Ngaji Falak Ramadhan: Durasi Puasa di Bulan Ramadhan

Bulan Ramadhan 1438 H sudah kita jalani hampir separuhnya. Salah satu pertanyaan menarik yang senantiasa muncul manakala Umat Islam memasuki suatu bulan Ramadhan adalah durasi puasa (atau lamanya berpuasa dalam satu hari) di bulan yang suci ini?

Ibadah puasa, baik yang wajib seperti halnya di bulan Ramadhan maupun yang sunat, memiliki batasan awal dan akhir yang tegas. Untuk setiap harinya, puasa dimulai saat awal Shubuh dan berakhir kala awal Maghrib. Awal Shubuh disepakati didefinisikan sebagai saat dimana cahaya fajar yang nyata (fajar shadiq) tepat mulai muncul dan merembang di kaki langit timur, jauh sebelum terbitnya Matahari. Sebaliknya disepakati pula bahwa awal Maghrib adalah saat kala Matahari tepat telah terbenam (ghurub). Ilmu falak kemudian menguraikan batasan tersebut lebih lanjut. Di Indonesia, cahaya fajar yang nyata disepakati mulai muncul manakala Matahari tepat menyentuh ketinggian minus 20º dari kaki langit timur. Sementara terbenamnya Matahari disepakati sebagai situasi saat sisi teratas cakram Matahari tepat mulai meninggalkan kaki langit barat, dimana kedudukan kaki langit barat ini bergantung kepada elevasi lokasi (terhitung dari paras air laut rata-rata).

Dengan definisi demikian, jelas bahwa durasi puasa Ramadhan pun dikendalikan sepenuhnya oleh kedudukan Matahari untuk suatu tempat. Hal ini menjadi lebih menarik lagi bilamana dikaitkan dengan ‘kelakuan’ Matahari. Yakni gerak semu tahunan Matahari, satu kondisi dimana Matahari seakan-akan bergeser ke utara dan ke selatan secara teratur sepanjang waktu dalam tahun Tarikh Umum (TU). Dalam ilmu falak, gerak semu tahunan itu ditandai dengan perubahan deklinasi Matahari dari 0º (terjadi pada sekitar tanggal 21 Maret) untuk kemudian secara berangsur-angsur meningkat menjadi +23,5º (terjadi pada sekitar tanggal 21 Juni) lalu berangsung-angsur menurun kembali ke 0º (terjadi pada sekitar tanggal 23 September) dan lalu beranjak terus hingga menjadi -23,5º (terjadi pada sekitar tanggal 22 Desember).

Dikombinasikan dengan fakta bahwa kalender Hijriyyah memiliki umur 354 hari (kalender basitah) dan 355 hari (kalender kabisat), sementara kalender Tarikh Umum memiliki umur 365 hari (basitah) dan 366 hari (kabisat), maka akan dijumpai fenomena unik. Yakni dari tahun ke tahun durasi puasa Ramadhan bagi sebuah lokasi selalu berubah-ubah secara dinamis, .

Dunia

Gambar 1. Peta durasi puasa Ramadhan 1438 H untuk tanggal 27 Mei 2017 TU bagi seluruh permukaan Bumi. Durasi puasa senilai 24 jam terjadi di garis lintang 57º LU. Sumber: Sudibyo, 2017.

Bulan Ramadhan tahun 1438 H (2017 TU) ini pun demikian. Bulan suci ini menjadi bagian dari situasi yang dialami bulan Ramadhan sejak tahun 1430 H (2009 TU) hingga kelak tahun 1445 H (2024 TU). Yakni terjadi manakala Matahari berkedudukan di atas hemisfer (belahan Bumi) utara. Sebagai konsekuensinya maka durasi puasa Ramadhan di hemisfer utara pun menjadi yang paling panjang. Sebaliknya durasi puasa Ramadhan bagi hemisfer selatan menjadi yang terpendek.

Saya mencoba memetakan durasi puasa Ramadhan 1438 H untuk seluruh permukaan Bumi ini pada dua saat. Yang pertama adalah pada tanggal 27 Mei 2017 TU, yang di Indonesia bertepatan dengan 1 Ramadhan 1438 H. Sementara yang kedua adalah pada tanggal 24 Juni 2017 TU kelak, yang juga bertepatan dengan tanggal 29 Ramadhan 1438 H bagi Indonesia. Pemetaan dibatasi pada kawasan yang terbentang di antara garis lintang 60º LU hingga 60º LS. Jadi kedua kawasan lingkaran kutub tak tercakup di sini.

Perhitungan dilaksanakan dengan program pemetaan, dalam hal ini saya menggunakan Surfer. Untuk lebih mempermudah, maka tinggi setiap titik kordinat yang disertakan dalam perhitungan ini diberi nilai nol (0) meter dpl.

Gambar 2. Peta durasi puasa Ramadhan 1438 H untuk tanggal 24 Juni 2017 TU bagi seluruh permukaan Bumi. Durasi puasa senilai 24 jam terjadi di garis lintang 48º LU hingga 51º LU. Sumber: Sudibyo, 2017.

Hasilnya, pada 27 Mei 2017 TU durasi puasa Ramadhan yang terpanjang ada di hemisfer utara berdekatan dengan garis 60º LU. Tepatnya pada sepanjang garis 57º LU. Disinilah durasi puasa tepat bernilai 24 jam. Sementara pada tanggal 24 Juni 2017 TU, durasi puasa Ramadhan yang terpanjang juga masih ada di hemisfer utara. Namun telah sedikit berpindah, yakni bervariasi di antara garis lintang 48º LU hingga garis lintang 51º LU.

Satu hari di Bumi memiliki durasi tepat 24 jam. Sehingga bilamana ada daerah yang memiliki durasi puasa Ramadhan tepat 24 jam, maka Umat Islam yang bertempat di sana ‘musti’ berpuasa sehari semalam suntuk jika mengacu pada kedudukan Matahari. Hal ini tentu sangat memberatkan. Makanya untuk negara-negara yang berada di batas kawasan subtropis dengan lingkar kutub (demikian halnya kawasan lingkar kutub itu sendiri) terdapat kekhususan dalam hal berpuasa Ramadhan bagi Umat Islam.

Indonesia

Bagaimana dengan Indonesia ?

Berbeda dengan negara-negara di dekat batas subtropis-lingkar kutub, Indonesia terletak di kawasan tropis. Bahkan negeri ini dibelah oleh garis khatulistiwa. Maka disini awal waktu Shubuh dan awal waktu Maghrib-nya masih tergolong normal, yakni tidak terlalu panjang namun juga tidak terlalu pendek. Pertanyaannya, apakah kedudukan Matahari berpengaruh terhadap durasi puasa Ramadhan 1438 H di Indonesia

Gambar 3. Peta durasi puasa Ramadhan 1438 H untuk tanggal 27 Mei 2017 TU bagi Indonesia. Durasi puasa rata-rata adalah 13 jam 21 menit. Durasi puasa terpendek terjadi di titik paling selatan sementara yang terpanjang terjadi di dekat titik paling utara (lintang 4º 43′ LU). Sumber: Sudibyo, 2017.

Seperti halnya langkah di atas, saya mencoba memetakan durasi puasa Ramadhan 1438 H untuk Indonesia pada dua saat. Yang pertama pada tanggal 27 Mei 2017 TU dan yang kedua pada tanggal 24 Juni 2017 TU. Pemetaan dibatasi pada kawasan yang terbentang di antara garis lintang 6º LU hingga 11º LS. Sebagai kuda kerja, juga digunakan program pemetaan berupa Surfer.

Berbeda dengan sebelumnya, maka di kali ini terdapat dua perhitungan. Pada perhitungan pertama, tinggi setiap titik kordinat yang disertakan dalam perhitungan diberi nilai nol (0) meter dpl untuk kemudian dipetakan. Sementara pada perhitungan kedua, digunakan titik-titik koordinat Masjid Agung di ibukota kabupaten/kota di seluruh Indonesia yang mencapai 520 buah itu. Data koordinat tersebut mencakup posisi lintang, bujur dan elevasi. Data bersumber dari BIG (Badan Informasi Geospasial) yang dipublikasikan terbatas di kalangan ahli falak Indonesia dalam momen Temu Kerja Hisab Rukyat Nasional 2017 kemarin. Hasil perhitungan kedua ini tidak dipetakan.

Gambar 4. Peta durasi puasa Ramadhan 1438 H untuk tanggal 24 Juni 2017 TU bagi Indonesia. Durasi puasa rata-rata adalah 13 jam 21 menit. Durasi puasa terpendek terjadi di titik paling selatan sementara yang terpanjang terjadi di titik paling utara. Sumber: Sudibyo, 2017.

Hasilnya, pada 27 Mei 2017 TU secara rata-rata durasi puasa untuk seluruh Indonesia adalah 13 jam 21 menit. Durasi puasa Ramadhan yang terpendek terjadi di Kabupaten Rote Ndao (Nusa Tenggara Timur), yakni 12 jam 57 menit. Lokasi ini merupakan daerah paling selatan di Indonesia, dengan Masjid al-Ikhwan di ibukota Baa terletak pada lintang 10º 43′ LS, hampir mendekati garis 11º LS. Sebaliknya durasi puasa terpanjang terjadi di Kabupaten Bener Meriah (Aceh) yakni 13 jam 51 menit. Meski bukan daerah paling utara di Indonesia, namun Masjid Babus Salaam di ibukota Simpang Tiga Redelong (lintang 4º 43′ LU) memiliki elevasi 1.392 meter dpl.

Sementara pada 24 Juni 2017 TU secara rata-rata durasi puasa untuk seluruh Indonesia adalah masih tetap bernilai 13 jam 21 menit. Durasi puasa Ramadhan yang terpendek juga tetap terjadi di Kabupaten Rote Ndao (Nusa Tenggara Timur), yakni 12 jam 55 menit. Namun lokasi dengan durasi puasa terpanjang berpindah tempat, yakni di Kota Sabang (Aceh) selama 13 jam 54 menit. Kota ini merupakan lokasi paling utara di Indonesia yang terletak pada garis lintang 5º 53′ LU.

Dapat dilihat, meski Indonesia terletak di kawasan tropis dan dibelah oleh garis khatulistiwa, pengaruh kedudukan Matahari terhadap durasi puasa Ramadhan 1438 H tetap terlihat. Durasi puasa terpendek berada di titik paling selatan, sementra durasi puasa terpanjang menempati titik paling utara. Selisih durasi puasa antara kedua tempat tersebut hampir mendekati sejam.

Kupas-Hoax: Ekuinoks dan Gelombang Panas di Indonesia

‘Kabar’ itu sudah menyeruak kemana-mana melalui aneka rupa media. Terutama media sosial. Kabar itu sudah menyebar liar tak terkendali, laksana api yang membakar ilalang kering kerontang. Bentuknya bermacam-macam, namun semuanya memiliki satu kemiripan. Intinya bakal terjadi bencana gelombang panas (heat wave) di negara-negara Asia Tenggara seiring bakal berlangsungnya peristiwa ekuinoks (equinox). Termasuk di Indonesia.

Lebih jelasnya, ‘kabar’ tersebut mewartakan bahwa selama lima hari berturut-turut, yakni sejak Selasa hingga Sabtu, 21-25 Maret 2017 TU (Tarikh Umum), gelombang panas akan melanda negara-negara seperti Indonesia, Malaysia dan Singapura. Suhu udara maksimum di siang hari akan meroket hingga mencapai angka fantastis, 40º Celcius ! Temperatur yang laksana panas membakar ini akan terjadi di hari-hari tersebut khususnya di antara rentang waktu pukul 12:00 hingga pukul 15:00 setempat. Dan semua itu terjadi karena peristiwa ekuinoks.

Tak ayal ‘kabar’ ini menggegerkan publik Indonesia. Horor akan petaka gelombang panas seperti yang meluluhlantakkan sebagian India di tahun 2015 TU pun segera membayang. Bencana gelombang panas India merenggut korban jiwa tak kurang dari 2.500 orang. Foto-foto aspal jalanan yang meleleh hingga membuat garis-garis marka jalan yang seharusnya lurus menjadi kusut masai tak keruan pun menjadi penanda ikonis bagi bencana gelombang panas India.

Gambar 1. Marka jalan di sudut kota New Delhi (India) yang kusut masai seiring melelehnya lapisan aspal jalan akibat paparan suhu tinggi dalam peristiwa gelombang panas India 2015. Bencana tersebut menewaskan tak kurang dari 2.500 orang. Sumber: Mail Online, 27 Mei 2015 TU.

Sayangnya ‘kabar’ tersebut ternyata tak benar. Ekuinoks memang akan terjadi di Indonesia, namun ia tak bakal disusul oleh peristiwa gelombang panas. Berikut penjelasannya.

Ekuinoks Musim Semi dan Musim Gugur

Ekuinoks adalah sebuah peristiwa langit teratur dimana kedudukan Matahari persis berada di atas garis khatulistiwa’. Dalam bahasa astronominya, ekuinoks adalah peristiwa pada saat Matahari ‘menyeberang’ dari hemisfer langit selatan menuju ke hemisfer langit utara atau sebaliknya dengan melintasi garis ekuator langit dalam gerak semu tahunannya. Ekuator langit adalah garis khayali yang lokasinya memang persis ada di atas garis khatulistiwa’. Karena Matahari sedang berkedudukan tepat di atas garis khatulistiwa’ pada saat ekuinoks, maka kita yang berdiri tegak di garis tersebut takkan memiliki bayang-bayang tepat pada saat Matahari mencapai titik kulminasi atasnya.

Astronomi menggolongkan ekuinoks sebagai peristiwa langit yang terjadi secara teratur dengan keistimewaan tersendiri. Karena hanya pada saat ekuinoks-lah hampir segenap paras Bumi, tepatnya yang terletak di antara garis lintang 80º LU hingga 80º LS, memiliki panjang durasi siang yang hampir sama dengan malam. Yakni sama-sama hampir 12 jam. Karena itulah ia mendapatkan nama ekuinoks, berasal dari kata aequinoctium dalam bahasa Latin (aequus = sama, nox = noctis = malam). Di luar peristiwa ekuinoks, panjang durasi siang dan malam bisa jauh berbeda khususnya di daerah yang tergolong kawasan subtropis dan lingkar kutub.

Sebagai peristiwa yang teratur, maka dalam setiap tahun Tarikh Umum selalu tersedia dua kejadian ekuinoks. Yakni ekuinoks pertama (vernal equinox), atau ekuinoks musim semi, yang terjadi di antara tanggal 19, 20 atau 21 Maret. Karena itu dinamakan pula sebagai Ekuinoks Maret. Ekuinoks Maret terjadi manakala Matahari bergerak dari hemisfer langit selatan menuju hemisfer langit utara dalam gerak semu tahunannya. Dan selanjutnya adalah peristiwa ekuinoks kedua (autumnal equinox), atau ekuinoks musim gugur, yang terjadi di antara tanggal 21, 22 atau 23 September. Sehingga disebut juga Ekuinoks September. Berkebalikan dengan Ekuinoks Maret, maka Ekuinoks September hanya terjadi bilamana Matahari bergerak dari hemisfer langit utara menuju hemisfer langit selatan dalam gerak semu tahunannya.

Gambar 2. Saya (menghadap ke selatan) di latar depan Tugu Khatulistiwa Pontianak yang ikonik. Garis khatulistiwa’ yang sesungguhnya adalah yang melintas tepat di tempat saya berdiri, berdasarkan pengukuran berbasis satelit. Pada saat ekuinoks terjadi maka Matahari akan tepat berada di atas garis khatulistiwa’ ini. Sumber: Sudibyo, 2012.

Penyebab terjadinya kedua peristiwa ekuinoks itu adalah kedudukan Bumi kita terhadap Matahari dalam konstelasi tata surya. Sebagai planet, Bumi berputar mengelilingi Matahari melewati orbitnya yang khas, yang disebut revolusi, dengan periode revolusi satu tahun. Bidang datar khayali tempat orbit Bumi mengelilingi Matahari dinamakan bidang ekliptika. Kita yang tinggal di paras Bumi akan melihat bidang ekliptika sebagai tempat berderetnya ketiga belas rasi zodiak. Revolusi Bumi membuat Matahari seakan-akan beringsut perlahan dalam masing-masing dari ketiga belas rasi bintang ini pada rentang tanggal tertentu sepanjang tahun.

Di saat yang sama Bumi juga berputar mengelilingi sumbunya sendiri, yang disebut rotasi, dengan periode rotasi 23 jam 56 menit. Namun sumbu rotasi Bumi tidaklah tegak lurus (membentuk sudut 90º), melainkan menyudut sebesar 66º 33′ terhadap bidang ekliptika. Kombinasi revolusi Bumi dan miringnya sumbu rotasi Bumi inilah yang menyebabkan Matahari seakan-akan berpindah-pindah tempat di antara garis lintang 23º 27′ LU dan 23º 27′ LS secara menerus dan konsisten. Sehingga nilai deklinasi Matahari pun bervariasi secara teratur dari -23º 27′ hingga yang terbesar +23º 27′ (tanda negatif menunjukkan di langit selatan sementara tanda positif di langit utara). Maka dalam istilah lain, ekuinoks adalah peristiwa dimana deklinasi Matahari tepat bernilai 0º.

Lokasi dimana Matahari berada pada saat ekuinoks terjadi pada hakikatnya merupakan titik potong antara bidang ekliptika dengan ekuator langit. Saat pertama kali diidentifikasi pada 20 abad silam, titik tersebut dinamakan titik Aries untuk peristiwa Ekuinoks Maret. Karena pada saat itu terletak di dalam rasi Aries, meski kini telah bergeser jauh ke dalam rasi Pisces seiring gerak presesi sumbu rotasi Bumi. Sementara bagi Ekuinoks September, titik itu diberi nama titik Libra meski sejatinya kini bertempat di di dalam rasi Virgo.

Perubahan Musim dan Gelombang Panas

Peristiwa ekuinoks telah dikenal umat manusia sejak fajar prasejarah dan telah digunakan sebagai penanda sistem penanggalan (kalender) pada sejumlah peradaban. Kini beberapa kalender masih menggunakan ekuinoks sebagai penanda awalnya, khususnya Ekuinoks Maret. Misalnya kalender Persia dan kalender India. Kalender global terpopuler pun, yakni kalender Tarikh Umum, masih mengandung jejak penanda yang terkait peristiwa ekuinoks, tepatnya Ekuinoks Maret.

Gambar 3. Peta penyinaran Matahari pada saat peristiwa Ekuinoks Maret. Area gelap merupakan bagian Bumi yang sepenuhnya telah memasuki malam hari. Sementara tiga area abu-abu yang mengelilinginya masing-masing adalah area dimana fajar/senja sipil (abu-abu terluar, terjadi kala Matahari terbenam hingga 6º di bawah horizon), fajar/senja nautikal (abu-abu tengah, terjadi kala Matahari terbenam hingga 12º di bawah horizon) dan fajar/senja astronomis (abu-abu terdalam, terjadi kala Matahari terbenam hingga 18º di bawah horizon) berlangsung. Sumber: Timeanddate.com, 2017.

Dalam sejarahnya sebelum dekrit Pontifex Maximus oleh kaisar Julius Caesar (tahun 46 STU), kalender Tarikh Umum adalah kalender Romawi. Awalnya kalender Romawi hanya terdiri dari 10 bulan kalender dengan Maret sebagai bulan kalender pertama seiring terjadinya peristiwa Ekuinoks Maret. Reformasi demi reformasi kalender berikutnya hingga dikeluarkannya dekrit Pontifex Maximus memberi dua bulan kalender tambahan (yakni Januari dan Februari) serta mengukuhkan peristiwa Ekuinoks Maret harus terjadi di sekitar tanggal 21 Maret. Inilah sistem penanggalan yang disebut kalender Julian. Dasar dari kalender Julian adalah periode tropis Matahari, yakni selang waktu yang dibutuhkan Matahari untuk menempati dua titik Aries yang berurutan.

Di kemudian hari muncul kesadaran bahwa perhitungan kalender Julian sedikit berbeda dengan nilai periode tropis Matahari yang sesungguhnya berdasarkan pengukuran yang lebih akurat. Maka menjelang tahun 1582 TU, terjadi situasi dimana peristiwa Ekuinoks Maret sesungguhnya telah terjadi pada tanggal 10 Maret. Bukan pada tanggal 21 Maret seperti yang menjadi patokan. Karena itu berlangsung reformasi Gregorian lewat sebuah dekrit Inter Gravissimas yang dikeluarkan Paus Gregoris XIII pada 24 Februari 1582 TU. Dekrit ini menekankan penghapusan 10 hari, sehingga setelah tanggal 4 Oktober 1582 TU maka keesokan harinya akan langsung melompat ke tanggal 15 Oktober 1582 TU. Inilah kalender Tarikh Umum yang kita gunakan hingga saat ini.

Selain sebagai penanda waktu dalam berbagai kalender, peristiwa ekuinoks juga menjadi penanda bagi rutinitas perubahan musim. Di kawasan subtropis khususnya di hemisfer utara (meliputi Eropa barat dan Timur, Asia utara dan Amerika utara), Ekuinoks Maret menjadi penanda bahwa musim semi akan segera tiba. Karena itu ia mendapatkan nama ekuinoks musim semi (sebaliknya kawasan subtropis di hemisfer selatan justru sedang bersiap-siap memasuki musim gugur). Sementara di negara tropis seperti Indonesia, peristiwa Ekuinoks Maret menjadi penanda bahwa musim kemarau akan segera tiba. Walaupun demikian harus digarisbawahi bahwa, meskipun posisi Matahari menjadi faktor utama penggerak cuaca di Indonesia, namun terdapat faktor-faktor lain yang menyebabkan cuaca menjadi dinamis. Seperti fenomena osilasi selatan el-Nino, osilasi dwikutub Samudera Indonesia, osilasi Madden-Julian.

Rutinitas perubahan musim terjadi karena gerak semu tahunan Matahari menyebabkan area yang terpanasi cahaya Matahari pun turut bergeser secara teratur. Di kawasan tropis, pergeseran teratur ini tecermin pada berpindah-pindahnya zona ITCZ (intertropical convergence zone). ITCZ adalah sebuah daerah sempit yang sama panjangnya dengan keliling Bumi dan menjadi tempat bertemunya angin pasat barat daya (dari hemisfer utara) dan angin pasat barat laut (dari hemisfer selatan). ITCZ sekaligus menjadi lokasi dimana udara membumbung ke atas seiring pemanasan Matahari. Gerakan tersebut adalah bagian dari sirkulasi udara dari kawasan khatulistiwa’ ke arah kawasan subtropis (baik utara maupun selatan) yang disebut sel Hadley. Sirkulasi konvektif ini menyebabkan daerah ITCZ menjadi padang subur bagi tumbuh kembangnya awan-awan badai dan hujan deras.

Kondisi berbeda terjadi di kawasan subtropis. Di hemisfer utara, penyinaran Matahari di antara peristiwa Ekuinoks Maret dan Ekuinoks September menciptakan musim semi dan musim panas. Sementara di sini terdapat daerah sempit mirip ITCZ, namun bedanya udara mengalir turun. Persis di atas puncak aliran udara yang menurun ini terdapat arus jet subtropis, yakni arus udara yang menderu ke arah timur pada ketinggian 9.000 hingga 12.000 meter membentuk lintasan melingkar dengan titik pusat di kawasan kutub utara. Seperti halnya ITCZ, posisi arus jet juga berpindah-pindah secara teratur mengikuti gerak semu tahunan Matahari.

Gambar 4. Gambaran sederhana mekanisme terjadinya peristiwa gelombang panas. Diawali dengan terbentuknya kawasan bertekanan udara tinggi (zona abu-abu) pada ketinggian 3 hingga 7,5 km. Kawasan ini menyebabkan udara mengalir ke bawah sembari menghangat dan mengering secara adiabatis sehingga membentuk kawasan tudung (zona jingga kekuningan) yang menyekap udara di bagian terbawah hingga sangat lembab, hangat dan tak mengalir. Sumber: NOAA, 2017

Kawasan di sisi selatan arus jet ini, tepatnya pada ketinggian 3.000 hingga 7.500 meter, merupakan area bertekanan udara lebih tinggi dibanding tekanan udara paras Bumi. Di bawah pengaruh tekanan tinggi ini, udara setempat bisa mengalir ke bawah menuju paras Bumi sembari menghangat dan mengering secara adiabatis. Aliran udara ke bawah yang menghangat ini lantas mengambil peran sebagai kubah raksasa tak kasat mata, yang berperan menyungkup kolom udara di lapisan terbawah.

Akibatnya kolom udara terbawah tidak bisa mengalami konveksi sehingga kelembaban udaranya meroket tinggi dengan suhu lebih hangat. Kita pun dibikin gerah. Situasinya sangat mirip dengan udara gerah menjelang tibanya hujan lebat. Gelombang panas adalah rasa gerah tersebut yang berlangsung berkepanjangan, dimana dalam definisi umum terjadi selama minimal lima hari berturut-turut dengan suhu udara maksimum harian rata-rata 5º Celcius lebih tinggi dibanding normal (yakni suhu udara rata-rata normal dalam rentang waktu 1961 hingga 1990 TU). Definisi sesungguhnya atas gelombang panas adalah berbeda-beda antara satu tempat dengan lainnya. Di benua Eropa, gelombang panas dinyatakan terjadi jika suhu udara harian melampaui angka 25 hingga 28º Celcius. Sementara di benua Amerika bagian utara, batasnya adalah 32º Celcius. Sebaliknya di benua Australia, batasnya adalah 35º Celcius.

Jelas terlihat bahwa meski dikendalikan oleh gerak semu tahunan Matahari, peristiwa gelombang panas hanya bisa terjadi di kawasan subtropis. Catatan sejarah menegaskan hal tersebut. Belum pernah terjadi peristiwa gelombang panas di kawasan tropis, atau lebih spesifiknya kawasan yang terletak di sekitar garis khatulistiwa’. Sebab sirkulasi udara memang tidak memungkinkan peristiwa semacam itu terjadi di kawasan khatulistiwa’. Termasuk di Indonesia.

Karena itulah ‘kabar’ bahwa ekuinoks akan diikuti dengan peristiwa gelombang panas di Indonesia saya kategorikan sebagai kabar-bohong (hoax). Sebagai catatan, ‘kabar’ semacam ini sudah muncul sejak 2016 TU dan nampaknya akan bermutasi menjadi kabar-bohong tahunan.

Referensi :

NOAA. 2017. Heat Index. National Weather Service NOAA, diakses 20 Maret 2017.

Kupas-Hoax: Bila Bumi Datar, Maka Arah Kiblat di Indonesia (Hampir) ke Utara

Ada sebuah riakan yang sedang mencoba menggeliat pada  semesta Indonesia dalam setahun terakhir. Riakan tersebut bertajuk Bumi datar. Ya Bumi datar, gagasan yang sejatinya telah demikian lama ditinggalkan peradaban manusia seiring melimpahnya bukti-bukti ilmiah gagasan oposannya (yakni Bumi bulat) dalam rentangan masa. Terlebih di masakini, tatkala penerbangan antariksa sudah menjadi rutinitas khususnya bagi sejumlah bangsa dan ilmu pengetahuan telah melangkah demikian jauh keluar dari Bumi kita dan lingkungannya mengeksplorasi semesta yang seakan tak bertepi. Kini kita tak lagi memahami Bumi sebagai raksasa di jagat raya yang kecil, namun hanyalah setitik debu di sudut alam raya yang demikian luas.

Gagasan Bumi datar sejatinya tak pernah benar-benar hilang meski telah tersisih sepenuhnya dari dunia ilmu pengetahuan semenjak berabad silam. Ia tetap hidup dan mendapat asupan nutrisi memadai dalam sejumlah komunitas kecil yang ultra konservatif dan cenderung antisains. Terutama pada sekte-sekte Kristiani tertentu yang tumbuh subur di daratan Amerika Serikat. Gagasan itu hidup dalam lingkungan yang dipenuhi nada konspirasi akan segala hal, termasuk perkembangan ilmu pengetahuan. Dalam lingkungan tersebut, segala perkembangan maju ilmu pengetahuan yang diraih umat manusia pada zaman ini diklaim tak lebih dari pembohongan massif hasil konspirasi para cendekiawan sejagat.

Di tahun 1893 Tarikh Umum (TU), seorang konservatif bernama Orlando Ferguson menggambar peta Bumi datar. Peta inilah yang menjadi pijakan gagasan Bumi datar pada saat ini. Bedanya, Orlando Ferguson mengklaim Bumi datar berbentuk kotak dengan cekungan Bulat di tengahnya. Sementara gagasan Bumi datar masa kini secara diam-diam menghilangkan bentuk kotak itu.

Gambar 1. Peta Bumi datar menurut Orlando Ferguson, berangka tahun 1893 TU. Dalam peta yang bernafas Kristiani ini, seperti tersurat dari kutipan ayat-ayat Injil, Bumi dianggap berbentuk persegi panjang yang masing-masing sudutnya dijaga sesosok malaikat. Namun seluruh daratan dan lautan terletak dalam cekungan berbentuk lingkaran di dalam kotak. Sumber: Ferguson, 1893 dalam arsip Library of Congress, United States.

Gambar 1. Peta Bumi datar menurut Orlando Ferguson, berangka tahun 1893 TU. Dalam peta yang bernafas Kristiani ini, seperti tersurat dari kutipan ayat-ayat Injil, Bumi dianggap berbentuk persegi panjang yang masing-masing sudutnya dijaga sesosok malaikat. Namun seluruh daratan dan lautan terletak dalam cekungan berbentuk lingkaran di dalam kotak. Sumber: Ferguson, 1893 dalam arsip Library of Congress, United States.

Revolusi teknologi informasi dengan hadirnya internet di awal abad ke-21 membuat gagasan tersebut pun mulai tersebar keluar dalam aneka rupa cerita dan multimedia. Ia pun mulai disambut oleh kalangan di luar komunitas klasiknya, termasuk sejumlah pemeluk Islam. Bagi sejumlah kalangan Muslim, gagasan Bumi datar dirasa cocok dengan terjemah literal sejumlah ayat dalam al-Qur’an. Ia juga dianggap bersesuaian dengan pendapat sejumlah penafsir (mufassirin) Qur’an era klasik. Lebih lanjut lagi, gagasan Bumi datar dianggap bisa melengkapi gagasan aneh lainnya, yakni Matahari mengelilingi Bumi, sekaligus memperkukuh sikap ‘anti hegemoni Barat’ yang selama ini digaungkan.

Gagasan Bumi datar zaman ini mendeskripsikan bahwa Bumi adalah datar. Yup datar seperti papan raksasa. Titik pusat papan adalah kutub utara, sementara kutub selatan berupa tembok es yang membatasi bidang Bumi. Tembok es ini diklaim dijaga sangat ketat oleh sejumlah negara. Sementara langit berbentuk kubah dengan ketinggian tertentu. Matahari hanya berjarak 5.000 kilometer di atas paras Bumi datar. Matahari beredar dalam lintasannya yang mengelilingi proyeksi vertikal kutub utara menuju kubah langit. Demikian halnya Bulan dan benda-benda langit lainnya. Baik Bulan maupun Matahari diklaim tidaklah berukuran besar. Bersama bintang dan benda-benda langit lainnya, Matahari dan Bulan diklaim sebagai serakan api di dalam kubah langit.

Penggambaran akan bentuk Bumi yang datar dan dilingkupi (ditutupi) oleh kubah langit itu sekilas mengingatkan kita pada dongeng mitologis rakyat Jermania tentang raksasa Ymir. Ymir sang raksasa yang kemudian tewas dan tubuhnya membentuk daratan (datar). Sedangkan batok kepalanya menjadi kubah raksasa yang menutupi daratan. Sehingga daratan itu gelap sepenuhnya. Demikian halnya deskripsi Matahari, Bulan, bintang dan benda-benda langit sebagai serakan api untuk menghias dan menerangi kubah langit, yang sekali lagi mirip sekali dengan penggambaran mitologi yang sama. Dongeng rakyat Jermania itu menuturkan, agar daratan (Bumi) tidak kegelapan maka para dewa memungut api Muspelheim dan menyebarkannya ke dalam kubah batok kepala Ymir hingga menjadi percikan-percikan.

Gambar 2. Peta Bumi datar modern. Sejatinya ini adalah peta Bumi dalam proyeksi azimuthal sama-jarak (equidistant), namun oleh pemuja model Bumi datar dibajak dan diklaim sebagai gambaran sesungguhnya tentang Bumi. Perhatikan bahwa bentuk peta ini hampir sama persis dengan Peta Ferguson 1893, hanya saja pemuja model Bumi datar modern diam-diam menghilangkan bentuk persegi panjang di luar lingkaran. Sumber: Anonim, 2016.

Gambar 2. Peta Bumi datar modern. Sejatinya ini adalah peta Bumi dalam proyeksi azimuthal sama-jarak (equidistant), namun oleh pemuja model Bumi datar dibajak dan diklaim sebagai gambaran sesungguhnya tentang Bumi. Perhatikan bahwa bentuk peta ini hampir sama persis dengan Peta Ferguson 1893, hanya saja pemuja model Bumi datar modern diam-diam menghilangkan bentuk persegi panjang di luar lingkaran. Sumber: Anonim, 2016.

Baiklah, tulisan ini hanya ingin menekankan pada satu aspek semata. Yakni bagaimana arah kiblat Umat Islam khususnya di Indonesia dan Asia tenggara pada umumnya terkait gagasan Bumi datar. Riset yang saya lakukan, yang akan dipaparkan secara ringkas di bawah ini, menyimpulkan dengan gamblang betapa Umat Islam di Indonesia harus dipaksa menghadapkan wajah lebih ke utara pada saat menunaikan ibadah shalat jika mempercayai gagasan Bumi datar. Konsekuensinya sangat serius, sebab dengan demikian maka arah kiblat di Indonesia akan dipaksa melenceng mulai dari sebesar +14° di Banda Aceh hingga sebesar +38° di Merauke. Dalam kata-kata lain, jika kita mempercayai gagasan Bumi datar maka kita harus memaksa arah kiblat untuk melenceng sejauh antara 1.800 kilometer (Banda Aceh) hingga 4.300 kilometer (Merauke) dari lokasi Ka’bah yang sesungguhnya.

Konsep Arah Kiblat Bumi Datar

Menghadap kiblat merupakan satu hal yang esensial bagi Umat Islam sejagat. Sebab merupakan bagian dari syarat sahnya shalat. Dan menghadap kiblat sangat erat hubungannya dengan arah kiblat. Dalam situasi darurat yakni tatkala seorang Muslim mengalami kondisi buta arah, terdapat keringanan untuk menentukan arah kiblat sendiri ke arah manapun yang diyakini. Namun tidak demikian halnya bila ia tahu kedudukan dan arah mataangin yang tepat di lokasinya. Teladan dan tutur dari Rasulullah SAW menjadi pegangan betapa pentingnya menentukan arah kiblat secara tepat hingga ke tingkatan tertentu.

Gambar 3. Ilustrasi peristiwa pemindahan kiblat pada saat perintah berkiblat ke Ka'bah diturunkan, dengan latar belakang citra satelit Masjid Qiblatain masakini di kotasuci Madinah (Saudi Arabia). Sebelum surat al-Baqarah ayat 144 diturunkan, Rasulullah SAW dan para sahabat menunaikan shalat Dhuhur berjamaah dengan menghadap ke Masjidil Aqsha (utara). Namun begitu ayat tersebut diturunkan, mereka beralih dengan menghadap ke Ka'bah/Masjidil Haram (selatan) tanpa membatalkan shalat. Sumber: Sudibyo, 2012.

Gambar 3. Ilustrasi peristiwa pemindahan kiblat pada saat perintah berkiblat ke Ka’bah diturunkan, dengan latar belakang citra satelit Masjid Qiblatain masakini di kotasuci Madinah (Saudi Arabia). Sebelum surat al-Baqarah ayat 144 diturunkan, Rasulullah SAW dan para sahabat menunaikan shalat Dhuhur berjamaah dengan menghadap ke Masjidil Aqsha (utara). Namun begitu ayat tersebut diturunkan, mereka beralih dengan menghadap ke Ka’bah/Masjidil Haram (selatan) tanpa membatalkan shalat. Sumber: Sudibyo, 2012.

Hal itu dapat dilihat misalnya dalam peristiwa berbaliknya Rasulullah SAW dan para sahabat di Madinah dari semula menghadap ke utara menjadi menghadap ke selatan tatkala menunaikan ibadah shalat Dhuhur bersamaan dengan turunnya ketetapan  Ka’bah adalah kiblat Umat Islam. Begitu halnya dengan perintah Rasulullah SAW kepada sahabat Wabir ibn Yuhannas al-Khuza’i RA yang hendak berangkat ke Yaman. Perintah tersebut menekankan bahwa arah kiblat bagi penduduk kota adalah dengan jalan memandang lurus ke arah Gunung Jabal Dayn tatkala mereka berdiri di Bathan, salah satu bagian kota yang saat itu berupa taman. Pengukuran modern di lokasi tersebut melalui fenomena Istiwa’ Azzam memperlihatkan kebenaran sabda Rasulullah SAW, dimana antara taman Bathan dengan Gunung Jabal Dayn dan Ka’bah tepat berada dalam satu garis lurus.

Gambar 4. Citra satelit yang menggambarkan bagaimana jika penduduk kota San'a berdiri di taman Bathan (kini Masjid Jami' al-Kabir) dengan menghadap ke arah Gunung Jabal Dayn (atas), maka pada hakikatnya mereka tepat menghadap ke Ka'bah (bawah). Garis lurus merupakan garis sepanjang 815 kilometer yang menghubungkan taman Bathan dengan Ka'bah, dimana garis tersebut tepat melintas di lokasi Gunung Jabal Dayn. Sumber: Sudibyo, 2012.

Gambar 4. Citra satelit yang menggambarkan bagaimana jika penduduk kota San’a berdiri di taman Bathan (kini Masjid Jami’ al-Kabir) dengan menghadap ke arah Gunung Jabal Dayn (atas), maka pada hakikatnya mereka tepat menghadap ke Ka’bah (bawah). Garis lurus merupakan garis sepanjang 815 kilometer yang menghubungkan taman Bathan dengan Ka’bah, dimana garis tersebut tepat melintas di lokasi Gunung Jabal Dayn. Sumber: Sudibyo, 2012.

Arah kiblat pada dasarnya merupakan arah menuju ke kiblat yang mengikuti jarak terpendek antara sebuah tempat terhadap kiblat. Pengertian arah disini sejatinya merupakan pengertian umum. Misalnya seseorang yang sedang berada di kota Bandung hendak mencari arah Jakarta. Maka arah yang logis ditempuhnya adalah ke barat laut, sebab itulah jarak terpendek antara Bandung dengan Jakarta  secara geometris. Jika ia mengambil arah yang berlawanan, yakni ke tenggara, maka ia justru mengambil jarak yang terjauh. Apabila tetap memaksakan diri ke tenggara, ia tetap akan tiba di Jakarta namun dalam waktu tempuh yang amat sangat lama. Sebaliknya jika ia mengambil arah ke utara atau ke selatan maka sampai kapanpun ia mustahil tiba di Jakarta. Karena arahnya keliru.

Dalam perspektif geometri, cara menentukan arah dari suatu titik menuju ke suatu tempat adalah dengan menggunakan segitiga. Baik di permukaan datar (seperti halnya gagasan Bumi datar) maupun di permukaan lengkung. Dari segitiga tersebut, maka arah dapat ditentukan sebagai sebuah sudut yang dihitung dari garis referensi universal (misalnya arah Utara sejati). Nilai arah diturunkan dari persamaan-persamaan trigonometri, dimana untuk permukaan datar berlaku trigonometri segitiga planar (datar) sementara pada permukaan melengkung seperti bola berlaku trigonometri segitiga bola. Cendekiawan Muslim di era keemasannya memberikan sumbangan yang sangat signifikan dalam pembentukan pengetahuan trigonometri yang kini kita pahami dalam geometri.

Gambar 5. Ilustrasi arah ke Jakarta jika hendak berangkat dari Bandung dalam peta. Panah kuning utuh menunjukkan jarak terdekat Bandung-Jakarta yang menjadikannya arah ke Jakarta paling rasional, yakni ke barat laut. Panah kuning putus-putus menunjukkan jarak terjauh Bandung-Jakarta, rute yang tidak rasional namun masih akan tiba di Jakarta dalam waktu yang sangat lama (ke tenggara). Sebaliknya kedua panah merah utuh menunjukkan arah ke Jakarta yang mustahil, karena sampai kapanpun bila mengikuti kedua arah tersebut maka takkan tiba di tempat tujuan. Sumber: Sudibyo, 2016 dengan basis Google Maps.

Gambar 5. Ilustrasi arah ke Jakarta jika hendak berangkat dari Bandung dalam peta. Panah kuning utuh menunjukkan jarak terdekat Bandung-Jakarta yang menjadikannya arah ke Jakarta paling rasional, yakni ke barat laut. Panah kuning putus-putus menunjukkan jarak terjauh Bandung-Jakarta, rute yang tidak rasional namun masih akan tiba di Jakarta dalam waktu yang sangat lama (ke tenggara). Sebaliknya kedua panah merah utuh menunjukkan arah ke Jakarta yang mustahil, karena sampai kapanpun bila mengikuti kedua arah tersebut maka takkan tiba di tempat tujuan. Sumber: Sudibyo, 2016 dengan basis Google Maps.

Dalam hal arah kiblat, baik di permukaan datar maupun melengkung, kita membutuhkan informasi tentang tiga titik. Yakni titik lokasi yang hendak kita tentukan arah kiblatnya, lalu titik Kutub Utara dan selanjutnya titik Makkah (dimana Ka’bah berada). Informasi terkait titik-titik tersebut dicerminkan oleh koordinat geografisnya. Dalam gagasan Bumi datar, masalah koordinat geografis ini lumayan ribet mengingat koordinat garis lintang dan garis bujur yang tersaji pada saat ini adalah yang bertumpu pada konsep Bumi bulat. Karena itu saya mengembangkan sistem koordinat tersendiri dengan bertumpu pada koordinat Cartesian, yang lantas dikorelasikan (disetarakan) dengan koordinat garis lintang dan garis bujur.

Dengan telah diketahuinya koordinat titik-titik Kutub Utara dan Makkah, maka tinggal berkonsentrasi pada penentuan nilai sudut arah. Dalam gagasan Bumi datar (atau secara matematis disebut model Bumi datar), karena berbasis trigonometri segitiga planar maka digunakan aturan cosinus sebagai berikut :

Gambar 6. Geometri segitiga planar, koordinat dan persamaan aturan cosinus untuk menghitung arah kiblat model Bumi datar. Sumber: Sudibyo, 2016.

Gambar 6. Geometri segitiga planar, koordinat dan persamaan aturan cosinus untuk menghitung arah kiblat model Bumi datar. Sumber: Sudibyo, 2016.

Sedangkan pada konsep Bumi bulat (atau secara matematis disebut model Bumi bulat), maka basisnya adalah trigonometri segitiga bola dengan salah satu rumus yang digunakan sebagai berikut :

Gambar 7. Geometri segitiga bola, koordinat dan persamaan untuk menghitung arah kiblat model Bumi bulat. Sumber: Sudibyo, 016 dengan basis Google Earth.

Gambar 7. Geometri segitiga bola, koordinat dan persamaan untuk menghitung arah kiblat model Bumi bulat. Sumber: Sudibyo, 016 dengan basis Google Earth.

Penelitian

Area penelitian dibatasi pada  bagian Bumi yang terletak di antara garis lintang 15° LU hingga 15° LS dan di antara garis bujur 90° BT hingga 150° BT. Area tersebut mencakup segenap Indonesia dan sejumlah negara tetangga seperti Malaysia, Brunei Darussalam, Filipina, Singapura, sebagian Papua Nugini, sebagian Thailand, sebagian Myanmar, sebagian Vietnam, sebagian India (khususnya kepulauan Andaman dan Nicobar) dan sedikit Australia bagian utara.

Nilai arah kiblat dalam penelitian ini adalah nilai sudut antara arah Utara sejati dengan arah menuju kiblat di lokasi tersebut. Nilai itu lantas dinyatakan sesuai standar astronomi sebagai nilai azimuth. Azimuth adalah busur yang ditarik dari arah Utara sejati menuju ke timur hingga tiba di posisi arah kiblat yang dimaksud. Dalam sistem ini, Utara sejati memiliki azimuth 0 (nol) atau 360, sementara Timur berazimuth 90, Selatan berazimuth 180 dan Barat berazimuth 270. Jika misalnya arah kiblat adalah 25° ke sebelah utara dari arah Barat, maka dalam sistem azimuth dinyatakan sebagai azimuth kiblat 295.

Hasil perhitungan azimuth kiblat model Bumi datar dan perbandingannya dengan azimuth kiblat model Bumi bulat untuk area penelitian dinyatakan dalam tabel berikut :fe-tabel1_perbandingan-aq

Terlihat jelas ada selisih yang signifikan antara azimuth kiblat model Bumi datar dengan azimuth kiblat dalam konsep Bumi bulat. Dimana seluruh nilai azimuth kiblat Bumi datar adalah lebih besar. Selisihnya berkisar mulai yang terkecil +8,3° di koordinat 15° LU 105° BT hingga yang terbesar  +46,3° di koordinat 15° LS 150° BT (tanda + menunjukkan nilai azimuth kiblat Bumi datar lebih besar ketimbang azimuth kiblat Bumi bulat).

Temuan menarik lainnya adalah pola pada garis-garis isokiblatnya. Garis isokiblat adalah sebuah garis yang menghubungkan titik-titik di paras Bumi yang memiliki nilai azimuth kiblat yang persis sama. Garis-garis isokiblat untuk area penelitian baik dalam model Bumi datar maupun model Bumi bulat disajikan sebagai berikut :

Gambar 8. Perbandingan garis-garis isokiblat untuk area penelitian antara model Bumi datar (atas) dan model Bumi bulat (bawah). Perhatikan kedua model menghasilkan garis-garis isokiblat dengan orientasi yang sangat berbeda. Perbedaan tersebut menjadi indikasi bahwa arah kiblat dalam model Bumi datar memiliki perbedaan dengan arah kiblat dalam model Bumi bulat. Sumber: Sudibyo, 2016.

Gambar 8. Perbandingan garis-garis isokiblat untuk area penelitian antara model Bumi datar (atas) dan model Bumi bulat (bawah). Perhatikan kedua model menghasilkan garis-garis isokiblat dengan orientasi yang sangat berbeda. Perbedaan tersebut menjadi indikasi bahwa arah kiblat dalam model Bumi datar memiliki perbedaan dengan arah kiblat dalam model Bumi bulat. Sumber: Sudibyo, 2016.

Terlihat jelas bahwa pola garis-garis isokiblat model Bumi datar jauh berbeda dengan garis isokiblat model Bumi bulat. Dalam model Bumi datar, orientasi garis isokiblatnya adalah seragam dari barat daya menuju timur laut. Sementara dalam model Bumi bulat, orientasi garis isokiblatnya bervariasi dan unik. Sebagian berorientasi dari selatan dan tenggara menuju barat laut. Sebagian lagi dari utara dan timur laut menuju barat laut. Bahkan ada yang berorientasi dari selatan menuju tenggara dan juga dari utara menuju tenggara. Keunikan ini terjadi karena Indonesia menjadi salah satu dari hanya dua tempat unik di Bumi terkait arah kiblat. Yakni karena memiliki lokasi di garis khatulistiwa yang tepat berjarak 90° (seperempat belahan bola Bumi) dari Ka’bah. Lokasi tersebut berada di Indonesia bagian timur , tepatnya di garis bujur 130° BT yang terletak di dekat pulau Waigeo dan termasuk ke dalam kawasan kabupaten Raja Ampat (Papua Barat). Satu titik istimewa lainnya terletak di muara Sungai Amazon (Brazil) di benua Amerika bagian selatan.

Selisih angka yang signifikan dalam nilai azimuth kiblat dan perbedaan mendasar orientasi garis-garis isokiblatnya memperlihatkan bahwa arah kiblat model Bumi datar adalah berbeda dibandingkan dengan arah kiblat model Bumi bulat. Dengan kata lain, meski sama-sama berkiblat ke titik yang satu dalam hal ini Ka’bah atau Masjidil Haram atau wilayah tanah haram Makkah al-Mukarramah jika mengacu pada klasifikasi kiblat (lihat Sudibyo, 2012), namun arah kiblat model Bumi datar ternyata berbeda dibanding arah kiblat model Bumi bulat. Perbedaan antara keduanya berimplikasi pada satu konsekuensi pahit: tentu ada model yang benar sementara model lainnya keliru.

Maka, mana yang benar? Apakah arah kiblat model Bumi datar? Ataukah arah kiblat model Bumi bulat?

Bumi Datar Keliru

Astronomi atau ilmu falak tak hanya sekedar berkemampuan menghasilkan model dan menyajikan perhitungan matematis terkait azimuth kiblat, baik dalam model Bumi datar maupun model Bumi bulat. Melainkan juga berkemampuan mengujinya secara empiris, berdasarkan pengukuran langsung di lapangan. Ada beragam cara guna mengukur arah kiblat bagi suatu tempat. Pada prinsipnya cara pengukuran arah kiblat adalah dengan mengukur kedudukan arah-arah mataangin tertentu di lokasi tersebut, pengukuran yang bisa dilakukan misalnya dengan bantuan kompas magnetik ataupun dengan posisi benda langit.

Pengukuran dengan kompas magnetik memungkinkan kita untuk mengetahui kedudukan arah Utara sejati, tentunya setelah faktor-faktor pengganggu dieliminasi mulai dari deklinasi magnetik hingga badai Matahari. Hal serupa juga dapat dilakukan dengan pengukuran terhadap posisi benda-benda langit. Namun dalam hal benda langit, terdapat satu keistimewaan. Yakni kita bisa memperoleh langsung nilai azimuth kiblat suatu tempat manakala benda langit tersebut tepat berada di titik zenith kiblat. Atau dalam bahasa ilmu falak, saat benda langit tersebut mengalami Istiwa’ Azzam di kiblat.

Gambar 9. Citra fenomena Istiwa' Azzam di kota Surakarta (Jawa Tengah) pada 13 Oktober 2010 TU pada radas jam Matahari bencet) di Masjid Tegalsari. Jam Matahari ini memungkinkan berkas sinar Matahari masuk ke dalam masjid sehingga proyeksinya bisa disaksikan secara langsung di lantai masjid. Nampak proyeksi cakram Matahari tepat sedang menyentuh titik proyeksi zenith Surakarta, fenomena yang hanya terjadi dua kali setahun di tempat itu. Sumber: Sugeng Riyadi, 2010.

Gambar 9. Citra fenomena Istiwa’ Azzam di kota Surakarta (Jawa Tengah) pada 13 Oktober 2010 TU pada radas jam Matahari bencet) di Masjid Tegalsari. Jam Matahari ini memungkinkan berkas sinar Matahari masuk ke dalam masjid sehingga proyeksinya bisa disaksikan secara langsung di lantai masjid. Nampak proyeksi cakram Matahari tepat sedang menyentuh titik proyeksi zenith Surakarta, fenomena yang hanya terjadi dua kali setahun di tempat itu. Sumber: Sugeng Riyadi, 2010.

Salah satu benda langit yang berkemampuan seperti itu adalah Matahari. Setiap tahun Tarikh Umum, yakni pada tanggal 28 Mei pukul 12:16 waktu Arab Saudi dan tanggal 16 Juli pukul pukul 12:26 waktu Arab Saudi, Matahari akan berkedudukan di titik zenith kotasuci Makkah. Hal itu berlaku untuk tahun basitas (tahun biasa), sementara untuk tahun kabisat tanggalnya maju sehari lebih awal. Pada saat itu sebuah benda panjang (misal tiang) yang didirikan demikian rupa di kotasuci Makkah sehingga berkedudukan tegak lurus paras air rata-rata setempat akan kehilangan bayang-bayangnya tepat pada saat Matahari berada di titik zenith Makkah.

Inilah hari tanpa bayang Matahari atau Istiwa’ Azzam di kotasuci Makkah. Fenomena menghilangnya bayang-bayang akibat Istiwa’ Azzam sejatinya tidak hanya terjadi di kotasuci Makkah saja. Namun juga dialami setiap tempat dimanapun di Bumi sepanjang terletak di antara garis lintang 23° 27′ LU hingga 23° 27′ LS. Misalnya kota Kebumen (propinsi Jawa Tengah), dengan posisinya di garis bujur 7° 40′ LS maka ia juga mengalami situasi hari tanpa bayang Matahari yang terjadi setiap tanggal 1 Maret dan 13 Oktober. Jadi tak hanya titik-titik lokasi di sepanjang garis khatulistiwa’ saja yang bisa mengalaminya seperti  tuturan urban legend.

Gambar 10. Ilustrasi fenomena Hari Kiblat, yakni Istiwa' Azzam di Ka'bah. Tatkala Matahari dalam kondisi demikian, yang terjadi dua kali setiap tahunnya, maka bayang-bayang obyek yang terpasang tegaklurus paras air rata-rata setempat akan tepat berimpit dengan azimuth kiblat setempat. Fenomena ini juga menyajikan peluang pengukuran arah kiblat dengan ketelitian sangat tinggi. Sumber: Mutoha Arkanuddin, 2006.

Gambar 10. Ilustrasi fenomena Hari Kiblat, yakni Istiwa’ Azzam di Ka’bah. Tatkala Matahari dalam kondisi demikian, yang terjadi dua kali setiap tahunnya, maka bayang-bayang obyek yang terpasang tegaklurus paras air rata-rata setempat akan tepat berimpit dengan azimuth kiblat setempat. Fenomena ini juga menyajikan peluang pengukuran arah kiblat dengan ketelitian sangat tinggi. Sumber: Mutoha Arkanuddin, 2006.

Pada saat kotasuci Makkah mengalami Istiwa’  Azzam, maka pada dimanapun tempatnya di Bumi sepanjang tersinari cahaya Matahari pada saat itu akan mengalami situasi unik. Yakni bayang-bayang benda yang didirikan tegaklurus paras air rata-rata setempat akan tepat berimpit dengan arah kiblat setempat. Inilah yang kemudian menjadi populer sebagai Hari Kiblat. Hari Kiblat adalah waktu yang istimewa karena hanya pada saat itu pengukuran kiblat dapat dilaksanakan dengan akurasi sangat tinggi dengan cara yang paling sederhana. Dengan membandingkan nilai hasil pengukuran azimuth kiblat pada saat Hari Kiblat terhadap hasil perhitungan azimuth kiblat, maka akan dapat diuji mana yang lebih tepat apakah model Bumi datar ataukah model Bumi bulat.

Berdasarkan pengukuran di dua lokasi berbeda dalam waktu yang berbeda pula, diketahui bahwa arah kiblat model Bumi bulat adalah konsisten. Untuk kota Kebumen (Jawa Tengah) misalnya, hasil perhitungan menunjukkan azimuth kiblatnya 295. Pengukuran dengan menggunakan bayang Matahari pada saat Hari Kiblat juga menghasilkan azimuth kiblat 295, dalam batas ketelitian pengukuran setelah dikomparasikan dengan kompas magnetik. Demikian halnya di Jakarta. Perhitungan menunjukkan azimuth kiblatnya juga 295. Sementara pengukuran pengukuran bayang Matahari saat Hari Kiblat juga menghasilkan azimuth kiblat 295.

Sebaliknya arah kiblat model Bumi datar sangat tidak konsisten. Perhitungan di kota Kebumen menghasilkan nilai azimuth kiblat model Bumi datar sebesar 320. Namun saat diukur dengan bayang Matahari pada saat Hari Kiblat, ternyata bayang-bayang tersebut (yang berimpit dengan arah kiblat Kebumen) jatuh pada azimuth 295. Demikian halnya di Jakarta. Perhitungan menghasilkan nilai azimuth kiblat sebesar 318, namun pengukuran bayang Matahari saat Hari Kiblat menghasilkan bayang-bayang (yang adalah arah kiblat Jakarta) yang jatuh pada azimuth 295.

Gambar 11. Diagram azimuth kiblat model Bumi datar (warna biru) dan model Bumi bulat (warna merah) untuk lokasi Kebumen (propinsi Jawa Tengah) dan Jakarta (propinsi DKI Jakarta) beserta hasil perhitungan dan pengukuran pada saat Hari Kiblat. Terlihat jelas bahwa hasil pengukuran hanya bersesuaian dengan perhitungan arah kiblat dalam model Bumi bulat. Sementara perhitungan dengan model Bumi datar memiliki selisih cukup besar dibanding hasil pengukurannya. Sumber: Sudibyo, 2016.

Gambar 11. Diagram azimuth kiblat model Bumi datar (warna biru) dan model Bumi bulat (warna merah) untuk lokasi Kebumen (propinsi Jawa Tengah) dan Jakarta (propinsi DKI Jakarta) beserta hasil perhitungan dan pengukuran pada saat Hari Kiblat. Terlihat jelas bahwa hasil pengukuran hanya bersesuaian dengan perhitungan arah kiblat dalam model Bumi bulat. Sementara perhitungan dengan model Bumi datar memiliki selisih cukup besar dibanding hasil pengukurannya. Sumber: Sudibyo, 2016.

Analisis lebih lanjut memperlihatkan bahwa untuk kota Kebumen, bayang Matahari saat Istiwa’ Azzam akan berada di azimuth 320 hanya jika posisi kotasuci Makkah jauh lebih ke utara dibanding sekarang. Demikian halnya untuk kota Jakarta. Ekstrapolasi dari azimuth 320 (Kebumen) dan azimuth 318 (Jakarta) menghasilkan titik koordinat di sekitar Laut Kaspia, berdekatan dengan negara bagian  Chechnya (Rusia). Dengan kata lain, agar hasil pengukuran bayang Matahari saat Istiwa’ Azzam bersesuaian dengan hasil perhitungan azimuth kiblat model Bumi datar untuk Jakarta dan Kebumen, maka posisi Ka’bah harus berada di sekitar Laut Kaspia. Tentu ini mustahil.  Di sisi yang lain, Matahari juga tidak mungkin mengalami Istiwa’ Azzam di atas Laut Kaspia, mengingat gerak semu tahunan Matahari membatasinya hanya bisa mengalami Istiwa’ Azzam di  antara Garis Balik Utara atau Tropic of Cancer (yakni garis lintang 23° 27′ LU) hingga Garis Balik Selatan atau Tropic of Capricorn (yakni garis lintang 23° 27′ LS) saja.

Ketidakkonsistenan ini menunjukkan bahwa ada yang keliru dalam model Bumi datar. Penelitian lanjutan, yang akan dipaparkan dalam tulisan berikutnya (tidak dalam artikel ini), juga memperlihatkan besarnya inkonsistensi model Bumi datar antara perhitungan dengan hasil pengamatan/pengukuran dalam aspek-aspek ibadah Umat Islam lainnya. Yakni dalam hal waktu shalat, hilaal dan gerhana.

Implikasi dan Kesimpulan

Kelirunya model Bumi datar dalam hal arah kiblat membawa implikasi yang jauh lebih serius. Seorang Muslim yang meyakini bahwa model Bumi datar adalah benar seharusnya juga konsisten untuk mengubah arah kiblat shalatnya menjadi lebih ke utara dibanding yang dipedomani di Indonesia saat ini.

Misalnya di Kebumen, seharusnya ia mengarah ke azimuth 320 yang berarti lebih miring atau bergeser 25° ke utara dibanding arah kiblat yang tepat. Demikian halnya di Jakarta, seharusnya ia juga mengarah ke azimuth 318 atau bergeser 23° lebih ke utara.  Namun pergeseran ini  akan berimplikasi serius. Mengingat model Bumi datar adalah keliru kala ditinjau dari persoalan arah kiblat seperti diulas di atas, maka menyengaja menghadap ke azimuth 320 (Kebumen) atau azimuth 318 (Jakarta) sama halnya dengan menyengaja menyimpang dari arah kiblat sesungguhnya. Perbuatan menyengaja untuk menyimpang dari arah kiblat tentu memiliki konsekuensi syar’i tersendiri.

Seperti apa besarnya penyimpangan atau pergeseran arah terhadap azimuth kiblat yang sebenarnya sebagai akibat penerapan model Bumi datar?  Untuk area penelitian, hal tersebut dapat dilihat dalam peta berikut :

Gambar 12. Garis-garis yang menunjukkan besarnya penyimpangan arah dari arah kiblat yang sebenarnya (dalam satuan derajat) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +14° yang terjadi di Banda Aceh (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, penyimpangan arahnya kian besar. Sumber: Sudibyo, 2016.

Gambar 12. Garis-garis yang menunjukkan besarnya penyimpangan arah dari arah kiblat yang sebenarnya (dalam satuan derajat) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +14° yang terjadi di Banda Aceh (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, penyimpangan arahnya kian besar. Sumber: Sudibyo, 2016.

Dapat dilihat dalam peta bahwa untuk Indonesia, besarnya penyimpangan arah terhadap arah kiblat yang tepat akibat aplikasi model Bumi datar  adalah bervariasi. Yang terkecil adalah +14° di Banda Aceh (propinsi Aceh). Sementara yang terbesar adalah  +39° di Merauke (propinsi Papua). Khusus di pulau Jawa, besar penyimpangan arahnya bervariasi antara +26° hingga +29°.

Saat seorang Muslim menyimpang dari arah kiblat, maka pada hakikatnya ia telah bergeser dari Ka’bah hingga jarak tertentu yang bergantung kepada besarnya nilai sudut simpangannya. Semakin besar sudut penyimpangan arahnya maka semakin jauh ia bergeser dari Ka’bah. Dalam kasus kota Jakarta, dengan sudut penyimpangan arah sebesar +23° maka titik proyeksi model Bumi datar adalah bergeser sejauh 2.500 kilometer dari Ka’bah. Untuk area penelitian, besarnya jarak antara titik proyeksi model Bumi datar dengan Ka’bah dapat dilihat dalam peta berikut :

Gambar 13. Garis-garis yang menunjukkan besarnya jarak pergeseran dari Ka'bah (dalam satuan kilometer) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +1.800 kilometer di Sabang (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, jarak pergeserannya pun kian membengkak. Sumber: Sudibyo, 2016.

Gambar 13. Garis-garis yang menunjukkan besarnya jarak pergeseran dari Ka’bah (dalam satuan kilometer) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +1.800 kilometer di Sabang (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, jarak pergeserannya pun kian membengkak. Sumber: Sudibyo, 2016.

Dapat dilihat dalam peta bahwa untuk Indonesia, jarak antara titik proyeksi model Bumi datar dengan Ka’bah juga bervariasi. Yang terkecil senilai 1.800 kilometer di Sabang (propinsi Aceh). Sementara yang terbesar adalah senilai 4.300 kilometer di Merauke (propinsi Papua). Di pulau Jawa, jarak antara titik proyeksi arah kiblat Bumi datar dengan Ka’bah bervariasi antara 2.450 kilometer hingga 3.000 kilometer. Jarak penyimpangan ini sangat besar, jauh lebih besar ketimbang jarak maksimum yang dapat ditoleransi yakni maksimum 45 kilometer dari Ka’bah (lihat Sudibyo, 2012).

Jadi, berdasarkan penelitian ini, saya mengkategorikan model Bumi datar sebagai kabar-bohong atau hoax. Model tersebut sama sekali tidak konsisten dengan aspek-aspek ibadah Umat Islam yang bertumpu pada ruang dan waktu, dalam hal ini arah kiblat.

Referensi :

Sudibyo. 2012. Sang Nabi Pun Berputar, Arah Kiblat dan Tata Cara Pengukurannya. Surakarta : Tinta Medina Tiga Serangkai.

Sugeng Riyadi. 2010. Dauroh I Ilmu Falak RHI Surakarta. Blog Pak AR Guru Fisika, 23 Oktober 2010.

Gerhana Matahari 1 September 2016, Secuil Gerhana di Sepotong Tanah Nusantara

Kamis 1 September 2016 Tarikh Umum (TU). Waktunya sore hari, hanya beberapa saat sebelum Matahari terbenam. Arahkan pandangan ke kaki langit barat, tepatnya ke arah kedudukan Matahari. Jika langit cerah dan anda beruntung berada di daerah yang tepat, maka akan kita saksikan satu keajaiban panorama langit: peristiwa Gerhana Matahari. Inilah gerhana ketiga yang menghampiri Indonesia dalam musim gerhana 2016.

Gerhana, dalam bentuk Gerhana Matahari yang kemudian disusul dengan Gerhana Bulan dalam 14 hari berikutnya,  ataupun sebaliknya (Gerhana Bulan terlebih dahulu baru kemudian Gerhana Matahari) adalah sunnatullah. Sebab tatkala Bulan menempati sebuah titik nodal pada saat fase konjungsi/Bulan baru (yang menimbulkan peristiwa Gerhana Matahari), maka dalam 14 hari kemudian Bulan akan menempati titik nodal kedua dalam fase oposisi/purnama (yang menghasilkan Gerhana Bulan). Atau dapat pula sebaliknya. Titik nodal adalah  titik potong antara orbit Bulan dengan ekliptika (bidang edar Bumi dalam mengelilingi Matahari), yang terdiri dari dua titik yakni titik nodal naik (ascending node) dan titik nodal turun (descending node). Dalam momen tertentu tiap beberapa tahun sekali, berkemungkinan terjadi Bulan secara berturut-turut menempati titik-titik nodalnya di saat purnama, Bulan baru dan purnama berikutnya. Sehingga terjadi tiga gerhana secara berturut-turut dalam tempo hanya 28 hari, fenomena yang secara tak resmi saya sebut sebagai parade gerhana.

Gambar 1. Wajah Matahari yang tercuil kecil akibat tutupan Bulan dalam tahap akhir Gerhana Matahari 9 Maret 2016 silam, diabadikan dari Kebumen (Jawa Tengah). Panorama seperti ini pula yang akan kembali disaksikan pada Gerhana Matahari 1 September 2016 dari sebagian kecil wilayah Indonesia. Sumber: Sudibyo, 2016.

Gambar 1. Wajah Matahari yang tercuil kecil akibat tutupan Bulan dalam tahap akhir Gerhana Matahari 9 Maret 2016 silam, diabadikan dari Kebumen (Jawa Tengah). Panorama seperti ini pula yang akan kembali disaksikan pada Gerhana Matahari 1 September 2016 dari sebagian kecil wilayah Indonesia. Sumber: Sudibyo, 2016.

Gerhana Matahari 1 September 2016 merupakan Gerhana Matahari Cincin. Secara sederhana gerhana ini terjadi kala Bumi, Bulan dan Matahari benar-benar berjajar dalam satu garis lurus ditinjau dari segenap perspektif dengan Bulan berada di antara Bumi dan Matahari. Sebagai akibatnya maka pancaran sinar Matahari yang menuju ke Bumi sedikit terblokir oleh Bulan. Maka dari itu gerhana Matahari selalu terjadi di kala siang hari. Karena ukuran Bulan jauh lebih kecil ketimbang Bumi, maka pemblokiran tersebut tidak merata di sekujur bagian permukaan Bumi yang sedang terpapar sinar Matahari pada saat itu (atau dalam kondisi siang), melainkan hanya di sektor-sektor tertentu bergantung pada geometri orbit Bulan saat itu. Dan pemblokiran tersebut tak berlangsung efektif sehingga Bulan seakan-akan terlihat kekecilan di kala puncak gerhana. Maka saat puncak gerhana terjadi, Bumi masih akan menyaksikan secuil cakram Matahari menyembul di sekeliling bundaran Bulan yang gelap yang mengesankan sebagai lingkaran bercahaya mirip cincin. Karena itu gerhana Matahari ini disebut sebagai Gerhana Matahari Cincin (anular).

Tempat-tempat dimana kita bisa menyaksikan gerhana ini dinamakan wilayah gerhana. Di dalam wilayah gerhana ada zona antumbra, yakni titik-titik dimana ini  bentuk cincin pada saat puncak gerhana dapat disaksikan. Di sekelilingnya terdapat zona penumbra, yakni titik-titik yang harus berpuas diri menyaksikan Matahari hanya secuil atau hanya tertutupi sebagian (sebagai gerhana sebagian) kala puncak gerhana.  Wilayah Gerhana Matahari Cincin 1 September 2016 mencakup hampir seluruh benua Afrika (kecuali secuil wilayah Afrika bagian utara di pesisir Laut Tengah), separuh Semenanjung Arabia dan sepotong kecil tanah Indonesia. Tetapi zona antumbra hanya melewati negara-negara di benua Afrika bagian tengah, tepatnya di bagian negara Gabon, Khatulistiwa Guinea, Kongo, Tanzania dan Madagaskar. Sementara sisa wilayah gerhana lainnya harus berpuas diri menjadi zona penumbra saja

Gambar 2. Peristiwa Gerhana Matahari dan Gerhana Bulan dalam musim gerhana 2016 berdasarkan titik acu kota Kebumen, Kabupaten Kebumen (Jawa Tengah). Terlihat seluruh gerhana tersebut memiliki wilayah yang melintas di Indonesia. Sumber: Sudibyo, 2016.

Indonesia

Indonesia menempati posisi unik dalam Gerhana Matahari 1 September 2016 ini. Sebab Indonesia menjadi satu-satunya negara di kawasan Asia tenggara yang berkesempatan berada dalam wilayah gerhana. Secara akumulatif di seluruh benua Asia hanya ada lima negara yang masuk kedalam wilayah gerhana, masing-masing Saudi Arabia (sebagian), Yaman, Oman (sebagian kecil), Maladewa dan Indonesia (sebagian kecil).

Seperti halnya keempat negara Asia lainnya, wilayah gerhana di Indonesia berupa zona penumbra. Sehingga di Indonesia Gerhana Matahari 1 September 2016 hanya akan nampak sebagai gerhana sebagian. Itupun dengan magnitudo (persentase penutupan cakram Matahari oleh Bulan) yang kecil, seluruhnya kurang dari 10 %. Sehingga hanya secuil wajah Matahari yang menghilang dalam puncak gerhana. Karena itu durasi gerhana Matahari di Indonesia pun relatif singkat, terlebih di banyak titik di wilayah gerhana Indonesia sudah mengalami terbenamnya Matahari sebelum gerhana usai.

Gambar 3. Peta wilayah Gerhana Matahari Cincin 1 September 2016 dalam lingkup Indonesia. Di Indonesia gerhana Matahari ini akan berbentuk Gerhana Matahari Sebagian, dengan wilayah gerhana ditandai oleh daerah yang yang dibatasi oleh garis lurus/lengkung. Sumber: Xavier Jubier, 2016.

Gambar 3. Peta wilayah Gerhana Matahari Cincin 1 September 2016 dalam lingkup Indonesia. Di Indonesia gerhana Matahari ini akan berbentuk Gerhana Matahari Sebagian, dengan wilayah gerhana ditandai oleh daerah yang yang dibatasi oleh garis lurus/lengkung. Sumber: Xavier Jubier, 2016.

Tanah Nusantara yang tercakup ke dalam wilayah gerhana hanyalah (ujung selatan) pulau Sumatra dan (sebagian besar) pulau Jawa. Secara administratif terdapat 123 kabupaten/kota yang berada dalam wilayah gerhana, yang tersebar di delapan propinsi. Masing-masing Bengkulu, Lampung, DKI Jakarta, Banten, Jawa Barat, Jawa Tengah, DIY dan Jawa Timur. Magnitudo gerhana di Indonesia bervariasi mulai dari yang terkecil bernilai mendekati 0 % di kota Tuban (Kabupaten Tuban, Jawa Timur) hingga yang terbesar bernilai 9,6 % di kota Sukabumi (Kabupaten Sukabumi, Jawa Barat). Durasi gerhana pun bervariasi mulai kurang dari 1 menit di kota Tuban hingga sepanjang 34 menit di kota Tais (kabupaten Seluma, Bengkulu).

Berikut adalah tabel waktu, durasi dan magnitudo gerhana di masing-masing dari 123 kabupaten/kota tersebut. Dengan catatan :

  1. Tabel disusun lewat perhitungan yang dibantu software Emapwin 1.21 karya Shinobu Takesako.
  2. Perhitungan dilakukan hanya di ibukota kabupaten/kota tersebut dan tidak mencakup titik-titik lain dalam kabupaten/kota itu.
  3. Perhitungan dilakukan di elevasi 0 meter dpl (dari paras laut rata-rata). Dalam realitasnya akan ada sedikit perbedaan bila ibukota kabupaten/kota tersebut memiliki elevasi cukup tinggi.
  4. Untuk kabupaten yang ibukotanya memiliki magnitudo kurang dari 0,5 % maka dimungkinkan terjadi adanya titik-titik dalam kabupaten tersebut yang tak tercakup dalam wilayah gerhana.

gms-gb3_bengkulugms-gb3_lampunggms-gb3_dkigms-gb3_bantengms-gb3_jabar1gms-gb3_jabar2gms-gb3_jateng1gms-gb3_jateng2gms-gb3_diygms-gb3_jatim1gms-gb3_jatim2Shalat Gerhana

Bagi Umat Islam, sangat dianjurkan untuk menyelenggarakan shalat gerhana tatkala peristiwa gerhana terjadi, baik Gerhana Matahari maupun Gerhana Bulan. Nah tulisan ini tak hendak menyentuh tata cara pelaksanaan shalat gerhana atau khutbah yang dianjurkan. Namun hanya mengupas kapan waktunya.

Berbeda dengan Gerhana Matahari 9 Maret 2016 lalu, Gerhana Matahari 1 September 2016 memiliki durasi yang cukup singkat, yakni maksimum 34 menit. Sementara shalat gerhana Matahari, yang terdiri dari shalat dua rakaat dan khutbah gerhana, membutuhkan waktu tersendiri. Jika dianggap bahwa keseluruhan rangkaian shalat Gerhana Matahari bisa dilaksanakan dalam 20 menit, maka hanya di kabupaten/kota yang mengalami durasi gerhana 20 menit atau lebih saja yang berkesempatan mendirikan shalat gerhana. Apabila batasan ini digunakan, maka hanya ada 45 kabupaten/kota di wilayah gerhana (setara 36 % dari total kabupaten/kota di wilayah gerhana) yang memiliki kesempatan ini. Seluruh kabupaten/kota di Jawa Tengah dan Jawa Timur (yang masuk ke wilayah gerhana) tak berkesempatan mendirikan shalat gerhana. Demikian halnya sebagian kabupaten/kota di Jawa Barat.

Pembaharuan: Galeri Gerhana

Upaya untuk mendeteksi dan mengabadikan peristiwa Gerhana Matahari ini di Indonesia dilakukan di berbagai titik di pulau Jawa dan Sumatra. Upaya ini dipadukan dengan pelaksanaan rukyatul hilaal sebagai salah satu bahan pertimbangan dalam menentukan hari raya Idul Adha 10 Zulhijjah 1437 H di Indonesia. Cukup mengesankan bahwa peristiwa Gerhana Matahari 1 September 2016 ini bertepatan dengan tanggal 29 Zulqaidah 1437 H dalam takwim standar Indonesia. Sehingga hari itu juga menjadi saat penentuan apakah bulan Zulqaidah akan berumur 29 hari ataukah mengalami penggenapan (istikmal) menjadi 30 hari. Meski banyak dari titik-titik tersebut yang berujung dengan kegagalan akibat tutupan mendung atau bahkan hujan deras yang mewarnai langit setempat.

Hanya ada beberapa tempat saja yang berhasil mengabadikan Gerhana Matahari ini, itupun dengan kondisi langit yang kurang menguntungkan sehingga tutupan awan selalu mewarnai. Dalam catatan saya ada tujuh titik yang berhasil mengabadikan gerhana ini. Namun dalam galeri ini hanya disajikan lima titik diantaranya saja.

Gambar 5 a. Citra Gerhana Matahari 1 September 2016 pada pukul 17:33 WIB, diabadikan dari pulau Karya Kep. Seribu hanya beberapa menit sebelum Matahari menghilang di balik awan. Sumber: POB JIC P. Karya/Fajar Fathurahman, 2016.

Gambar 5 a. Citra Gerhana Matahari 1 September 2016 pada pukul 17:33 WIB, diabadikan dari pulau Karya Kep. Seribu hanya beberapa menit sebelum Matahari menghilang di balik awan. Sumber: POB JIC P. Karya/Fajar Fathurahman, 2016.

Dua titik pertama terletak di propinsi DKI Jakarta, masing-masing di pulau Karya (Kepulauan Seribu) dan Kemayoran. Pengamatan dari pulau Karya dilakukan oleh tim perukyat hilaal yang adalah gabungan Kementerian Agama Kanwil DKI Jakarta, Kementerian Agama Kep. Seribu, Jakarta Islamic Centre dan Pengurus Wilayah Nahdlatul ‘Ulama (PWNU) DKI Jakarta. Tim ini mengambil titik yang disebut sebagai Pos Observasi Bulan (POB) Jakarta Islamic Centre. Pengamatan berlangsung tak optimal, hanya pada menit-menit pertama saja Matahari teramati sebelum kemudian mendung menutupi. Meski begitu bagaimana Matahari yang ‘tercuil’ kecil akibat gerhana ini dapat diidentifikasi dengan jelas lewat teleskop. Sementara pengamatan dari Kemayoran dilakukan oleh tim Badan Meteorologi Klimatologi dan Geofisika (BMKG) yang juga melaksanakan tugas rukyatul hilaal. Dibanding Kep. Seribu, gangguan awan di Kemayoran lebih brutal. Sehingga Matahari nyaris tertutupi sepenuhnya. Namun bagaimana gerhana terjadi masih dapat dikenali, melalui teleskop.

Gambar 5 b. Citra Gerhana Matahari 1 September 2016 pada sekitar pukul 17:34 WIB, diabadikan dari Kemayoran di tengah-tengah tutupan awan nan brutal. Sumber: BMKG/Rukman Nugraha, 2016.

Gambar 5 b. Citra Gerhana Matahari 1 September 2016 pada sekitar pukul 17:34 WIB, diabadikan dari Kemayoran di tengah-tengah tutupan awan nan brutal. Sumber: BMKG/Rukman Nugraha, 2016.

Gangguan awan yang cukup brutal juga dialami titik berikutnya yang terletak di propinsi Banten, yakni di pantai Anyer. Di sini pengamatan dilakukan oleh tim dari Planetarium dan Observatorium Jakarta (POJ). Dalam momen yang pas nan singkat saat awal gerhana sudah terjadi, Matahari seakan memasuki celah di antara awan-awan tebal dan memungkinkan untuk diabadikan, dengan teleskop.

Gambar 5 c. Citra Gerhana Matahari 1 September 2016 pada pukul 17:34 WIB, diabadikan dari pantai Anyer di tengah-tengah tutupan awan nan brutal. Persentase penutupan Matahari oleh Bulan pada saat itu sekitar 4,4 %. Sumber: POJ/Ronny Syamara, 2016.

Gambar 5 c. Citra Gerhana Matahari 1 September 2016 pada pukul 17:34 WIB, diabadikan dari pantai Anyer di tengah-tengah tutupan awan nan brutal. Persentase penutupan Matahari oleh Bulan pada saat itu sekitar 4,4 %. Sumber: POJ/Ronny Syamara, 2016.

Gangguan awan juga dialami oleh dua titik berikutnya yang terletak di propinsi Daerah Istimewa Yogyakarta, tepatnya di Kab. Bantul. Yang pertama terletak di puncak bukit Becici yang berhutan pinus, dilakukan oleh Zulkarnaen Syri L seorang fotografer profesional.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada pukul 17:26 WIB, diabadikan dari puncak bukit Becici dalam kondisi langit yang relatif lebih bersahabat. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: Zulkarnaen Syri Lokesywara, 2016.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada pukul 17:26 WIB, diabadikan dari puncak bukit Becici dalam kondisi langit yang relatif lebih bersahabat. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: Zulkarnaen Syri Lokesywara, 2016.

Sementara titik berikutnya terletak di Pos Observasi Bulan Bela Belu Parangkusumo, yang dilakukan oleh tim gabungan Badan Hisab dan Rukyat Daerah (BHRD) Yogyakarta, Kementerian Agama Kanwil Yogyakarta, PWNU Yogyakarta dan Universitas Ahmad Dahlan Yogyakarta. Sebagian tim tersebut juga menunaikan tugas pelaksanaan rukyatul hilaal.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada jam yang tak disertakan, diabadikan dari bukit Bela belu, Parangkusumo, dengan kondisi langit dipenuhi awan. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: UAD/Muchlas Arkanuddin, 2016.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada jam yang tak disertakan, diabadikan dari bukit Bela belu, Parangkusumo, dengan kondisi langit dipenuhi awan. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: UAD/Muchlas Arkanuddin, 2016.

Transit Merkurius 2016 di Kala Senja (Bakal Terlihat dari Ujung Barat Indonesia)

Senin 9 Mei 2016 Tarikh Umum (TU). Waktunya pukul 18:30 WIB. Lokasinya di Banda Aceh, ibukota propinsi Aceh sekaligus kotabesar terbarat di Indonesia. Pandangan mengarah ke barat. Langit cerah hingga kaki langitnya. Matahari nampak merembang petang dengan warna merah jingganya yang khas. Sekilas tak ada apa-apa di rona sang surya yang masih menyilaukan itu. Namun tatkala teleskop diarahkan padanya, khususnya dengan tingkat perbesaran minimal 50 kali dan telah dilengkapi dengan filter Matahari sebagaimana yang ditekankan standar pengamatan Matahari yang baik, ada yang berbeda. Wajah Matahari memang berhiaskan jerawat di sana-sini, yang adalah bintik Matahari (sunspot). Namun di pinggir timur cakram Matahari akan nampak satu titik hitam. Ia bukanlah bintik Matahari. Ia merupakan Merkurius. Hari itu Merkurius sedang melakoni satu babak nan langka dalam panggung pertunjukan kosmik, yakni transit. Tepatnya Transit Merkurius 2016.

Gambar 1. Transit Merkurius 1999 yang terjadi pada 19 November 1999 TU seperti diabadikan oleh satelit TRACE milik NASA (Amerika Serikat). Nampak Merkurius sebagai bola kecil kehitaman, melaju di latar depan Matahari yang bergejolak. Sumber: NASA, 1999.

Gambar 1. Transit Merkurius 1999 yang terjadi pada 19 November 1999 TU seperti diabadikan oleh satelit TRACE milik NASA (Amerika Serikat). Nampak Merkurius sebagai bola kecil kehitaman, melaju di latar depan Matahari yang bergejolak. Sumber: NASA, 1999.

Apa itu Transit Merkurius?

Konjungsi dan Transit

Merkurius merupakan planet terkecil sekaligus terdekat dengan Matahari dalam tata surya kita. Diameternya 4.880 kilometer atau hanya sepertiga Bumi kita, atau hanya sedikit lebih besar dibanding Bulan. Ukuran Merkurius bahkan lebih kecil ketimbang dua satelit alamiah seperti Ganymede (satelit alamiah Jupiter, diameter 5.268 kilometer) dan Titan (satelit alamiah Saturnus, diameter 5.150 kilometer). Hanya karena Merkurius beredar mengeliling Matahari-lah yang membuatnya menyandang status planet. Tepatnya planet terdekat ke Matahari. Merkurius hanya butuh waktu 88 hari untuk menyelesaikan revolusinya ke Matahari. Tapi sebaliknya rotasinya sangat lamban. Ia butuh waktu 59 hari untuk menyelesaikan putaran pada porosnya, atau yang dikenal sebagai hari bintang. Namun jika mengacu pada kedudukan Matahari (hari Matahari), maka siang dan malam di Merkurius berlangsung selama 176 hari. Dengan kata lain, setahun di Merkurius (yakni relatif terhadap periode revolusinya) lebih cepat ketimbang sehari di Merkurius (yakni relatif terhadap hari Matahari).

Gambar 2. Merkurius (panah kuning) mengapung di atas kaki langit timur yang masih bergelimang kabut pada kota Gombong yang bermandikan cahaya lampu buatan pada fajar 17 Agustus 2012 TU usai shalat Shubuh. Diabadikan dari lantai dua masjid asy-Syifa kompleks RS PKU Muhammadiyah Gombong, Kabupaten Kebumen (Jawa Tengah). Citra telah diolah dengan bantuan software GIMP 2. Sumber: Sudibyo, 2012.

Bersama Venus, Merkurius dikategorikan sebagai planet dalam. Yakni kelompok planet yang orbitnya lebih dekat ke Matahari ketimbang Bumi. Sebagai implikasinya Merkurius dan Venus akan terkesan berdekatan/berkumpul dengan Matahari pada dua kesempatan berbeda. Yang pertama adalah konjungsi dalam (inferior), terjadi saat Merkurius atau Venus berada di antara Bumi dan Matahari. Dan yang kedua adalah konjungsi luar (superior), dimana konfigurasinya mirip dengan konjungsi dalam namun kali ini Matahari berada di antara Merkurius/Venus dan Bumi. Merkurius akan mengalami konjungsi dengan Matahari, entah inferior maupun superior, setiap 116 hari sekali. Sementara Venus mengalaminya setiap 584 hari sekali.

Pada dasarnya Transit Merkurius adalah peristiwa konjungsi inferior yang khusus, dimana konfigurasinya sama persis dengan kejadian Gerhana Matahari. Sehingga dalam Transit Merkurius pun Matahari, Merkurius dan Bumi terletak dalam satu garis lurus secara tiga dimensi (syzygy). Bedanya jika dalam Gerhana Matahari adalah Bulan yang berada di tengah-tengah, dalam Transit Merkurius digantikan oleh Merkurius. Perbedaan lainnya, diameter sudut (apparent) Bulan hampir menyamai diameter sudut Matahari. Sehingga dalam peristiwa Gerhana Matahari, cakram Matahari akan tertutupi Bulan dalam jumlah yang signifikan. Bahkan bisa tertutupi sepenuhnya seperti dalam kejadian Gerhana Matahari Total. Maka kecerlangan-nampak Matahari akan tereduksi, khususnya di wilayah gerhana. Bahkan dapat tergelapkan sempurna dalam Gerhana Matahari Total. Sebaliknya diameter sudut Merkurius jauh lebih kecil dibanding Matahari, yakni hanya seper 160-nya. Sehingga yang akan terlihat hanyalah sebuah titik kecil yang bergerak melintas di latar depan Matahari selama waktu tertentu yang disebut durasi transit.

Gambar 3. Replika Merkurius berbentuk bola kecil yang parasnya telah dipahat sesuai paras Merkurius berdasarkan hasil pemetaan wantariksa MESSENGER. Merkurius adalah planet terkecil dalam tata surya kita, yang hanya sedikit lebih besar dari Bulan dan bahkan lebih kecil ketimbang Ganymede (satelit alamiah Jupiter) maupun Titan (satelit alamiah Saturnus). Dipahat oleh George Ioannidis di London (Inggris). Sumber: LittlePlanetFactory.com, 2016.

Gambar 3. Replika Merkurius berbentuk bola kecil yang parasnya telah dipahat sesuai paras Merkurius berdasarkan hasil pemetaan wantariksa MESSENGER. Merkurius adalah planet terkecil dalam tata surya kita, yang hanya sedikit lebih besar dari Bulan dan bahkan lebih kecil ketimbang Ganymede (satelit alamiah Jupiter) maupun Titan (satelit alamiah Saturnus). Dipahat oleh George Ioannidis di London (Inggris). Sumber: LittlePlanetFactory.com, 2016.

Dibanding kejadian Gerhana Matahari, yang selalu ada setiap tahun meski wilayah gerhananya berubah-ubah, maka Transit Merkurius jauh lebih jarang terjadi. Dalam satu abad Tarikh Umum hanya akan terjadi 13 hingga 14 kali peristiwa Transit Merkurius saja. Ini pun sudah lumayan apabila dibandingkan dengan peristiwa Transit Venus, yang bahkan jauh lebih jarang lagi. Rata-rata sebuah babak Transit venus terjadi setiap 243 tahun sekali, dengan selisih waktu terpendek 105,5 tahun sekali. Transit Venus terakhir yang kita saksikan terjadi pada 6 Juni 2012 TU lalu dan takkan berulang hingga 11 Desember 2117 TU kelak.

Transit Merkurius selalu terjadi pada bulan Mei atau November. Jika transit terjadi saat Merkurius berada di titik aphelion (titik terjauh ke Matahari)-nya, maka Transit Merkurius terjadi di bulan Mei. Sebaliknya bila saat itu Merkurius menempati titik perihelion (titik terdekat ke Matahari)-nya, maka Transit Merkurius terjadi di bulan November. Peluang Transit Merkurius di bulan Mei lebih kecil dibanding bulan November. Dalam abad ke-21 TU ini akan terjadi 14 kali peristiwa Transit Venus, hanya 5 diantaranya yang terjadi di bulan Mei. Termasuk Transit Merkurius 2016.

Transit 2016

Transit Merkurius 2016 memiliki lima tahap. Tahap pertama adalah kontak I atau awal transit, yakni saat sisi barat cakram Merkurius tepat mulai bersentuhan dengan sisi timur cakram Matahari. Tahap ini terjadi pada pukul 18:12 WIB. Tahap berikutnya adalah kontak II, yang terjadi saat Merkurius tepat sepenuhnya memasuki cakram Matahari, atau teknisnya saat sisi timur cakram Merkurius tepat mulai meninggalkan sisi timur cakram Matahari. Momen ini terjadi pada pukul 18:16 WIB. Selanjutnya adalah tahap puncak transit yang terjadi pukul 21:57 WIB. Lantas diikuti dengan tahap keempat sebagai kontak III, yang terjadi saat sisi barat cakram Merkurius tepat mulai bersentuhan dengan sisi barat cakram Matahari. Ini terjadi pada Selasa dinihari 9 Mei 2016 TU pukul 01:39 WIB. Dan tahap pamungkas, yakni kontak IV yang juga adalah akhir transit, terjadi pada pukul 01:42 WIB. Sehingga secara keseluruhan durasi Transit Merkurius 2016 ini adalah 7 jam 30 menit.

Gambar 4. Peta wilayah Transit Merkurius 2016 dalam lingkup global. Wilayah transit ditandai dengan warna putih. Angka-angka I, II, III dan IV menunjukkan garis kontak I, kontak II, kontak III dan kontak IV. Sumber: Espenak, 2016.

Gambar 4. Peta wilayah Transit Merkurius 2016 dalam lingkup global. Wilayah transit ditandai dengan warna putih. Angka-angka I, II, III dan IV menunjukkan garis kontak I, kontak II, kontak III dan kontak IV. Sumber: Espenak, 2016.

Dengan durasinya yang cukup lama, sebagian besar paras Bumi masuk ke dalam wilayar transit, yakni wilayah yang berkesempatan menyaksikan Transit Merkurius 2016 ini baik dalam segenap tahap maupun sebagian saja. Hanya sebagian Asia Timur Jauh (tepatnya Jepang, Semenanjung Korea dan sebagian Cina), sebagian Asia Tenggara (tepatnya Filipina, Timor Leste, Brunei Darussalam, Vietnam, Laos, Singapura serta sebagian Kampuchea, sebagian Malaysia dan sebagian besar Indonesia) dan Australia (Australia, Selandia Baru dan Papua Nugini) yang tak tercakup ke dalam wilayah transit.

Di Indonesia, garis kontak I (garis khayali yang menghubungkan titik-titik yang mengalami kontak I tepat saat Matahari terbenam) melintas di sisi timur kota Pekanbaru (propinsi Riau) dari barat daya ke timur laut. Sementara garis kontak II (garis khayali yang menghubungkan titik-titik yang mengalami kontak II tepat saat Matahari terbenam) tepat melintasi kota Padang (propinsi Sumatra Barat). Ke timur laut, garis kontak II juga tepat melintasi Kuala Lumpur (Malaysia). Hanya daerah-daerah yang ada di sebelah barat garis kontak I yang tercakup ke dalam wilayah transit. Sehingga Transit Merkurius 2016 di Indonesia hanya dapat dinikmati di sebagian pulau Sumatra dan pulau-pulau kecil disekelilingnya saja. Tepatnya di propinsi Sumatra Barat, Riau, Sumatra Utara dan Aceh. Di seluruh tempat itu, Transit Merkurius 2016 dapat dinikmati kala senja menjelang Matahari terbenam.

Gambar 5. Peta wilayah Transit Merkurius 2016 dalam lingkup Indonesia. Wilayah transit terletak di sebelah barat garis kontak I, yakni meliputi sebagian pulau Sumatra dan pulau-pulau kecil disekelilingnya. Sumber: Sudibyo, 2016.

Gambar 5. Peta wilayah Transit Merkurius 2016 dalam lingkup Indonesia. Wilayah transit terletak di sebelah barat garis kontak I, yakni meliputi sebagian pulau Sumatra dan pulau-pulau kecil disekelilingnya. Sumber: Sudibyo, 2016.

Tempat terbaik untuk mengamati Transit Merkurius 2016 di Indonesia adalah kota Banda Aceh (propinsi Aceh) dan sekitarnya. Di kedua tempat tersebut Matahari terbenam pada pukul 18:46 WIB. Sehingga durasi-nampak transit, yakni durasi sejak awal transit hingga terbenamnya Matahari, adalah sebesar 34 menit. Tempat terbaik kedua adalah Medan (propinsi Sumatra Utara) dan sekitarnya. Di sini Matahari terbenam pada pukul 18:30 WIB sehingga durasi-nampak transit sebesar 18 menit.

Cara mengamati Transit Merkurius 2016 adalah sama persis dengan cara mengamati Gerhana Matahari. Bedanya, karena diameter sudut Merkurius yang sangat kecil (yakni hanya seper 158 Matahari) maka mutlak dibutuhkan teleskop dengan perbesaran minimal 50 kali. Teleskop ini diarahkan ke Matahari, bisa dengan dilengkapi filter Matahari yang sepadan dan aman agar bisa dilihat langsung dengan mata kita. Atau dapat pula dengan memanfaatkan teknik proyeksi, dimana hasil bidikan teleskop langsung disalurkan ke sebuah layar proyeksi.

Arti Penting

Transit Merkurius menjadi peristiwa astronomi yang tak sepopuler Gerhana Matahari maupun Gerhana Bulan. Namun ia memiliki sejumlah nilai sangat penting sepanjang sejarahnya.

Misalnya dalam hal penentuan jarak Bumi-Matahari yang lebih akurat. Jarak Bumi-Matahari menjadi komponen fundamental dalam memahami tata surya kita. Hukum Kepler III memperlihatkan hubungan antara jarak rata-rata atau setengah sumbu utama orbit (dinyatakan dalam satuan astronomi) sebuah benda langit pengorbit Matahari dengan periode revolusinya (dinyatakan dalam tahun Bumi atau tahun saja). 1 Satuan Astronomi (SA) adalah jarak rata-rata Bumi-Matahari. Salah satu cara untuk mengetahui nilai 1 SA adalah dengan pengukuran paralaks Matahari, yakni pengamatan Matahari dari minimal dua titik yang berbeda di Bumi (lebih baik jika kedua titik tersebut berselisih jarak sangat besar) pada waktu yang sama. Pengukuran paralaks seperti ini telah dimulai pada 23 abad silam, tepatnya di abad 3 STU oleh Aristarchus. Namun pengukuran yang tak akurat membuat Aristarchus mendapati 1 SA hanyalah sebesar 2,96 juta kilometer. Pengukuran ulang oleh Claudius Ptolomeus dalam seabad kemudian mendapatkan nilai 1 SA hanya 7,97 juta kilometer. Atau hanya 21 kali lipat jarak rata-rata Bumi-Bulan. Nilai 1 SA yang ‘kecil’ ini mungkin turut mendorong Ptolomeus mengapungkan model geosentrik dalam tata surya kita. Model yang bertahan hingga 17 abad kemudian.

Gambar 6. Contoh penggunaan teknik proyeksi teleskopik dengan menggunakan teleskop reflektor (pemantul) Newtonian. Teleskop diarahkan ke Matahari, sementara citra yang dihasilkan langsung disorotkan ke layar proyeksi (dalam hal ini sehelai kertas putih di papan tulis). Fokus okulernya diatur demikian rupa agar citra di layar proyeksi tajam. Payung digunakan untuk melindungi layar proyeksi sehingga kontrasnya lebih besar. Teknik ini digunakan dalam observasi Transit Venus 2012 di Gombong, Kabupaten Kebumen (Jawa Tengah) oleh Forum Kajian Ilmu Falak Gombong. Panah menunjukkan kedudukan Venus. Sumber: Sudibyo, 2012.

Gambar 6. Contoh penggunaan teknik proyeksi teleskopik dengan menggunakan teleskop reflektor (pemantul) Newtonian. Teleskop diarahkan ke Matahari, sementara citra yang dihasilkan langsung disorotkan ke layar proyeksi (dalam hal ini sehelai kertas putih di papan tulis). Fokus okulernya diatur demikian rupa agar citra di layar proyeksi tajam. Payung digunakan untuk melindungi layar proyeksi sehingga kontrasnya lebih besar. Teknik ini digunakan dalam observasi Transit Venus 2012 di Gombong, Kabupaten Kebumen (Jawa Tengah) oleh Forum Kajian Ilmu Falak Gombong. Panah menunjukkan kedudukan Venus. Sumber: Sudibyo, 2012.

Di awal mula berseminya fajar model heliosentrik, Copernicus melakukan pengukuran ulang paralaks Matahari. Ia mendapati nilai 1 SA yang tak jauh berbeda dari masa Ptolomeus, yakni 9,57 juta kilometer. Keadaan tak berubah hingga masa Edmund Halley (ya, sosoknyalah yang diabadikan sebagai nama komet legendaris itu). Memperbaiki gagasan James Gregory dari tahun 1663 TU, pada 1691 TU Halley memperhitungkan bahwa transit Merkurius atau Venus bisa dimanfaatkan untuk mengukur paralaks Matahari dengan akurasi jauh lebih tinggi dibanding era Copernicus. Ide Halley dipraktikkan dalam Transit Venus 1761 dan Transit Venus 1769. Inilah kesempatan dimana Jerome Lalande, setelah menganalisis data pengamatan transit tersebut, mendapatkan 1 SA adalah senilai 153 juta kilometer. Perhitungan ulang dengan memanfaatkan peristiwa transit sejenis yang berlangsung seabad kemudian, masing-masing Transit Venus 1874 dan Transit Venus 1882 membuat Simon Newcomb memperoleh nilai 1 SA yang lebih akurat lagi, yakni 149,59 juta kilometer. Inilah nilai modern untuk 1 Satuan Astronomi, yang telah disahihkan kembali lewat pengukuran-pengukuran berbasis wahana antariksa (wantariksa) yang diterbangkan ke planet-planet tetangga ataupun melanglang buana kita.

Sedikit berbeda dengan Transit Venus, awalnya Transit Merkurius agak sukar untuk diperhitungkan kejadiannya meski jauh lebih sering terjadi. Contoh menarik terjadi pada 1843 TU. Saat itu Urbain Le Verrier, sang penemu planet Neptunus secara matematis, memperlihatkan bahwa akan terjadi Transit Merkurius 1843. Namun kampanye observasi astronomi yang digalakkan tak mendeteksi kejadian tersebut. Transit Merkurius yang sesungguhnya justru baru terjadi dua tahun kemudian, yakni pada 9 Mei 1845 TU (waktu Indonesia) yang teramati di Australia. Keterlambatan ini mendorong Le Verrier mengapungkan gagasannya tentang adanya planet-tak-dikenal yang gravitasinya cukup kuat untuk memperlambat gerak Merkurius. Itulah yang kemudian dikenal sebagai Vulcan. Vulcan akhirnya tak pernah ditemukan (dan memang tak pernah ada), namun keganjilan kecil pada orbit Merkurius memang nyata adanya. Itulah presesi perihelion Merkurius. Kelak barulah setelah Albert Einstein menelurkan gagasan relativitas umumnya yang kesohor, terjadinya presesi perihelion Merkurius bisa dijelaskan. Presesi perihelion tersebut terjadi akibat melengkungnya ruang-waktu di sekeliling Matahari. Karena Merkurius menjadi planet terdekat dengan Matahari, maka ia yang paling merasakannya dibanding planet-planet lainnya.

Di masa kini, peristiwa Transit Merkurius menjadi sarana untuk menguji metode dan radas (instrumentasi) astronomi modern untuk menguak sistem keplanetan di luar tata surya kita. Perubahan sangat kecil yang dalam kecerlangan-nampak Matahari selama berlangsungnya Transit Merkurius akan membantu menemukan perubahan sejenis pada bintang tetangga yang memiliki planet-luartatasurya (eksoplanet) kecil. Demikian halnya pengukuran diameter sudut Merkurius saat transit dan pembandingannya dengan diameter Merkurius yang sesungguhnya akan sangat bermanfaat untuk menentukan ukuran eksoplanet kecil. Dengan kata lain, Transit Merkurius di era modern (seperti Transit Merkurius 2016) menjadi arena ujicoba untuk menemukan eksoplanet-eksoplanet yang lebih kecil di bintang-bintang tetangga kita.

Referensi :

Espenak. 2014. 2016 Transit of Mercury. Observer’s Handbook 2016, Royal Astronomical Society of Canada.

King. 1845. Observations transit of Mercury, May, 8, 1845. Monthly Notices of the Royal Astronomical Society, Vol. 7 (Nov 1845), p.10.

Gunawan dkk. 2012. Kala Bintang Kejora Melintas Sang Surya, Transit Venus 2012. Buku elektronik, KafeAstronomi.com Publisher, 2012.

Sang Surya Meredup di Kebumen, Notasi Gerhana Matahari 9 Maret 2016

Gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 yang dihelat di kompleks Masjid al Mujahidin Kauman, Karanganyar Kab. Kebumen (propinsi Jawa Tengah) akhirnya terlaksana dengan sukses pada Rabu 9 Maret 2016 Tarikh Umum (TU) lalu. Sebelumnya gelaran yang diselenggarakan oleh lajnah falakiyyah al-Kawaakib pondok pesantren Mamba’ul Ihsan Karanganyar bekerja sama dengan Badan Hisab dan Rukyat (BHR) Daerah Kebumen dan lembaga falakiyyah PCNU Kebumen itu telah disosialisasikan ke publik lewat beragam cara. Mulai dari media sosial di bawah tagar (hashtag) #GerhanadiKebumen, media cetak melalui wawancara dan opini hingga media elektronik melalui siaran televisi lokal.

Gambar 1. Matahari dalam berbagai waktu yang berbeda sepanjang durasi Gerhana Matahari Total 9 Maret 2016, yang nampak di Kebumen sebagai gerhana sebagian. Sumber: Sudibyo, 2016.

Gambar 1. Matahari dalam berbagai waktu yang berbeda sepanjang durasi Gerhana Matahari Total 9 Maret 2016, yang nampak di Kebumen sebagai gerhana sebagian. Sumber: Sudibyo, 2016.

Sosialisasi dan publikasi yang lumayan massif dikombinasikan dengan intensifnya publikasi even GMT 2016 dalam lingkup nasional nampaknya menggamit ketertarikan masyarakat Kabupaten Kebumen. Rencana shalat Gerhana Matahari siap digelar dimana-mana mengacu pada jadwal yang panitia publikasikan. Bahkan calon-calon khatib shalat gerhana pun ramai menghubungi panitia, mencoba mencari bahan-bahan untuk pelaksanaan khutbah shalat Gerhana Matahari nanti.

Gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 ini mengambil bentuk berbeda dibandingkan even astronomi/ilmu falak sebelumnya di Kabupaten Kebumen. Kali ini pelibatan publik yang lebih luas lebih dimaksimalkan. Undangan untuk kalangan tertentu juga diajukan. Termasuk untuk sosok nomor satu di Kabupaten Kebumen, yakni Bupati Kebumen. Meski bupati tak hadir hingga gelaran berakhir, namun acara ini menggaet tak kurang dari seribuan orang. Menjadikannya even astronomi/iilmu falak terbesar sepanjang sejarah Kabupaten Kebumen.

GMT_gbr2_teleskop-gerhana

Gambar 2. Atas: salah satu teleskop iOptron Cube E-R80 yang digunakan untuk pengamatan. Teleskop ini dihubungkan dengan kamera CCD yang dicolokkan ke komputer jinjing. Bawah: hasil observasi teleskop yang langsung disajikan ke layar melalui proyektor. Nampak terlihat citra Matahari yang sudah 'robek' di bagian atas (sisi barat) karena tutupan cakram Bulan. Sumber: Sudibyo, 2016.

Gambar 2. Atas: salah satu teleskop iOptron Cube E-R80 yang digunakan untuk pengamatan. Teleskop ini dihubungkan dengan kamera CCD yang dicolokkan ke komputer jinjing. Bawah: hasil observasi teleskop yang langsung disajikan ke layar melalui proyektor. Nampak terlihat citra Matahari yang sudah ‘robek’ di bagian atas (sisi barat) karena tutupan cakram Bulan. Sumber: Sudibyo, 2016.

Agar mampu melayani publik dalam jumlah besar, dua teleskop semi-robotik refraktor yakni iOptron Cube E-R80 pun dikerahkan, masing-masing di dua titik yang berbeda. Di salah satu titik, teleskop tersebut dilengkapi dengan kamera CCD yang langsung tersambung dengan perangkat komputer jinjing dan proyektor, sehingga hasil bidikan teleskop langsung tersaji pada satu titik di dalam kompleks masjid. Selain mengujicoba sistem observasi secara elektronik, konfigurasi ini juga ditujukan agar kelak bisa dikembangkan ke arah live streaming untuk peristiwa astronomi/ilmu falak di masa depan. Disamping kedua teleskop tersebut, sebuah teleskop manual Celestron Astromaster 130EQ juga dipasang. Kacamata Matahari pun turut disediakan dalam tempat tersendiri.

Gambar 3. Citra radar cuaca dari stasiun geofisika BMKG Yogyakarta untuk 9 Maret 2016 TU pukul 07:00 WIB. Nampak segenap Kabupaten kebumen bebas dari tutupan awan maupun kabut. Sumber: BMKG, 2016.

Gambar 3. Citra radar cuaca dari stasiun geofisika BMKG Yogyakarta untuk 9 Maret 2016 TU pukul 07:00 WIB. Nampak segenap Kabupaten Kebumen bebas dari tutupan awan maupun kabut. Sumber: BMKG, 2016.

Langit yang cerah mendukung suksesnya gelaran ini. Meski gerimis sempat mengguyur di malam sebelumnya, namun sejak Rabu dinihari awan-awan telah menyibak. Bintang-bintang dan beberapa planet terang pun terlihat, memudahkan panitia dalam mengkalibrasi radas-radas. Citra radar cuaca dari stasiun geofisika BMKG (Badan Meteorologi Klimatologi dan Geofisika) Yogyakarta per pukul 07:00 WIB memperlihatkan ruang udara Kabupaten Kebumen relatif bersih dari awan. Ini kontras bila dibandingkan misalnya dengan Yogyakarta dan sekitarnya yang ditutupi kabut tipis. Langit yang cerah membuat publik pun berduyun-duyun mendatangi kompleks Masjid al-Mujahidin sejak sebelum pukul 06:00 WIB. Shalat Gerhana Matahari diselenggarakan pukul 06:30 WIB, atau hanya sepuluh menit setelah cakram Bulan terdeteksi mulai bersentuhan dengan bundaran Matahari dalam layar proyeksi. Shalat gerhana lantas disusul dengan khutbah gerhana yang secara keseluruhan memakan waktu 30 menit.

Gambar 4. Pelaksanaan shalat gerhana dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 di Masjid al-Mujahidin Karanganyar, Kebumen (Jawa Tengah). Sumber: Sudibyo, 2016.

Gambar 4. Pelaksanaan shalat gerhana dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016 di Masjid al-Mujahidin Karanganyar, Kebumen (Jawa Tengah). Sumber: Sudibyo, 2016.

Tahap-tahap Gerhana Matahari yang teramati dalam gelaran ini relatif konsisten dengan apa yang sebelumnya diperhitungkan dengan bantuan perangkat lunak Emapwin 1.21 karya Shinobu Takesako. Awal gerhana terdeteksi terjadi pada pukul 06:20 WIB atau konsisten dengan hasil perhitungan. Sementara akhir gerhana terdeteksi terjadi semenit lebih cepat dibanding hasil perhitungan, yakni pukul 08:33 WIB. Dengan demikian durasi gerhana yang terlihat adalah 133 menit. Kendala teknis yang mendadak muncul saat perekaman sedang dilakukan membuat kapan puncak gerhana terjadi tak bisa terdeteksi dengan baik.

Gambar 5. Salah satu hasil rekaman video dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016. Nampak bundaran Matahari kian 'robek' akibat cakram Bulan yang terus merasuk. Sumber: Sudibyo, 2016.

Gambar 5. Salah satu hasil rekaman video dalam gelaran Nonton Bareng dan Shalat Gerhana Matahari Total 9 Maret 2016. Nampak bundaran Matahari kian ‘robek’ akibat cakram Bulan yang terus merasuk. Sumber: Sudibyo, 2016.

Fenomena lain yang juga konsisten dengan apa yang telah diprakirakan sebelumnya adalah meredupnya langit. Perbandingan antara citra (foto) lingkungan saat diperhitungkan puncak gerhana terjadi dengan lingkungan yang sama setengah jam sebelumnya secara gamblang memperlihatkan bagaimana langit memang meredup.

Gambar 6. Dua citra yang diambil lewat kamera dengan setting yang sama dan lokasi yang sama namun pada jam yang berbeda dengan jelas menunjukkan bagaimana perubahan dramatis pencahayaan Matahari selama gerhana. Kiri: 20 menit sebelum puncak gerhana. Kanan: tepat saat puncak gerhana. Sumber: Sudibyo, 2016.

Gambar 6. Dua citra yang diambil lewat kamera dengan setting yang sama dan lokasi yang sama namun pada jam yang berbeda dengan jelas menunjukkan bagaimana perubahan dramatis pencahayaan Matahari selama gerhana. Kiri: 20 menit sebelum puncak gerhana. Kanan: tepat saat puncak gerhana. Sumber: Sudibyo, 2016.

Pembaharuan: Gerhana Matahari dan Konjungsi (Ijtima’)

Salah satu temuan menarik dalam gelaran ini adalah hubungan Gerhana Matahari dengan konjungsi Bulan-Matahari (ijtima’). Telah menjadi pengetahuan bersama bahwa dalam kondisi normal, peristiwa konjungsi Bulan-Matahari nyaris mustahil untuk disaksikan, kecuali dalam kasus khusus. Nah Gerhana Matahari kerap disebut sebagai kasus khusus tersebut, menjadikannya peristiwa konjungsi Bulan-Matahari yang bisa disaksikan manusia.

Dalam peradaban manusia konjungsi Bulan-Matahari memiliki peranan penting khususnya dalam ranah kultural dan religius, yakni untuk kepentingan sistem penanggalan (kalender). Misalnya bagi Umat Islam, peristiwa konjungsi Bulan-Matahari merupakan titik acuan (titik nol) bagi parameter umur Bulan. Umur Bulan didefinisikan sebagai selang masa (waktu) sejak peristiwa konjungsi Bulan-Matahari hingga saat tertentu yang umumnya adalah saat Matahari terbenam (ghurub). Di Indonesia, penentuan awal bulan kalender Hijriyyah yang berbasis hisab (perhitungan) dengan acuan “kriteria” imkan rukyat revisi menyertakan elemen umur Bulan sebagai salah satu syarat. Dimana umur Bulan harus minimal 8 jam. Sementara hisab yang lain yang mengacu “kriteria” wujudul hilaal pun menjadikan umur Bulan sebagai salah satu syarat, meski tak langsung. Yakni umur Bulan harus lebih besar dari 0 (nol) jam.

Dalam hisab dikenal ada tiga kelompok sistem hisab. Kelompok termutakhir dinamakan sistem hisab kontemporer (haqiqi bittahqiq), yang perhitungannya telah melibatkan serangkaian persamaan kompleks yang membentuk algoritma. Pada dasarnya hisab kontemporer adalah perhitungan astronomi modern yang telah disesuaikan untuk aspek-aspek ilmu falak. Sistem hisab kontemporer didaku sebagai sistem hisab yang paling akurat, dengan kemelesetan terhadap observasi hanya dalam orde detik.

Beragam sistem hisab kontemporer memperlihatkan konjungsi Bulan-Matahari akan terjadi pada Rabu 9 Maret 2016 TU pukul 08:54 WIB. Peristiwa ini berlaku universal untuk semua titik di paras Bumi. Sementara perhitungan berbasis Emapwin 1.21 dengan titik acu di kota Kebumen, Kabupaten Kebumen (Jawa Tengah) memberikan hasil bahwa awal gerhana akan terjadi pukul 06:20 WIB. Sedangkan puncak gerhana pada pukul 07:23 WIB dan akhir gerhana pada pukul 08:34 WIB. Hasil observasi dalam gelaran Nonton Bareng & Shalat Gerhana Matahari 9 Maret 2016 di kompleks Masjid al-Mujahidin Karanganyar Kebumen memperlihatkan awal gerhana terjadi sesuai perhitungan, yakni pukul 06:20 WIB. Sementara akhir gerhana pada pukul 08:33 WIB atau semenit lebih cepat ketimbang hasil perhitungan.

Terlihat jelas bahwa bahkan pada saat Gerhana Matahari sudah usai di Kebumen, ternyata konjungsi Bulan-Matahari belum terjadi (!) Padahal peristiwa langka inilah yang kerap digadang-gadang sebagai momen dimana konjungsi Bulan-Matahari dapat dilihat. Sepanjang pengalaman saya pribadi, ini bukan yang pertama. Dalam Gerhana Matahari 26 Januari 2009 pun terjadi hal serupa. dengan titik observasi di kota Cirebon (propinsi Jawa Barat), saat itu awal gerhana teramati terjadi pada pukul 15:21 WIB. Perhitungan berbasis Emapwin 1.21 juga menyajikan angka serupa. Puncak gerhana diperhitungkan terjadi pada pukul 16:40 WIB yang juga terdeteksi dalam observasi meski Matahari mulai ditutupi awan. Tutupan awan pula yang membuat akhir gerhana tidak teramati. Sebaliknya perhitungan sistem hisab kontemporer menunjukkan konjungsi Bulan-Matahari terjadi pada pukul 14:55 WIB atau sebelum Gerhana Matahari terjadi (!)

Gambar 7. Perbandingan observasi dua Gerhana Matahari, yakni antara Gerhana Matahari Total 9 Maret 2016 (terlihat di karanganyar Kebumen sebagai gerhana sebagian) dan Gerhana Matahari Cincin 26 Januari 2009 (terlihat di Cirebon sebagai gerhana sebagian). Dua observasi ini memperlihatkan dengan jelas bahwa konjungsi (dalam hal ini sejatinya konjungsi geosentrik) berselisih waktu terhadap peristiwa Gerhana Matahari. Sumber: Sudibyo, 2016.

Gambar 7. Perbandingan observasi dua Gerhana Matahari, yakni antara Gerhana Matahari Total 9 Maret 2016 (terlihat di karanganyar Kebumen sebagai gerhana sebagian) dan Gerhana Matahari Cincin 26 Januari 2009 (terlihat di Cirebon sebagai gerhana sebagian). Dua observasi ini memperlihatkan dengan jelas bahwa konjungsi (dalam hal ini sejatinya konjungsi geosentrik) berselisih waktu terhadap peristiwa Gerhana Matahari. Sumber: Sudibyo, 2016.

Mengapa ketidaksesuaian ini terjadi?

Masalahnya bukan pada sistem hisabnya. Namun lebih pada bagaimana kita mendefinisikan peristiwa konjungsi Bulan-Matahari. Sejatinya terdapat dua jenis konjungsi Bulan-Matahari. Yang pertama adalah konjungsi geosentris Bulan-Matahari (ijtima’ hakiki), yakni peristiwa dimana Matahari dan Bulan terletak dalam satu garis bujur ekliptika yang sama ditinjau dari titik di pusat (inti) Bumi. Dalam terminologi ini Bumi dianggap sebagai titik kecil tanpa volume. Sehingga saat terjadinya konjungsi geosentris Bulan-Matahari adalah sama bagi segenap koordinat manapun di paras (permukaan) Bumi. Dan yang kedua konjungsi toposentris Bulan-Matahari (ijtima’ mar’i), sebagai peristiwa dimana Matahari dan Bulan terletak dalam satu garis bujur ekliptika yang sama ditinjau dari satu titik di paras Bumi. Dalam konjungsi toposentris ini Bumi dianggap sebagai bola besar bervolume dengan jari-jari 6.378 kilometer. Konjungsi toposentris bersifat khas untuk suatu titik koordinat, sehingga antara suatu tempat dengan tempat yang lain akan berbeda.

Konjungsi geosentris Bulan-Matahari jauh lebih populer ketimbang konjungsi toposentris Bulan-Matahari. Saat berbicara awal bulan suci Ramadhan dan/atau dua hari raya (Idul Fitri/Idul Adha), yang dimaksud “konjungsi” selalu mengacu pada konjungsi geosentris. Namun observasi Gerhana Matahari memperlihatkan konjungsi geosentris tak berlaku bagi setiap titik koordinat di paras Bumi. Konjungsi toposentris-lah yang berlaku (dan lebih rasional). Hal ini seyogyanya berimplikasi pada redefinisi (pendefinisian ulang) konsep konjungsi (ijtima’) yang selama ini diterapkan dalam penentuan awal bulan kalender Hijriyyah. Baik di Indonesia maupun negara-negara Islam/berpenduduk mayoritas Muslim lainnya.

Menanti Tranformasi Sang Surya Menjadi Sabit (Gerhana Matahari 9 Maret 2016 di Tanah Jawa)

Rabu 9 Maret 2016 Tarikh Umum (TU), bertepatan dengan 29 Jumadal Ula 1437 H. Inilah masa kala dua benda langit yang mendominasi peradaban manusia bersua di angkasa. Itulah Bulan dan Matahari. Keduanya berjumpa di titik yang sama. Kita akan menyaksikannya sebagai situasi kala Matahari tertutupi Bulan hingga persentase tertentu. Bahkan apabila kita berada di tempat yang tepat, penutupan tersebut akan tepat sempurna. Menjadikan wajah Matahari yang terik menyilaukan pandangan menghilang sesaat, tertutupi sepenuhnya selama 2 hingga 3 menit kemudian. Panorama Matahari pun berganti dengan nampaknya mahkota Matahari atau korona, yakni bagian teratas atmosfer Matahari yang bersuhu jutaan derajat Celcius dan sehari–harinya mustahil terlihat. Inilah Gerhana Matahari Total, peristiwa alamiah yang langka, menakjubkan serta senantiasa mengundang puji syukur dan decak kagum.

Gambar 1. Wajah Matahari yang 'robek' oleh cakram Bulan. Diamati dalam Gerhana Matahari Cincin 26 Januari 2009 di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Diabadikan dengan kamera Nikon D60 dilengkapi filter buatan sendiri. Sumber : Sudibyo, 2009.

Gambar 1. Wajah Matahari yang ‘robek’ oleh cakram Bulan. Diamati dalam Gerhana Matahari Cincin 26 Januari 2009 di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Diabadikan dengan kamera Nikon D60 dilengkapi filter buatan sendiri. Sumber : Sudibyo, 2009.

Gerhana Matahari Total 9 Maret 2016 merupakan peristiwa gerhana pertama dalam musim gerhana 2016. Sepanjang tahun ini akan terjadi empat gerhana, masing-masing dua Gerhana Matahari dan dua Gerhana Bulan. Istimewanya, seluruh gerhana tersebut menghampiri Indonesia. Tetapi, hanya Gerhana Matahari Total 9 Maret 2016 yang bakal menyajikan panorama paling elok. Sisa tiga gerhana berikutnya terdiri dari Gerhana Matahari Cincin (yang nampak di Indonesia hanya sebagai gerhana sebagian) dan dua Gerhana Bulan Samar (penumbral).

Gerhana Matahari terjadi tatkala tiga benda langit dalam tata surya kita yakni Matahari, Bulan dan Bumi tepat berada dalam satu garis lurus secara tiga dimensi (dari tiga sumbu ruang sekaligus). Atau dalam istilah astronominya, mereka bertiga membentuk konfigurasi syzygy. Konfigurasi tersebut terjadi karena pada saat itu Bulan sedang menempati titik nodal (titik potong orbit Bulan dengan bidang ekliptika) dan Bulan sedang dalam situasi konjungsi Bulan-Matahari (ijtima’).

Gambar 2. Peristiwa Gerhana Matahari dan Gerhana Bulan dalam musim gerhana 2016 berdasarkan titik acu kota Kebumen, Kabupaten Kebumen (Jawa Tengah). Terlihat seluruh gerhana tersebut memiliki wilayah yang melintas di Indonesia. Tetapi hanya Gerhana Matahari Total 9 Maret 2016 saja yang berpotensi menyajikan panorama spektakuler. Sumber: Sudibyo, 2016.

Gambar 2. Peristiwa Gerhana Matahari dan Gerhana Bulan dalam musim gerhana 2016 berdasarkan titik acu kota Kebumen, Kabupaten Kebumen (Jawa Tengah). Terlihat seluruh gerhana tersebut memiliki wilayah yang melintas di Indonesia. Tetapi hanya Gerhana Matahari Total 9 Maret 2016 saja yang berpotensi menyajikan panorama spektakuler. Sumber: Sudibyo, 2016.

Dengan Bulan berkedudukan di tengah–tengah, maka ia menghalangi sinar Matahari yang seharusnya menuju ke Bumi. Sehingga bagian Bumi tertentu yang seharusnya mengalami siang hari mendadak temaram atau bahkan gelap sesaat. Bagian tersebut dinamakan wilayah gerhana. Karena diameter Matahari yang jauh lebih besar ketimbang Bulan, maka halangan dari Bulan tak sepenuhnya menghambat sinar Matahari. Masih tetap ada bagian sinar Matahari yang lolos meski dengan intensitas sinar sedikit berkurang. Sehingga wilayah gerhana pun terbagi ke dalam dua zona, yakni zona penumbra (bayangan tambahan) dan zona umbra (bayangan inti).

GMT 9 Maret 2016

Pada dasarnya ada tiga jenis Gerhana Matahari. Pertama adalah Gerhana Matahari Sebagian (GMS). Gerhana ini terjadi tatkala cakram Bulan tak sepenuhnya menutupi bundaran Matahari di seluruh wilayah gerhana. Akibatnya Matahari hanya akan terlihat ‘robek’ di salah satu sisinya dengan persentase tertentu. Sehingga wilayah gerhana bagi GMS pun hanya berupa zona penumbra. Yang kedua adalah Gerhana Matahari Cincin (GMC), yang terjadi tatkala cakram Bulan sudah sepenuhnya menutupi bundaran Matahari namun Bulan sedang berada di titik terjauh orbitnya (titik apogee). Sehingga di wilayah gerhana, tak hanya akan melihat Matahari yang ‘robek.’ Namun daerah-daerah tertentu juga akan melihat Matahari yang tak sepenuhnya tertutupi dan masih menyisakan secuil bagian terang yang mengemuka sebagai lingkaran bersinar mirip cincin pada puncaknya. Saat bentuk cincin ini muncul disebut tahap anularitas. Dengan demikian wilayah gerhana bagi GMC terdiri dari zona penumbra dan zona umbra (atau lebih tepatnya zona antumbra). Dan yang terakhir (ketiga) adalah Gerhana Matahari Total (GMT). Konfigurasinya seperti GMC dengan satu perbedaan mendasar: GMT terjadi tatkala Bulan berada dalam titik terdekatnya orbitnya (titik perigee). Sehingga pada daerah-daerah tertentu akan melihat Matahari sepenuhnya tertutupi Bulan dan menampakkan korona pada puncaknya. Momen ini terjadi pada tahap totalitas. Seperti halnya GMC, wilayah GMT pun terdiri dari zona penumbra dan umbra.

Gambar 3. Peta wilayah Gerhana Matahari Total 9 Maret 2016 dalam lingkup global. Wilayah gerhana ditandai dengan garis putih tak terputus dan putus-putus. Angka-angka menunjukkan waktu puncak gerhana dalam UTC (GMT). Peta diproses dengan software Solar Eclipse Viewer 1.0 karya Andrzej Okrasinki (Polandia). Sumber: Sudibyo, 2016.

Gambar 3. Peta wilayah Gerhana Matahari Total 9 Maret 2016 dalam lingkup global. Wilayah gerhana ditandai dengan garis putih tak terputus dan putus-putus. Angka-angka menunjukkan waktu puncak gerhana dalam UTC (GMT). Peta diproses dengan software Solar Eclipse Viewer 1.0 karya Andrzej Okrasinki (Polandia). Sumber: Sudibyo, 2016.

Dalam setiap jenis gerhana tersebut, zona penumbra menjadi kawasan yang bakal temaram sejak awal hingga akhir gerhana yang umumnya berlangsung selama 2 hingga 3 jam. Di zona ini bundaran Matahari akan terlihat ditutupi sebagian oleh cakram Bulan. Puncak gerhana ditandai dengan parsialitas, dimana wajah Matahari tertutupi cakram Bulan dengan persentase bervariasi mulai dari 1 hingga lebih dari 90 %. Di zona penumbra siang hari akan lebih redup, tetapi langit cukup benderang sehingga hanya Matahari yang terlihat. Sebaliknya zona umbra adalah kawasan yang tak hanya temaram, melainkan juga mengalami remang–remang (untuk GMC) atau kegelapan (untuk GMT) pada puncak gerhana. Remang–remang atau kegelapan itu umumnya terjadi selama 2 hingga 4 menit. Khusus untuk GMT, saat totalitas terjadi langit cukup gelap sehingga bintang–bintang dan planet–planet pun berpeluang terlihat.

Apapun jenis gerhananya, pada dasarnya ia terbagi ke dalam tiga tahap. Yakni tahap awal gerhana (kontak pertama penumbra), tahap puncak gerhana dan tahap akhir gerhana (kontak akhir penumbra). Awal gerhana ditandai dengan tepat mulai bersentuhannya cakram Bulan dengan bundaran Matahari. Sementara puncak gerhana adalah saat magnitudo gerhana atau persentase penutupan Matahari oleh Bulan mencapai nilai terbesar. Dan akhir gerhana adalah saat cakram Bulan tepat mulai meninggalkan bundaran Matahari. Khusus di zona umbra terdapat tambahan. Yakni tahap awal umbra dan tahap akhir umbra. Rentang waktu saat tahap awal hingga tahap akhir umbra merupakan durasi totalitas gerhana (untuk GMT) atau durasi anularitas gerhana (untuk GMC). Sementara durasi gerhana adalah rentang waktu sejak tahap awal hingga akhir gerhana.

Wilayah gerhana dalam GMT 9 Maret 2016 sejatinya cukup luas. Ia melingkupi tak kurang dari 25 negara berdaulat yang tersebar di kawasan Asia timur, Asia tenggara, Australia hingga Amerika utara. Negara–negara tersebut adalah India, Nepal, Bhutan, Sri Lanka, Myanmar, Thailand, Laos, Vietnam, Kamboja, Malaysia, Singapura, Indonesia, Brunei Darusalam, Timor Leste, Filipina, Papua Nugini, Australia, Palau, Cina (bagian timur dan selatan), Korea Selatan, Korea Utara, Jepang, Russia (pesisir Samudera Pasifik), Kanada (bagian barat) dan Amerika Serikat (negara bagian Alaska). Namun zona umbranya hanya melintasi satu negara, yakni Indonesia.

Gambar 4. Peta zona umbra dalam Gerhana Matahari Total 9 Maret 2016. Perhatikan nama kota-kota penting yang terlintasi zona umbra, sehingga secara tak resmi zona ini kadang disebut sebagai jalur P-P-P-P-P atau jalur 5P. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Gambar 4. Peta zona umbra dalam Gerhana Matahari Total 9 Maret 2016. Perhatikan nama kota-kota penting yang terlintasi zona umbra, sehingga secara tak resmi zona ini kadang disebut sebagai jalur P-P-P-P-P atau jalur 5P. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Zona umbra GMT 9 Maret 2016 hanya selebar 150 km yang melintasi daerah-daerah tertentu dari 12 propinsi. Masing–masing adalah empat propinsi di pulau Sumatra (meliputi propinsi Sumatra Barat, Bengkulu, Riau, Sumatra Selatan), propinsi Kepulauan Bangka Belitung, empat propinsi di pulau Kalimantan (meliputi propinsi Kalimantan Barat, Kalimantan Tengah, Kalimantan Selatan, Kalimantan Timur), dua propinsi di pulau Sulawesi (masing-masing propinsi Sulawesi Barat dan Sulawesi Tengah) serta propinsi Maluku Utara. Kota–kota penting yang terletak di zona umbra diantaranya Palembang, Pangkalpinang, Pangkalan Bun, Palangka Raya dan Palu. Tak mengherankan bila zona umbra GMT 9 Maret 2016 kadang disebut “jalur 5 P” atau “jalur P-P-P-P-P”, mengikuti huruf pertama dari keenam kota tersebut.

Sepanjang zona umbra inilah yang akan mengalami situasi langit siang hari yang berubah menjadi gelap saat totalitas terjadi. Panorama perubahan langit tersebut akan menyerupai apa yang pernah direkam di Afrika (dalam durasi panjang) pada saat Gerhana Matahari Total 29 Maret 2006


Tanah Jawa

Gambar 5. Peta wilayah Gerhana Matahari Total 9 Maret 2016 untuk pulau Jawa. Setiap garis kuning menghubungkan titik-titik yang memiliki persentase penutupan Matahari pada saat puncak gerhana yang nilainya sama. Perhatikan tak satupun titik di pulau Jawa yang berada dalam zona umbra. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Gambar 5. Peta wilayah Gerhana Matahari Total 9 Maret 2016 untuk pulau Jawa. Setiap garis kuning menghubungkan titik-titik yang memiliki persentase penutupan Matahari pada saat puncak gerhana yang nilainya sama. Perhatikan tak satupun titik di pulau Jawa yang berada dalam zona umbra. Sumber: Sudibyo, 2016 dengan basis Google Earth.

Di luar zona umbra, sisa Indonesia lainnya berposisi di dalam zona penumbra. Di antara lima pulau besar di Kepulauan Nusantara ini, hanya pulau Irian dan pulau Jawa yang sepenuhnya menempati zona penumbra. Sehingga kita yang bertempat tinggal di kedua pulau tersebut hanya berkesempatan menikmati GMT 9 Maret 2016 dalam bentuk gerhana sebagian. Persentase penutupan Matahari dalam puncak gerhana yang terjadi di pulau Irian bervariasi mulai dari 51 % di Merauke hingga 94 % di Kep. Raja Ampat.

Sementara di tanah Jawa persentasenya bervariasi mulai dari 88 % di Banyuwangi (Jawa Timur) hingga 91 % di Merak (Banten). Namun durasi gerhana yang terpendek di tanah Jawa justru terjadi di Merak, yakni hanya 2 jam 11 menit. Sementara durasi terpanjang se-tanah Jawa terjadi di Banyuwangi, yakni 2 jam 19 menit.

Gambar 6. Prakiraan lintasan Matahari (garis putus-putus) dan kedudukan Matahari (titik-titik kuning) dalam Gerhana Matahari Total 9 Maret 2016 di ufuk timur kota Kebumen (Jawa Tengah). Masing-masing titik menunjukkan posisi dan wajah Matahari dalam jam-jam tertentu yang disajikan di sisi kanan. Sumber: Sudibyo, 2016

Gambar 6. Prakiraan lintasan Matahari (garis putus-putus) dan kedudukan Matahari (titik-titik kuning) dalam Gerhana Matahari Total 9 Maret 2016 di ufuk timur kota Kebumen (Jawa Tengah). Masing-masing titik menunjukkan posisi dan wajah Matahari dalam jam-jam tertentu yang disajikan di sisi kanan. Sumber: Sudibyo, 2016

Berikut adalah salah satu contoh bagaimana panorama Gerhana Matahari Total 9 Maret 2016 di tanah Jawa, dengan mengambil tempat di Kabupaten Kebumen. Sebagai salah satu daerah administratif di lingkungan propinsi Jawa Tengah, Kabupaten Kebumen juga turut berada dalam zona penumbra GMT 9 Maret 2016. Perhitungan dengan titik acu di kota Kebumen (ibukota kabupaten) memprakirakan awal gerhana bakal terjadi pukul 06:20 WIB. Saat itu Matahari relatif masih rendah di atas ufuk timur, dengan tinggi hanya 8° dari dan azimuth 93° (di selatan titik timur). Pergerakan Bulan yang memiliki kecepatan rata–rata hingga 1,02 km/detik membuat cakram Bulan kian jauh ‘menjajah’ wajah Matahari. Sehingga sang surya pun mulai ‘robek’ di sisi atasnya. Pada saat yang sama Matahari juga nampak kian meredup, pelan tapi pasti.

Hingga tibalah pada puncak gerhana yang diprakirakan terjadi pukul 07:23 WIB. Waktu itu Matahari sudah lumayan tinggi, bertengger di ketinggian 23° pada azimuth 91°. Dengan persentase penutupan Matahari diprakirakan mencapai 85,4 % maka hanya tersisa 14,6 % saja wajah Matahari yang masih terlihat (dan memancarkan sinar). Matahari pun seakan–akan berubah wujud menjadi bentuk sabit yang menghadap ke utara. Intensitas sinarnya di bumi Kabupaten Kebumen pun diprakirakan tinggal 15 % dari normal. Dalam istilah astronominya, puncak gerhana di Kabupaten Kebumen bakal ditandai dengan terjadinya penurunan magnitudo Matahari hingga 2,1 di bawah normal. Akibatnya langit pun bakal lebih temaram. Tetapi tak perlu khawatir, situasi semacam itu tak bertahan lama. Pergerakan Bulan yang teratur membuat cakram Bulan berangsur-angsur meninggalkan bundaran Matahari setelah puncak gerhana tercapai. Sehingga rona sang surya perlahan–lahan mulai meluas lagi. Pada pukul 08:00 WIB, rona Matahari yang ‘robek’ tinggallah sudut kiri bawahnya. Akhirnya tibalah akhir gerhana yang diprakirakan terjadi pukul 08:34 WIB kala Matahari berketinggian 41°. Dengan demikian durasi Gerhana Matahari di Kabupaten Kebumen adalah 2 jam 14 menit (134 menit).

Melihat Gerhana, Yang Boleh dan Tak Boleh

Dibanding peristiwa Gerhana Bulan, kesempatan mengalami Gerhana Matahari cukup langka. Gerhana Matahari Total terakhir dengan zona umbra yang melintasi sebagian tanah Jawa terjadi pada GMT 11 Juni 1983. Dan setelah itu tanah Jawa masih harus menunggu berabad-abad lagi sebelum bisa bersentuhan dengan zona umbra dalam peristiwa Gerhana Matahari Total yang akan datang.

Beberapa Gerhana Matahari yang non total singgah di tanah Jawa pasca 1983 hingga 2014 lalu. Namun tak semuanya memiliki konfigurasi yang menguntungkan untuk diamati. Secara kasat mata Gerhana Matahari terakhir di tanah Jawa terjadi pada 29 Januari 2009 sebagai Gerhana Matahari Cincin. Zona umbra bersentuhan dengan ujung barat pulau Jawa, sementara sisanya tergabung ke dalam zona penumbra. Di Kabupaten Kebumen, pada saat itu persentase penutupan Matahari mencapai 85 %. Berikutnya pada 15 Januari 2010 juga terjadi Gerhana Matahari Cincin. Namun satupun daerah di Indonesia yang berada pada zona umbra, sementara zona penumbra hanya meliputi pulau Sumatra, Kalimantan, Jawa (sebagian) dan Sulawesi (sebagian). Di Kabupaten Kebumen saat itu, persentase penutupan Matahari hanya sebesar 3 %. Sehingga sangat sulit untuk diamati.

Berikutnya pada 10 Mei 2013 juga terjadi Gerhana Matahari Cincin. Lagi-lagi tak satupun daerah di Indonesia yang tercakup zona umbranya, meski hampir seluruh Indonesia berkesempatan berada dalam zona penumbra. Namun dengan gerhana terjadi tepat pada saat Matahari terbit, maka upaya untuk mengamatinya juga sulit. Di Kabupaten Kebumen misalnya, persentase penutupan Mataharinya saat terbit mencapai 39 %. Namun dengan langit berkabut di ufuk timur, apa yang mau dilihat? Demikian halnya dengan Gerhana Matahari Sebagian 29 April 2014. Gerhana juga terjadi saat Matahari terbit.

Gambar 7. "Sabit Matahari" yang nampak puncak sebuah Gerhana Matahari, dalam hal ini adalah Gerhana Matahari Cincin 26 Januari 2009 yang diamati di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Wajah Matahari dalam puncak Gerhana Matahari Total 9 Maret 2016 pun bakal menyerupai pemandangan ini. Diabadikan dengan kamera Nikon D60 tanpa filter apapun (karena cuaca mendung). Sumber : Sudibyo, 2009.

Gambar 7. “Sabit Matahari” yang nampak puncak sebuah Gerhana Matahari, dalam hal ini adalah Gerhana Matahari Cincin 26 Januari 2009 yang diamati di Cirebon, Jawa Barat (saat itu nampak sebagai gerhana sebagian). Wajah Matahari dalam puncak Gerhana Matahari Total 9 Maret 2016 pun bakal menyerupai pemandangan ini. Diabadikan dengan kamera Nikon D60 tanpa filter apapun (karena cuaca mendung). Sumber : Sudibyo, 2009.

Maka sah–sah saja bila kita ingin berpartisipasi secara langsung mengamati. Apalagi mengabadikan GMT 9 Maret 2016 dengan kamera. Namun ada beberapa hal yang harus digarisbawahi. Pada dasarnya kita dilarang menatap langsung ke arah Matahari. Demikian pula mengarahkan kamera secara secara langsung ke sang surya. Selain intensitas sinarnya begitu besarnya hingga terlalu benderang menyilaukan, salah satu gelombang elektromagnetik berenergi tinggi yang dipancarkan Matahari dan bisa tiba di permukaan Bumi adalah berkas sinar ultraungu. Intensitasnya juga tinggi. Dengan tingginya energinya, sinar ultraungu bisa menyebabkan perubahan kimia pada sel–sel retina apabila terpapar terlalu lama. Pada dasarnya menatap Matahari terlalu lama sama merusaknya dengan melihat pengelasan las listrik tanpa pelindung mata sama sekali. Gangguan penglihatan bisa terjadi.

Dalam situasi normal, mata kita memiliki respon spontan untuk menyipit dan mengerjap saat menatap Matahari. Inilah alarm kewaspadaan sekaligus pengaman mata kita. Namun pada saat Gerhana Matahari, khususnya dengan persentase penutupan Matahari yang besar, situasi unik terjadi. Meredupnya Matahari sepanjang durasi gerhana akan membuat langit lebih temaram. Alarm kewaspadaan kita pun mengendor. Kini Matahari jadi lebih enak dipandang tanpa harus banyak menyipitkan mata. Pada saat yang sama, temaramnya langit juga membuat mata kita meresponnya dengan membuka pupil lebih lebar untuk memungkinkan lebih banyak sinar yang masuk. Sehingga kualitas penglihatan tetap terjaga. Kombinasi dua hal ini berpotensi membuat lebih banyak sinar ultraungu Matahari yang masuk ke bola mata dibanding normal. Disinilah bahaya itu muncul.

Cara aman

Jadi bagaimana cara melihat Matahari yang aman? Juga bagaimana cara melihat Gerhana Matahari yang aman? Pada dasarnya Matahari cukup aman untuk dipandang apabila intensitas sinarnya telah diperlemah hingga minimal 50.000 kali lipat dari semula sebelum memasuki mata kita. Melihat Matahari dengan pantulan sinarnya melalui permukaan air yang tenang sama sekali tak disarankan. Sebab intensitas sinar hasil pemantulan hanyalah diperlemah 50 kali dari semula. Dengan dasar tersebut maka perlu adanya filter (penapis) yang tepat di antara mata kita dan Matahari. Filter yang dianjurkan adalah yang memperlemah sinar Matahari hingga 100.000 kali dari semula (0,001 %), yang teknisnya dikenal sebagai filter ND 5 (neutral density 5). Filter semacam ini secara komersial dipasarkan sebagai kacamata Matahari.

Gambar 8. Filter Matahari buatan sendiri, dibuat dengan menggunakan kotak kardus bekas wadah dompet yang dilubangi mirip kacamata lalu ditempeli negatif film yang telah dicuci. Sumber: Sudibyo, 2009.

Gambar 8. Filter Matahari buatan sendiri, dibuat dengan menggunakan kotak kardus bekas wadah dompet yang dilubangi mirip kacamata lalu ditempeli negatif film yang telah dicuci. Sumber: Sudibyo, 2009.

Bagaimana jika tak ada filter ND 5? Kita pun tetap bisa mengamati Gerhana Matahari dengan cara membuat filter sendiri. Carilah negatif film hitam putih yang telah ‘terbakar’ (dipapar sinar Matahari lalu dicuci di studio foto). Potong–potong menjadi 3 helai lalu rekatkan/tumpuk menjadi satu. Agar lebih mudah dipegang, tempatkanlah dalam misalnya kertas karton yang telah dilubangi demikian rupa agar mirip kacamata. Inilah filter Matahari–buatan–sendiri yang tak kalah ampuhnya dengan filter komersial. Bisa juga menggunakan kacamata las bernomor 14. Dengan filter semacam ini maka mata (atau kamera) anda akan tetap leluasa mengamati Gerhana Matahari tanpa khawatir cedera.

Selain itu melihat gerhana Matahari juga bisa dilakukan dengan teknik tak langsung. Yang terpopuler adalah menggunakan kamera lubang jarum (pinhole). Kamera ini bisa kita buat sendiri. Carilah sebuah kotak kertas yang berbentuk balok, misalnya kotak sepatu ataupun kardus bahan makanan. Lubangi salah satu ujung baloknya seukuran koin logam. Lalu rekatkan lembaran alumunium foil di lubang ini. Tepat di tengah–tengah lembaran alumunium foil, tusukkan jarum hingga membentuk lubang sangat kecil. Selanjutnya lubangi pula ujung yang berseberangan, kali ini dengan bentuk persegi/bujursangkar. Rekatkan sehelai kertas putih polos tipis disini yang akan berfungsi sebagai layar. Nah kita tinggal mengarahkan kamera ini ke Matahari, dengan bagian yang berlembaran alumunium foil di sisi Matahari. Bayangan Gerhana Matahari akan terproyeksikan oleh lubang jarum ke layar dengan jelas dan aman untuk disaksikan

Cara Terlarang

Ada banyak cara yang sesungguhnya tergolong tak aman dan bahkan terlarang untuk mengamati Gerhana Matahari, meski melingkupi beberapa hal yang telah melegenda. Misalnya dengan meletakkan sebaskom atau sepanci air di luar ruangan dan melihat Gerhana Matahari melalui pantulan di permukaan air tenangnya. Cara ini terlarang dengan alasan yang telah dipaparkan di atas. Begitu pula jika kita berinisiatif melihat melalui “filter” dari selembar film sinar–X / Roentgen bekas. Cara ini pun terlarang karena film sinar–X tak memiliki senyawa perak setinggi negatif film hitam putih. Demikian pula bila menggunakan negatif film berwarna yang sudah dicuci fotografis. Bahkan menggunakan negatif film hitam putih yang juga sudah dicuci secara fotografis pun bisa tak dianjurkan jika hanya selembar. Apalagi jika belum dicuci. Cara tak aman lainnya misalnya melihat gerhana dengan “filter” yang terbuat dari CD (compact disk) bekas. Atau melihat gerhana dengan “filter” dari media penyimpanan jadul seperti disket (floppy disk).

Mengapa cara-cara tersebut tak aman? Karena meski memperlemah cahaya Matahari yang melewatinya, namun jumlah cahaya Matahari yang ditransmisikan masih jauh lebih besar dibanding ambang batas yang diperkenankan.

Shalat Gerhana

Bagi Umat Islam, sangat dianjurkan untuk menyelenggarakan shalat gerhana tatkala peristiwa gerhana terjadi, baik Gerhana Matahari maupun Gerhana Bulan. Nah tulisan ini tak hendak menyentuh tata cara pelaksanaan shalat gerhana atau khutbah yang dianjurkan. Namun hanya mengupas kapan waktunya.

Ada sebagian kalangan yang mempertanyakan (sekaligus mempersoalkan) mengapa peristiwa GMT 9 Maret 2016 disambut dengan demikian gegap gempita di Indonesia. Mengapa tak mendirikan shalat gerhana saja? Mengapa justru mengamati dan seabrek kegiatan pendukung yang ditonjolkan?

Sejatinya tak perlu ada dikotomi semacam itu. Durasi Gerhana Matahari Total 9 Maret 2016 di Indonesia cukup panjang. Rata-rata 2 jam lebih. Nah sekarang mari kita lihat berapa waktu yang dibutuhkan untuk mendirikan shalat gerhana. Shalat dua raka’at itu umumnya terlaksana dalam tempo 10 menit. Kemudian khutbah gerhana sesudahnya juga seyogyanya berlaku 10 menit (tidak lebih panjang, sesuai dengan yang disunnahkan). Dengan demikian secara keseluruhan pelaksanaan shalat gerhana membutuhkan waktu sekitar 20 menit. Nah, masih tersisa 1,5 jam lebih dari durasi gerhana bukan? Mengapa tak dimanfaatkan untuk kegiatan pendukung, mulai dari kegiatan ilmiah hingga kesenian ? Terlebih Gerhana Matahari adalah salah satu ayat kauniyah. Bukankah ada sekurang–kurangnya 750 ayat al–Qur’an yang membahas dan mendeskripsikan beragam fenomena dalam jagat raya seperti dipaparkan Syeh Jauhari Thanthawi pada 7 dasawarsa silam? Ayat-ayat tersebut 5 kali lipat lebih banyak dibanding ayat-ayat yang mengupas masalah hukum lho.