan shalat gerhana

Tatacara shalat gerhana Bulan. Sumber: RM Khotib Asmuni, 2017

Dalam peristiwa Gerhana Matahari dan Gerhana Bulan dianjurkan untuk mengerjakan shalat gerhana, karena baik Matahari maupun Bulan merupakan dua benda langit yang menjadi bagian dari tanda-tanda kekuasaan Alloh SWT. Dan peristiwa gerhana merupakan peristiwa langit yang menakjubkan (sekaligus menerbitkan rasa takut) bagi sebagian kalangan. Namun peristiwa ini adalah bagian dari tanda-tanda kekuasaan-Nya dan tidak terkait dengan kematian seseorang. Di sisi lain, shalat gerhana mendorong umat Islam untuk lebih dekat dengan-Nya. Terlebih mengingat peristiwa Gerhana pada khususnya (baik Gerhana Bulan maupun gerhana Matahari) serta fase Bulan baru dan Bulan purnama pada umumnya ternyata mampu memicu salah satu gaya endogen dalam sistem kerja Bumi kita, yakni gempa bumi tektonik.