Gunung Agung dan Letusan Terdahsyat se-Indonesia pasca Krakatau

Layangkan jemari anda di peta, tentu saja di era kekinian berarti peta digital dalam wujud program komputer maupun aplikasi pemetaan populer layaknya Google Earth atau Google Maps. Layangkan di atas sebagian Kepulauan Sunda Kecil, mulai dari pulau Bali di barat hingga pulau Sumbawa di timur. Akan kita saksikan jajaran pulau-pulau dengan rupabumi memukau, kombinasi produk subduksi lempeng Australia dengan mikrolempeng Sunda (bagian dari lempeng Eurasia) dengan pahatan erosi seiring curah hujan yang tinggi.

Aktivitas subduksi juga membuat jajaran pulau ini kaya akan gunung-gemunung berapi aktif dengan sejarah nan letusan dahsyat. Ubah tampilan peta ke moda medan (terrain) maka saat menelusuri pulau Sumbawa, kita akan bersirobok dengan ketampakan Gunung Tambora yang khas dengan kalderanya . Inilah gunung berapi dengan letusan terdahsyat sejagat dalam kurun 7,5 abad terakhir. Letusan Tambora 1815 sangat tercatat dalam sejarah karena menjadi salah satu penentu perubahan geopolitik Eropa yang pada akhirnya berimbas pula ke tanah Nusantara, salah satunya lewat meletusnya Perang Jawa (Perang Diponegoro).

Gambar 1. Gunung Agung dalam keremangan Matahari senja menjelang terbenam, diabadikan dari pantai Senggigi, pulau Lombok (Nusa Tenggara Barat). Gunung Agung demikian tinggi menjulang sehingga bisa disaksikan dari pulau lain. Sumber: Google/Panoramio/Bracker, 2007.

Lalu beranjaklah ke barat, menyusuri pulau Lombok. Disini Gunung Rinjani memukau dengan kalderanya yang berdanau kawah. Inilah gunung berapi dengan letusan terdahsyat sejagat untuk kurun waktu 7.000 tahun terakhir. Yakni pada Letusan Samalas 1257 dengan volume rempah letusan mendekati 200 kilometer3, sedikit lebih dahsyat ketimbang Letusan Tambora 1815 yang volume rempah letusannya 160 kilometer3. Kedahsyatan letusan ini baru terungkap pada 2013 TU (Tarikh Umum) silam. Bagaimana dampaknya dalam lingkup global masih diteliti, namun diperkirakan melebihi dampak Letusan Tambora 1815.

Mercusuar Bali

Lebih beranjak ke barat, kita sampai di pulau Bali. Di sini menjulang Gunung Agung, yang juga mudah dikenali. Dan seperti halnya ‘saudara’-nya di sebelah timur, Gunung Agung pun menyimpan sejarah kedahsyatan tersendiri. Inilah gunung berapi dengan letusan terdahsyat se-Indonesia untuk abad ke-20 TU.

Gunung Agung adalah ‘mercusuar’-nya Bali yang demikian mendominasi bentang lahan bagian timur pulau mirip berlian itu. Menjulang sebagai kerucut tunggal hingga setinggi 3.142 meter dpl (dari paras air laut rata-rata), puncak Gunung Agung adalah titik tertinggi seantero Bali. Demikian menjulangnya gunung ini sehingga tubuh gigantisnya mudah dilihat bahkan dari pesisir barat pulau Lombok. Tumbuh di wilayah administratif Kabupaten Karangasem, Gunung Agung berbataskan pada Gunung Batur di sisi barat dan baratlaut, Gunung Seroja nan tua di sisi timur dan sebuah gunung berapi purba disisi selatan. Hanya ke arah timurlaut dan tenggara saja lereng Gunung Agung bisa berkembang bebas sehingga bisa ‘membasuh’ kakinya dengan air asin Laut Flores dan Samudera Indonesia.

Gambar 2. Gunung Agung dan Gunung Batur dalam peta tiga dimensi pulau Bali berdasar NASA Photojournal. Arah pandang ke selatan-baratdaya. Nampak tubuh Gunung Agung masih berbentuk kerucut utuh, tidak seperti Gunung Batur. Di latar belakang terlihat pula semenanjung Blambangan, ujung timur dari pulau Jawa. Sumber: Geiger, 2014.

Gunung Agung adalah satu dari empat gunung berapi muda yang tumbuh berkembang di pulau Bali. Tiga yang lainnya adalah Gunung Batukau, Bratan dan Batur. Dua yang terakhir dikenal sebagai dua gunung berapi berkaldera. Namun hanya Gunung Agung dan Gunung Batur yang memiliki catatan aktivitas pada masa sejarah. Gunung Batur jauh lebih rajin meletus. Sejak 1804 TU hingga 2000 TU, ia sudah memuntahkan debu vulkaniknya hingga 27 kali. Meski skala letusannya tergolong kecil.

Namun di masa silam ia pernah jauh lebih lasak. Sekitar 29.300 tahun silam, Gunung Batur purba meletus demikian dahsyat. Tak kurang dari 84 kilometer3 rempah letusan disemburkannya ke langit, membuat sebagian besar tubuhnya terpangkas menjadi kaldera lonjong sepanjang 14 kilometer dan lebar 10 kilometer. Pentas drama Gunung Batur tak hanya di situ saja. Berbelas ribu tahun kemudian, tepatnya sekitar 10.000 tahun yang lalu, gunung ini kembali meletus dahsyat. Meski kali ini skala kedahsyatannya sedikit berkurang karena ‘hanya’ memuntahkan 19 kilometer3 rempah letusan. Letusan dahsyat ini membentuk kaldera baru seukuran 7,5 kilometer di dalam kaldera lama Batur. Di dalam kaldera baru inilah Gunung Batur modern seperti yang kita lihat tumbuh. Sisi timur kaldera lama kini digenangi air sebagai Danau Batur.

Jika Gunung Batur (pernah) mendemonstrasikan kedahsyatannya, lantas bagaimana dengan Gunung Agung?

Letusan 1963

Gambar 3. Saat-saat erupsi Plinian yang pertama di Gunung Agung berlangsung pada 17 Maret 1963 TU. Kolom letusan nampak membumbung tinggi ke udara. Diabadikan dari desa Rendang sebelah selatan Gunung Agung dalam koleksi keluarga Denis Mathews. Sumber: Self & Rampino, 2012.

Tabuh sedang berada pada hari Senin 18 Februari 1863 TU kala penduduk Karangasem dikagetkan oleh dentuman suara menggelegar dari arah Gunung Agung. Sejurus kemudian mereka menyaksikan kepulan asap menyembur dari puncak gunung. Segera terjadi hujan debu. Tak ada keraguan lagi, Gunung Agung telah meletus setelah terdiam lelap selama 120 tahun (diselingi hembusan-hembusan asap tipis dalam tahun 1908, 1915 dan 1917 TU). Letusan ini adalah jawaban dari getaran dan guncangan yang dirasakan orang-orang di sekeliling gunung besar itu selama beberapa minggu terakhir. Namun tak satupun yang mengira bahwa letusan ini akan bencana yang tak pernah terbayangkan penduduk Bali.

Enam hari setelah awal letusan, Gunung Agung mulai melelerkan lava panas ke utara. Selama 20 hari kemudian lava bergerak perlahan hingga menjangkau 7,5 kilometer dari kawah. Tersaji panorama mirip lidah sehingga dikenal sebagai lidah lava. Lidah lava Agung memiliki lebar 500 hingga 800 meter, ketebalan 30 hingga 40 meter dan volume sekitar 100 juta meter3. Terbentuknya lidah lava umumnya menandakan erupsi yang terjadi adalah erupsi efusif (leleran). Jenis erupsi yang tak semerusak erupsi eksplosif (ledakan). Namun tidak demikian dengan Gunung Agung.

Gambar 4. Sisa lidah lava letusan Gunung Agung pada 54 tahun silam, nampak membukit dan gersang dengan bongkahan batuan beku di sana-sini. Pasca melelerkan lava ini, Gunung Agung lalu meletus dahsyat. Sumber: Geiger, 2014.

Karakter letusan berubah total pada Minggu 17 Maret 1963 TU. Selama 3,5 jam penuh gunung ini menampakkan wajah angkernya dengan erupsi eksplosif nan dahsyat. Tak kurang dari 40.000 ton rempah letusan dimuntahkan dari kawahnya dalam setiap detik. Mereka disemburkan dahsyat hingga mencapai ketinggian 26 kilometer dpl. Selama beberapa saat tampak pemandangan awan cendawan/bunga kol yang indah namun mengerikan. Awan cendawan ini merupakan ciri khas erupsi tipe Plinian, yang terjadi tatkala dorongan sangat tinggi yang membawa rempah letusan bergerak vertikal sebagai kolom letusan mulai melambat. Sehingga ujung kolom mulai melebar di ketinggian udara. Lalu berjatuhan kembali ke tubuh gunung. Erupsi sedahsyat ini kembali terulang pada Kamis 16 Mei 1963 TU. Kali ini Gunung Agung memuntahkan 23.000 ton rempah letusan per detik selama 4 jam penuh. Kolom letusan menyembur hingga setinggi 20 kilometer dpl. Pasca 16 Mei 1963 TU letusan Agung kembali berubah menjadi letusan demi letusan kecil yang terus meluruh hingga akhirnya berhenti sepenuhnya pada 24 Januari 1964 TU.

Baik pada erupsi Plinian pertama maupun yang kedua, debu dan batu yang berjatuhan kembali ke tubuh gunung hingga menghasilkan awan panas letusan. Ia menderu secepat 60 kilometer per jam ke arah utara, tenggara dan baratdaya, melalui lembah-lembah sungai hingga sejauh 15 kilometer dari kawah. Selain diterjang awan panas letusan dan dibedaki debu vulkanik tebal, nestapa di pulau Bali bagian timur bertambah seiring letusan berlangsung dalam musim hujan. Hujan membuat sejumlah endapan lava dan debu vulkanik terlarut menjadi lahar, yang mengaliri sungai-sungai di lereng utara dan tenggara dengan demikian deras hingga berujung ke laut.

Dapur dan Kantung Magma

Gambar 5. Sebaran debu vulkanik letusan Gunung Agung khususnya pada erupsi Plinian pertama 17 Maret 1963 TU. Atas: distribusi debu dalam lingkup regional yang menjangkau hampir segenap pulau Jawa menurut Zen & Hadikusumo (1964) serta Soerjo (1981). Bawah: tebal endapan debu vulkanik dalam lingkup lokal pulau Bali, dinyatakan dalam sentimeter, menurut Soerjo (1981). S = Singaraja, K = Klungkung, Ka = Karangasem, R = pos PGA Agung di Rendang. Sumber: Self & Rampino, 2012.

Indonesia menyaksikan Letusan Agung 1963-1964 sebagai letusan gunung berapi terdahsyat di negeri ini pasca amukan Krakatau 1883). Di kemudian hari letusan ini juga adalah letusan terdahsyat se-Indonesia sepanjang abad ke-20 TU. Selama letusannya itu Gunung Agung memuntahkan sekitar 0,95 kilometer3 magma padat setara batuan. Bila sifat magmanya dianggap sama dengan magma Letusan Tambora 1815, maka Letusan Agung 1963-1964 memuntahkan sekitar 4 kilometer3 (4 milyar meter3) rempah letusan. Inilah yang membuatnya memiliki skala letusan 5 VEI (Volcanic Explosivity Index). Bandingkan dengan Letusan Merapi 2010, yang ‘hanya’ memuntahkan 150 juta meter3. Bahkan apabila seluruh volume letusan Gunung Kelud, salah satu gunung berapi terlasak Indonesia selain Merapi, sejak abad ke-20 TU (yakni letusan 1919, 1966, 1990 dan 2014) digabungkan, ia masih kalah jauh dibanding Gunung Agung.

Erupsi Plinian pertama menyemburkan debu vulkanik sangat berlimpah yang lantas terdorong angin regional ke arah barat-barat laut, menyebar hingga jarak yang cukup jauh. Hujan debu menyirami pulau Jawa hingga menjangkau DKI Jakarta. Lapisan debu (produk pengendapan dari hujan debu) dengan ketebalan hingga 10 sentimeter terdistribusi sampai radius 50 kilometer dari Gunung Agung. Sementara erupsi Plinian kedua sedikit lebih ramah. Debunya tersebar ke arah utara, dengan lapisan debu 10 sentimeter hanya menjangkau 20 kilometer dari Gunung Agung.

Terjangan awan panas dan lahar berdampak luar biasa untuk kehidupan manusia sekitar Gunung Agung. Tak kurang dari 10 desa yang dirusak olehnya. Korban jiwa yang jatuh mencapai hampir 2.000 orang. Sekitar 1.186 jiwa diantaranya meregang nyawa akibat terjangan bara awan panas letusan dalam erupsi Plinian yang pertama.

Bagi dunia, Letusan Agung 1963-1964 selalu dikenang sebagai salah satu letusan dahsyat di abad ke-20 TU yang berdampak pada terganggunya atmosfer global. Letusan ini melepaskan tak kurang dari 7 juta ton gas belerang (SO2) ke atmosfer. Di udara, gas ini bereaksi dengan uap air membentuk sulfat (H2SO4) sehingga terbentuk tak kurang dari 11 juta ton butir-butir aerosol sulfat. Bersamanya terlepas pula tak kurang dari 3 juta ton gas khlor, salah satu substansi yang dikenal sebagai perusak lapisan Ozon.

Gambar 6. Sebagian dari endapan Letusan Agung 1963-1964 di Suter, 12 kilometer sebelah barat kawah Gunung Agung. Panjang papan skala (hitam putih) pada sisi kiri foto adalah 10 sentimeter. Fall Unit 1 = kerikil dan pasir produk letusan sejak 18 Februari hingga 15 Maret 1963 TU. Fall Unit 2 = debu sangat halus produk letusan 16 Maret 1963 TU. Fall Unit 3 = kerikil, debu dan pasir produk erupsi Plinian pertama 17 Maret 1963 TU. Sumber: Self & Rampino, 2012.

Layaknya narasi yang selalu didaras letusan-letusan dahsyat umumnya, Letusan Agung 1963-1964 menyemburkan aerosol sulfatnya demikian tinggi hingga memasuki lapisan stratosfer, lalu terdistribusi secara global. Di sini aerosol sulfat itu membentuk tabir surya alamiah yang memantulkan kembali sinar Matahari ke antariksa. Sehingga mengurangi intensitas sinar Matahari yang seharusnya menjangkau paras Bumi. Berkurangnya penyinaran menyebabkan paras Bumi sedikit lebih dingin dibanding normal. Belahan Bumi utara mencatat penurunan suhu pasca Letusan Agung 1963-1964 mencapai 0,3º C. Penurunan suhu ini memang relatif kecil, tak semerusak dampak global Letusan Tambora 1815. Gangguan atmosfer akibat Letusan Agung 1963-1964 adalah yang terbesar keempat yang dialami Bumi kita sepanjang abad ke-20 TU setelah Letusan Novarupta 1912 (Alaska, Amerika Serikat), Letusan El Chichon 1982 (Meksiko) dan Letusan Pinatubo 1991 (Filipina).

Mengapa Gunung Agung bisa seperti itu?

Jajaran pulau Bali, Lombok dan Sumbawa dibentuk oleh proses interaksi lempeng Australia dengan mikrolempeng Sunda. Lempeng Australia mendesak relatif ke utara secepat 60 hingga 70 milimeter pertahun. Karena berat jenisnya lebih besar maka interaksinya dengan mikrolempeng Sunda mewujud sebagai subduksi, dimana lempeng Australia melekuk dan menelusup ke bawah mikrolempeng Sunda. Subduksi ini menghasilkan sejumah gejala, termasuk pembengkakan margin mikrolempeng Sunda yang mewujud sebagai pulau-pulau yang menyembul di tepian Samudera Indonesia. Pulau Bali, Lombok dan Sumbawa tumbuh di atas tepian mikrolempeng Sunda, yang bergerak relatif ke timur dengan kecepatan 11 milimeter per tahun. Di sisi timur mikrolempeng Sunda berbatasan dengan mikrolempeng Timor dan mikrolempeng Laut Banda yang menjadi bagian dari tatanan tektonik Indonesia bagian timur nan rumit.

Kerak bumi yang mengalasi pulau Bali relatif tipis, hanya 18 hingga 20 kilometer tebalnya. Sebagai pembanding, ketebalan kerak bumi di pulau Jawa mencapai 30 kilometer. Selain tipis, kerak bumi pulau Bali juga menunjukkan sifat kerak samudera. Bagian 4 kilometer teratas dari kerak samudera ini adalah lapisan sedimen yang sangat tebal. Pada kedalaman 18 hingga 20 kilometer di bawah pulau Bali terdapat zona Moho, batas antara lapisan kerak di bagian atas dengan lapisan selubung di bagian bawah. Di zona Moho inilah dapur magma Gunung Agung berada, sebagai tempat penampungan untuk magma yang bermigrasi dari sumber lebih dalam (kedalaman sekitar 150 kilometer).

Gambar 7. Penampang vertikal Gunung Agung dan batuan dibawahnya. Nampak dapur magmanya (kedalaman 20 kilometer) dan kantung magmanya (kedalaman 4 kilometer). Migrasi magma segar dari dapur magma ke kantung magma inilah yang menghasilkan gempa-gempa vulkanik dalam dan dangkal. Sumber: Geiger, 2014 dengan teks oleh Sudibyo, 2017.

Sementara di kedalaman 4 kilometer, yakni batas antara lapisan endapan dengan kerak pulau Bali, terdapat kantung magma Gunung Agung. Kantung magma berperan sebagai tenpat penampungan sementara magma yang bermigrasi dari dapur magma di kedalaman, sebelum kemudian mengalir lagi menuju ke moncong saluran magma di puncak gunung. Eksistensi dapur magma dan kantung magma ini terkuat lewat penyelidikan intensif dan komprehensif akan sifat-sifat magma yang dimuntahkan dalam Letusan Agung 1963-1964. Sistem serupa ternyata juga dijumpai pada tetangganya, Gunung Batur.

Meletus 2017?

Sistem magma Gunung Agung inilah yang menyedot perhatian besar pada September 2017 TU ini. Hingga Agustus 2017 TU lalu Gunung Agung masih tenang-tenang saja. Seismometer (radas pengukur gempa) yang ditanam di kaki gunung memang merekam aneka getaran tanah di lingkungan Gunung Agung. Namun semua masih dalam nilai wajar. Memang beberapa kali terdeteksi gempa vulkanik dalam (VT-A). Namun gempa khas ini tidak kontinu setiap hari, hanya muncul pada 5 Juli, 6 Juli, 28 Juli dan 5 Agustus 2017 TU. Geliat magma segar dari dapur magma mulai terdeteksi pada 10 Agustus 2017 TU, saat gempa vulkanik dalam terjadi setiap hari. Magma segar yang sedang mencoba naik ini sekaligus berusaha memecah dan menembus magma sisa letusan 1963 penyumbat saluran magma di antara dapur dan kantung magma Agung. Pemecahan itulah yang menghasilkan gempa vulkanik dalam.

Gempa khas yang lain, yakni gempa vulkanik dangkal (VT-B) mulai terdeteksi pada 24 Agustus 2017 TU. Awalnya juga tidak terjadi setiap hari, hanya muncul pada 24 Agustus, 25 Agustus, 29 Agustus dan 4 September 2017 TU. Namun mulai 8 September 2017 TU ia terjadi setiap hari. Gempa vulkanik dangkal ini adalah indikasi terjadi gerakan fluida pada kantung magma Agung. Dikombinasikan dengan kejadian gempa-gempa vulkanik dalam yang kian meningkat, maka secara keseluruhan Gunung Agung memperlihatkan peningkatan kegempaan secara konsisten. Inilah yang menjadi dasar Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) Badan Geologi Kementerian Energi dan Sumberdaya Mineral RI untuk menaikkan status aktivitas Gunung Agung menjadi Waspada (Level II) pada 14 September 2017 TU.

Gambar 8. Indikasi mulai menggelembungnya tubuh Gunung Agung berdasar analisis InSAR dengan satelit Sentinel-1. Nampak pada lokasi Gunung Agung terdapat pola warna berulang (fringe), indikasinya terjadinya kenaikan paras tanah setempat dibanding observasi satelit yang sama pada periode sebelumnya. Hal tersebut tak dijumpai pada posisi Gunung Batur. Sumber: PVMBG, 2017.

Hatta kegempaan Gunung Agung kian riuh dan mengarah ke krisis seismik, baik pada gempa vulkanik dalam, vulkanik dangkal maupun tektonik lokal. Hanya dalam empat hari saja telah terjadi 602 gempa vulkanik dalam, 21 gempa vulkanik dangkal dan 12 gempa tektonik lokal. Dalam delapan hari kemudian gempa vulkanik dalamnya meroket menjadi 2.547 kejadian, sementara gempa vulkanik dangkal juga membumbung tinggi ke 134 kejadian dan gempa tektonik lokal melonjak hebat ke angka 97 kejadian. Krisis seismik yang belum pernah terjadi sepanjang sejarah pemantauan Gunung Agung ini menjadi pertanda kian intensifnya aliran magma segar dari dapur magma ke kantung magma. Juga menandakan mulai terjadinya peretakan batuan dasar gunung akibat terus mendesaknya magma segar memasuki kantung magma bersamaan dengan upaya magma segar keluar dari kantung magma menuju ke atas, seperti diperlihatkan gempa-gempa tektonik lokal.

Mulai masuknya magma segar ke dasar gunung juga diperlihatkan oleh mulai membengkaknya tubuh Gunung Agung, berdasarkan analisis data radar dari satelit Sentinel-1 dengan teknik InSAR sejak Agustus 2017 TU. Tubuh gunung yang mulai menggelembung menunjukkan magma segar sudah mencapai dasar gunung. Satelit lain, yakni ASTER dalam kanal inframerah, memperlihatkan berkembangnya titik-panas di kawah (puncak) Gunung Agung sejak Juli 2017 TU. Titik-panas itu semakin meluas memasuki Agustus dan September 2017 TU. Perluasan titik-panas disebabkan oleh lebih banyak panas yang memancar dari kawah, indikasi tak langsung bahwa magma segar sudah memasuki dasar gunung. Pengamatan dari pos PGA (Pengamatan Gunung Api) Agung di Rendang (13 kilometer dari kawah) juga mendeteksi hembusan asap solfatara. Awalnya setinggi 50 meter dari kawah, lalu berkembang menjadi 200 meter.

Krisis seismik dan sejumlah perkembangan itu memaksa PVMBG meningkatkan status Gunung Agung menjadi Siaga (Level III) yang disusul status tertinggi: Awas (Level IV), masing-masing pada 18 dan 22 September 2017 TU. Keputusan ini disertai pembentukan Daerah Bahaya (Zona Merah) hingga jarak mendatar 9 kilometer dari kawah. Berikut adalah peta Daerah Bahaya Gunung Agung yang dipublikasikan PVMBG :

Khusus untuk lereng sektor utara-timur laut dan sektor tenggara-selatan-baratdaya, Daerah Bahaya Gunung Agung sedikit lebih jauh, yakni hingga jarak mendatar 12 kilometer dari kawah. Kawasan yang diperkirakan dhuni oleh tak kurang dari 100 ribu jiwa ini diputuskan musti kosong dari kegiatan penduduk. Konsekuensinya penduduk pun mulai dievakuasi. Hingga 24 September 2017 TU sore, Badan Nasional Penanggulangan Bencana (BNPB) mencatat jumlah pengungsi telah mencapai tak kurang dari 42.000 jiwa yang tersebar di lebih dari 300 pusat pengungsian. Pengungsian sudah terjadi sebelum sang gunung meletus, sebagai langkah antisipasi dengan bersandar pada kejadian letusan 54 tahun silam.

Bagaimana jika Gunung Agung benar-benar meletus?

Gambar 9. Prakiraan ketebalan debu vulkanik di sekitar Gunung Agung apabila terjadi letusan dengan skala 3 VEI. Hingga 30 kilometer ke arah barat daya dari kawah, debu vulkaniknya setebal 40 sentimeter. Sumber: PVMBG, 2017.

PVMBG telah membentuk model hipotetik Gunung Agung untuk memerikan potensi dampak ke lingkungan. Model ini berlandaskan pada skenario optimistik (bukan worst-case scenario), jadi tak sepenuhnya mengacu sejarah letusan Gunung Agung 54 tahun silam. Volume rempah letusan yang dimuntahkan dihipotesiskan lebih kecil dari Letusan Agung 1963-1964, yakni pada skala letusan 3 VEI (volume antara 10 hingga 100 juta meter3). Pada skala tersebut dan dengan vektor angin regional saat ini, maka hujan debu akan berpotensi mengarah ke baratlaut serta barat dan utara. Dalam jarak 15 kilometer dari kawah, hujan debu lebat akan menghasilkan lapisan debu setebal 160 sentimeter, sementara dalam jarak 30 kilometer masih setebal 40 sentimeter.

Berbeda halnya dengan potensi awan panas letusan. Awan panas lebih berat dibanding debu sehingga arah geraknya tidak dipengaruhi oleh angin, hanya dikontrol gravitasi. Bila letusan pendahuluan memuntahkan 10 juta meter3 rempah letusan, maka awan panas akan meluncur ke lembah-lembah sungai di lereng utara-timurlaut, tenggara dan selatan-baratdaya. Daya jangkau maksimum sekitar 10 kilometer dari kawah. Namun jika volumenya lebih besar dari 10 juta meter3, maka jangkauan awan panas letusan juga akan lebih jauh. Sedangkan potensi hujan batu dengan ukuran 6 sentimeter akan terjadi pada radius hingga 9 kilometer dari kawah ke segala arah.

Gambar 10. Prakiraan ketebalan dan arah hempasan awan panas letusan di lereng Gunung Agung apabila terjadi letusan dengan skala 3 VEI dan dengan volume letusan pembuka sebesar 10 juta meter3 . Awan panas letusan akan menjangkau radius 10 kilometer dari kawah. Sumber: PVMBG, 2017.

Sepanjang sejarah pencatatan gunung berapi di Indonesia, Gunung Agung telah tiga kali meletus. Dan dua letusan terakhirnya, masing-masing Letusan Agung 1843 dan Letusan Agung 1963-1964, demikian besar dengan skala letusan 5 VEI. Karena itu tak berlebihan jika dikatakan Gunung Agung tak pernah meletus kecil. Memahami karakter Gunung Agung yang demikian menjadi kunci agar nestapa 54 tahun silam tak lagi terulang.

Referensi :

Pusat Vulkanologi dan Mitigasi Bencana Geologi. 2017. Peningkatan Status G. Agung Dari Siaga (Level III) Ke Awas (Level IV) 22 September 2017 Pkl. 20.30 WITA. Diakses 22 September 2017.

Self & Rampino. 2012. The 1963-1964 Eruption of Agung Volcano (Bali, Indonesia). Bulletin of Volcanology, vol. 74 (2012), p 1521-1536.

Geiger. 2014. Characterising the Magma Supply System of Agung and Batur Volcanoes on Bali, Indonesia. Department of Earth Sciences, Uppsala University, Sweden.

Iklan

Yogyakarta dan Kepungan Gunung-Gemunung Berapi Purba

Uap panas mengepul dari satu sudut di dusun Kayen desa Sampang, kecamatan Gedangsari, Kabupaten Gunungkidul (DIY) mulai Kamis pagi 15 Februari 2017 (TU) Tarikh Umum lalu. Hingga beberapa hari kemudian uap masih mengepul. Bersamanya menguar pula aroma Belerang yang khas. Khalayak setempat pun dibuat resah. Terlebih setelah salah satu penyebab potensial, yakni arus listrik melalui grounding yang bocor, telah dapat dikesampingkan mengingat saat aliran listrik ke rumah pak Trisno Wiyono dimatikan, uap panas itu tetap mengepul dari sudut pekarangannya.

Apalagi titik keluarnya uap panas tersebut tidak terlalu jauh dari Gunung Nglanggeran, kompleks gunung berapi purba yang kini menjadi obyek wisata. Tersebar cerita yang konon dari masa silam, bahwa kawah Gunung Nglanggeran pada masanya adalah berada di dusun itu. Maka saat saling dikait-kaitkan, mudah saja mendatangkan kesan bahwa kepulan uap tersebut ada hubungannya dengan Gunung Nglanggeran.

Gambar 1. Lokasi titik kepulan uap panas di dusun Kayen desa Sampang kecamatan Gedangsari, Gunungkidul. Uap tersebut keluar di dekat sudut bangunan di latar depan. Uap lantas disalurkan ke ketinggian dengan pipa logam, setelah pipa PVC yang digunakan sebelumnya rusak dan melengkung oleh panasnya uap. Sumber: Kabar Handayani, 2017.

Gambar 1. Lokasi titik kepulan uap panas di dusun Kayen desa Sampang kecamatan Gedangsari, Gunungkidul. Uap tersebut keluar di dekat sudut bangunan di latar depan. Uap lantas disalurkan ke ketinggian dengan pipa logam, setelah pipa PVC yang digunakan sebelumnya rusak dan melengkung oleh panasnya uap. Sumber: Kabar Handayani, 2017.

Apakah gunung berapi purba itu aktif lagi?

BPPTKG (Balai Penyelidikan dan Pengembangan Teknik Kebencanaan Geologi), lembaga yang berkedudukan di Yogyakarta dan berada di bawah payung Badan Geologi Kementerian Energi dan Sumberdaya Mineral RI pun menerjunkan timnya ke desa Sampang. Tim ini sangat berkompeten mengingat tugas BPPTKG salah satunya adalah mengamati segenap perilaku Gunung Merapi, baik dalam kondisi normal maupun meletus. Pengukuran temperatur menunjukkan tepat di titik keluarnya uap, suhu mencapai 68º C.

Suhu ini tergolong tinggi sehingga mampu melengkungkan pipa PVC yang dipasang warga untuk menyalurkan uap hingga ke ketinggian tertentu. Sebalikya dalam radius 2 meter dari titik tersebut, suhu telah merosot drastis menjadi tinggal 30º C atau hampir sama dengan suhu rata-rata setempat. Sementara pengukuran gas menunjukkan adanya konsentrasi gas CO2 yang sedikit lebih besar dibanding normal, yakni mencapai 1 % (pada udara normal 0,3 %). Analisis lebih lanjut dikerjakan dalam laboratorium setelah tim mengambil sampel air hasil kondensasi uap tersebut.

Apakah sebuah gunung berapi purba dapat ‘bangun’ kembali setelah mati?

Tanpa mendahului kerja tim BPPTKG, dapat dikatakan bahwa peluang ‘bangun’ kembalinya sebuah gunung berapi purba adalah serupa dengan peluang hidupnya kembali seekor dinosaurus di masa kini (setelah mereka terbabat habis 65 juta tahun silam). Dengan kata lain, amat sangat kecil sehingga praktis bisa dikatakan mustahil. Gunung berapi purba pada dasarnya adalah fosil gunung berapi. Sebagai fosil, ia dapat disetarakan dengan fosil dinosaurus.

Dulu, dulu sekali nun jauh di masa silam, pada waktu berjuta hingga berpuluh juta tahun silam, gunung berapi purba itu adalah gunung berapi yang aktif. Tentu saat itu ia rajin meletus layaknya Gunung Merapi masa kini.Namun pada satu waktu, gunung berapi itu mati seiring usianya. terutama setelah pasokan magma dari dapur magmanya terputus total oleh sebab tertentu. Sehingga magma yang masih tersisa dalam diatrema (saluran magma utama)-nya pun kehilangan dorongan untuk ke atas. Apalagi keluar lewat kawah.

Perlahan-lahan sisa magma ini mulai membeku, membentuk batuan beku seperti granit atau diorit atau sejenisnya secara perlahan-lahan. Pada saat yang sama keseimbangan alamiah yang selama ini menopang tubuh gunung berapi itu dalam menjaga bentuknya, yakni antara pasokan magma yang menyeruak sebagai lava dengan kikisan air sebagai erosi, pun berantakan. Tinggal satu sisi yang terus bekerja, yakni yang secara perlahan-lahan menyayat, mengukir dan mengikis selapis demi selapis tubuh gunung.

Proses perusakan tubuh gunung itu terus berlangsung selama ratusan ribu hingga jutaan tahun kemudian. Sehingga sebagian besar tubuhnya pun habis dikikis. Yang masih nampak hanyalah bukit batuan beku keras eks-diatrema yang disebut leher vulkanik atau sumbat vulkanik. Dan sisa-sisa kakinya. Inilah fosil gunung berapi.

Gambar 2. Perbandingan penampang melintang antara gunung berapi aktif (atas) dengan gunung berapi purba. Penampang gunung berapi purba terbagi lagi menjadi gunung berapi purba yang tererosi dalam tingkat dewasa (tengah) dan yang tererosi tingkat lanjut (bawah). Jika hanya dilihat sekilas, maka sangat sulit untuk membedakan gunung berapi purba baik tingkat dewasa maupun lanjut dengan bukit-bukit non vulkanik pada umumnya. Sumber: Bronto, 2012.

Gambar 2. Perbandingan penampang melintang antara gunung berapi aktif (atas) dengan gunung berapi purba. Penampang gunung berapi purba terbagi lagi menjadi gunung berapi purba yang tererosi dalam tingkat dewasa (tengah) dan yang tererosi tingkat lanjut (bawah). Jika hanya dilihat sekilas, maka sangat sulit untuk membedakan gunung berapi purba baik tingkat dewasa maupun lanjut dengan bukit-bukit non vulkanik pada umumnya. Sumber: Bronto, 2012.

Gunung berapi purba jelas berbeda dengan gunung berapi tidur (dorman). Berbeda dengan gunung berapi purba, gunung berapi tidur tidaklah mati. Ia hanya tertidur panjang, namun masih tetap terhubung dengan dapur magmanya. Meski diatrema-nya umumnya tersumbat oleh magma sisa yang masih setengah plastis dan panas (meski beberapa bagian mulai membeku dan membatu). Perubahan dalam dapur magma (misalnya akibat guncangan gempa) akan membuat magma segar mengandung lebih banyak gas sehingga bertekanan sangat tinggi.

Maka sumbat diatrema pun bisa ditembus dan magma segar akan keluar sebagai lava yang penuh gas dari kawah. Inilah yang terjadi dalam letusan-letusan dahsyat gunung berapi, termasuk tiga peristiwa legendaris: Letusan Samalas-Rinjani 1257, Letusan Tambora 1815, Letusan Krakatau 1883. Pada umumnya sebuah gunung berapi dikatakan ‘tertidur’ jika letusan terakhirnya terjadi kurang dari 10.000 tahun terakhir. Terkecuali dalam kasus gunung-gemunung berapi super seperti Gunung Toba yang bisa tertidur jauh lebih lama lagi sebelum beraksi.

Sebaliknya gunung berapi purba sudah benar-benar putus hubungan dengan dapur magmanya. Andaikata jauh dibawahnya masih terdapat dapur magma, maka peluang bagi magma segar untuk bisa menyeruak ke paras Bumi telah tertutup oleh keberadaan sumbat sangat keras dan sangat panjang yang mengisi diatremanya. Bila dapur magmanya terletak di kedalaman 10 kilometer, maka sepanjang itu pulalah diatrema tersumbat total oleh batuan beku yang sangat keras.

Gunung Nglanggeran

Tidak jauh dari desa Sampang terdapat bukit-bukit yang berdinding terjal dan tersusun oleh batuan pejal. Bukit-bukit tersebut menempati area seluas 48 hektar yang berada di desa Nglanggeran, kecamatan Patuk (Gunungkidul). Inilah Gunung Nglanggeran. Bukit-bukit batu pejal itu sesungguhnya leher vulkanik. Ilmu kebumian menyebutnya tersusun oleh batuan beku terobosan (intrusi), karena sesungguhnya magma yang membentuk leher vulkanik ini tidak pernah tersingkap di paras Bumi kala dalam proses pembentukannya. Ia sepenuhnya mendingin hingga membeku di dalam tanah, tatkala segenap tubuh gunung ini masih ada.

Gambar 3. Rekonstruksi kasar bentuk tubuh Gunung Nglanggeran pada saat masih sebagai gunung berapi aktif, tanpa skala dan dianggap berbentuk kerucut sempurna dengan kawah di puncaknya. Lokasi kawah segaris lurus dengan kompleks Gunung Nglanggeran masakini. Pada masa aktifnya, sebagian tubuh gunung berapi ini berada di bawah paras air laut. Dibuat berdasarkan citra Google StreetView dari satu titik di desa Serut, kec. Gedangsari (Gunungkidul) yang terletak di sebelah utara Gunung Nglanggeran. Sumber: Sudibyo, 2017 dengan basis Google StreetView, 2017.

Gambar 3. Rekonstruksi kasar bentuk tubuh Gunung Nglanggeran pada saat masih sebagai gunung berapi aktif, tanpa skala dan dianggap berbentuk kerucut sempurna dengan kawah di puncaknya. Lokasi kawah segaris lurus dengan kompleks Gunung Nglanggeran masakini. Pada masa aktifnya, sebagian tubuh gunung berapi ini berada di bawah paras air laut. Dibuat berdasarkan citra Google StreetView dari satu titik di desa Serut, kec. Gedangsari (Gunungkidul) yang terletak di sebelah utara Gunung Nglanggeran. Sumber: Sudibyo, 2017 dengan basis Google StreetView, 2017.

Dimanakah letak kawah gunung berapi purba ini (atau setidaknya sisa kawahnya)? Pada umumnya kawah gunung berapi terletak di puncak gunung sekaligus menjadi muara dari diatrema. Mengingat bukit-bukit batu itu adalah leher vulkanik Nglanggeran, maka logikanya kawah gunung berapi purba tersebut ada di ujung atas leher vulkaniknya. Hal ini sesuai dengan hasil penelitian Sutikno Bronto (2009, 2010), vulkanolog legendaris Indonesia, bahwa sebagian besar bukit-bukit batu itu tersusun oleh aglomerat.

Aglomerat adalah batuan produk letusan gunung berapi yang banyak mengandung bom gunung berapi, yakni bongkahan batuan beku yang ukurannya besar. Saat sebuah gunung berapi meletus, bom gunung berapi akan dilontarkan kuat-kuat dari dalam lubang letusan atau kawah, lantas jatuh bebas di sekitar kawah dalam jarak yang tak jauh. Sisa-sisa bom gunung berapi Nglanggeran ditemukan berbentuk mirip buah salak, dengan bagian runcing di sebelah atas sementara bagian yang besar dan berat di sisi bawah.

Maka anggapan bahwa kawah gunung berapi purba Nglanggeran berada di desa Sampang, yang berjarak beberapa kilometer dari leher vulkanik Nglanggeran, menjadi kurang tepat. Memang pada saat Gunung Nglanggeran masih aktif dalam berpuluh juta tahun silam, area yang kini menjadi desa Sampang kemungkinan merupakan bagian dari tubuh gunung berapi itu. Namun area ini bukanlah bagian dari kawasan yang bersinggungan atau berdekatan dengan diatrema gunung berapi tersebut, dengan segala dinamikanya.

Pengukuran umur batuan beku menunjukkan Gunung Nglanggeran adalah gunung berapi aktif pada masa sekitar 58 juta tahun silam. Jika dikaitkan dengan sejarah geologi pulau Jawa, jelas Gunung Nglanggeran merupakan gunung berapi laut. Bagian kakinya berdiri di atas dasar Samudera Indonesia (Indian Ocean) dengan sebagian tubuhnya mungkin terbasuh permanen dalam air laut. Apakah puncaknya menyembul di atas paras laut dan menjadi sebuah pulau vulkanis? Kita tidak tahu. Namun yang jelas, dalam kurun 58 juta tahun terakhir Gunung Nglanggeran telah mati. Pergerakan tektonik seiring dorongan lempeng Australia yang oseanik lantas mendorongnya lebih ke utara, untuk kemudian terangkat dari dasar samudera seiring terbentuknya pulau Jawa dan akhirnya menyatu dengan kompleks Pegunungan Selatan di sisi selatan Jawadwipa.

Isu Gunung Nglanggeran aktif kembali sebenarnya bukan hal yang baru. Saat Gunung Merapi meletus besar dalam Letusan Merapi 2010 di bulan November 2010 TU, sejumlah orang yang bertempat tinggal di sekitar Gunung Nglanggeran mengaku merasa ada getaran dan mendengar suara gemuruh. Bahkan ada juga yang mengaku melihat kepulan asap dari bukit-bukit batu itu. Evaluasi lebih lanjut memperlihatkan getaran dan suara gemuruh itu sejatinya berasal dari Gunung Merapi, yang berjarak sekitar 40 kilometer dari Gunung Nglanggeran. Letusan Merapi 2010 itu memang luar biasa dan berbeda dengan letusan-letusan Merapi sebelumnya. Sehingga suara gemuruhnya pun terdengar hingga jarak yang cukup jauh, demikian halnya getaran-getaran gempa vulkaniknya.

Gambar 4. Bebatuan mirip pilar-pilar yang saling bertumpuk di ujung Tanjung Karangbata, Kebumen (Jawa Tengah). Bebatuan ini kemungkinan adalah bagian dari leher vulkanik Gunung Manganti, salah satu gunung berapi purba di Tanjung Karangbolong. Bebatuan khas semacam ini dinamakan kekar kolom dan acap dijumpai di lingkungan gunung berapi purba khususnya di eks-diatrema dan cabang-cabangnya. Diabadikan oleh geolog Bambang Mertani. Sumber: Mertani, 2013.

Gambar 4. Bebatuan mirip pilar-pilar yang saling bertumpuk di ujung Tanjung Karangbata, Kebumen (Jawa Tengah). Bebatuan ini kemungkinan adalah bagian dari leher vulkanik Gunung Manganti, salah satu gunung berapi purba di Tanjung Karangbolong. Bebatuan khas semacam ini dinamakan kekar kolom dan acap dijumpai di lingkungan gunung berapi purba khususnya di eks-diatrema dan cabang-cabangnya. Diabadikan oleh geolog Bambang Mertani. Sumber: Mertani, 2013.

Dalam kondisi Gunung Nglanggeran seperti sekarang ini, apakah ia bisa aktif lagi? Peluangnya sangat kecil sehingga secara teknis bisa dikatakan mustahil. Leher vulkanik Nglanggeran merupakan ujung yang kasatmata dari batuan beku pejal sangat panjang yang menyumbat total diatrema gunung berapi purba tersebut. Mustahil bagi magma segar untuk bisa menjebolnya. Apalagi sebagai fluida, magma juga lebih menyukai untuk menembus/melewati titik-titik yang lebih lemah di kerak Bumi. Ketimbang harus bersusah-payah membobol batuan beku pejal yang sangat panjang yang menyumbat total diatrema Gunung Nglanggeran, mengapa tidak mencari titik yang lebih lemah disekitarnya?

Dalam bahasa yang lebih sederhana, andaikata saya adalah magma segar nun jauh di bawah Nglanggeran (pada kedalaman misalnya 30 kilometer), maka ketimbang susah-susah harus berjuang membobol sumbat sangat keras dan panjang di Nglanggeran, mengapa saya tidak sedikit beringsut ke utara saja dan keluar lewat Gunung Merapi?

Kepungan Gunung Berapi Purba

Pada aras yang lain, diskusi seputar Gunung Nglanggeran terkini dengan kepulan uap panas didekatnya membuat kita mau tak mau membuat kita menekuri kembali bumi Yogyakarta pada khususnya dan pulau Jawa bagian selatan pada umumnya dengan lebih cermat. Terutama terkait gunung berapi purba. Luar biasanya, dari perspektif ilmu kebumian, Yogyakarta boleh dikata sebagai kota yang ‘dikepung’ oleh gunung-gemunung berapi purba !

Gambar 5. Salah satu sudut Gunung Watuadeg, yakni gunung berapi purba yang berjarak cukup dekat dengan kota Yogyakarta. Diabadikan dari tepi timur Sungai Opak, nampak singkapan lava bantal di sisi barat dasar sungai dengan tampilan khasnya sebagai bongkah-bongkah batuan beku kehitaman yang saling terhubung. Diabadikan oleh Nova Aristianto pada 2014 TU. Sumber: Aristianto, 2014.

Gambar 5. Salah satu sudut Gunung Watuadeg, yakni gunung berapi purba yang berjarak cukup dekat dengan kota Yogyakarta. Diabadikan dari tepi timur Sungai Opak, nampak singkapan lava bantal di sisi barat dasar sungai dengan tampilan khasnya sebagai bongkah-bongkah batuan beku kehitaman yang saling terhubung. Diabadikan oleh Nova Aristianto pada 2014 TU. Sumber: Aristianto, 2014.

Mari lihat dua contoh berikut. Dari Yogyakarta, sempatkanlah menengok sudut kecil di sebelah tenggara Bandara Adisucipto dalam jarak tak lebih dari 5 kilometer. Susurilah jalan raya Berbah-Prambanan dari arah barat menuju lokasi situs Candi Abang. Di jalan ini anda akan melintasi jembatan Sungai Opak yang memiliki nama unik: Jembatan Gemblung. Lihatlah ke dasar sungai yang juga adalah batas antara desa Kalitirto (sisi barat) dan Jogotirto (sisi timur) di kecamatan Berbah (Sleman). Jika air surut, akan terlihat panorama bebatuan gamping di sisi timur sebaliknya di sisi barat terhampar bongkah-bongkah batuan beku membulat kehitaman yang saling terhubung. Bebatuan ini adalah lava bantal, maka lokasi ini populer sebagai Lava Bantal Geoheritage. Saat menatapnya, sadarkah bahwa anda sesungguhnya sedang berdiri di gunung berapi purba?

Gunung berapi purba itu adalah Gunung Watuadeg. Lava Bantal Geoheritage merupakan bagian dari tubuh gunung. Seluruh lava bantal itu memancar dari satu titik yang kini berupa bukit seukuran 75 x 50 meter2 dengan tinggi sekitar 15 meter yang terletak sejarak 150 meter di sebelah barat jembatan. Sisa-sisa sumbat vulkanik dijumpai di sisi selatan bukit yang bernama Bukit Sumberkulon ini. Analisis memperlihatkan Gunung Watuadeg aktif pada masa 57 juta tahun silam, atau sezaman dengan masa aktif Gunung Nglanggeran. Ia juga tumbuh di dasar Samudera Indonesia dan berdasar keberadaan lava bantalnya maka seluruh tubuhnya mungkin terendam air laut. Namun ukuran Gunung Watuadeg jauh lebih kecil ketimbang Gunung Nglanggeran.

Gambar 6. Bukit Gede (kiri) dan Bukit Gedang (kanan) di kecamatan Godean, Sleman (DIY). Dua bukit ini adaah bagian dari jejak gunung berapi purba yang dinamakan Gunung Godean. Diabadikan pada citra Google StreetView dari satu titik di jalan raya Godean-Seyegan. Sumber: Google StreetView, 2017.

Gambar 6. Bukit Gede (kiri) dan Bukit Gedang (kanan) di kecamatan Godean, Sleman (DIY). Dua bukit ini adaah bagian dari jejak gunung berapi purba yang dinamakan Gunung Godean. Diabadikan pada citra Google StreetView dari satu titik di jalan raya Godean-Seyegan. Sumber: Google StreetView, 2017.

Kembali ke Yogyakarta, dari tugu pal putih yang menjadi simbol kota ini, susurilah jalan raya ke arah barat hingga memasuki Jalan Godean. Susurilah terus ke barat hingga sejauh 6 kilometer, sampai bersua dengan sebuah pertigaan yang mengarah ke kiri dan ke kanan. Anda akan tiba di sebuah tempat yang juga bernama Godean dan menjadi bagian dari Kabupaten Sleman. Di sini anda akan bersua dengan sedikitnya 6 buah bukit yang letaknya saling berdekatan dan relatif lebih tinggi dibanding bukit-bukit kecil yang ada di sisi utaranya. Sekilas pandang tak ada yang istimewa dari keenam bukit ini. Namun bukit-bukit yang terlihat biasa saja ini sejatinya adalah sumbat vulkanik yang telah melapuk sebuah gunung berapi purba yang dinamakan Gunung Godean. Kapan Gunung Godean aktif di masa silam belum dapat diketahui dengan pasti.

Ada banyak gunung berapi purba yang bertebaran di sekitar Yogyakarta. Jika dibatasi pada yang telah diketahui umurnya seperti halnya Gunung Nglanggeran dan Gunung Watuadeg, kita bisa mulai dengan Gunung Parangtritis. Sesuai namanya, gunung berapi purba ini ‘duduk’ di lokasi obyek wisata pantai Parangtritis yang terkenal itu. Gunung berapi purba ini jauh lebih muda ketimbang Nglanggeran, yakni aktif sekitar 26 juta tahun silam. Namun ukuran tubuh gunungnya nampaknya serupa. Meski demikian dimana posisi sumbat vulkaniknya belum jelas. Lalu di sebelah utara Gunung Nglanggeran terserak jejak gunung berapi purba bertubuh raksasa, yang disebut Gunung Baturagung. Gunung berapi purba ini aktif antara 14 hingga 40 juta tahun silam. Di sebelah timur Gunung Baturagung, pada tempat yang kini menjadi bagian dari kota Wonogiri terdapat jejak gunung berapi purba lainnya yang tak kalah besarnya. Yakni Gunung Gajahmungkur, yang aktif antara 10 hingga 22 juta tahun silam.

Gambar 7. Lokasi gunung-gemunung berapi purba yang telah terpetakan dan dianalisis oleh sejumlah ilmuwan hingga saat ini. Gunung-gemunung berapi purba ditandai dengan lingkaran-lingkaran. Besar kecilnya lingkaran bergantung kepada dimensi tubuh gunung berapi purba yang bersangkutan. Pada sebagian gunung berapi purba tersebut disajikan pula umur relatifnya berdasarkan sampel batuan beku Sumber: Bronto, 2010 dalam Verdiansyah & Hartono, 2016.

Gambar 7. Lokasi gunung-gemunung berapi purba yang telah terpetakan dan dianalisis oleh sejumlah ilmuwan hingga saat ini. Gunung-gemunung berapi purba ditandai dengan lingkaran-lingkaran. Besar kecilnya lingkaran bergantung kepada dimensi tubuh gunung berapi purba yang bersangkutan. Pada sebagian gunung berapi purba tersebut disajikan pula umur relatifnya berdasarkan sampel batuan beku Sumber: Bronto, 2010 dalam Verdiansyah & Hartono, 2016.

Dari Gunung Gajahmungkur, jika kita bergerak ke selatan sejajar dengan garis tegak lurus sumbu orientasi pulau Jawa, kita akan bersirobok dengan Gunung Batur. Gunung berapi purba yang ‘duduk’ di obyek wisata Pantai Wediombo ini aktif sekitar 13 juta tahun silam dengan ukuran tubuh gunung setara Gunung Nglanggeran. Jajaran gunung-gemunung berapi purba pun menghiasi kaki langit Yogyakarta bagian barat. Dari Gunung Godean ke arah barat, kita akan bersua dengan Pegunungan Menoreh. Pegunungan ini sejatinya merupakan kompleks gunung berapi purba yang mencakup tiga gunung sekaligus. Masing-masing Gunung Menoreh, Gunung Ijo dan Gunung Gajah. Aktivitas vulkanik pada gunung-gunung tersebut terjadi dalam kurun antara 47 hingga 8 juta tahun silam. Dibanding gunung-gemunung berapi purba yang telah disebut sebelumnya, gunung berapi purba di Pegunungan Menoreh memiliki ukuran tubuh terbesar.

Sementara jika gunung-gemunung berapi purba yang belum diketahui umurnya seperti halnya Gunung Godean ditelusuri, jumlahnya akan membengkak lagi. Di antara Gunung Parangtritis dan Gunung Baturagung saja tercatat ada 4 gunung berapi purba yang belum diketahui umurnya. Salah satunya adalah Gunung Imogiri. Sementara di antara Gunung Gajahmungkur dan Gunung Batur terdapat 5 gunung berapi purba, salah satunya dinamakan Gunung Panggang.

Gambar 8. Busur vulkanik Jawa tua (garis merah putus-putus), yang terdiri dari gunung-gemunung berapi purba. Di sebelah utaranya terdapat busur vulkanik Jawa muda (garis kuning putus-putus), tempat gunung-gemunung berapi modern di pulau Jawa berada dengan sebagian besar diantaranya aktif. Sumber: Hall & Smyth, 2008 dalam Satyana, 2014.

Gambar 8. Busur vulkanik Jawa tua (garis merah putus-putus), yang terdiri dari gunung-gemunung berapi purba. Di sebelah utaranya terdapat busur vulkanik Jawa muda (garis kuning putus-putus), tempat gunung-gemunung berapi modern di pulau Jawa berada dengan sebagian besar diantaranya aktif. Sumber: Hall & Smyth, 2008 dalam Satyana, 2014.

Mayoritas gunung berapi purba di sekitar Yogyakarta pada masanya merupakan bagian dari busur vulkanik Jawa tua. Yakni jajaran gunung-gemunung berapi yang menjadi wajah aktivitas vulkanik pulau Jawa sejak 45 juta tahun silam. Aktivitas busur vulkanik tua itu dan mendadak berakhir pada masa sekitar 20 juta tahun silam, tanpa sebab yang jelas. Gunung-gemunung berapi yang lebih muda lantas terbentuk lebih ke utara dan membentuk busur vulkanik Jawa muda. Dalam busur vulkanik yang mulai aktif semenjak 5 juta tahun silam hingga kini terdapat 45 buah kerucut gunung berapi, yang membentang mulai dari Gunung Karang-Pulasari di barat (Banten) hingga Gunung Ijen di timur (Jawa Timur).

Selain menjadi artefak atas aktivitasnya sendiri di masa silam, gunung-gemunung berapi purba di sekitar Yogyakarta juga menjadi saksi bisu bagaimana sisi selatan pulau Jawa terangkat layaknya terdongkrak. Sehingga banyak dari gunung-gemunung purba yang semula tersembunyi dalam sepi di dasar Samudera Indonesia lantas terangkat dan muncul ke daratan. Selain sebagai bagian dari pengembangan ilmu pengetahuan terutama ilmu kebumian, eksistensi gunung-gemunung berapi purba juga bisa dikembangkan untuk menggamit minat publik akan eksotismenya. Gunung-gemunung berapi purba juga berpotensi memiliki nilai ekonomis tersendiri, mengingat sejumlah mineral barang tambang yang berharga (termasuk tembaga dan emas) berasosiasi dengan magma dan cairan hidrotermal dengan karakter tertentu yang telah membeku.

Referensi :

Kabar Handayani. 2017. Uap Panas Muncul dari Tanah di Gedangsari. Laman Kabar Handayani, diakses pada 21 Februari 2017.

Aristianto. 2014. Berhujan-hujan Ria ke Lava Bantal Berbah. Blog Tulisan Aris, diakses pada 21 Februari 2017.

DetikNews. 2010. BPPTK: Kecil Kemungkinan Gunung Purba Nglanggeran Meletus Kembali. Detik.com 11 November 2010, diakses pada 21 Februari 2017.

Bronto dkk. 2014. Longsoran Raksasa Gunung Api Merapi Yogyakarta-Jawa Tengah. Jurnal Geologi dan Sumberdaya Mineral, vol. 15 no. 4 November 2014, hal. 165-183.

Verdiansyah & Hartono. 2016. Alterasi Hidrotermal Dan Mineralisasi Logam Berharga Di Cekungan Yogyakarta, Sebuah Pemikiran dari Kehadiran Sistem Hidrotermal Daerah Godean. Seminar Nasional ke-3 Fakultas Teknik Geologi Universitas Padjadjaran, Bandung.

Gunung Rinjani dan Kisah Letusan Terdahsyat Sejagat 7,5 Abad Silam

Semburan debu vulkanik mendadak menyeruak dari lubang letusan di sisi kerucut Barujari di Gunung Rinjani, Kabupaten Lombok Timur (propinsi Nusa Tenggara Barat) pada 25 Oktober 2015 Tarikh Umum (TU) pukul 10:04 WITA. Debu vulkanik itu menyembur hingga setinggi 200 meter di atas puncak. Dengan elevasi puncak Barujari adalah 2.376 meter dpl (dari paras laut rata-rata), maka semburan debu vulkanik itu membumbung hingga setinggi paling tidak 2.500 meter dpl. Sontak peristiwa di salah satu kerucut vulkanis yang menjulang di sisi timur Danau Segara Anak dalam Gunung Rinjani itu mengagetkan semua orang yang kebetulan sedang berada di sana. Terlebih Gunung Rinjani dengan Danau Segara Anaknya merupakan salah satu tujuan wisata populer. Pendakian ke gunung ini selalu menantang adrenalin, khususnya bagi para petualang.

Gambar 1. Awal mula Letusan Rinjani 2015 pada Minggu 25 Oktober 2015 TU pukul 10:45 WITA. Nampak debu vulkanik mulai menyembur dari sisi utara puncak kerucut Barujari. Diabadikan dari sudut barat daya danau Segara Anak. Sumber: PVMBG, 2015.

Gambar 1. Awal mula Letusan Rinjani 2015 pada Minggu 25 Oktober 2015 TU pukul 10:45 WITA. Nampak debu vulkanik mulai menyembur dari sisi utara puncak kerucut Barujari. Diabadikan dari sudut barat daya danau Segara Anak. Sumber: PVMBG, 2015.

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) Badan Geologi Kementerian Energi dan Sumber Daya Mineral pun memutuskan untuk menaikkan tingkat aktivitas Gunung Rinjani pada hari itu juga mulai pukul 12:00 WIB. Dari semula Aktif Normal (Level I), kini Gunung Rinjani menyandang status Waspada (Level II). Semburan debu vulkanik itu kembali berulang pada jam-jam dan hari-hari berikutnya dengan intensitas kian meninggi. Debu vulkanik Rinjani yang membumbung tinggi ke udara hingga 4.000 meter dpl. Ia kemudian terdorong angin regional ke arah Barat. Sehingga ruang udara pulau Lombok dan Bali praktis diselubungi debu vulkanik Barujari. Perkembangan tersebut memaksa VAAC (Volcanic Ash Advisory Commitee) Darwin, sebagai lembaga yang bertanggung jawab memantau dinamika letusan gunung berapi dan penyebaran debu vulkaniknya di ruang udara sekitarnya untuk menjamin keselamatan penerbangan sipil, menerbitkan peringatannya. Lalu lintas penerbangan sipil dianjurkan menghindari ruang udara pulau Lombok dan Bali. Sebagai konsekuensinya bandara Ngurah Rai, Denpasar (propinsi Bali) bandara Selaparang, Mataram (propinsi Lombok) dan bandara Blimbingsari, Banyuwangi (propinsi Jawa Timur) pun terpaksa ditutup sementara waktu. Ribuan penumpang menumpuk.

Perkembangan ini mengejutkan, terlebih bila dibandingkan dengan aktivitas Gunung Rinjani pada 2009 TU silam. Saat itu pun kerucut Barujari menyemburkan debu vulkaniknya dalam kurun sepanjang Mei hingga Agustus 2009 TU. Saat itu Gunung Rinjani juga dinyatakan berstatus Waspada (Level II). Namun ia tak sempat membuat lalu lintas penerbangan sipil pada ruang udara disekelilingnya dialihkan. Padahal saat itu ketinggian maksimum semburan debu vulkaniknya mencapai 1.000 meter di atas puncak, atau paling tidak 3.400 meter dpl.

Gambar 2. Letusan Rinjani 2015 berdasarkan observasi dari langit melalui satelit sumberdaya Bumi Himawari-8 dalam kanal cahaya tampak warna nyata. Gunung Rinjani berada di tengah citra dan nampak mengepulkan asap secara terus-menerus. Diabadikan dalam rentang waktu 4 hingga 6 November 2015 TU. Sumber: NOAA, 2015.
Gunung Rinjani-Samalas

Kerucut Barujari (Tenga) adalah satu dari dua kerucut vulkanis dalam kompleks Gunung Rinjani nan besar. Kerucut lainnya adalah kerucut Mas/Rombongan (2.100 meter dpl) yang terletak di sebelah barat Barujari. Pusat aktivitas vulkanik Gunung Rinjani saat ini berlangsung di kerucut Barujari, setidaknya semenjak pencatatan aktivitas Gunung Rinjani dimulai pada 1847 TU. Pada 1944 TU terjadi anomali saat letusan justru terjadi di sebelah barat kerucut Barujari. Itulah yang melahirkan kerucut Mas. Lima tahun berikutnya, aktivitas vulkanik kembali berpusat di kerucut Mas. Namun setelah itu kerucut Mas seakan tertidur dan aktivitas berpindah kembali ke kerucut Barujari.

Baik kerucut Barujari maupun Mas sejatinya merupakan gunung berapi anak. Ini adalah istilah bagi kerucut vulkanis kecil yang tumbuh dalam kaldera dari sebuah gunung berapi. Barujari dan Mas tumbuh di sisi timur kaldera Rinjani, atau kaldera Segara Anak, nan besar. Dimensi kaldera Rinjani adalah 8,5 x 6 kilometer persegi dengan kedalaman hingga 800 meter dari puncak tertingginya. Sebagian kaldera kini digenangi air sebagai Danau Segara Anak. Luas genangan danau ini mencapai 11 kilometer persegi dan kedalaman maksimum 230 meter. Prakiraan volume air danau adalah sekitar 1,02 kilometer kubik, terhitung sebelum Letusan Rinjani 2009. Paras air danau terletak pada elevasi sekitar 2.000 meter dpl. Dengan suhu air danau yang lebih tinggi ketimbang suhu udara setempat dan di beberapa titik muncul mata air panas, maka Danau Segara Anak mungkin adalah danau vulkanik berair panas yang terbesar sedunia.

Gambar 3. Panorama menakjubkan kompleks Gunung Rinjani diamati dari ketinggian 339 kilometer melalui stasiun antariksa internasional ISS pada 21 September 2002 TU. Nampak posisi tiga kerucut (masing-masing Rinjani, Barujari dan Mas), kawah tapalkuda, kaldera Segara Anak dan lembah Kokok Putih. Sumber: NASA, 2002.

Gambar 3. Panorama menakjubkan kompleks Gunung Rinjani diamati dari ketinggian 339 kilometer melalui stasiun antariksa internasional ISS pada 21 September 2002 TU. Nampak posisi tiga kerucut (masing-masing Rinjani, Barujari dan Mas), kawah tapalkuda, kaldera Segara Anak dan lembah Kokok Putih. Sumber: NASA, 2002.

Di sisi timur Danau Segara Anak, atau tepatnya di sisi timur kerucut Barujari dan Mas, menjulang kerucut lain yang jauh lebih besar dan lebih tinggi. Inilah kerucut Rinjani, yang puncaknya berelevasi 3.726 meter dpl. Inilah yang menjadikan Gunung Rinjani menduduki peringkat gunung berapi aktif tertinggi kedua di Indonesia, setelah Gunung Kerinci (propinsi Sumatra Barat). Puncak Rinjani berhiaskan sebuah cekungan kawah dengan beberapa titik solfatara (sumber gas belerang) didalamnya. Letusan Rinjani 1940 berpusat di puncak ini, dalam skala yang kecil. Uniknya, sisi barat kerucut Rinjani nampak tergerus cukup dalam hingga ke kaldera Segara Anak. Gerusan itu merupakan jejak dari peristiwa runtuhnya/longsornya lereng sektor tersebut dalam sejarahnya, hingga membentuk apa yang dikenal sebagai cekungan/kawah tapalkuda nan khas.

Danau Segara Anak bukanlah danau tertutup karena kalderanya sendiri bukanlah cekungan sempurna meski dihiasi oleh tebing-tebing curam bahkan terjal. Di sisi utara kaldera terdapat bagian terbuka sebagai lembah Kokok Putih nan besar, tempat mengalirnya sungai Kokok Putih. Sungai ini mendapatkan airnya dari Danau Segara Anak. Ia menghilir meliuk-liuk hingga bermuara di Laut Bali di utara. Setiap gangguan yang terjadi dalam lingkungan Danau Segara Anak, misalnya oleh masuknya material letusan dalam jumlah besar ke dalam danau, akan berimbas pada aliran sungai Kokok Putih. Banjir bandang pun berkemungkinan terjadi. Oleh karena itu sepanjang lembah sungai ini merupakan salah satu kawasan bahaya Gunung Rinjani.

Secara geografis Gunung Rinjani duduk di kepulauan Sunda Kecil (Bali dan Nusa Tenggara), rumah bagi sejumlah gunung berapi aktif legendaris seperti Gunung Tambora dan Gunung Sangeang Api. Tumbuh kembangnya Gunung Rinjani tak bisa dilepaskan dari subduksi lempeng Australia yang oseanik terhadap lempeng Sunda (Eurasia) yang kontinental. Sedikit berbeda dengan subduksi sejenis yang membentuk pulau Jawa, di Kepulauan Sunda Kecil ini muncul salah satu gejala unik subduksi. Yakni terbentuknya sesar naik busur belakang (back-arc thrust), dalam rupa sesar naik Wetar di sisi timur dan sesar naik Flores di sisi barat. Sama halnya dengan zona subduksi, zona sesar naik ini pun merupakan sumber gempa tektonik potensial dan bisa membangkitkan tsunami. Maka praktis kepulauan Sunda Kecil dikepung oleh jalur sumber gempa dan tsunami, baik di sisi selatan maupun di sisi utaranya.

Selain membentuk jalur sumber gempa, subduksi lempeng Australia terhadap lempeng Sunda juga menghasilkan zona pelelehan yang memproduksi magma. Di kepulauan Sunda Kecil, zona sumber magma itu berada di kedalaman 165 hingga 200 kilometer. Magma yang terbentuk dari kedalaman ini lantas bermigrasi ke atas, menuju bagian kerak bumi tertentu yang berperan sebagai dapur magma. Dari sana magma yang terkumpul kemudian berjuang kembali hingga menyeruak ke paras Bumi sebagai gunung berapi. Aktivitas gunung berapi di kawasan ini dimulai pada 450 ribu tahun silam dengan tumbuhnya Gunung Sembalun di bagian timur. Gunung Rinjani seperti yang kita lihat saat ini tumbuh lebih kemudian, mungkin baru muncul sekitar 12.000 tahun silam.

Gambar 4. Rekonstruksi tubuh gunung berapi kembar Rinjani-Samalas yang dilakukan tim peneliti gabungan Indonesia-Perancis. Gunung Rinjani-Samalas nampak memiliki dua puncak, yakni Puncak Rinjani (elevasi 3.726 meter dpl) dan Puncak Samalas (elevasi 4.200 +/- 100 meter dpl). Eks puncak Samalas kini ditempati oleh kaldera Segara Anak dengan dua kerucut gunung berapi anaknya (Barujari dan Mas). Sumber: Lavigne dkk, 2013.

Gambar 4. Rekonstruksi tubuh gunung berapi kembar Rinjani-Samalas yang dilakukan tim peneliti gabungan Indonesia-Perancis. Gunung Rinjani-Samalas nampak memiliki dua puncak, yakni Puncak Rinjani (elevasi 3.726 meter dpl) dan Puncak Samalas (elevasi 4.200 +/- 100 meter dpl). Eks puncak Samalas kini ditempati oleh kaldera Segara Anak dengan dua kerucut gunung berapi anaknya (Barujari dan Mas). Sumber: Lavigne dkk, 2013.

Bentuk tubuh Gunung Rinjani saat ini mengesankan ia terlalu besar bagi sebuah gunung berapi tunggal. Itu benar. Gunung Rinjani lebih merupakan gunung berapi kembar, yakni dua gunung berapi yang saling bersebelahan dan memiliki satu sumber pasokan magma yang sama. Kembaran Rinjani tumbuh di sisi baratnya, di tempat yang kini menjadi Danau Segara Anak. Catatan sejarah dalam Babad Lombok mengindikasikan kembaran Rinjani bernama Gunung Samalas. Rekonstruksi topografis yang dilakukan oleh tim peneliti gabungan Indonesia-Perancis memperlihatkan puncak Samalas memiliki elevasi 4.300 +/- 100 meter dpl. Kedua gunung berapi tersebut nampaknya bertumbuh bersama-sama hingga cukup besar, hingga akhirnya bagian bawah kedua tubuhnya pun menyatu. Sehingga secara keseluruhan gunung berapi besar itu dapat disebut sebagai Gunung Rinjani-Samalas. Fenomena serupa sempat pula terjadi pada Gunung Krakatau sebelum peristiwa tahun 1883 TU. Saat itu pun Gunung Krakatau sejatinya adalah tubuh gunung Rakata, Danan dan Perbuwatan yang menjadi satu.

Jika pernah ada Gunung Samalas di sisi barat Gunung Rinjani, mengapa wajahnya bisa berubah total menjadi kaldera Segara Anak seperti saat ini? Salah satu jawabannya terdapat di Babad Lombok. Dalam bentuk puisi, bagian babad ini berkisah tentang peristiwa mengerikan terkait Gunung Samalas pada tujuh abad silam.

Letusan Samalas 1257

Gunung Rinjani longsor dan Gunung Samalas runtuh, banjir batu gemuruh, menghancurkan Desa Pamatan, rumah-rumah rubuh dan
hanyut terbawa lumpur, terapung-apung di lautan, penduduknya banyak yang mati (baris 274).

Tujuh hari lamanya, gempa dahsyat meruyak bumi, terdampar di Leneng (Lenek), diseret oleh batu gunung yang hanyut, manusia berlari semua, sebahagian lagi naik ke bukit (baris 275).

Bersembunyi di Jeringo, semua mengungsi sisa kerabat raja, berkumpul mereka di situ, ada yang mengungsi ke Samulia, Borok, Bandar, Pepumba dan Pasalun, Serowok, Piling, dan Ranggi, Sembalun, Pajang dan Sapit (baris 276).

Di Nangan dan Palemoran, batu besar dan gelundungan tanah, duri dan batu menyan, batu apung dan pasir, batu sedimen granit, dan batu cangku, jatuh di tengah daratan, mereka mengungsi ke Brang batun (baris 277).

Ada ke Pundung, Buak, Bakang, Tana’ Bea, Lembuak, Bebidas, sebagian ada mengungsi ke bumi Kembang, Kekrang, Pengadangan dan Puka hate-hate lungguh, sebagian ada yang sampai, datang ke Langko, Pejanggik (baris 278).

Semua mengungsi dengan ratunya, berlindung mereka di situ, di Lombok tempatnya diam, genap tujuh hari gempa itu, lalu membangun desa, di tempatnya masing-masing (baris 279).

Baris-baris di atas adalah bagian Babad Lombok yang telah diterjemahkan, dari aslinya berbahasa Jawa Kawi (Jawa Kuno) menjadi bahasa Indonesia. Tanpa perlu menafsirkan lebih lanjut, terlihat jelas bahwa sesuatu terjadi pada Gunung Rinjani-Samalas. Yakni meletusnya puncak Samalas hingga membanjirkan batu-batu besar beraneka ragam jenis dan ukuran serta lumpur. Sementara puncak Rinjani longsor. Peristiwa itu terjadi bersamaan dengan gempa dahsyat selama tujuh hari berturut-turut. Gempa tersebut jelas gempa vulkanik dan jika demikian keras maka letusan Gunung Samalas saat itu tentu sangat besar. Tak heran jika terbentuk kaldera Segara Anak.

Gambar 5. Tebing curam yang tersusun dari timbunan pasir di pantai Luk, pulau Lombok bagian utara. Inilah salah satu jejak kedahsyatan Letusan Samalas 1257 pada tujuh setengah abad silam. Tebing curam setebal 35 meter ini sejatinya sisa dari endapan awan panas Letusan Samalas 1257 yang demikian melimpah. Di titik pantai Luk inilah awan panas memasuki perairan Laut Bali dan menerbitkan tsunami. Sumber: Lavigne dkk, 2013.

Gambar 5. Tebing curam yang tersusun dari timbunan pasir di pantai Luk, pulau Lombok bagian utara. Inilah salah satu jejak kedahsyatan Letusan Samalas 1257 pada tujuh setengah abad silam. Tebing curam setebal 35 meter ini sejatinya sisa dari endapan awan panas Letusan Samalas 1257 yang demikian melimpah. Di titik pantai Luk inilah awan panas memasuki perairan Laut Bali dan menerbitkan tsunami. Sumber: Lavigne dkk, 2013.

Catatan Babad Lombok didukung melimpahnya bukti terjadinya letusan sangat besar, yang berserakan di sekujur pulau Lombok. Di desa Sedau yang berjarak 22 kilometer sebelah barat daya kaldera, terdapat dinding terjal didominasi pasir yang menjulang setinggi 20 meter dari dasar. Dalam dinding ini banyak dijumpai fragmen batuan beku beragam ukuran dan potongan batu apung. Jelas dinding pasir ini merupakan endapan awan panas (piroklastika). Dinding pasir sejenis, bahkan dengan ketinggian hingga 35 meter, dijumpai di pantai Luk, yang berjarak 25 kilometer sebelah barat laut kaldera. Bahkan 30 kilometer sebelah tenggara kaldera, bersisian dengan selat Alas (batas pulau Lombok dan Sumbawa) pun dijumpai endapan sejenis dengan tebal 30 meter. Jelas endapan-endapan tersebut berasal dari aliran awan panas dalam volume sangat besar, ciri khas produk letusan dahsyat. Tengara letusan dahsyat itu juga terlihat dari temuan butir-butir batuapung dalam endapan awan panas. Batuapung yang berlimpah adalah indikator sebuah letusan dahsyat.

Gambar 6. Peta sebaran awan panas Letusan Samalas 1257 di pulau Lombok. Tanda panah menunjukkan jejak pergerakan material awan panas, seperti masih tersisa pada butir-butir batuapung didalamnya. Titik hitam berangka menunjukkan lokasi singkapan endapan awan panas di masa kini berikut ketebalannya (dalam meter). Sementara titik merah menunjukkan lokasi pengambilan perconto (sampel) arang kayu untuk pertanggalan radioaktif. Seluruh perconto konsisten berasal dari tahun 1257 TU. Sumber: Lavigne dkk, 2013.

Gambar 6. Peta sebaran awan panas Letusan Samalas 1257 di pulau Lombok. Tanda panah menunjukkan jejak pergerakan material awan panas, seperti masih tersisa pada butir-butir batuapung didalamnya. Titik hitam berangka menunjukkan lokasi singkapan endapan awan panas di masa kini berikut ketebalannya (dalam meter). Sementara titik merah menunjukkan lokasi pengambilan perconto (sampel) arang kayu untuk pertanggalan radioaktif. Seluruh perconto konsisten berasal dari tahun 1257 TU. Sumber: Lavigne dkk, 2013.

Selain endapan awan panas, pertanda lainnya dari letusan dahsyat Samalas juga nampak dari sebaran tefranya, yakni fragmen material produk letusan yang berjatuhan dari udara dan tak menyatu menjadi batu. Tefra letusan Samalas menyelubungi pulau Lombok dan bahkan sisi timur pulau Bali. Ketebalannya rata-rata dua kali lipat dari tefra produk Letusan Tambora 1815. Di tempat yang kini menjadi kota Mataram pada saat itu bahkan dihujani tefra hingga membentuk lapisan setebal 70 centimeter.

Berdasarkan pengukuran pertanggalan karbin radioaktif pada balok-balok kayu yang mengarang (menjadi arang) di dalam endapan awan panas, dapat ditentukan bahwa letusan dahsyat tersebut terjadi pada tahun 1257 TU. Sebaran tefra yang lebih banyak mengarah ke barat menjadi indikasi bahwa pada saat itu angin regional berhembus ke arah barat. Sehingga letusan itu terjadi pada musim kemarau. Lebih persisnya lagi letusan dahsyat tersebut, yang untuk selanjutnya dinamakan Letusan Samalas 1257, terjadi dalam waktu kapan saja di antara Mei hingga Oktober 1257 TU.

Seberapa dahsyat letusan tersebut?

Sebuah tim peneliti gabungan Indonesia-Perancis telah meneliti aspek-aspek Letusan Samalas 1257. Dipimpin oleh Franck Lavigne, di dalam tim gabungan ini terdapat beberapa vulkanolog papan atas Indonesia. Seperti Surono atau lebih akrab dengan nama Mbah Rono (saat itu masih menjabat Kepala PVMBG) dan Indyo Pratomo (dari Museum Geologi Bandung). Atas kerja keras merekalah kini kita tahu apa yang terjadi pada Gunung Rinjani-Samalas pada 1257 TU itu.

Letusan Samalas 1257 adalah letusan gunung berapi dengan kedahsyatan tak terperi dan tak pernah terbayangkan sebelumnya. Letusan dahsyat ini menyemburkan debu vulkanik teramat pekat secara vertikal hingga membentuk kolom hitam raksasa mirip tangan sangat besar seakan hendak meninju langit. Puncak kolom debu vulkanik pekat ini menjangkau ketinggian antara 34 hingga 52 kilometer dpl. Pada ketinggian ini debu vulkanik pekat itu lantas melebar ke samping. Sehingga secara keseluruhan kini terbentuk pemandangan menyerupai cendawan/payung raksasa, salah satu ciri khas dalam letusan-letusan dahsyat gunung berapi. Yakni letusan berskala 4 VEI (Volcanic Explosivity Index) atau lebih. Beberapa waktu kemudian, awan cendawan ini pun meluruh, jatuh kembali ke Bumi oleh tarikan gravitasi. Material letusan yang berjatuhan inilah yang kemudian melampar ke segala arah di paras Bumi sebagai awan panas.

Gambar 7. Peta sebaran debu vulkanik produk Letusan Samalas 1257 di pulau Lombok. Garis-garis menunjukkan kontur ketebalan endapan debu vulkanik (dalam centimeter). Titik-titik putih menunjukkan lokasi singkapan endapan debu vulkanik di masa kini yang digunakan untuk merekonstruksi kontur ketebalan debu vulkanik. Sumber: Lavigne dkk, 2013.

Gambar 7. Peta sebaran debu vulkanik produk Letusan Samalas 1257 di pulau Lombok. Garis-garis menunjukkan kontur ketebalan endapan debu vulkanik (dalam centimeter). Titik-titik putih menunjukkan lokasi singkapan endapan debu vulkanik di masa kini yang digunakan untuk merekonstruksi kontur ketebalan debu vulkanik. Sumber: Lavigne dkk, 2013.

Awan panas Letusan Samalas 1257 sebagian besar membanjir ke utara, meluncur jauh hingga lebih dari 20 kilometer untuk kemudian tercebur ke Laut Bali. Sementara sisanya memilih mengalir ke selatan untuk kemudian bercabang dua. Satu cabang berbelok ke barat daya dan menjalar hingga sejauh 40 kilometer lebih sebelum kemudian memasuki Selat Lombok. Apa yang kini menjadi kota Mataram, pada saat itu adalah salah satu jalur lintasan awan panas Letusan Samalas 1257 dengan ketebalan bermeter-meter yang menjadi bagian cabang barat daya ini. Dan cabang kedua berbelok ke tenggara dan mengalir sejauh lebih dari 30 kilometer lantas masuk ke Selat Alas. Sebelum tercebur ke perairan Selat Alas, awan panas cabang tenggara ini melintasi apa kini menjadi kota Selong, ibukota Kabupaten Lombok Timur. Di sini pun ketebalan awan panas itu masih berpuluh meter.

Baik di Laut Bali, Selat Lombok maupun Selat Alas, terceburnya material awan panas ke dalam perairan-perairan tersebut dalam volume yang sangat besar menghasilkan olakan air laut yang tak kalah besarnya. Olakan inilah yang menjalar sebagai tsunami. Tsunami inilah salah satu kekhasan Letusan Samalas 1257, meski fenomena serupa yang juga teramati dalam Letusan Tambora 1815 berabad kemudian. Berbeda dengan Gunung Krakatau, Gunung Rinjani-Samalas berdiri di tengah-tengah daratan dan jauh dari pesisir. Tapi oleh letusannya yang demikian dahsyat hingga memuntahkan rempah letusan dalam volume sangat besar, maka awan panas yang diproduksinya pun sangat berlimpah. Akibatnya awan panas itu sanggup menjalar jauh dan memasuki perairan dalam volume yang masih cukup besar. Karena volume awan panasnya lebih besar, tsunami Letusan Samalas 1257 mungkin juga lebih besar ketimbang yang dihasilkan Letusan Tambora 1815. Namun sebagai longsoran material yang memasuki perairan, tsunami Letusan Samalas 1257 pun takkan menjalar terlalu jauh dari perairan Laut Bali. Meski mungkin masih sanggup menghasilkan kerusakan signifikan dan merenggut korban jiwa terutama di pesisir pulau Jawa bagian utara serta pulau Kalimantan dan pulau Sulawesi bagian selatan.

Selain menghempaskan awan panas, Letusan Samalas 1257 juga menyemburkan debu vulkanik dalam jumlah yang tak kalah banyak. Sekujur pulau Lombok pun berubah abu-abu dibedaki debu. Ketebalan endapan debu vulkanik bervariasi antara 20 hingga lebih dari 90 centimeter. Bahkan pulau Bali sisi timur pun tak lepas tertimbuni debu hingga setebal 10 centimeter. Sementara sebagian pulau Jawa dibedaki debu vulkanik setebal antara 1 hingga 5 centimeter. Hembusan angin regional dari timur menyebabkan debu vulkanik lebih banyak ditebarkan ke arah barat dari pulau Lombok. Namun dengan tingginya kolom debu vulkanik yang terinjeksi ke langit serta sangat besarnya volume magma yang dimuntahkan, praktis menjadikan rempah letusan memasuki lapisan stratosfer. Untuk selanjutnya ia pun terdistribusikan oleh arus-arus udara didalamnya hingga akhirnya menyelimuti hampir sekujur ruang udara Bumi.

Gambar 8. Batang kayu yang telah mengarang (menjadi arang) di dalam singkapan pasir yang adalah endapan awan panas Letusan Samalas 1257, tersingkap di tepi sungai Luk, pulau Lombok bagian utara. Proses pengarangan batang kayu ini terjadi bersamaan dengan terjangan awan panas Letusan Samalas 127 yang bersuhu tinggi. Arang ini dijumpai dalam ekspedisi Badan geologi ke Gunung Rinjani pada 2014 TU silam. Sumber: Oki Oktariadi, 2014, komunikasi pribadi.

Gambar 8. Batang kayu yang telah mengarang (menjadi arang) di dalam singkapan pasir yang adalah endapan awan panas Letusan Samalas 1257, tersingkap di tepi sungai Luk, pulau Lombok bagian utara. Proses pengarangan batang kayu ini terjadi bersamaan dengan terjangan awan panas Letusan Samalas 127 yang bersuhu tinggi. Arang ini dijumpai dalam ekspedisi Badan geologi ke Gunung Rinjani pada 2014 TU silam. Sumber: Oki Oktariadi, 2014, komunikasi pribadi.

Tim peneliti gabungan menemukan volume debu vulkanik yang mengguyur pulau Lombok dan sekitarnya berkisar antara 5,6 hingga 7,6 kilometer kubik, yang setara dengan 2 hingga 2,8 kilometer material sepadat batuan atau DRE (dense rock equivalent). Sementara volume awan panasnya yang melampar di daratan mencapai 14,5 kilometer kubik, setara dengan 8 kilometer kubik material sepadat batuan. Itu hampir tiga kali lipat lebih banyak ketimbang volume awan panas Letusan Tambora 1815. Tim juga menemukan Letusan Samalas 1257 juga membuat puncak Samalas (dengan volume sekitar 15,4 kilometer kubik material sepadat batuan) terpangkas habis. Sebagai gantinya adalah sebuah kawah raksasa atau kaldera yang memiliki volume sekitar 18,4 kilometer kubik material sepadat batuan, Di dalam kaldera ini tersekap rempah letusan sebanyak 3,7 kilometer kubik material sepadat batuan. Mereka terlalu berat sehingga tak sanggup terlontar jauh. Selain itu ditemukan pula bahwa Letusan Samalas 1257 berpengaruh besar terhadap puncak Rinjani. Yakni menyebabkan lereng puncak sektor barat rontok sebagai letusan lateral, memuntahkan sekitar 2,5 kilometer kubik material sepadat batuan.

Bila segenap kaldera Segara Anak beserta isinya dan kawah tapalkuda Rinjani merupakan ekspresi paras Bumi dari pengeluaran magma besar-besaran dalam Letusan Samalas 1257, maka letusan itu menghamburkan sekurangnya 40 kilometer kubik magma sepadat batuan. Sebagai pembanding, Letusan Tambora 1815 menyemburkan 33 kilometer kubik magma sepadat batuan. Jika volume rempah letusan (non-sepadat batuan) dari Tambora adalah sekitar 160 kilometer kubik, maka dengan anggapan bahwa densitas (massa jenis) magma Samalas serupa Tambora, Letusan Samalas 1257 menghamburkan tak kurang dari 195 kilometer kubik magma. Dengan demikian Letusan Samalas 1257 menjadi letusan terdahsyat yang pernah terjadi di paras Bumi dalam kurun 7.000 tahun terakhir. Ia juga menumbangkan rekor yang semula dipegang Gunung Tambora dengan kukuh. Skala letusan Samalas ini adalah 7 VEI. Volume magma yang dimuntahkan Letusan Samalas 1257 sekaligus menjadikan Letusan Krakatau 1883 (20 kilometer kubik) terasa begitu kerdil. Tim peneliti gabungan tersebut juga menemukan bahwa dalam puncak kedahsyatannya, Letusan Samalas 1257 menyemburkan tak kurang dari 1,1 juta ton magma sepadat batuan per detik. Massa total magma yang dilepaskan mencapai tak kurang dari 99 milyar ton.

Tim peneliti gabungan Indonesia-Perancis itu menggarisbawahi bahwa volume magma Letusan Samalas 1257 yang mereka simpulkan sejatinya hanyalah volume minimal. Mereka belum memperhitungkan seberapa banyak awan panas yang masuk ke dalam laut. Juga seberapa banyak debu yang tersebar hingga jarak yang sangat jauh dari Gunung Rinjani-Samalas. Sebagai pembanding, dalam Letusan Tambora 1815, dari 33 kilometer kubik magma sepadat batuan yang dimuntahkan sebanyak 26,2 kilometer kubik (sepadat batuan) diantaranya merupakan debu vulkanik yang tersebar sangat jauh.

Gambar 9. Salah satu singkapan tefra Letusan Samalas 1257 yang terletak di Gunungsari, sebelah utara kota Mataram (lokasi nomor 9 dalam peta). Jejak kedahsyatan letusan tersebut tertera di sini, sebagai endapan pasir dan batuapung berlapis tiga (masing-masing ditandai sebagai F1, F2 dan F3). Menandakan sedikitnya terjadi tiga erupsi bertipe Plinian. Sumber Lavigne dkk, 2013.

Gambar 9. Salah satu singkapan tefra Letusan Samalas 1257 yang terletak di Gunungsari, sebelah utara kota Mataram (lokasi nomor 9 dalam peta). Jejak kedahsyatan letusan tersebut tertera di sini, sebagai endapan pasir dan batuapung berlapis tiga (masing-masing ditandai sebagai F1, F2 dan F3). Menandakan sedikitnya terjadi tiga erupsi bertipe Plinian. Sumber Lavigne dkk, 2013.

Berdasarkan eksistensi kristal-kristal plagioklas yang tersisipi kristal silika ter-rehomogenisasi, tim memperkirakan suhu magma Letusan Samalas 1257 sebesar 1.000° Celcius. Dengan demikian dapat diperkirakan bahwa Letusan Samalas 1257 melepaskan energi termal sebesar tak kurang dari 39.000 megaton TNT. Sebagai ilustrasi untuk menggambarkan betapa besarnya energi letusan ini, kumpulkan 1,95 juta butir bom nuklir sekelas Little Boy yang menghancurkan Hiroshima di akhir Perang Dunia 2 di satu tempat. Lalu ledakkanlah bersama-sama. Sebesar itulah energi termal Letusan Samalas 1257. Sebagai pembanding lagi, Letusan Tambora 1815 melepaskan energi ‘hanya’ sebesar 27.000 megaton TNT.

Zaman Es Kecil

Dampak langsung Letusan Samalas 1257 terkisah dalam Babad Lombok, dimana Pamatan (ibukota kerajaan Lombok) dihancurkan oleh letusan tersebut. Jika mengacu pada apa yang terjadi pada kerajaan-kerajaan di pulau Sumbawa saat berhadapan dengan Letusan Tambora 1815 berabad kemudian, jelas kematian besar-besaran terjadi pada penduduk di pulau Lombok dan (sebagian) pulau Bali. Dapat dikatakan bahwa telah terjadi kematian penduduk dalam jumlah besar-besaran di Lombok dan Bali. Ini membuat struktur organisasi kehidupan masyarakat menjadi hancur. Sehingga ditengarai membuat Kertanegara tak kesulitan menguasai Bali dan Lombok kala menggerakkan balatentara Singhasari menggempur wilayah ini pada 1284 TU.

Gambar 10. Simulasi dampak global Letusan Samalas 1257 dalam bentuk penurunan suhu rata-rata per region (berdasarkan dua model). Sumbu datar (horizontal) menunjukkan angka tahun, sementara sumbu tegak (vertikal) menunjukkan garis-garis lintang (N untuk Lintang Utara dan S untuk Lintang Selatan). Meski penurunan suhu rata-rata global akibat letusan dahsyat ini berkisar 1° Celcius di bawah normal, namun bagi region lingkar kutub utara bisa mencapai 6° Celcius di bawah normal. Sumber: Schneider dkk, 2008.

Gambar 10. Simulasi dampak global Letusan Samalas 1257 dalam bentuk penurunan suhu rata-rata per region (berdasarkan dua model). Sumbu datar (horizontal) menunjukkan angka tahun, sementara sumbu tegak (vertikal) menunjukkan garis-garis lintang (N untuk Lintang Utara dan S untuk Lintang Selatan). Meski penurunan suhu rata-rata global akibat letusan dahsyat ini berkisar 1° Celcius di bawah normal, namun bagi region lingkar kutub utara bisa mencapai 6° Celcius di bawah normal. Sumber: Schneider dkk, 2008.

Namun dampak global letusan dahsyat inilah yang menggetarkan dunia. Seperti halnya letusan-letusan dahsyat gunung berapi lainnya, Letusan Samalas 1257 pun berdampak serius. Awan panasnya memang sebatas melumuri pulau Lombok dalam bara, dengan sebagian diantaranya tercebur ke laut dan melimburkan tsunami. Namun debu vulkaniknya mencekik dunia. Demikian halnya dengan gas Belerang (sulfurdiosida)-nya yang disemburkan ke udara. Diperkirakan Letusan Samalas 1257 menyemburkan tak kurang dari 55 juta ton gas sulfurdioksida. Di atmofer, gas belerang ini segera bereaksi dengan butir-butir uap air hingga membentuk aerosol asam sulfat. Diperkirakan massa aerosol asam sulfat tersebut tak kurang dari 370 juta ton. Bersama debu vulkanik, eksistensi aerosol asam sulfat dalam lapisan stratosfir membentuk sejenis tabir surya alamiah. Ia mereduksi kuantitas cahaya Matahari yang seharusnya tiba di paras Bumi. Sebagai akibatnya reaksi berantai dampak global Letusan Samalas 1257 pun terpantik.

Berkurangnya intensitas cahaya Matahari yang diterima Bumi membuat suhu udara rata-rata paras Bumi menurun. Imbasnya, tingkat penguapan air pun ikut menurun. Sehingga cuaca menjadi kacau-balau. Di sisi lain tutupan salju dan es meluas. Akibatnya tanaman pangan yang sensitif terhadap perubahan suhu pun sangat terpengaruh. Produksi pangan merosot drastis. Kelaparan pun melanda. Di saat bersamaan, sanitasi memburuk khususnya di kawasan yang diguyur hujan lebih deras dari normal. Bibit penyakit pun mulai berpesta pora. Dikombinasikan dengan udara yang mendingin, maka penyakit pun bergentayangan kian jauh hingga melampaui wilayah tradisionalnya. Inilah mimpi terburuk yang harus dihadapi dunia kala berhadapan dengan sebuah letusan dahsyat gunung berapi, horor yang lebih dikenal dengan nama musim dingin vulkanis.

Musim dingin vulkanis Letusan Samalas 1257 nan dahsyat terekspresikan dari berkurangnya intensitas penyinaran Matahari hingga 11,5 watt per meter persegi di bawah normalnya. Konsekuensinya suhu rata-rata paras Bumi menurun hingga hampir 1° Celcius di bawah normal. Nilai tersebut adalah penurunan suhu rata-rata global. Karena paras Bumi terdiri dari region berbeda-beda mulai tropis, subtropis hingga lingkar kutub, maka penurunan suhu paras Bumi di tiap region sejatinya berbeda-beda. Secara umum dapat dikatakan bahwa kian menjauh dari garis khatulistiwa maka nilai penurunan suhu paras Bumi akan kian lebih besar dibanding rata-rata global. Sehingga region subtropis dan kutub mengalami penurunan suhu jauh lebih besar ketimbang 1° Celcius. Ini menjadi pemicu berbagai anomali cuaca dalam satu bagian episode anomali iklim yang kerap disebut sebagai zaman es kecil.

Gambar 11. Simulasi dampak global Letusan Samalas 1257 dalam bentuk anomali curah hujan global (berdasarkan satu model). Sumbu datar (horizontal) menunjukkan garis-garis bujur (E untuk Bujur Timur dan W untuk Bujur Barat). Sementara sumbu tegak (vertikal) menunjukkan garis-garis lintang (N untuk Lintang Utara dan S untuk Lintang Selatan). Terlihat kecuali sebagian Afrika dan Amerika Selatan, hampir segenap daratan mengalami penurunan curah hujan. Sumber: Schneider dkk, 2008.

Gambar 11. Simulasi dampak global Letusan Samalas 1257 dalam bentuk anomali curah hujan global (berdasarkan satu model). Sumbu datar (horizontal) menunjukkan garis-garis bujur (E untuk Bujur Timur dan W untuk Bujur Barat). Sementara sumbu tegak (vertikal) menunjukkan garis-garis lintang (N untuk Lintang Utara dan S untuk Lintang Selatan). Terlihat kecuali sebagian Afrika dan Amerika Selatan, hampir segenap daratan mengalami penurunan curah hujan. Sumber: Schneider dkk, 2008.

Catatan-catatan dari Eropa masa itu menggambarkan betapa dahsyat situasi yang mendera kawasan pasca 1257 TU. Hujan deras salah musim yang mengguyur sepanjang musim panas dan gugur tahun 1257 dan 1258 TU menghancurkan lahan pertanian di Inggris, Jerman bagian barat, Perancis dan Italia bagian utara. Kelaparan pun merajalela. Inggris paling terpukul oleh bencana kelaparan ini. Para petani yang mengalami gagal panen memilih pergi ke London bersama keluarganya, dalam upaya putus asa untuk mendapatkan bahan makanan. Korban jiwa pun berjatuhan. Sedemikian parahnya bencana kelaparan di Inggris, sehingga Richard of Cornwall (raja Jerman) berinisiatif mengumpulkan gandum dari tanah Jerman dan Belanda untuk disumbangkan ke Inggris. Senyampang Jerman sendiri juga sedang diterpa kesulitan. Bencana kelaparan dalam skala yang lebih kecil juga merajalela di Perancis dan Italia bagian utara. Harga bahan makanan meroket luar biasa. Di luar Eropa, bencana kelaparan tercatat juga berkecamuk di kawasan Asia Barat, tepatnya di Irak, Suriah dan Turki tenggara. Bencana kelaparan ini dihubung-hubungkan pula dengan invasi Mongol (di bawah pimpinan Hulagu Khan) ke kawasan ini, yang berujung pada tergulingnya Dinasti Abbasiyah.

Selain bencana kelaparan, bibit penyakit pun merebak seiring menurunnya sanitasi lingkungan akibat suhu rata-rata yang menurun dari normal ditunjang deraan hujan deras berkepanjangan. Penyakit menular bergentayangan di antara kawanan hewan ternak seperti domba, yang memperparah derajat kelaparan. Penyakit menular pun merajalela di kalangan rakyat jelata dan merenggut nyawa. Hingga April 1259 TU, wabah penyakit diketahui telah berkecamuk hebat di London (Inggris), Paris dan bagian Perancis lainnya, Italia serta Austria. Wabah penyakit itu memiliki sejumlah gejala yang mirip epidemi influenza, namun apa yang sebenarnya menjangkiti umat manusia saat itu belum diketahui dengan pasti.

Selain dari catatan-catatan tersebut, jejak kedahsyatan Letusan Samalas 1257 juga terekam dalam lapisan-lapisan es di lingkar kutub, baik di kutub utara maupun selatan. Pengeboran-pengeboran di padang es yang terletak di pulau Greeenland, Arktika Kanada dan Antartika memperlihatkan adanya konsentrasi asam sulfat sangat tinggi dalam lapisan es yang berasal dari sekitar tahun 1258 TU. Asam sulfat tersebut mengandung jejak-jejak penanda yang sama dengan aerosol asam sulfat produk letusan dahsyat gunung berapi. Konsentrasi asam sulfatnya cukup tinggi, dua kali lebih tinggi ketimbang asam sulfat produk Letusan Tambora 1815 dan delapan kali lebih tinggi dari asam sulfat produk Letusan Krakatau 1883 yang ada di inti pengeboran (core) yang sama. Melimpahnya asam sulfat vulkanis pada lapisan es yang berasal dari sekitar tahun 1258 TU telah diketahui sejak lama sekaligus memastikan bahwa lokasi gunung berapi yang meletus dahsyat terletak di region tropis.

Sebelum 2013 TU sempat muncul dugaan bahwa gunung berapi penyebab anomali cuaca dan limpahan asam sulfat itu adalah Gunung Harrah Rahat (Saudi Arabia) melalui Letusan Rahat 1256. Namun dengan volume magma Letusan Rahat 1256 ‘hanya’ setengah kilometer kubik, dampak yang ditimbulkannya takkan mengglobal. Kandidat berikutnya adalah Gunung el Chichon (Meksiko), yang diketahui meletus pada rentang waktu kapan saja di antara tahun 1260 hingga 1460 TU, berdasarkan pertanggalan radioaktif. Namun Letusan el Chichon ini pun meragukan, karena diperkirakan memiliki skala letusan ‘hanya’ 5 VEI, yang setara pengeluaran magma antara 1 hingga 10 kilometer kubik saja. Dengan kata lain Letusan el Chichon saat itu lebih lemah ketimbang Letusan Krakatau 1883. Padahal konsentrasi asam sulfat yang ditemukan pada lapisan es dari sekitar tahun 1258 TU adalah delapan kali lebih besar ketimbang yang dihasilkan Letusan Krakatau 1883.

Gambar 12. Kombinasi data yang menunjukkan jejak-jejak Letusan Samalas 1257 dalam lembaran es di kutub utara (diwakili Greenland) dan kutub selatan (Antartika). Terlihat konsentrasi sulfat yang sangat tinggi baik di kutub utara maupun selatan. Juga terlihat terjadinya penurunan intensitas sinar Matahari yang diterima paras Bumi pasca Letusan Samalas 1257. Sumber: Schneider dkk, 2008.

Gambar 12. Kombinasi data yang menunjukkan jejak-jejak Letusan Samalas 1257 dalam lembaran es di kutub utara (diwakili Greenland) dan kutub selatan (Antartika). Terlihat konsentrasi sulfat yang sangat tinggi baik di kutub utara maupun selatan. Juga terlihat terjadinya penurunan intensitas sinar Matahari yang diterima paras Bumi pasca Letusan Samalas 1257. Sumber: Schneider dkk, 2008.

Kombinasi bencana kelaparan dan wabah penyakit jelas merenggut banyak korban jiwa. Ekskavasi arkeologis di Spitalfields, London (Inggris) saja mengungkap ratusan kerangka manusia yang seluruhnya tewas hanya dalam setahun pasca Letusan Samalas 1257. Inilah salah satu bukti dahsyatnya bencana kelaparan dan wabah penyakit tersebut. Meski begitu seberapa besar jumlah korban jiwanya dalam lingkup global takkan pernah bisa diketahui. Sebagai pembanding, dampak langsung Letusan Tambora 1815 merenggut sekitar 71.000 jiwa. Namun dampak tak langsungnya menelan tak kurang dari sejuta korban jiwa secara global. Letusan Samalas 1257 mungkin merenggut korban lebih besar lagi.

Letusan Rinjani 2015

Kini, tujuh setengah abad kemudian, Gunung Rinjani kembali menggeliat. PVMBG mencatat intensitas letusan memperlihatkan kecenderungan menguat sejak 2 November 2015 TU tengah hari. Gempa tremor menerus terjadi sepanjang 2 hingga 5 November 2015 TU, mengindikasikan letusan terjadi secara terus-menerus pada saat itu. Selain membumbungkan debu vulkanik, puncak Barujari juga melelehkan lava pijar ke arah timur laut. Namun sejauh ini bongkahan batu, kerikil dan pasir dalam rempah letusan masih berjatuhan di sekujur tubuh kerucut Barujari saja.

Dengan semua fakta tersebut, akankah letusan Rinjani kali ini berkembang membesar? Akankah ia berkembang menjadi sedahsyat Letusan Kelud 2014? Atau bahkan akankah letusan ini berkembang lebih jauh lagi hingga menyamai leluhurnya tujuh setengah abad silam dalam Letusan Samalas 1257 yang demikian dahsyat?

Jawaban singkatnya, tidak. Lebih teknisnya, peluang ke arah letusan yang lebih besar adalah kecil. Sementara peluang terjadinya letusan dahsyat adalah sangat kecil.

Gambar 13. Grafik RSAM Gunung Rinjani dalam periode 27 Oktober hingga 5 November 2015 TU. Sumbu datar (horizontal) menunjukkan tanggal sementara sumbu tegak (vertikal) menunjukkan energi letusan (tanpa satuan). Terlihat ada peningkatan energi letusan semenjak 2 November 2015 TU, namun setelah itu berfluktuasi. Sumber: PVMBG, 2015.

Gambar 13. Grafik RSAM Gunung Rinjani dalam periode 27 Oktober hingga 5 November 2015 TU. Sumbu datar (horizontal) menunjukkan tanggal sementara sumbu tegak (vertikal) menunjukkan energi letusan (tanpa satuan). Terlihat ada peningkatan energi letusan semenjak 2 November 2015 TU, namun setelah itu berfluktuasi. Sumber: PVMBG, 2015.

Mengapa? Aktivitas Gunung Rinjani pada saat ini terpusat di kerucut Barujari dalam kaldera Segara Anak. Aktivitas semacam ini merupakan ciri khas aktivitas pascakaldera, yakni aktivitas vulkanik yang tumbuh berkembang setelah letusan dahsyat yang membentuk kaldera. Aktivitas pascakaldera ditandai dengan munculnya lubang letusan di dasar/tepi kaldera sebuah gunung berapi. Darinya tersembur rempah-rempah letusan dari erupsi berenergi lemah sehingga tertimbun di sekeliling lubang letusan. Lambat laun timbunan rempah-rempah letusan itu membentuk kubah/kerucut vulkanis yang kian lama kian membesar. Kerucut vulkanis dalam kaldera acap disebut sebagai gunung berapi anak. Inilah ciri khas itu, aktivitas pascakaldera hampir selalu berupa aktivitas vulkanik membangun. Yakni membangun tubuh sebuah gunung berapi baru. Bukan jenis aktivitas vulkanik yang merusak.

Aktivitas yang membangun itu bakal terus berlangsung, membuat tubuh gunung berapi anak kian bongsor saja. Hingga akhirnya ia akan begitu meraksasa, menyamai atau bahkan malah melampaui ukuran induknya. Inilah titik balik dimana gunung berapi tersebut akan berubah, dari semula ber-aktivitas membangun menjadi merusak. Pada momen inilah letusan besar atau bahkan letusan dahsyat berkemungkinan terjadi. Terlebih jika induk gunung berapi tersebut pernah memiliki sejarah letusan dahsyat di masa silam, yang ditandai dengan eksistensi kaldera.

Jika mengacu pola tersebut, letusan Rinjani saat ini masih tergolong sebagai aktivitas vulkanik membangun. Kerucut Barujari dan Mas yang ada di dalam kaldera Segara Anak sejatinya merupakan gunung berapi anak. Sepanjang sejarahnya (terhitung semenjak 1847 TU), aktivitas vulkanik di kerucut Barujari terbatasi hanya pada letusan-letusan berskala antara 0 hingga 2 VEI. Satu-satunya letusan yang lebih besar adalah Letusan Rinjani 1994 yang berskala 3 VEI, atau memuntahkan magma di antara 10 hingga 100 juta meter kubik. Sedangkan aktivitas vulkanik yang merusak pada umumnya ditandai dengan letusan berskala minimal 4 VEI, atau minimal memuntahkan 100 juta meter kubik magma. Contoh letusan berskala 4 VEI misalnya Letusan Kelud 2014 dan Letusan Sangeang Api 2014, keduanya terjadi di tahun 2014 TU lalu. Bila mengacu pada pola ini, Letusan Rinjani 2015 mungkin takkan melampaui skala 2 atau 3 VEI.

Indikasi lain bahwa Letusan Rinjani 2015 berpeluang sangat kecil untuk berkembang menjadi letusan yang lebih besar terlihat dari data kegempaan hingga saat ini. Catatan aktivitas Gunung Rinjani yang dipublikasikan PVMBG memperlihatkan pasokan magma segar, yang dicirikan melalui gempa vulkanik dalam (VA) dan gempa vulkanik dangkal (VB), tak mengalami peningkatan dramatis. Hal itu diperlihatkan oleh absennya kedua jenis gempa tersebut sejak awal November. Padahal dalam periode 25-31 Oktober 2015 TU tercatat terjadi 50 gempa vulkanik dalam dan 44 gempa vulkanik dangkal. Sebaliknya sejak awal November justru hanya terekam gempa tremor. Gempa vulkanik yang satu ini merupakan pertanda degasifikasi (pelepasan gas-gas vulkanik dari magma saat magma segar sudah hampir tiba di dasar lubang letusan Barujari).

Pertanda yang lebih jelas terlihat dari data RSAM (realtime seismic amplitude measurement), yang mencerminkan energi Letusan Rinjani 2015. Data RSAM memperlihatkan Letusan Rinjani kali ini mengalami peningkatan semenjak tengah hari 2 November 2015 TU. Tetapi selepas itu Letusan Rinjani berfluktuasi, kadang melemah sedikit dan sebaliknya kadang menguat sedikit. Meski demikian dapat dikatakan bahwa tidak terdeteksi adanya lonjakan energi letusan dalam skala besar-besaran. Maka dari itu dapat dikatakan bahwa peluang terjadinya letusan Rinjani yang lebih besar, apalagi letusan dahsyat adalah sangat kecil.

Referensi :

PVMBG. 2015. Peningkatan Tingkat Aktivitas G. Rinjani Dari Level I (Normal) Ke Level II (Waspada), 25 Oktober 2015. Pusat Vulkanologi dan Mitigasi Bencana Geologi, Badan Geologi, Kementerian Energi dan Sumber Daya Mineral RI, 26 Oktober 2015.

PVMBG. 2015. Evaluasi Data Pengamatan Gunung Rinjani, Nusa Tenggara Barat, Hingga 5 November 2015. Pusat Vulkanologi dan Mitigasi Bencana Geologi, Badan Geologi, Kementerian Energi dan Sumber Daya Mineral RI, 9 November 2015.

Global Volcanism Program. 2015. Rinjani. Smithsonian Institution

Lavigne dkk. 2013. Source of the Great A.D. 1257 Mystery Eruption Unveiled, Samalas Volcano, Rinjani Volcanic Complex, Indonesia. Proceedings of the National Academy of Sciences (PNAS), vol. 110, no. 42, 16742–16747.

Geay dkk. 2007. Volcanoes and ENSO over the Past Millennium. Journal of Climate, vol 21, 3134-3148.

Schneider dkk. 2008. Climatic Impacts of the Largest Volcanic Eruption of the Last Millennium. CCSM Workshop 2008, National Center for Atmospheric Research.

Stothers. 2000. Climactic and Demographic Consequence of the Massive Volcanic Eruption of 1258. Climactic Change, vol. 45 (2000) 361-374.

Asnawir dkk. 2010. Rinjani and Propok Volcanics as a Heat Sources of Geothermal Prospects from Eastern Lombok, Indonesia. Jurnal Geoaplika, vol. 5, no. 1 (2010), 001-009.

Solikhin dkk. 2010. Geochemical and Thermodinamic Modeling of Segara Anak Lake and the 2009 Eruption of Rinjani Volcano, Lombok, Indonesia. Jurnal Geologi Indonesia, vol. 5, no. 4 (Desember 2010), 227-239.

Menelisik Letusan Krakatau 15 Abad Silam, Letusan yang Memisahkan Pulau Jawa dan Sumatra?

Selat sempit itu mirip benar dengan segitiga raksasa kala dilihat dari ketinggian udara. Saat itu, di dekat puncak segitiga ini berdiri kokoh sebuah gunung berapi. Ia tegak menjulang perkasa seakan memaku buana. Tubuhnya (mungkin) demikian besarnya sehingga kakinya membentang begitu lebar, nyaris menutup seluruh perairan laut yang ada di sana. Tak heran jika gunung berapi besar ini ibarat jembatan penyatu dua pulau besar itu, yang semula dipisahkan oleh selat sempit tersebut. Orang bisa menyeberang dari satu pulau ke pulau yang lain dengan berjalan menyusuri kaki gunung. Selat itu pun seakan berubah menjadi sebuah teluk nan besar.

Namun semuanya berubah total di suatu ketika 15 abad silam. Berawal dari getaran demi getaran yang terus mengguncang,disusul asap mengepul dari puncak sang gunung dan lama-kelamaan kian memekat, maka tibalah saat gunung berapi itu mempertontonkan kedahsyatannya. Letusan sangat dahsyat pun terjadilah. Pada puncak letusannya, sekitar 400.000 meter kubik magma disemburkan gunung berapi dalam setiap detiknya. Maka setiap detiknya gunung itu memuntahkan magma dalam jumlah yang cukup untuk mengisi 17.000 mobil tanki bahan bakar berkapasitas 24.000 liter. Uap panas, gas vulkanik nan mencekik, bebatuan membara dan debu vulkanik pekat disemburkan hingga ketinggian berpuluh kilometer ke atmosfer. Sebagian diantaranya berjatuhan kembali ke Bumi, menggelapkan langit kedua pulau besar yang ada didekatnya. Sebagian lagi melayang di dalam lapisan stratosfer dan memicu efek dramatik yang terasa dampaknya di segenap penjuru permukaan Bumi dalam jangka panjang. Bersamaan dengan gelap pekatnya langit kedua pulau besar didekatnya, tubuh gunung pun mulai ambruk ke dasar laut. Gelora raksasa pun tercipta, dengan tinggi luar biasa saat tiba di pesisir sehingga mampu menerjang berkilo-kilometer ke daratan. Gelora raksasa segera menyapu bersih apa dan siapa saja yang dilintasinya.

Gambar 1. Panorama Kepulauan Krakatau yang ikonik. Gundukan di latar depan adalah Gunung Anak Krakatau, dengan leleran lava produk letusan tahun 1975 yang telah membeku di bagian kanan bawah. Jauh di latar belakang terlihat pulau Rakata, yang adalah salah satu titik tertinggi dinding kaldera Letusan Krakatau 1883 yang mencuat di atas permukaan Laut. Kepulauan Krakatau mendunia lewat letusan dahsyatnya di tahun 1883. Namun jejak-jejak lapisan debu tebal yang tersingkap di berbagai pulau di kepulauan ini menunjukkan bahwa gunung berapi ini telah meletus dahsyat lebih dari sekali sepanjang sejarahnya. Sumber: Direktorat Vulkanologi (kini PVMBG), 1979.

Gambar 1. Panorama Kepulauan Krakatau yang ikonik. Gundukan di latar depan adalah Gunung Anak Krakatau, dengan leleran lava produk letusan tahun 1975 yang telah membeku di bagian kanan bawah. Jauh di latar belakang terlihat pulau Rakata, yang adalah salah satu titik tertinggi dinding kaldera Letusan Krakatau 1883 yang mencuat di atas permukaan Laut. Kepulauan Krakatau mendunia lewat letusan dahsyatnya di tahun 1883. Namun jejak-jejak lapisan debu tebal yang tersingkap di berbagai pulau di kepulauan ini menunjukkan bahwa gunung berapi ini telah meletus dahsyat lebih dari sekali sepanjang sejarahnya. Sumber: Direktorat Vulkanologi (kini PVMBG), 1979.

Begitu klimaks drama menggidikkan ini usai, pemandangan baru pun tersaji sudah. Gunung berapi besar itu lenyap hampir sepenuhnya. Apa yang semula menjadi tempat berdirinya gundukan tinggi besar ibarat paku buana itu pun kini berganti total menjadi pemandangan samudera. Dua pulau besar itu pun kembali terpisahkan. Tak ada lagi jembatan alamiah yang menjadi penghubung keduanya seperti sedia kala. Di kemudian hari salah satu pulau besar itu dikenal sebagai pulau Jawa, sementara pulau lainnya adalah pulau Sumatra. Dan kelak di kemudian hari, di tengah-tengah perairan dimana gunung berapi besar itu dahulu pernah ada, tumbuh sebentuk gunung berapi lainnya meski dimensinya jauh lebih kecil. Kelak kita mengenalnya sebagai Gunung Krakatau.

Petaka

Siapa yang tak kenal dengan Gunung Krakatau? Walaupun ia hanyalah sebentuk gundukan kecil mungil berasap di tengah-tengah keluasan perairan Selat Sunda, namun namanya sungguh meraksasa. Apalagi jika bukan karena Letusan Krakatau 1883 yang demikian menggetarkan. Letusan yang baru kita peringati kejadiannya untuk ke-131 kalinya di Agustus 2014 ini. Namun amukan Gunung Krakatau di tahun 1883 itu sejatinya bukanlah letusan terbesar yang pernah dialami si gunung lasak ini sepanjang sejarahnya.

Kala ilmu kegunungapian terus berkembang hingga menjadi seperti sekarang, para ahli kegunungapian pun berdatangan ke sudut-sudut kepulauan Krakatau ini. Mereka mengabadikan, menganalisis dan mendokumentasikan setiap singkapan bebatuan yang ada. Kini kita tahu bahwa lapisan-lapisan debu vulkanik yang bertumpukan di kepulauan ini menunjukkan betapa dalam setidaknya 8.000 tahun terakhir, gunung ini telah meletus dahsyat sebanyak sedikitnya tiga kali. Kedahsyatan tersebut tecermin lewat eksistensi tiga lapisan debu vulkanik yang cukup tebal dibanding lapisan-lapisan sejenis lainnya. Pada dasarnya semakin tebal lapisan debu vulkaniknya maka semakin besar pula skala letusannya.

Lapisan debu tebal teratas merupakan lapisan yang termuda yang dihasilkan Letusan Krakatau 1883. Namun letusan itu, yang dahsyatnya tak kepalang untuk ukuran manusia modern itu, sejatinya merupakan letusan terkecil dari ketiga letusan dahsyat dalam sejarah Krakatau. Peringkat kedua ditempati oleh Letusan Krakatau 1215, yang terjadi pada tahun 1215 berdasarkan pertanggalan radioaktif pada batang/ranting kayu yang mengarang (menjadi arang) di dalam lapisan debunya. Skala letusannya mungkin setara dengan letusan 1883, yakni sama-sama menempati 6 VEI (Volcanic Explosivity Index). Meski berdasarkan ketebalan lapisan debunya, Letusan Krakatau 1215 nampaknya menyemburkan material letusan dalam jumlah sedikit lebih besar ketimbang Letusan Krakatau 1883. Dan pemuncaknya adalah letusan sangat dahsyat yang menghasilkan lapisan debu demikian tebal, hingga setebal 25 meter. Belum ada sisa kayu yang telah mengarang yang berhasil dijumpai pada lapisan debu tebal ini, sehingga letusan pembentuknya terjadi belum bisa ditentukan berdasarkan teknik pertanggalan karbon radioaktif. Berdasarkan ketebalan debunya, letusan ini diperkirakan memiliki skala 7 VEI. Sejauh ini hanya Letusan Tambora 1815 dan Letusan Samalas (Rinjani) 1257 yang menyamai skala letusannya.

Gambar 2. Kiri: singkapan lapisan-lapisan debu tebal produk letusan dahsyat pada terbing terjal di salah satu sudut Kepulauan Krakatau. Nampak lapisan debu setebal 25 meter yang diduga merupakan produk letusan sangat dahsyat di abad ke-6. Kanan: vulkanolog Haraldur Sigurdsson nampak sedang menuruni tebing terjal itu guna menyelidiki lebih lanjut. Sumber: Wohletz, 2000.

Gambar 2. Kiri: singkapan lapisan-lapisan debu tebal produk letusan dahsyat pada terbing terjal di salah satu sudut Kepulauan Krakatau. Nampak lapisan debu setebal 25 meter yang diduga merupakan produk letusan sangat dahsyat di abad ke-6. Kanan: vulkanolog Haraldur Sigurdsson nampak sedang menuruni tebing terjal itu guna menyelidiki lebih lanjut. Sumber: Wohletz, 2000.

Tengara akan letusan sangat dahsyat yang membentuk lapisan debu setebal hingga 25 meter itu nampaknya datang dari sumber tertulis nan jauh di luar kepulauan Nusantara. Tepatnya di Cina. Sebuah berita Cina, yakni kronik Nan Shi, mencatat suara gemuruh mirip guntur di kejauhan yang terdengar dari barat daya pada suatu waktu di tahun 535. Peristiwa ini merupakan awal dari malapetaka besar yang menghantam imperium Cina sepanjang tahun 536-537. Kronik yang sama menuturkan betapa pada titimangsa Desember 536, debu kuning pekat mengguyur daratan di seluruh wilayah kekaisaran laksana hujan salju. Lantas sepanjang bulan Juli dan Agustus tahun berikutnya, udara membeku dan salju turun dengan derasnya di tengah-tengah masa yang seharusnya merupakan musim panas. Kronik Bei Shi pun mencatat hal senada. Akibatnya lahan pertanian pun hancur membuat produksi pangan merosot drastis. Kelaparan pun segera merebak dimana-mana dan merenggut korban-korbannya dalam jumlah sangat besar. Demikian parah situasinya sehingga kaisar sampai memberlakukan dekrit pengampunan pajak.

Namun petaka besar di tahun 535-536 itu ternyata tak hanya melanda Cina. Di Semenanjung Korea bagian utara, kerajaan Koguryo pun berjuang hidup mati mempertahankan diri setelah mendadak dihantam banjir besar. Banjir besar yang salah musim itu segera disusul dengan merebaknya wabah penyakit. Nada pesimisme yang sama juga dijumpai di Kepulauan Jepang lewat kronik Nihon Shoki. Kronik itu menuturkan betapa terjadi perubahan cuaca yang tak biasa yang disusul hancurnya lahan pertanian.

Tak hanya di Cina, Korea dan Jepang, malapetaka sejenis ternyata juga tercatat di kawasan pesisir Laut Tengah (Mediterania). Seorang uskup John dari Efesus (kini bagian dari Turki) menuliskan dalam kroniknya berapa pemandangan aneh terjadi di langit, saat Matahari seakan–akan kehilangan kecerahannya hingga hanya sedikit lebih terang saja dibanding Bulan. Situasi ini bertahan hingga 18 bulan lamanya. Bersamaan dengannya terjadi kelaparan besar menyusul hancurnya lahan pertanian akibat cuaca ekstrim yang salam musim. Tak hanya kelaparan yang melanda, wabah penyakit sampar (pes) pun bergentayangan mencari korban-korbannya. Hal senada juga diutarakan senator Cassiodorus di imperium Romawi pada saat yang hampir sama.

Gambar 3. Lokasi dimana terdapat catatan sejarah setempat terkait peristiwa dramatis di tahun 535, beserta data-data kronologis yang berhasil digali dari analisis lingkaran tahun kayu-kayu tua, sedimen dasar danau dan lembaran-lembaran es. Semua menunjukkan adanya gangguan iklim dramatis selama beberapa tahun, yang secara alamiah lebih mungkin disebabkan oleh letusan gunung berapi yang sangat dahsyat. Sumber: Sudibyo, 2014 dengan data dari Wohletz, 2000.

Gambar 3. Lokasi dimana terdapat catatan sejarah setempat terkait peristiwa dramatis di tahun 535, beserta data-data kronologis yang berhasil digali dari analisis lingkaran tahun kayu-kayu tua, sedimen dasar danau dan lembaran-lembaran es. Semua menunjukkan adanya gangguan iklim dramatis selama beberapa tahun, yang secara alamiah lebih mungkin disebabkan oleh letusan gunung berapi yang sangat dahsyat. Sumber: Sudibyo, 2014 dengan data dari Wohletz, 2000.

Bagi Eropa dan Asia, peristiwa aneh di tahun 535-536 ini adalah momen yang mengantarkan peradaban mereka memasuki abad kegelapan. Kekuasaan imperium Romawi mulai melemah sehingga sebagian wilayahnya mulai diambil-alih suku-suku Jermania nan perkasa yang bermigrasi dari Mongolia akibat bencana kelaparan. Pada saat yang sama peradaban Kristen Arian (rival terbesar Katolik Roma) pun berakhir secara misterius. Di Jazirah Arabia bagian selatan, peristiwa aneh itu memperparah situasi dalam peradaban Himyarit yang telah melemah seiring bobolnya bendungan Ma’rib. Kelaparan berkepanjangan dan wabah sampar kian melemahkannya hingga pada puncaknya mengambrukkan peradaban itu. Sampar semula hanya terkonsentrasi di Afrika timur. Namun kekeringan dahsyat menyebabkan populasi tikus merajalela tanpa bisa dikontrol lagi oleh para predatornya yang keburu mati kelaparan. Tikus-tikus pembawa kutu-kutu inang sampar selanjutnya memasuki pelabuhan–pelabuhan di pesisir Afrika timur dan terbawa armada kapal dagang yang berlayar melintasi Laut Merah dan terusan Trajanus ke Laut Tengah. Dengan cara inilah wabah sampar bergentayangan hingga mencapai Arabia selatan, Mediterania dan bahkan kepulauan Inggris serta lembah Mesopotamia.

Data

Baiklah, semua itu adalah catatan sejarah. Dan sejarah kerap bersifat multitafsir kala dipandang kembali dari masa yang lebih kemudian, dari zaman yang telah berubah. Namun bagaimana dengan catatan-catatan yang lebih independen, yakni jejak-jejak yang tak terkotori campur tangan manusia?

Petunjuk menarik datang dari lingkaran tahunan di dalam batang-batang kayu yang sangat tua. Lingkaran tahunan adalah lapisan kambium yang telah menjadi lapisan kayu pada tumbuhan berkayu keras. Sifat lapisan kambium ini khas, dimana tebal tipisnya dipengaruhi oleh normal tidaknya kehidupan tumbuhan bersangkutan terkait banyak sedikitnya jumlah air dan pencahayaan Matahari yang bisa diserap. Pada dasarnya berkurangnya jumlah air dan penyinaran Matahari akan menghasilkan lapisan kayu lebih tipis, demikian sebaliknya.

Analisis yang telah dilakukan terhadap lingkaran tahunan kayu-kayu tua di daratan Irlandia menunjukkan pada abad ke-6 dijumpai lapisan-lapisan kayu yang lebih tipis, terjadi semenjak tahun 535 dan berlangsung hingga 10 tahun kemudian. Analisis perbandingan dengan kayu-kayu tua di tempat lainnya menunjukkan fenomena ini bukanlah khas Irlandia semata. Sebab dijumpai pula di bagian Eropa lainnya seperti Swedia barat laut, Finlandia utara, Semenanjung Yamal (Rusia), Yunani dan Polandia. Juga didapati di daratan Amerika utara seperti di Sierra Nevada dan Carolina utara, maupun di Amerika selatan seperti di Chile selatan dan Argentina selatan. Bahkan di tempat sejauh dan seterpencil Tasmania (Australia) juga dijumpai hal serupa. Maka dapat dikatakan bahwa pasca tahun 535 hingga beberapa tahun kemudian iklim Bumi secara umum mengalami gangguan lumayan berat, sehingga jumlah air (dalam wujud curah hujan) merosot drastis bersamaan dengan berkurangnya penyinaran Matahari.

Gambar 4. Atas: dinamika ketebalan lingkaran kayu pada lingkaran tahunan kayu-kayu tua yang berhasil diekstrak dari Siberia (Rusia), Finlandia dan Swedia dalam rentang kronologi sejak tahun 1 hingga 1997. Garis merah menunjukkan lapisan kayu dari tahun 535 hingga beberapa tahun kemudian, nampak memiliki ketebalan paling kecil dibanding yang lain. Bawah:  dinamika kadar asam sulfat yang berhasil diekstrak dari lembaran es di proyek pengeboran GRIP (Greenland). Kadara asam sulfat tertinggi adalah pada tahun 535 hingga beberapa tahun kemudian (ditunjukkan dengan pensil). Sumber: Wohletz, 2000.

Gambar 4. Atas: dinamika ketebalan lingkaran kayu pada lingkaran tahunan kayu-kayu tua yang berhasil diekstrak dari Siberia (Rusia), Finlandia dan Swedia dalam rentang kronologi sejak tahun 1 hingga 1997. Garis merah menunjukkan lapisan kayu dari tahun 535 hingga beberapa tahun kemudian, nampak memiliki ketebalan paling kecil dibanding yang lain. Bawah:dinamika kadar asam sulfat yang berhasil diekstrak dari lembaran es di proyek pengeboran GRIP (Greenland). Kadara asam sulfat tertinggi adalah pada tahun 535 hingga beberapa tahun kemudian (ditunjukkan dengan pensil). Sumber: Wohletz, 2000.

Petunjuk lain gangguan iklim Bumi pada saat itu datang dari dasar sejumlah danau di berbagai penjuru. Sebuah danau mendapatkan airnya dari kawasan tangkapan air yang ada disekitarnya. Kala hujan mengguyur, air jatuh ke kawasan ini sembari menyeret partikel-partikel tumbuhan (umumnya bulir serbuk sari) lantas mengalir ke danau melalui alur parit-parit kecil dengan membawa serta partikel-partikel tanah. Seluruh partikel itu lalu diendapkan di dasar danau dan pengendapan berlangsungs ecara berkesinambungan. Pada saat gangguan iklim terjadi, berkurangnya curah hujan akan membuat tumbuh-tumbuhan hidup di bawah normal. Sehingga jumlah serbuk sari yang diproduksinya akan menyusut, pun demikian serbuk sari yang mengendap di dasar danau. Pengeboran terhadap dasar danau-danau di benua Amerika seperti danau Titicaca dan Marcachoca (keduanya di Amerika selatan) serta danau Chichancanab dan Punta Laguna (keduanya di Amerika tengah) memperlihatkan gejala itu. Dibantu dengan teknik pertanggalan radioaktif, maka terkuak bahwa mulai tahun 535 hingga beberapa tahun kemudian jumlah serbuk sari yang mengendap di dasar danau jauh lebih sedikit dibanding sebelumnya maupun sesudahnya. Hal ini menunjukkan dengan jelas terjadinya gangguan iklim Bumi, terutama lewat menurunnya jumlah curah hujan.

Baiklah, dari data lingkaran tahunan di kayu-kayu tua dan endapan dasar danau tersebut, kita tahu ada sesuatu yang terjadi di tahun 535 yang dampaknya menghantam sistem iklim Bumi dengan begitu telak. Namun apa penyebabnya? Di sinilah kita berhutang kepada para ahli glasiologi, yang bertekun diri menantang bahaya pergi ke tempat-tempat terpencil yang sangat dingin baik, di kawasan kutub maupun di pucuk-pucuk pegunungan bersalju. Bukan untuk berwisata maupun memompa adrenalin sekuat tenaga, namun untuk mengebor lembaran-lembaran es di sana dan membawanya pulang ke laboratorium berpendingin khusus. Lapisan-lapisan es pada dasarnya terbentuk dari guyuran hujan salju yang terus terakumulasi selama bertahun-tahun. Saat jatuh ke Bumi, butir-butir salju membawa serta partikulat dan gas apapun yang ada di udara pada saat itu. Maka es beku dalam lembaran-lembaran es dimanapun berada sejatinya memuat informasi tentang apa yang dialami atmosfer Bumi kita hingga kurun waktu ribuan atau bahkan puluhan ribu tahun silam.

Saat lembaran–lembaran es di Greenland (lewat proyek GRIP dan Dye 3) serta Antartika (lewat proyek Byrd) dibor, analisisnya menghasilkan temuan menarik yang terkait langsung peristiwa tahun 535. Dengan dibantu teknik pertanggalan karbon radioaktif, diketahui bahwa pada lapisan es yang berasal dari tahun 535 terkandung asam sulfat dalam jumlah besar, yang mencapai 5 kali lipat di atas normal. Asam sulfat umum dijumpai dalam atmosfer Bumi dalam wujud aerosol sebagai produk aktivitas vulkanisme. Namun kadar asam sulfat yang sangat besar menandakan terjadi sesuatu yang di luar kebiasaan, baik berupa letusan gunung berapi yang dahsyat maupun tumbukan benda langit (komet atau asteroid) yang cukup besar. Kadar asam sulfat dari tahun 535 itu adalah yang tertinggi sepanjang 2.000 tahun terakhir. Ia masih lebih tinggi dibanding kadar asam sulfat dari tahun 1815 (produk Letusan Tambora 1815), apalagi dari tahun 1883 (produk Letusan Krakatau 1883). Belakangan pengeboran lembaran es di gletser Quelccaya di Pegunungan Andes (Amerika selatan) juga menjumpai hal senada. Bahwa lonjakan asam sulfat itu dijumpai baik di lingkaran kutub utara (yakni di Greenland) maupun selatan (yakni Antartika) menandakan bahwa peristiwa yang menjadi penyebabnya haruslah berlokasi di kawasan khatulistiwa’ dan sekitarnya.

Saat semua data tersebut dibandingkan dengan catatan sejarah, terkuaklah sebuah fakta: terjadi sebuah peristiwa di luar normal (entah dalam wujud letusan gunung berapi yang sangat dahsyat ataupun tumbukan benda langit) mengambil tempat di kepulauan Nusantara, khususnya yang berada di arah barat daya dari Nanking/Nanjing (ibukota imperium Cina di abad ke-6 dan tempat kronik Nan shi ditulis). Peristiwa itu menghembuskan partikulat debu dalam jumlah sangat banyak ke atmosfer hingga demikian tinggi untuk kemudian terdistribusi ke segenap penjuru lapisan stratosfer. Maka tercipta lapisan debu bercampur aerosol asam sulfat, entah sebagai tabir surya vulkanik maupun tabir surya tumbukan, yang berkemampuan sangat efektif dalam mereduksi pancaran sinar Matahari yang seharusnya dihantarkan ke permukaan Bumi tanpa gangguan.

Maka Matahari pun nampak seakan-akan lebih redup. Penurunan suhu rata-rata permukaan Bumi pun terjadilah. Es meluas dimana-mana. Produksi uap air secara umum berkurang sehingga curah hujan pun turut berkurang. Iklim jadi kacau. Akibatnya lahan pertanian hancur. Produksi tanaman pangan merosot drastis, membuat dunia kelaparan. Suhu udara yang lebih dingin dan orang-orang yang daya tahan tubuhnya menurun (akibat kelaparan) memudahkan bakteri patogen menyebar melampaui area tradisionalnya. Maka abad kegelapan pun terjadilah. Tak sulit membayangkan bahwa jutaan orang, angka yang sangat signifikan bagi populasi penduduk Bumi masa itu, meregang nyawa menjadi korbannya. Tak heran jika ada yang berpendapat, surga seakan sedang menjauh dari dunia. Murka-Nya seakan sedang menjelma.

Simulasi

Bagian kepulauan Nusantara yang berada di arah barat daya dari kota Nanking mencakup pulau Sumatra dan Jawa serta pulau-pulau kecil disekitarnya sekarang. Sampai saat ini di kawasan ini belum dijumpai eksistensi kawah produk tumbukan benda langit, khususnya yang berasal dari abad ke-6. Sehingga penyebab peristiwa di tahun 535 itu lebih mungkin adalah letusan gunung berapi sanga dahsyat. Pulau Sumatra dan Jawa memang dipadati oleh gunung-gemunung berapi aktif. Namun saat kita mencari gunung berapi mana yang meletus demikian dahsyatnya di abad ke-6, telunjuk akan terarah ke satu titik: Gunung Krakatau.

Letusan Krakatau di abad ke-6 merupakan letusan yang paling samar datanya. Ada lapisan debu sangat tebal (setebal 25 meter) yang tertinggal di kepulauan Krakatau, namun belum bisa diketahui umurnya mengingat tiadanya jejak kayu yang mengarang yang bisa digunakan untuk penentuan umur dengan teknik pertanggalan karbon radioaktif. Di sisi lain, data sejarah memperlihatkan adanya keterputusan peradaban di abad ke-6, yang ditandai dengan punahnya kebudayaan Pasemah (Lampung) dan Aruteun/Holotan (Jawa Barat). Di luar Indonesia, sejumlah peradaban juga diketahui berakhir kala memasuki abad ke-6, misalnya Beikthano (Myanmar), peradaban pantai barat Malaya (Malaysia) dan peradaban Oc Eo (Kampuchea). Ada banyak faktor yang menyebabkan sebuah peradaban berakhir. Dan letusan dahsyat gunung berapi dapat menjadi salah satu faktornya, seperti terlihat pada berakhirnya peradaban Papekat dan Tambora di pulau Sumbawa akibat Letusan Tambora 1815.

Ada sebuah karya sastra klasik di tanah Jawa yang samar-samar menyajikan penggambaran mencekam akan peristiwa letusan dahsyat sebuah gunung berapi di masa silam. Yakni kitab Pustaka Raja Purwa, yang ditulis oleh R Ng (Raden Ngabehi) Ranggawarsita sang pujangga besar terakhir di tanah Jawa pada 1869 di istana Kasunanan Surakarta. Kitab ini sejatinya merupakan kumpulan cerita yang berakar dari kitab Mahabharata dan Ramayana nan tersohor. Sehingag kisah-kisah didalamnya berakar dari awal milenium di tanah India, dengan beberapa bagiannya telah dimodifikasi agar sesuai dengan situasi tanah Jawa. Di salah satu bagian kitab yang menjadi acuan para dalang wayang kulit itu tersurat kisah menggetarkan. Tertera, betapa pada suatu waktu bumi Jawa dikejutkan oleh dentuman keras melebihi halilintar yang datang dari arah Gunung Batuwara dan Gunung Kapi. Tanah pun bergetar keras yang segera diikuti amukan petir dan halilintar. Suasana menjadi gulita bahkan meski di siang hari. Hujan mengguyur sangat deras. Dan beberapa saat kemudian air bah yang tak biasa pun menggenang hebat, menjalar dari Gunung Kapi di barat hingga Gunung Kamula di timur. Setelah semua itu usai, Jawa terpisah dari Sumatra.

Gunung Batuwara kini kita kenal sebagai Gunung Pulosari, salah satu gunung berapi anak di lingkungan kaldera Dano (Banten). Gunung Kapi terletak di sisi barat Gunung Batuwara. Hanya ada satu gunung berapi yang sesuai dengan ciri-ciri Gunung Kapi ini, yakni Gunung Krakatau.

Baik, mari anggap Gunung Krakatau menjadi biang keladi perubahan iklim dramatis di tahun 535, yang menggiring segenap dunia berperadaban menuju ke abad kegelapan lewat letusan sangat dahsyatnya. Nah seberapa besar letusan tersebut?

Gambar 5. Peta kedalaman dasar Selat Sunda berdasar arsip Angkatan Laut Inggris di era perang Napoleon, dipadukan dengan peta topografi daratan Sumatra dan Jawa. Nampak cekungan nyaris membulat selebar sekitar 50 km yang diduga adalah kaldera raksasa produk Letusan Krakatau Purba. Sumber: Wohletz, 2000.

Gambar 5. Peta kedalaman dasar Selat Sunda berdasar arsip Angkatan Laut Inggris di era perang Napoleon, dipadukan dengan peta topografi daratan Sumatra dan Jawa. Nampak cekungan nyaris membulat selebar sekitar 50 km yang diduga adalah kaldera raksasa produk Letusan Krakatau Purba. Sumber: Wohletz, 2000.

Inilah yang ditelusuri seorang Ken Wohletz, ahli kegunungapian (vulkanolog) di Laboratorium Nasional Los Alamos (Amerika Serikat), tempat senjata nuklir pertama dirakit dan diledakkan. Para ahli kegunungapian pada umumnya telah dapat menerima bahwa apa yang kini kita kenal sebagai Kepulauan Krakatau sejatinya merupakan relik (sisa) dari Gunung Krakatau Purba yang demikian besar. Gunung tersebut mungkin menjulang setinggi hingga 2.000 meter dari permukaan laut dengan bentangan kakinya melampar hingga selebar 12 km. Letusan sangat dahsyat di masa silam melenyapkan hampir seluruh tubuhnya dan membentuk kaldera berdiameter sekitar 7 km. Sebagian dinding kaldera yang masih tersembul di atas Selat Sunda sebagai pulau Rakata, Sertung dan Panjang. Pada satu titik di pulau Rakata, kelak di kemudian hari tumbuh Gunung Krakatau yang pada klimaksnya berkembang membesar dengan tiga puncak utamanya: Rakata, Danan dan Perbuwatan. Pasca letusan 1883, seluruh tubuh Gunung Krakatau lenyap menjadi kaldera, kecuali sebagian pulau Rakata. Di tengah-tengah kaldera letusan 1883 inilah tumbuh Gunung Anak Krakatau yang kita kenal sekarang.

Tapi menurut Wohletz, ukuran Gunung Krakatau Purba mungkin lebih besar. Merujuk peta kedalaman Selat Sunda dalam arsip Angkatan Laut Inggris yang berasal dari masa pendudukan di tanah Jawa pada era perang Napoleon, Wohletz mendapati adanya cekungan besar (bergaris tengah sekitar 50 km). Cekungan ini dipagari oleh Kepulauan Krakatau, pulau Sebesi, pulau Sebuku, kaki Gunung Rajabasa dan pulau Sangiang. Jejak tepian cekungan ini di Pulau Sangiang nampak sebagai tebing terjal yang menyayat sebagian tubuh gunung berapi purba pembentuk pulau itu. Terletak tepat di lokasi gunung berapi aktif, tafsiran terbaik akan eksistensi cekungan ini adalah kemungkinan besar merupakan kaldera, lubang besar yang ditinggalkan di permukaan Bumi (dalam hal ini di dasar Selat Sunda) akibat letusan yang teramat dahsyat. Jika kalderanya sebesar ini maka jelas Gunung Krakatau Purba bertubuh jauh lebih besar. Kaki gunungnya mungkin membentang hingga mencakup area berdiameter 50 km atau lebih. Ketinggiannya nampaknya melebihi tinggi Gunung Rajabasa (1.281 meter dpl), mungkin hingga setinggi 3.000 meter atau bahkan lebih.

Gambar 6. Tebing terjal di Pulau Sangiang, yang secara menakjubkan memperlihatkan penampang bagian puncak gunung berapi purba dengan dua kawahnya. Tebing terjal ini kemungkinan merupakan salah satu titik tertinggi dari (dugaan) dinding kaldera raksasa Krakatau Purba yang lebarnya sekitar 50 km. Sumber: Bronto, 2012.

Gambar 6. Tebing terjal di Pulau Sangiang, yang secara menakjubkan memperlihatkan penampang bagian puncak gunung berapi purba dengan dua kawahnya. Tebing terjal ini kemungkinan merupakan salah satu titik tertinggi dari (dugaan) dinding kaldera raksasa Krakatau Purba yang lebarnya sekitar 50 km. Sumber: Bronto, 2012.

Agar sebuah gunung sebesar ini bisa ambruk dan lenyap menjadi kaldera yang berada di bawah permukaan laut, maka harus terjadi subsidens (amblesan) sebesar sekitar 100 meter. Subsidens ini disebabkan oleh kosongnya kantung magma dangkal di dasar gunung seiring dimuntahkannya magma secara besar-besaran dalam letusan yang sangat dahsyat. Jika dianggap diameter kantung magma dangkal tersebut sekitar 50 km, maka subsidens sebesar 100 meter ini hanya bisa disebabkan oleh tersemburnya magma menjadi rempah letusan sebanyak sekitar 200 kilometer kubik (200.000 juta meter kubik).

Lewat program komputer Erupt3 yang dikembangkannya, Wohletz pun telah menyimulasikan sejumlah aspek dalam letusan dahsyat tersebut, dengan bersandar pada beberapa anggapan. Sebelum meletus dahsyat, tubuh Gunung Krakatau Purba demikian besar sehingga menyembul ke atas permukaan Selat Sunda sebagai pulau vulkanis. Pulau ini demikian besar sehingga menutupi hampir seluruh bagian perairan Selat Sunda yang membentang di antara kaki Gunung Rajabasa (Sumatra) hingga Anyer (Jawa). Sebagai gunung berapi laut, perilaku Gunung Krakatau Purba sangat dipengaruhi berlimpahnya air laut yang mengepungnya dari segenap penjuru. Saat letusan mulai terjadi rempah letusan disemburkan Gunung Krakatau Purba hingga setinggi sekitar 20 km dari paras Selat Sunda, sebagai erupsi freatik. Erupsi freatik ini terjadi saat magma segar yang sedang mendesak naik mulai bertemu dengan air laut yang meresap di dalam tubuh gunung, menghasilkan uap panas bertekanan tinggi yang lantas mendobrak titik lemah di sekitar puncak. Tersemburlah uap air bersama debu vulkanik dari magma tua yang sudah membatu.

Erupsi freatik menciptakan lubang letusan, memperlebarnya dan mengawali retak-retak ke segenap arah hingga mulai melemahkan kekuatan batuan penyusun tubuh gunung. Kekuatan yang melemah memungkinkan magma mulai tersembur, lama-kelamaan dalam jumlah kian membesar dan bertekanan sangat tinggi. Terjadilah erupsi magmatik dalam tipe erupsi ultraplinian. Menyeruak dengan suhu sekitar 900 derajat Celcius, magma yang keluar sebagai batuapung dan debu vulkanik melesat dengan kecepatan awal sangat tinggi, sekitar dua kali lipat kecepatan suara, kala terlepas dari lubang letusan. Akibatnya mereka tersembur hingga setinggi 50 km dari paras selat Sunda dan lantas membentuk struktur menyerupai cendawan raksasa, untuk kemudian berjatuhan kembali ke Bumi. Hujan debu vulkanik pekat dan batuapung mengguyur deras hingga radius sekitar 60 km dari lubang letusan.

Gambar 7. Salah satu hasil simulasi program Erupt3 tentang karakter (kemungkinan) Letusan Krakatau Purba 535. Atas: saat letusan hendak mencapai puncaknya sebagai tipe ultraplinian yang menyemburkan material setinggi 60 km dan membentuk awan cendawan raksasa. Bawah: klimaks letusan ditandai dengan letusan tipe freatoplinian akbar dengan semburan material setinggi  30 km dan membentuk awan panas. Kombinasi dua tipe letusan inilah yang membentuk kaldera selebar 50 km dengan memuntahkan 200 kilometer kubik magma. Sumber: Wohletz, 2000.

Gambar 7. Salah satu hasil simulasi program Erupt3 tentang karakter (kemungkinan) Letusan Krakatau Purba 535. Atas: saat letusan hendak mencapai puncaknya sebagai tipe ultraplinian yang menyemburkan material setinggi 60 km dan membentuk awan cendawan raksasa. Bawah: klimaks letusan ditandai dengan letusan tipe freatoplinian akbar dengan semburan material setinggi 30 km dan membentuk awan panas. Kombinasi dua tipe letusan inilah yang membentuk kaldera selebar 50 km dengan memuntahkan 200 kilometer kubik magma. Sumber: Wohletz, 2000.

Pengeluaran magma secara besar-besaran dalam tahap ini membuat kantung magma dangkal di dasar gunung mulai terkosongkan. Bobot tubuh gunung yang sangat besar membuat retak-retak di sekujur tubuhnya kian bertambah. Subsidens pun mulai terjadi. membuat kian banyak saja air laut yang merasuk. Pada saat yang sama tubuh gunung yang kian melemah memungkinkannya memuntahkan magma dalam jumlah lebih besar. Maka klimaks letusan pun terjadilah, saat air laut bercampur langsung dengan magma panas membara membentuk erupsi bertipe freatoplinian akbar. Gelegar suara letusannya terdengar jauh hingga ke daratan Cina. Setiap detiknya gunung ini memuntahkan sekitar 400.000 meter kubik magma yang membentuk debu, lapili (kerikil), bom vulkanik (bongkahan besar) dan batuapung. Rempah vulkanik yang lebih besar dan berat dari debu dan batuapung menyembur hingga ketinggian sekitar 30 km. Setelah membentuk struktur cendawan raksasa, rempah letusan ini pun berjatuhan kembali ke Bumi dalam kondisi masih cukup panas sehingga menjadi awan panas (piroklastika) letusan. Awan panas diperkirakan menjalar hingga sejauh 60 km dari lubang letusan memanggang benda apa saja yang dilewatinya. Setelah klimaks letusan terlampaui, intensitas letusan pun berkecenderungan menurun. Pada saat yang sama tubuh gunung pun terus menghancur dan melesak ke dalam laut membentuk kaldera. Air laut yang masih terus merasuk terus bercampur dengan sisa-sisa magma yang tak tersembur, menghasilkan semburan uap panas bertekanan tinggi bercampur debu vulkanik yang kembali menghambur hingga setinggi sekitar 20 km. Erupsi freatik ini menjadi bab penutup dari kedahsyatan letusan itu.

Dengan memuntahkan sekitar 200 kilometer kubik magma, Letusan Krakatau Purba adalah 25 % lebih besar ketimbang Letusan Tambora 1815 (volume magma 160 kilometer kubik) dan 10 kali lebih dahsyat dari Letusan Krakatau 1883 (volume magma 20 kilometer kubik). Lewat program Erupt3-nya, Wohletz menyimpulkan terkurasnya magma sebanyak itu menyebabkan Gunung Krakatau Purba mengalami subsidens dan mengubah topografinya secara dramatis. Hampir segenap tubuh gunung lenyap terbenam menjadi kaldera, kecuali sebagian kecil area puncak yang masih menyembul di atas permukaan Selat Sunda sebagai pulau kecil. Maka bentang lahan yang selama ini seakan menjembatani pulau Jawa dan Sumatra pun terputus sudah.

Gambar 8. Hasil simulasi program Erupt3 terkait (kemungkinan) perubahan topografi Gunung Krakatau Purba antara sebelum dan sesudah letusan dahsyatnya di tahun 535. Sebelum letusan, tubuh gunung merentang demikian lebar hingga berperan sebagai jembatan alamiah penghubung daratan pulau Sumatra dan Jawa. Setelah letusan, jembatan tersebut menghilang berganti dengan kaldera 50 km yang tergenangi air laut sebagai bagian dari Selat Sunda. Sumber: Wohletz, 2000.

Gambar 8. Hasil simulasi program Erupt3 terkait (kemungkinan) perubahan topografi Gunung Krakatau Purba antara sebelum dan sesudah letusan dahsyatnya di tahun 535. Sebelum letusan, tubuh gunung merentang demikian lebar hingga berperan sebagai jembatan alamiah penghubung daratan pulau Sumatra dan Jawa. Setelah letusan, jembatan tersebut menghilang berganti dengan kaldera 50 km yang tergenangi air laut sebagai bagian dari Selat Sunda. Sumber: Wohletz, 2000.

Letusan sangat dahsyat yang mengambil tempat di sebuah pulau vulkanis ini jelas membentuk gelora raksasa atau tsunami. Tsunami terbentuk seiring ambruknya tubuh gunung ke dasar laut bersamaan dengan hempasan awan panas yang menjalar di dasar laut. Seberapa besar daya hancur tsunaminya belum bisa diketahui. Di sisi lain, dampak letusan sangat dahsyat ini sangat terasa di sekujur penjuru Bumi. Dari 200 kilometer kubik magma, 10 hingga 80 kilometer kubik diantaranya berupa debu vulkanik halus yang terinjeksi demikian tinggi hingga memasuki lapisan stratosfer. Namun tak hanya debu. Letusan juga mengubah sekitar 150 meter kubik air laut menjadi uap sebanyak sekitar 200.000 kilometer kubik. Separuh diantaranya mengembun kembali di ketinggian rendah, namun sisanya membumbung tinggi memasuki lapisan stratosfer dan berubah menjadi kristal-kristal es. Pada saat yang sama juga tersembur sekitar 180 juta ton gas belerang, yang lantas bereaksi dengan uap air membentuk tetes-tetes asam sulfat. Sirkulasi atmosferik di lapisan stratosfer membuat debu, aerosol asam sulfat dan kristal es tersebar ke segenap penjuru dan menciptakan tabir surya vulkanik demikian tebal. Ketebalannya mencapai sekitar 20 hingga 150 meter, yang melayang di ketinggian 30 km tanpa bisa dicuci oleh proses cuaca.

Dampaknya sangat menyiksa Bumi hingga beberapa tahun kemudian. Tabir surya vulkanik nan tebal ini menghalangi 50 % cahaya Matahari yang seharusnya diteruskan ke Bumi. Terjadilah penurunan suhu rata-rata permukaan Bumi, yang bisa mencapai 5 derajat Celcius di bawah normal. Imbasnya udara menjadi lebih dingin, tutupan es pun menyebar keluar dari lingkaran kutub dan jumlah uap air yang diproduksi dari lautan pun menurun. Akibat lebih lanjutnya, cuaca pun sangat terganggu. Kekeringan berlangsung dimana-mana, meski tak jarang juga terjadi hujan sangat lebat hingga badai yang salah musim. Keberadaan kristal-kristal es di lapisan stratosfer pun berdampak pada hancurnya lapisan Ozon. Sinar ultraviolet beta dari Matahari pun membanjir deras tanpa terhalangi dan bekerja merusak sel-sel makhluk hidup. Secara keseluruhan letusan ini benar-benar membuat Bumi menjadi tak nyaman ditinggali makhluk hidup, khususnya manusia. Tak heran jika abad kegelapan pun terjadilah.

Masa Depan

Di atas kertas, seperti itulah kedahsyatan Letusan Krakatau Purba, yang diperkirakan terjadi pada tahun 535. Tentu saja butuh penelitian lebih lanjut guna memastikan apakah semua atau sebagian hasil simulasi itu memang benar-benar terjadi ataukah tidak. Yang jelas, lapisan debu setebal 20 meter yang terjepit di antara lapisan produk letusan 8.000 tahun silam dan lapisan produk Letusan Krakatau 1215 memastikan bahwa pada suatu waktu di masa silam Gunung Krakatau memang pernah meletus dengan kedahsyatan letusan yang jauh lebih besar ketimbang Letusan Krakatau 1883.

Sifat Gunung Krakatau yang gemar meletus dahsyat dan menghancurkan dirinya sendiri, setidaknya sudah tiga kali terjadi, tentu harus menjadi perhatian. Terlebih kawasan Selat Sunda kian memegang peranan penting. Perairan ini menjadi salah satu urat nadi terpenting bagi Indonesia modern, sebagai jalur penghubung antara pulau Sumatra dan Jawa lewat laut. Bahkan kelak jalur darat pun bakal tersambung dengan Jembatan Selat Sunda, meski pembangunannya masih dalam rencana dan terus menuai kontroversi. Pusat-pusat pertumbuhan ekonomi juga terus berdiri di sini. Alangkah baiknya jika segenap kepentingan manusia yang didirikan di kawasan ini tetap menyesuaikan diri dengan sifat alamiah Gunung Krakatau. Itu untuk kebaikan kita sendiri. Karena kita manusialah yang harus menyesuaikan diri dengan dinamika alam semesta, bukan sebaliknya. Dalam kasus Gunung Krakatau, kitalah yang harus bersiap semenjak dini andaikata gunung berapi lasak ini kembali mempertontonkan kedahsyatannya di masa depan.

Referensi:

Wohletz. 2000. Were the Dark Ages Triggered by Volcano-related Climate Changes in the 6th Century? EOS Trans Amer Geophys Union 48(81), F1305.

Bronto. 2012. Gunung Padang Berdasarkan Pandangan Geologi Gunung Api. Kertas Kerja Rembug Nasional Gunung Padang, Pusat Penelitian Arkeologi Nasional Kementerian Pendidikan dan Kebudayaan RI.

Trio Letusan Mirip-Krakatau di Io

Indonesia selalu mengenal Agustus sebagai bulan kalender bercita rasa nasionalis. Inilah bulan dimana manusia Indonesia memperingati kemerdekaan negerinya dari belenggu tirani. Maka Agustus pun senantiasa disongsong dengan penuh gairah dan suka cita. Warga di berbagai pelosok menggelar aneka lomba. Sebagian diantaranya bakal membikin siapapun yang bukan manusia Indonesia mengernyitkan dahi, sebab begitu unik dan takkan pernah terlintas dalam benak atlet-atlet olimpik. Apa mau dikata, lomba-lomba ini memang bukan dirancang untuk mengejar prestasi namun semata bertujuan mengundang rasa geli dan menghibur hati. Pada tanggal 16 malam, banyak pula yang menggelar malam tirakatan disertai tumpengan. Tak sedikit pula yang menghabiskan sisa malam itu dengan membuka mata nyaris semalam suntuk.

Gambar 1. Gunung Krakatau diabadikan pada Mei 188. Nampak debu vulkanik pekat mengepul dari puncak Perbuwatan, menandai mulai terjadinya erupsi magmatik di gunung berapi yang telah lama tidur ini. Dalam tiga bulan kemudian seluruh gunung ini menyemburkan material vulkanik dalam jumlah sangat besar yang ditembuskan hingga berpuluh kilometer ke atmosfer. Akibatnya hampir seluruh tubuh gunung hancur dan ambruk ke dasar laut menjadi kaldera, kecuali sebagian kecil lereng puncak Rakata. Sumber: USGS, 1982.

Gambar 1. Gunung Krakatau diabadikan pada Mei 1883. Nampak debu vulkanik pekat mengepul dari puncak Perbuwatan, menandai mulai terjadinya erupsi magmatik di gunung berapi yang telah lama tidur ini. Dalam tiga bulan kemudian seluruh gunung ini menyemburkan material vulkanik dalam jumlah sangat besar yang ditembuskan hingga berpuluh kilometer ke atmosfer. Akibatnya hampir seluruh tubuh gunung hancur dan ambruk ke dasar laut menjadi kaldera, kecuali sebagian kecil lereng puncak Rakata. Sumber: USGS, 1982.

Namun Agustus juga bakal selalu dikenang sebagai bulan kalender dimana kita seyogyanya menundukkan kepala, memanjatkan doa. Khususnya kepada 36.417 jiwa (angka resmi) atau hampir 120.000 nyawa (angka perkiraan) yang melayang dalam sebuah peristiwa kelam selama tiga hari kelam berturut-turut yang terjadi lebih dari seratus tahun silam. Korban jiwa dalam jumlah yang luar biasa besar ini jatuh terenggut kala Gunung Krakatau dengan puncak-puncak Rakata, Danan dan Perbuwatan meledakkan dirinya dalam sebuah letusan teramat dahsyat. Selama tiga hari berturut-turut pada 27 hingga 29 Agustus 1883 gunung berapi kecil mungil layaknya bisul di tengah-tengah Selat Sunda (kini termasuk propinsi Lampung) itu meletus dengan kedahsyatan tak terperi untuk ukuran manusia. Sebanyak 20 kilometer kubik (20.000 juta meter kubik) material vulkanik dimuntahkan keluar, seperlima diantaranya langsung tersembur ke langit pada kekuatan teramat tinggi sehingga menjangkau ketinggian 40 km lebih dari paras air laut.

Terlepasnya magma dengan volume sangat besar dalam kurun waktu yang cukup singkat membuat kantung magma dangkal di dasar Gunung Krakatau terkuras habis, meninggalkan ruang kosong. Ruang kosong ini tak mampu menahan bobot jutaan ton batuan yang ada diatasnya. Sehingga tubuh gunung pun runtuh, Terbentuklah cekungan besar yang adalah kaldera di dasar Selat Sunda, dengan garis tengah 7 km dan kedalaman hingga 250 meter dari paras air laut. Kombinasi runtuhnya tubuh gunung ke dalam laut dan hempasan awan panas (piroklastika) yang terbentuk kala material vulkanik sangat pekat kembali berjatuhan ke Bumi memproduksi tsunami yang demikian bergelora. Tsunami ini berderap lambat, butuh waktu hampir sejam sebelum bisa menjangkau kedua belah pesisir Selat Sunda yang terdekat ke Krakatau. Namun sebaliknya ia sungguh bergelora dengan ketinggian tak terkira yang tak terbayang di benak manusia. Gelombang setinggi 37 meter menghajar pesisir Merak tanpa ampun. Sementara kawasan Anyer dan Caringin lebur digempur tsunami setinggi hingga 15 meter. Di daratan Sumatra gelora yang menjulang setinggi 22 meter mencukur Teluk Betung. Sementara Blimbing dan Kalianda dihempas gelombang 15 meter. Hampir seluruh korban jiwa yang terenggut dalam tragedi Letusan Krakatau 1883 disebabkan oleh tsunami ini. Terkecuali sekitar 1.000 orang yang meregang nyawa di Katibung akibat hempasan awan panas yang menjalar demikian jauh akibat letusan lateral (mendatar) ke utara dalam salah satu episode amukan Krakatau.

Gambar 2. Jejak kedahsyatan tsunami Letusan Krakatau 1883, yang mencukur habis pesisir Anyer. Atas: bangkai gerbong kereta yang terguling dan terseret jauh dari stasiun oleh air tsunami. Bawah: bongkahan karang gigantis seberat 600 ton lebih, yang terangkat dan terbawa gelora tsunami menuju pantai. Bongkahan karang ini menghantam mercusuar Anyer tepat di kilometer nol jalan raya pos (jalan Daendels), membuat menara setinggi 40 meter itu ambruk. Sumber: History Channel, 2009.

Gambar 2. Jejak kedahsyatan tsunami Letusan Krakatau 1883, yang mencukur habis pesisir Anyer. Atas: bangkai gerbong kereta yang terguling dan terseret jauh dari stasiun oleh air tsunami. Bawah: bongkahan karang gigantis seberat 600 ton lebih, yang terangkat dan terbawa gelora tsunami menuju pantai. Bongkahan karang ini menghantam mercusuar Anyer tepat di kilometer nol jalan raya pos (jalan Daendels), membuat menara setinggi 40 meter itu ambruk. Sumber: History Channel, 2009.

Tsunami Krakatau merupakan bencana alam dengan korban jiwa manusia terbesar di Indonesia semenjak 1883. Rekor ini bertahan hingga 121 tahun kemudian sebelum kemudian dilampaui oleh bencana gempa akbar Sumatra-Andaman 26 Desember 2004 dengan tsunami dahsyatnya. Sebaliknya Letusan Krakatau 1883 bukanlah letusan gunung berapi terdahsyat yang pernah berlangsung di tanah Nusantara sepanjang sejarah yang tercatat. Letusan ini hanyalah menempati peringkat ketiga, di bawah Letusan Samalas (Rinjani) 1257 dan Letusan Tambora 1815. Skala letusan Krakatau terpaku di angka 6 VEI (Volcanic Explosivity Index), setingkat di bawah skala letusan Samalas dan Tambora yang masing-masing menempati angka 7 VEI. Namun amukan Krakatau menjadi letusan gunung berapi dalam tingkat katastrofik pertama yang terekam dengan baik. Hanya beberapa minggu sebelum letusan ini terjadi kabel laut terakhir yang menautkan media sosial elektronik pertama bagi manusia, yakni telegraf, tersambung sudah. Untuk ukuran masakini media sosial ini tentu sangat primitif dan lambat. Namun pada era meletusnya Krakatau di tahun 1883 itu, ia tergolong cukup cepat dalam menyalurkan informasi. Sehingga sontak Krakatau pun menjadi buah bibir dalam lingkup global. Laporan demi laporan teramatinya gejala mirip tsunami, yang sejatinya adalah dampak gelombang kejut letusan terhadap paras air laut setempat, juga segera bermunculan dari berbagai penjuru. Bandingkan dengan Letusan Tambora 1815 yang kabar terawalnya baru tiba di daratan Eropa enam minggu setelah gunung berapi itu mempertontonkan kedahsyatannya.

Trio Io

Amukan gunung berapi seukuran Letusan Krakatau 1883 tentu menggetarkan dan menakutkan segenap manusia. Termasuk di masa kini. Nah bagaimana jika kita berhadapan dengan tak hanya satu, melainkan tiga letusan yang skala kedahsyatannya menyamai atau bahkan malah melebihi Letusan Krakatau 1883?

Gambar 3. Tiga letusan mirip Letusan Krakatau 1883 di Io sepanjang 15 hingga 29 Agustus 2013. Kiri: letusan Rarog Patera, diobservasi teleskop Keck II pada panjang gelombang 1,59 mikron. Tengah: letusan Rarog Patera dan Heno Patera, diobservasi teleskop Keck II pada panjang gelombang 2,27 mikron. Dan kanan: letusan 201308C dan Rarog Patera, diobservasi teleskop IRTF NASA pada panjang gelombang 3,78 mikron. Nampak bahwa letusan 201308C adalah yang terbesar, diikuti letusan Rarog Patera dan kemudian Heno Patera. Saat 201308C meletus dahsyat, letusan di Rarog Patera dan Heno Patera sudah berakhir. Sumber: NASA & Keck II Observatory, 2014.

Gambar 3. Tiga letusan mirip Letusan Krakatau 1883 di Io sepanjang 15 hingga 29 Agustus 2013. Kiri: letusan Rarog Patera, diobservasi teleskop Keck II pada panjang gelombang 1,59 mikron. Tengah: letusan Rarog Patera dan Heno Patera, diobservasi teleskop Keck II pada panjang gelombang 2,27 mikron. Dan kanan: letusan 201308C dan Rarog Patera, diobservasi teleskop IRTF NASA pada panjang gelombang 3,78 mikron. Nampak bahwa letusan 201308C adalah yang terbesar, diikuti letusan Rarog Patera dan kemudian Heno Patera. Saat 201308C meletus dahsyat, letusan di Rarog Patera dan Heno Patera sudah berakhir. Sumber: NASA & Keck II Observatory, 2014.

Ini bukan kabar burung. Trio letusan mirip Krakatau itu memang benar-benar terjadi. Namun jangan buru-buru cemas dan memacu adrenalin anda. Trio letusan tersebut mengambil lokasi yang sangat jauh dari Bumi, yakni pada sebuah benda langit lain yang ukurannya hanya sedikit lebih besar dibanding Bulan. Trio letusan itu terjadi di Io yang adalah salah satu satelit alamiah dari planet Jupiter. Demikian dahsyat ketiga letusan itu sehingga kilatan cahayanya dapat disaksikan dari Bumi, meski hanya dapat disaksikan lewat fasilitas teleskop tercanggih. Adalah tiga teleskop berpangkalan di puncak Gunung Mauna Kea, Kepulauan Hawaii (Amerika Serikat), yang merekam ketiga letusan tersebut. Ketiganya adalah teleskop Gemini North, Keck II dan IRTF (Infra Red Telecope Facility) NASA. Ketiga letusan terekam dalam rentang waktu antara 15 dan 29 Agustus 2013, saat Io berjarak 865 juta kilometer dari Bumi.

Dua letusan pertama terdeteksi oleh teleskop Keck II (diameter cermin 10 meter) saat diarahkan ke Io pada 15 Agustus 2013 pukul 22:30 WIB. Bekerja pada spektrum sinar inframerah dan dilengkapi sistem optik adaptif untuk mengoreksi gangguan optis akibat turbulensi dalam atmosfer Bumi, teleskop Keck II merekam dua titik berpendar terang di permukaan Io yang tak pernah ada sebelumnya. Titik pendar pertama berimpit dengan posisi Gunung Rarog Patera yang telah dikenal sebelumnya. Sementara titik letusan kedua bertepatan dengan Gunung Heno Patera, yang juga telah dikenali sebelumnya. Dan letusan terakhir terdeteksi dua minggu kemudian, yakni pada 29 Agustus 2013, lewat teleskop Gemini North dan IRTF NASA. Letusan ini terjadi di lokasi yang tak dikenal dan untuk sementara diberi kode sebagai 201308C.

Observasi lanjutan menunjukkan bahwa ketiganya merupakan erupsi eksplosif gunung berapi Io yang khas. Letusan Rarog Patera mengeluarkan lava sepanas hingga sekitar 750 derajat Celcius. Pada puncak letusannya ia melepaskan daya hingga 8 terawatt (8 juta megawatt). Lava lantas membanjir menutupi area seluas hingga 120 kilometer persegi disekeliling lubang letusan. Sementara letusan Heno Patera menyemburkan lava yang sedikit lebih dingin yakni 700 derajat Celcius sehingga daya puncaknya pun sedikit lebih rendah yakni 5 hingga 6 terawatt (5 juta hingga 6 juta megawatt). Namun letusan Heno Patera memuntahkan lava yang menutupi kawasan dua kali lipat lebih luas yakni 300 kilometer persegi. Dan letusan 201308C adalah yang terdahsyat. Pada puncaknya ia melepaskan daya antara 15 hingga 25 terawatt (15 juta hingga 25 juta megawatt) dengan lava panasnya hingga sepanas 1.600 derajat Celcius atau bahkan lebih.

Gambar 4. Peta permukaan Io berdasar citra komposit Voyager 1, Voyager 2 dan Galileo. Nampak lokasi Rarog Patera, Heno Patera dan 201308C, tiga gunung berapi yang terlibat dalam trio letusan besar Agustus 2013. Terlihat juga lokasi Gunung Loki dengan kalderanya yang terbesar di Io. Juga Gunung Pele, gunung berapi luar Bumi yang pertama kali terdeteksi. Sumber: Sudibyo 2014 dengan peta dasar USGS Astrogeology, 2014.

Gambar 4. Peta permukaan Io berdasar citra komposit Voyager 1, Voyager 2 dan Galileo. Nampak lokasi Rarog Patera, Heno Patera dan 201308C, tiga gunung berapi yang terlibat dalam trio letusan besar Agustus 2013. Terlihat juga lokasi Gunung Loki dengan kalderanya yang terbesar di Io. Juga Gunung Pele, gunung berapi luar Bumi yang pertama kali terdeteksi. Sumber: Sudibyo 2014 dengan peta dasar USGS Astrogeology, 2014.

Analisis lebih lanjut memperlihatkan trio letusan ini merupakan letusan besar karena memuntahkan magma dalam jumlah sangat banyak. Jumlah magma yang disemburkan letusan Rarog Patera dan Heno Patera berkisar antara 50.000 hingga 100.000 meter kubik per detik. Sebaliknya berapa magma yang dikeluarkan letusan 201308C belum jelas, namun dapat diduga jauh lebih besar ketimbang Rarog dan Heno Patera. Bandingkan dengan Letusan Krakatau 1883 di Bumi, yang pada puncak letusannya menghamburkan magma sebanyak ‘hanya’ 20.400 meter kubik per detik. Dengan demikian dapat dikatakan bahwa kecepatan pengeluaran magma Rarog Patera dan Heno Patera adalah antara 2 hingga 4 kali lipat lebih tinggi ketimbang Krakatau. Namun tak demikian dengan dayanya, yakni jumlah energi yang dilepaskan dalam tiap satuan waktu. Jika suhu magma Krakatau 1883 dianggap 800 derajat Celcius, maka daya sebesar 14 terawatt terlepas dalam puncak letusannya. Ini lebih besar ketimbang daya letusan Rarog maupun Heno Patera, namun masih lebih kecil dibanding letusan 201308C.

Io adalah benda langit yang sedikit lebih besar dari Bulan (diameter Io = 3.628 km dan diameter Bulan = 3.474 km). Maka dari itu gravitasinya pun cukup kecil yakni 5,5 kali lebih kecil ketimbang Bumi. Saat terjadi letusan sedahsyat Letusan Krakatau 1883 di Io, gravitasi kecilnya membuat material letusan sanggup tersembur hingga mencapai ketinggian beratus-ratus kilometer. Bandingkan dengan Bumi, dimana letusan gunung berapi terdahsyat sekalipun takkan sanggup menyemburkan debu vulkaniknya hingga melampaui ketinggian 100 km. Debu vulkanik gunung-gemunung berapi di Io bahkan sanggup melesat keluar dari lingkungan pengaruh satelit alamiah Jupiter itu dan lantas berubah haluan menjadi debu bermuatan listrik mengelilingi Jupiter sebagai plasma. Observasi dengan satelit HISAKI milik Jepang, yang dirancang khusus untuk mengamati plasma yang mengedari Jupiter dari kejauhan orbit Bumi, berhasil mendeteksi meningkatnya jumlah debu bermuatan listrik dalam lingkungan plasma tersebut setelah trio letusan ini terjadi.

Tidal

Sekilas adanya gunung berapi di luar Bumi bakal membuat dahi kita berkernyit. Apalagi di lingkungan sekecil Io. Apalagi saat gunung-gemunung berapi tersebut meletus dengan kekuatan yang luar biasa besar hingga menyamai atau bahkan melebihi Letusan Krakatau 1883 yang demikian populer. Gunung berapi aktif di luar Bumi memang baru diketahui eksistensinya pada 1979. Untuk pertama kalinya gunung berapi semacam itu memang ditemukan di Io, dalam satu babak eksplorasi antariksa takberawak yang bergelora.

Io adalah satelit alamiah Jupiter yang cukup populer. Astronom legendaris Galileo Galilei menjadi orang yang pertama kali menyaksikannya lewat teleskop pembias sederhana (perbesaran 20 kali) buatan sendiri pada 7 Januari 1610 malam. Observasi serupa di malam selanjutnya memastikan eksistensi Io. Inilah satu dari empat satelit Galilean Jupiter, sekaligus satelit alamiah terbesar yang berjarak paling dekat dengan planet gas raksasa itu. Io hanya membutuhkan 42 jam untuk beredar mengelilingi sang planet induk sekali putaran. Benda langit ini sejatinya dapat disaksikan mata manusia tanpa menggunakan alat bantu karena magnitudo semunya +5, atau setingkat lebih terang ketimbang ambang batas keterlihatan benda langit lewat mata manusia (yakni magnitudo semu +6). Namun benderangnya Jupiter persis disebelahnya membuat Io takkan dapat disaksikan dengan cara itu.

Gambar 5. Citra resolusi rendah terhadap lingkungan tiga gunung berapi yang terlibat dalam trio letusan besar Agustus 2013 diabadikan oleh wahana Voyager 1 (kiri) dan galileo (kanan). Ketiganya adalah Gunung Rarog Patera (lingkaran hijau), Heno Patera (lingkaran merah) dan 201308C (lingkaran ungu). Jelas terlihat bahwa ketiga gunung berapi ini pada dasarnya adalah kaldera. Sumber: NASA, 1979 & 1999.

Gambar 5. Citra resolusi rendah terhadap lingkungan tiga gunung berapi yang terlibat dalam trio letusan besar Agustus 2013 diabadikan oleh wahana Voyager 1 (kiri) dan galileo (kanan). Ketiganya adalah Gunung Rarog Patera (lingkaran hijau), Heno Patera (lingkaran merah) dan 201308C (lingkaran ungu). Jelas terlihat bahwa ketiga gunung berapi ini pada dasarnya adalah kaldera. Sumber: NASA, 1979 & 1999.

Hingga hampir empat abad kemudian Io hanya terlihat sebagai bintik cahaya mirip bintang. Namun seiring perkembangan zaman yang meningkatkan kemampuan teleskop-teleskop termutakhir, perlahan-lahan Io mulai tampil sebagai cakram redup. Meski demikian ada satu anggapan yang tak berubah merentang abad, yakni aktivitas geologisnya. Dengan ukuran hanya sedikit lebih besar dari Bulan, Io dianggap sebagai benda langit yang telah mati. Artinya, kondisi internalnya telah mendingin (hampir) sepenuhnya sehingga tak lagi tersisa cukup panas yang bisa keluar ke permukaan dalam rupa vulkanisme beserta aktivitas penyertanya. Hingga 1978 pandangan ini masih bertahan meski observasi teleskop inframerah termutakhir saat itu mengungkap adanya hal aneh di Io. Anomali itu sebanding dengan pancaran panas dari obyek bersuhu sekitar 300 derajat Celcius dari area seluas 8.000 kilometer persegi di Io, yang mengesankan sebagai aktivitas vulkanik.

Pandangan tersebut berubah total setelah wahana antariksa takberawak Voyager 1 melintas di dekat Io dalam perjalanannya mengarungi tata surya guna menuju ke planet Saturnus. Voyager 1 memperlihatkan betapa mulusnya permukaan Io, tanpa berhias kawah-kawah tumbukan benda langit (asteroid atau komet) disana-sini. Padahal kawah-kawah tumbukan dalam aneka ukuran amat umum dijumpai pada permukaan benda langit yang telah mati seperti misalnya Bulan dan planet Mars. Maka permukaan Io amat berbeda dibanding Bulan. Io memang memiliki atmosfer namun sangat tipis, sehingga permukaannya yang mulus jelas bukan hasil kerja gaya-gaya eksogen seiring cuaca. Permukaan Io lebih merupakan manifestasi dari gaya endogennya.

Dan heboh besar pun meledak begitu Voyager 1 bersiap meninggalkan lingkungan Io. Untuk kepentingan navigasi optikal guna mengetahui posisi wahana di langit, Voyager 1 mengarahkan kameranya ke Io pada 8 Maret 1979. Hasilnya mengejutkan. Voyager 1 tak hanya menangkap citra Io sebagai benda langit berbentuk sabit lebar mirip Bulan, namun juga merekam sejenis busur setengah lingkaran yang mengembang mirip payung di tepi cakram Io. Selidik punya selidik, bentuk mirip payung ini ternyata material vulkanik yang tersembur hebat dari suatu titik yang kemudian dinamakan Gunung Pele. Semburan material vulkanik yang demikian tinggi menandakan telah terjadi letusan besar. Tertangkap juga sebentuk kaldera raksasa yang di kemudian hari dinamakan Gunung Loki. Observasi selanjutnya dalam waktu yang berbeda melalui wahana Voyager 2 (1979), Galileo (1995-2003), Cassini-Huygens (2000) dan New Horizon (2007) menunjukkan bahwa dunia sekecil Io ternyata dijejali 150 gunung berapi dalam berbagai bentuk. Gunung Pele menjadi gunung berapi Io yang terbesar. Tapi angka itu diyakini hanyalah sebagian dari seluruh populasi gunung berapi di Io yang diduga mencapai 400 buah atau lebih.

Gambar 6. Video detik-detik letusan Gunung Tvashtar Patera seperti diabadikan wahana New Horizon (2007) saat melintas-dekat Jupiter dalam perjalanan menuju planet-kerdil Pluto. Material vulkanik terlihat disemburkan setinggi 330 km dan membentuk busur setengah bola mirip payung raksasa, ciri khas letusan besar. Sumber: NASA, 2007.

Gambar 6. Video detik-detik letusan Gunung Tvashtar Patera seperti diabadikan wahana New Horizon (2007) saat melintas-dekat Jupiter dalam perjalanan menuju planet-kerdil Pluto. Material vulkanik terlihat disemburkan setinggi 330 km dan membentuk busur setengah bola mirip payung raksasa, ciri khas letusan besar. Sumber: NASA, 2007.

Vulkanisme di Io semula diduga lebih menyemburkan magma yang didominasi senyawa-senyawa belerang sehingga suhunya lebih dingin ketimbang lava di Bumi. Namun observasi lebih lanjut menjungkirbalikkan anggapan itu. Banyak gunung berapi Io yang ternyata menyemburkan magma dengan dominasi senyawa-senyawa silikat, layaknya magma di Bumi. Sehingga magmanya setara atau bahkan lebih panas dibanding magma di Bumi. Gunung-gunung berapi Io kerap meletus dalam jangka panjang lewat erupsi efusif. Ini adalah letusan yang melelerkan lava tanpa disertai semburan material vulkanik yang cukup tinggi. Erupsi efusif di Io menghasilkan lava yang bergerak cepat, sehingga mampu menutupi area seluas 12,6 hingga 21,6 hektar dalam setiap jamnya (kasus letusan Prometheus dan Amirani). Sementara lava produk erupsi efusif di Bumi hanya sanggup menutupi area seluas 0,2 hektar saja dalam setiap jamnya (kasus letusan Kilauea di Kepulauan Hawaii). Namun pada saat-saat tertentu, dalam jangka pendek, gunung-gunung berapi ini juga dapat mengalami erupsi eksplosif. Erupsi eksplosif ini sungguh luar biasa. Iasanggup menyemburkan lava panas hingga setinggi 1 km laksana air mancur berapi gigantis. Sementara debu vulkaniknya mampu tersembur jauh lebih tinggi lagi. Kecepatan pengeluaran lavanya pun demikian besar sehingga sebanding dengan letusan gunung berapi model banjir lava basalt di Bumi, seperti misalnya Letusan Laki 1783 (Islandia).

Mengapa dunia kecil Io bisa sedahsyat dan seunik ini? Vulkanisme di Io digerakkan oleh sumber yang berbeda dibanding Bumi. Di Bumi, gunung-gemunung berapi muncul akibat adanya sumber panas internal dimana 90 % diantaranya berasal dari peluruhan radioaktif inti-inti atom berat sementara 10 % sisanya adalah panas-sisa proses pembentukan Bumi purba dari masa remaja tata surya. Panas tersebut menghasilkan sirkulasi dalam lapisan selubung (mantel) Bumi sehingga menggerakkan lempeng-lempeng tektonik di keraknya. Perbenturan dan pemisahan lempeng-lempeng inilah yang memproduksi vulkanisme. Namun hanya 1 % panas internal Bumi yang mewujud sebagai vulkanisme dan tektonisme, 99 % sisanya terlepas keluar melalui proses konduksi di kerak Bumi.

Di internal Io juga terjadi peluruhan radioaktif inti-inti atom berat, namun energi yang dihasilkannya hanya mencakup 0,5 % saja. 99,5 % panas internal Io disumbangkan oleh pemanasan tidal, seiring posisi Io yang unik dalam lingkungan planet Jupiter. Io berjarak relatif dekat dengan planet induknya. Dan dengan 2 satelit Galilean lainnya, yakni Europa dan Ganymede, Io mengalami resonansi orbital dalam bentuk resonansi Laplace. Maka kala Ganymede tepat menyelesaikan revolusinya terhadap Jupiter sekali, Io pun tepat empat kali berevolusi. Demikian halnya saat Europa sekali berevolusi, maka Io tepat dua kali berevolusi. Sifat ini membuat orbit Io sangat stabil dan nyaris berbentuk lingkaran sempurna. Di sisi lain kedekatannya dengan Jupiter membuat Io mengalami gaya tidal (gaya pasang surut) yang sangat besar. Sehingga permukaan Io menggelembung dan mengempis secara teratur dengan perbedaan ketinggian permukaan rata-rata bisa mencapai 100 meter. Bandingkan dengan Bumi, dimana gaya tidal Bulan hanya sanggup menghasilkan perbedaan setinggi 1 meter saja.

Mengembang dan mengempisnya Io pun dirasakan oleh struktur internalnya hingga menciptakan panas yang sangat besar. Panas ini tak bisa dimanifestasikan dalam perubahan orbit Io, akibat resonansi orbitalnya dengan Europa dan Ganymede. Maka panas itu pun akhirnya melelehkan sebagian lapisan selubung Io hingga membentuk lapisan magma (samudera magma) pada kedalaman 50 km dengan ketebalan rata-rata sekitar 50 km. Magma dari samudera magma inilah yang kemudian keluar ke permukaan, menciptakan vulkanisme yang sangat intensif.

Referensi:

de Pater dkk. 2014. Two New, Rare, High-effusion Outburst Eruptions at Rarog and Heno Paterae on Io. Icarus 2014.06.016

de Kleer dkk. 2014. Near-infrared Monitoring of Io and Detection of a Violent Outburst on 29 August 2013. Icarus 2014.06.006

Perry. 2014. Three Major Volcanic Eruptions Observed On Io in the Span of Two Weeks. Planetary Society 2014/08/12.

Antara Letusan Tambora, Waterloo dan Perang Diponegoro

Yogyakarta, Rabu 20 Juli 1825. Matahari kuning kemerah-merahan mengambang rendah di atas kaki langit barat saat jarum jam menunjuk pukul 17:00 setempat. Cahaya keemasannya melaburi langit senja dan juga pucuk-pucuk pepohonan di seantero kota, seakan hendak melipur lara para penduduknya yang menderita di bawah pendudukan Belanda. Namun keindahan senja itu tak sanggup menghapus amarah membara. Di kejauhan sana, di dekat kaki langit sebelah barat, asap mengepul pekat. Inilah saat pasukan gabungan Kasultanan Yogyakarta dan Belanda menyerbu Ndalem Tegalrejo, kediaman Pangeran Diponegoro di pedesaan sisi barat kota. Pasukan gabungan itu datang menghantam dengan satu tujuan: meringkus sang pangeran. Itulah jawaban atas sikap keras Pangeran Diponegoro yang dianggap membangkang karena menolak rencana pelebaran jalan raya (kelak menjadi bagian jalan raya Yogyakarta-Magelang) yang melintasi tapalbatas Ndalem Tegalrejo. Penyerbuan berlangsung kelewat batas. Ndalem Tegalrejo digedor, digeledah, diobrak-abrik dan lantas dibakar. Namun sang buruan tak tertangkap. Bersama sejumlah pengiringnya, Diponegoro meloloskan diri dari kepungan dan lantas menyingkir 10 km ke selatan, ke perbukitan Selarong yang dipenuhi goa-goa kapur.

Diponegoro. Kadang ditulis juga sebagai Dipanegara. Tak satupun orang Indonesia khususnya yang pernah mengenyam bangku sekolah yang asing akan namanya. Diponegoro adalah pahlawan nasional Indonesia. Sosoknya gampang terpatri dalam benak: berpakaian serba putih, bersorban putih pula dan menyandang keris didepan raga. Tak heran jika tampilan ini banyak ditiru khususnya dalam pentas perayaan peringatan kemerdekaan republik ini, baik di sekolah, di karnaval menyusuri jalan-jalan utama maupun di panggung serta layar perak. Tak berbilang pula kota-kota yang menabalkan salah satu ruas jalan utamanya dengan namanya. Namanya pun melekat pada daerah militer di Jawa Tengah (sebagai Kodam IV/Diponegoro), juga pada salah satu lembaga perguruan tinggi prestisius (Universitas Diponegoro). Sejumlah patung bernuansa kepahlawanan yang menggambarkan sosoknya pun berdiri dimana-mana. Bahkan dua buah kapal perang TNI-AL pun menyandang namanya, misalnya yang termutakhir KRI Diponegoro-365.

Gambar 1. Dinding berlubang di pagar sisi barat eks Ndalem Tegalrejo (kini Museum Sasana Wiratama Dipoengoro, Yogyakarta). Di sinilah Pangeran Diponegoro meloloskan diri saat kediamannya diserbu pasukan gabungan Kasultanan Yogyakarta dan Belanda, yang mengawali berkobarnya Perang Diponegoro. Sumber: Amangkuratprastono, 2014.

Gambar 1. Dinding berlubang di pagar sisi barat eks Ndalem Tegalrejo (kini Museum Sasana Wiratama Dipoengoro, Yogyakarta). Di sinilah Pangeran Diponegoro meloloskan diri saat kediamannya diserbu pasukan gabungan Kasultanan Yogyakarta dan Belanda, yang mengawali berkobarnya Perang Diponegoro. Sumber: Amangkuratprastono, 2014.

Ya. Diponegoro memang pahlawan besar, sosok sentral dibalik Perang Diponegoro atau yang dikenal juga sebagai Perang Jawa dalam melawan penjajahan Belanda. Perang Diponegoro menjadi peperangan paling berdarah, paling mahal dan paling menguras tenaga sepanjang sejarah penjajahan Belanda di Indonesia. Hanya dalam tempo 5 tahun Belanda harus mengerahkan 50.000 serdadu dengan tak kurang dari 15.000 diantaranya tumpas berkalang tanah. Separuh korban tewas itu adalah pasukan terpilih yang didatangkan langsung dari tanah Eropa. Perkebunan-perkebunan yang selama ini menjadi lumbung uang dibakar dan dirusak. Total kerugiannya pun melangit, mencapai angka 20 juta gulden pada masa itu atau setara milyaran rupiah di masa kini. Dikombinasikan dengan duit yang harus dirogoh dalam perang Napoleon di daratan Eropa yang disusul pemberontakan Belgia dan perang Paderi di Sumatra, Perang Diponegoro membuat pemerintah Belanda maupun satelit seberang lautannya (yakni pemerintah kolonial Hindia Belanda) mendapati diri mereka bangkrut sebangkrut-bangkrutnya.

Diponegoro sejatinya bukan nama diri. Itu adalah gelar kepangeranan yang bukan main-main. Gelar bagi seorang pangeran yang menyebarkan pencerahan dan kekuatan bagi sebuah negara. Sebelum 1825 gelar ini acapkali dipakai sejumlah putra raja wangsa Mataram masa itu. Pangeran Diponegoro yang kita bicarakan ini lahir sebagai BRM (Bandoro Raden Mas) Mustahar, putra sulung Sri Sultan Hamengku Buwono III, di tahun 1785. Saat beranjak remaja, sesuai tradisi keraton maka namanya bersalin menjadi RM (Raden Mas) Ontowiryo. Dan pada tahun 1812 beliau dinobatkan sebagai pangeran dengan menyandang gelar BPH (Bandoro Pangeran Haryo) Diponegoro. Sebagai putra tertua sang raja yang sedang bertahta, Diponegoro pun memiliki kesempatan untuk menjadi raja berikutnya. Namun Diponegoro tahu diri, ia bukanlah putra permaisuri. Sebaliknya ia justru keluar dari lingkungan keraton dan tinggal di pedesaan untuk mendekatkan diri dengan rakyat Yogyakarta sembari memperdalam ilmu agama (Islam). Dalam saat-saat tertentu sang pangeran, dengan menyamar sebagai wong cilik, bahkan tak segan-segan blusukan ke pelosok tanah Mataram, dua abad sebelum kosakata blusukan menjadi trademark Jokowi.

Namun selepas Perang Diponegoro, tak satupun bangsawan wangsa Mataram baik di Kasultanan Yogyakarta, Kasunanan Surakarta maupun Pakualaman dan Mangkunegaran yang bersedia menyandang nama Diponegoro lagi. Nama itu ibarat aib, pembawa kutukan. Bagi Kasultanan Yogyakarta sendiri, Pangeran Diponegoro bahkan dipandang sebagai sosok pengkhianat. Betapa tidak? Perang Diponegoro merenggut korban tak kepalang. Lebih dari seperlima juta orang Jawa meregang nyawa. Populasi warga Yogyakarta pun menyusut hingga tinggal separuh. Seluruh biaya peperangan di pihak Belanda dibebankan ke Kasultanan. Dan begitu perang usai, Belanda melucuti wilayah Kasultanan terutama di Bagelen (sekarang Purworejo), Banyumas dan Panjer (sekarang Kebumen) sebagai pampasan perang. Kasultanan pun nyaris bangkrut, hampir terhapus dari panggung sejarah. Tak heran jika kebencian pun berakar dalam. Bahkan keturunan Diponegoro dilarang untuk memasuki keraton, kapanpun dan atas alasan apapun. Larangan ini baru dicabut lebih dari seabad kemudian pada masa Sri Sultan Hamengku Buwono IX, kala zaman sudah berubah. Apalagi setelah Presiden Soekarno berinisiatif menggelar peringatan satu abad wafatnya Pangeran Diponegoro pada 1955.

Faktor

Gambar 2. Pertempuran Nglengkong 30 Juli 1826 dalam sketsa. Pasukan gabungan Kasultanan Yogyakarta dan Belanda berhadapan dengan laskar Diponegoro, yang menghasilkan kemenangan terbesar bagi Pangeran Diponegoro pada saat itu. Sumber: Amangkuratprastono, 2014.

Gambar 2. Pertempuran Nglengkong 30 Juli 1826 dalam sketsa. Pasukan gabungan Kasultanan Yogyakarta dan Belanda berhadapan dengan laskar Diponegoro, yang menghasilkan kemenangan terbesar bagi Pangeran Diponegoro pada saat itu. Sumber: Amangkuratprastono, 2014.

Buku-buku sejarah di bangku sekolah menyebut penyerbuan Ndalem Tegalrejo itulah penyulut Perang Diponegoro. Ya. Perang Diponegoro memang dimulai dari Tegalrejo. Namun penyerbuan Tegalrejo bukanlah faktor utama penyebab perang. Sang pangeran sendiri dalam Babad Diponegoro, karya sastra biografis yang ditulis Diponegoro selama masa penawanan di pulau Sulawesi dan kini telah diakui secara internasional sebagai salah satu Memory of the World oleh UNESCO, menyebut bibit peperangan besar itu telah bersemi semenjak 12 tahun sebelumnya. Yakni saat kolonialisme Eropa mempertontonkan wajah kurangajarnya dengan mulai mencampuri urusan internal Kasultanan. Inggris, yang saat itu menguasai pulau Jawa sebagai ekses perang Napoleon, mengacak-acak keraton, memprovokasi terbentuknya kadipaten Pakualaman (sebagai pecahan Kasultanan) dan bahkan pada puncaknya melakukan penjarahan akbar pada 1812.

Inggris tak bertahan lama di Yogyakarta. Mulai pertengahan 1816, Belanda kembali dan mengambil-alih seluruh wilayah jajahannya. Dalam keadaan hampir bangkrut, Belanda meneruskan praktik provokasi Inggris. Keraton makin diacak-acak. Minuman keras bergentayangan dimana-mana, membuat para pangeran muda dan tua mabuk tanpa kenal ruang dan waktu. Perselingkuhan opsir-opsir Belanda dengan para putri keraton pun merebak. Sedemikian parah situasinya sehingga Mahandis Y. Thamrin dalam National Geographic Indonesia edisi Agustus 2014 bahkan menyebut Belanda memperlakukan keraton tak ubahnya seperti tempat pelacuran. Di luar keraton, Belanda melakoni model penjajahan gaya batu dengan membebani setiap orang lewat aneka macam pajak yang mencekik leher. Di wilayah Bagelen saja setiap orang dibebani membayar 13 jenis pajak sekaligus! Zaman pun menjadi edan.

Lambat laun kekurangajaran Belanda di dalam dan di luar keraton laksana menyulut bara dalam sekam. Ketidaksukaan dan kebencian merebak dimana-mana, baik di kalangan bangsawan, prajurit, ulama, bupati, demang, santri, petani maupun rakyat kecil pemberani. Kegemaran blusukannya membuat Diponegoro mampu mencermati ketidaksukaan itu. Dan beliau tidak menulikan diri. Sebaliknya, Diponegoro justru mulai membentuk jaringan rahasia dengan mereka untuk membangun kekuatan. Dana pun mulai mengalir, terutama dari para bangsawan dan dari pencegatan demi pencegatan konvoi logistik Belanda yang sekilas terkesan sebagai tindakan sporadis. Dengan dana tersebut dibangunlah kilang mesiu rahasia di pinggiran Yogyakarta dan tempat-tempat lain. Senapan pun mulai dibeli dari Prusia. Organisasi militer mulai dibentuk dengan mengacu pada struktur tentara imperium Turki Utsmani.

Dengan semua persiapan nan senyap itu Perang Jawa memang benar-benar tinggal menunggu waktu. Dan si pemicu pun datanglah, kala Ndalem Tegalrejo diserbu. Tak heran jika hanya dalam dua minggu pasca penyerbuan Tegalrejo, Diponegoro kembali ke kota Yogyakarta, kali ini bersama 6.000 prajurit. Kota dikepung dari segenap penjuru selama sebulan lebih semenjak 7 Agustus 1825. Tak sekedar mengepung dan memutuskan seluruh akses jalan masuk kota, pasukan Diponegoro secara sistematis juga menghujani Yogyakarta dengan mesiu khususnya ke target-target strategis milik Belanda. Yogyakarta menjadi lautan api. Belanda pun kewalahan dan memilih bertahan sekuat tenaga di dalam Benteng Vredeburg sembari menunggu bala bantuan dari Batavia.

Waterloo

Selain faktor-faktor yang bersifat lokal itu, faktor global turut menjadi penyebab Perang Diponegoro. Seperti berkecamuknya Pertempuran Waterloo (1815) di daratan Eropa dan disusul berjangkitnya penyakit demikian rupa hingga menciptakan wabah berskala besar yang berujung pandemi (1817-1824). Cukup menarik bahwa dua faktor global tersebut nampaknya sangat dipengaruhi sebuah peristiwa alamiah dalam skala yang sungguh luar biasa, yakni Letusan Tambora 1815.

Bagaimana bisa demikian?

Gambar 3. Pertempuran Waterloo dalam lukisan William Sadler. Kekalahan Perancis dalam perang besar ini mengubah geopolitik Eropa dan berpengaruh global, termasuk memicu Perang Diponegoro.

Gambar 3. Pertempuran Waterloo dalam lukisan William Sadler. Kekalahan Perancis dalam perang besar ini mengubah geopolitik Eropa dan berpengaruh global, termasuk memicu Perang Diponegoro.

Pertempuran Waterloo adalah perang yang menentukan kejatuhan kekaisaran Napoleon Bonaparte. Napoleon adalah produk ajaib revolusi Perancis, revolusi yang semula bertujuan meruntuhkan kekuasaan monarki absolut (mutlak) namun belakangan justru berbuah tegaknya kembali kekuasaan monarki absolut yang lain. Selagi menjabat kaisar Perancis, Napoleon berusaha mewujudkan ambisinya menyatukan seluruh daratan Eropa di tangannya. Ambisi ini menyebabkan Perancis terus-menerus bertempur dengan negara-negara tetangganya, terutama Inggris dan Prusia, yang mewujud dalam sejumlah episode Perang Koalisi. Mulai Perang Koalisi Ketiga (1805) hingga Perang Koalisi Kelima (1809), Perancis memetik banyak kemenangan. Sehingga pada 1812 imperium Perancis mencapai puncak kejayaannya dengan wilayah membentang luas meliputi hampir seluruh daratan Eropa barat, kecuali Portugis dan Eropa tenggara menjadi wilayah imperium Turki Utsmani, yang dianggap sekutu Perancis. Sebaliknya Eropa timur sepenuhnya ada di bawah kekaisaran Rusia. Maka Napoleon dan pasukannya pun bermanuver ke timur.

Namun invasi Napoleon ke Rusia justru membuatnya tersungkur telak. Taktik yang salah, musim dingin yang demikian menggigil membekukan dan sengatan wabah tipus membuat Perancis mengalami kekalahan besar-besaran. Napoleon terpaksa pulang dengan memalukan dari Moskow sembari membawa hanya 4 % dari sisa pasukannya, setara 27.000 orang. Sebagian besar lainnya tewas atau malah tertangkap lawan. Demoralisasi pun menyebar di sekujur Perancis. Akibatnya saat koalisi Prusia, Swedia, Austria dan Jerman bangkit mengeroyok Perancis dengan bantuan Rusia dalam Perang Koalisi Keenam (1812-1814), Napoleon dipaksa bertekuk lutut. Setengah juta pasukan koalisi berbaris rapi memasuki kota Paris pada 30 Maret 1814 dan sang kaisar yang terguling dipaksa pergi ke pengasingan di pulau Elba, lepas pantai barat Italia. Koalisi mendudukkan raja Louis XVIII, monarki sebelumnya, sebagai penguasa Perancis yang baru. Bersama Inggris Raya koalisi pun mulai merancang pertemuan di Wina guna menata ulang geopolitik Eropa sesuai monarki-monarki yang ada sebelum meletusnya perang Napoleon. Pertemuan mulai terlaksana setengah tahun kemudian dan lantas populer sebagai Kongres Wina.

Mendadak berhembus kabar Napoleon Bonaparte meloloskan diri dari pulau Elba. Kabar itu ternyata benar dan sejatinya tak mengejutkan seiring lemahnya penjagaan di pulau Elba. Napoleon mendarat di Perancis pada 1 Maret 1815 dan segera memperoleh dukungan luas dari publik untuk merengkuh kembali tahta kekaisarannya. Raja Louis XVIII terpaksa lari terbirit-birit dari Paris. Begitu imperium Perancis kembali, sasaran pertamanya adalah menghabisi seluruh musuhnya. Maka 280.000 prajurit baru pun disiapkan ditambah dengan 250.000 veteran perang. Napoleon juga mengeluarkan dekrit baru yang memungkinkan 2,5 juta penduduk memasuki legiun-legiun Perancis. Di luar sana, koalisi Austria, Prusia, Rusia dan Inggris Raya pun segera mengorganisir diri. Pasukan besar juga dibentuk dan siap dibenturkan. Perang Koalisi Ketujuh pun siap berkobar.

Malang, kali ini Napoleon (kembali) harus jatuh tersungkur. Serangan dadakannya ke pusat konsentrasi pasukan koalisi di Brussels (Belgia) yang belum sempat menata diri berujung petaka di Waterloo. Hujan sangat deras yang salah musim mendadak mengguyur, membuat jalanan menjadi demikian berlumpur sehingga artileri berat yang menjadi tulang punggung pasukan Perancis tak bisa bergerak leluasa. Tak lama kemudian udara kian mendingin, fenomena aneh untuk rentang waktu yang seharusnya adalah musim panas. Udara yang kian mendingin membuat pasukan Perancis terserang radang dingin hingga menyulitkan gerakannya. Demikian dinginnya sehingga pasukan Perancis sampai-sampai terpaksa membakar setiap sepatu tak terpakai sekedar untuk menghangatkan badan. Ambisi Napoleon membuat lawan-lawannya kocar-kacir sembari berharap Inggris pulang kembali ke negerinya dan Prusia keluar dari koalisi pun lenyap laksana kabut dipanggang sinar Matahari. Justru sebaliknya pasukan Perancis yang mendapat pukulan sangat telak hingga segenap sayapnya lumpuh. Korban pun sangat besar, dari 72.000 prajurit Perancis hanya 29 % yang selamat di akhir pertempuran. Bandingkan dengan kekuatan koalisi, yang masih menyisakan 80 % pasukannya dari yang semula berkekuatan 118.000 prajurit.

Akumulasi faktor-faktor yang tak menguntungkan membuat Perancis tak lagi punya keunggulan hingga terpaksa harus bertekuk lutut di bawah kaki pasukan koalisi di akhir pertempuran pada 18 Juni 1815. Sebagai konsekuensinya Napoleon pun mundur dari tahta dan menyerahkan diri ke Inggris. Inggris lantas mengasingkannya ke pulau Saint Helena di tengah-tengah Samudra Atlantik lepas pantai barat Afrika hingga akhir hayatnya. Kongres Wina pun kembali digelar dan menghasilkan sejumlah keputusan. Salah satunya adalah dikembalikannya tanah Nusantara ke tangan Belanda sekaligus menegakkan kembali pemerintah kolonial Hindia Belanda menggantikan pemerintahan pendudukan Inggris.

Tambora

Gambar 4. Letusan Gunung Pinatubo pada Juni 1991, menjelang puncak letusan katastrofiknya. Debu vulkanik Pinatubo disemburkan jauh tingga hingga memasuki lapisan stratosfer dan sempat menciptakan tabir surya vulkanik meski tak berdampak besar bagi iklim Bumi. Letusan Tambora 1815 pada dasarnya juga demikian, hanya saja 16 kali lipat lebih dahsyat ketimbang Pinatubo. Sehingga dampaknya pun sangat besar. Sumber: USGS, 1991.

Gambar 4. Letusan Gunung Pinatubo pada Juni 1991, menjelang puncak letusan katastrofiknya. Debu vulkanik Pinatubo disemburkan jauh tingga hingga memasuki lapisan stratosfer dan sempat menciptakan tabir surya vulkanik meski tak berdampak besar bagi iklim Bumi. Letusan Tambora 1815 pada dasarnya juga demikian, hanya saja 16 kali lipat lebih dahsyat ketimbang Pinatubo. Sehingga dampaknya pun sangat besar. Sumber: USGS, 1991.

Tak sulit untuk melihat hujan sangat deras dan udara yang mendadak mendingin adalah salah satu faktor krusial yang menentukan kekalahan Perancis di medan perang Waterloo. Mengapa kedua hal yang tak menguntungkan Perancis itu terjadi? Pertempuran Waterloo berkecamuk pada 15 Juni 1815. Maka tak sulit untuk mengaitkan jalannya pertempuran dengan peristiwa alamiah berskala luar biasa yang terjadi dua bulan sebelumnya mengambil tempat ribuan kilometer dari Waterloo, yakni di kepulauan Nusantara. Itu adalah meletusnya Gunung Tambora, yang mencapai puncak kedahsyatannya dalam kurun 5 hingga 15 April 1815. Letusan ini menyemburkan 160 kilometer kubik (160.000 juta meter kubik) material vulkanik. Milyaran ton debu vulkanik sangat halus menyembur tinggi hingga mencapai lapisan stratosfer. Bersamanya terbawa serta ratusan juta ton gas belerang, yang lantas bereaksi dengan air membentuk tetes-tetes asam sulfat. Paduan keduanya membentuk tabir surya vulkanik yang menyelubungi sekujur penjuru atmosfer Bumi pada ketinggian antara 10 hingga 30 km. Tabir surya ini membuat 25 % cahaya Matahari tereduksi sehingga hanya 75 % saja yang berhasil ditransmisikan ke Bumi. Akibatnya suhu rata-rata permukaan Bumi pun menurun dengan segala akibatnya.

Mudah untuk melihat bahwa hujan salah musim dan sangat deras merupakan bagian dari kacau-balaunya cuaca akibat penurunan suhu rata-rata permukaan. Pun demikian dalam hal udara yang kian mendingin. Hal yang sama juga bertanggungjawab atas terjadinya wabah penyakit berskala global. Udara yang lebih dingin, tebaran debu vulkanik dan cuaca yang kacau membuat sanitasi lingkungan memburuk. Bibit penyakit yang semula hanya endemis di daerah tertentu pun sanggup menyebar lebih jauh. Inilah yang terjadi dengan kolera, yang semula hanya berjangkit di kawasan lembah Sungai Gangga (India). Namun semenjak 1817 kolera mulai tersebar ke kawasan lain. Pada puncaknya hampir seluruh Asia tersapu wabah penyakit mematikan ini, bersama dengan sisi timur Afrika dan sebagian Eropa Timur. Wabah kolera inilah yang menyebabkan kematian massal di tanah Jawa. Demikian banyak penduduk yang meninggal sehingga lahan pertanian tak terurus. Akibatnya bencana kelaparan pun merebak. Wabah ini tak pandang bulu dalam memilih korbannya, kalangan bangsawan dan bahkan Sri Sultan Hamengku Buwono IV pun turut menjadi sasaran. Tak pelak bencana ini pun berimbas ke ranah sosial-politis, terutama setelah Belanda memilih putra raja (yang baru berusia 3 tahun) menjadi raja selanjutnya bergelar Sri Sultan Hamengku Buwono V. Karena belum cukup umur, Pangeran Diponegoro ditunjuk sebagai wali raja namun pemerintahan sehari-hari sejatinya dikendalikan Residen Belanda bersama Patih Danurejo IV.

Gambar 5. Kaldera Gunung Tambora yang demikian luas dan dalam. Cekungan air berwarna kehijauan didasarnya adalah Danau Motilahalo. Kaldera ini terbentuk dalam Letusan Tambora 1815 yang dahsyat, hampir 2 abad silam. Kedahsyatannya memicu beragam dampak sosial-politis, termasuk Pertempuran Waterloo dan juga Perang Diponegoro. Sumber: Wahibur Rahman, dalam Geomagz vol. 4 no. 2 (Juni 2014).

Gambar 5. Kaldera Gunung Tambora yang demikian luas dan dalam. Cekungan air berwarna kehijauan didasarnya adalah Danau Motilahalo. Kaldera ini terbentuk dalam Letusan Tambora 1815 yang dahsyat, hampir 2 abad silam. Kedahsyatannya memicu beragam dampak sosial-politis, termasuk Pertempuran Waterloo dan juga Perang Diponegoro. Sumber: Wahibur Rahman, dalam Geomagz vol. 4 no. 2 (Juni 2014).

Kita bisa beranda-andai bagaimana jika pada saat itu Gunung Tambora tak meletus dahsyat? Takdir memang adalah garis nasib yang sepenuhnya menjadi kuasa Allah SWT. Namun jika Letusan Tambora 1815 tak terjadi, jalannya Pertempuran Waterloo mungkin bakal berbeda. Mengingat sebelum pasukan Prusia berhasil berkonsolidasi dengan rekan-rekan koalisinya, kekuatan koalisi di Waterloo hanyalah berjumlah 68.000 prajurit. Sementara Perancis sedikit lebih unggul dengan 72.000 prajurit dan masih dilengkapi artileri berat yang lebih baik. Maka andaikata letusan dahsyat itu tak berlangsung, Perancis mungkin bisa mengungguli kekuatan koalisi. Sejarah berkemungkinan berubah total. Kongres Wina bisa urung mencapai hasilnya dan Belanda dengan penjajahan gaya batunya mungkin takkan datang ke tanah Jawa pada pertengahan 1816 itu.

Referensi:

Djamhari. 2003. Strategi Menjinakkan Diponegoro: Stelsel-Benteng 1827-1830. Jakarta: Komunitas Bambu.

Penadi. 2000. Riwayat Kota Purworejo dan Perang Bharatayudha di Tanah Bagelen Abad XIX. Purworejo: Lembaga Studi Pengembangan Sosial dan Budaya.

Thamrin. 2014. Kecamuk Perang Jawa. National Geographic Indonesia edisi Agustus 2014, hal. 28-49.

Blog Amangkurat Prastono.

Indonesia ‘Menaklukkan’ Australia (Menyaksikan Letusan Sangeang Api dari Langit)

Sekilas judul tulisan ini kelewat bombastis. Indonesia menaklukkan Australia? Kedua negara tidak sedang dalam keadaan berperang, meski hubungan kita dengan negeri kanguru kerap diterpa gelombang pasang-surut sepanjang sejarah. Pada saat tertentu pasang-surut itu bahkan mencapai titik ekstrimnya. Misalnya kala aksi penyadapan intel Australia terhadap pejabat-pejabat Indonesia terungkap. Jakarta lantas membalasnya dengan memanggil pulang duta besar Indonesia untuk Australia, sebuah tamparan terkeras dalam etika hubungan internasional. Meski demikian belum ada ceritanya militer Indonesia saling berhadap-hadapan dengan Australia dalam teater konfrontasi.

Gambar 1. Laksana ledakan bom nuklir Hiroshima, saat puncak kolom letusan Sangeang Api telah demikian melebar dan membentuk payung/jamur raksasa yang terlihat jelas dari jarak 40 km. Diabadikan oleh M. Taufiqurrahman (twitter @tofifoto) dari pusat kota Bima, Kabupaten Bima (Nusa Tenggara Barat) pada Jumat 30 Mei 2014 sore. Sumber: Taufiqurrahman, 2014.

Gambar 1. Laksana ledakan bom nuklir Hiroshima, saat puncak kolom letusan Sangeang Api telah demikian melebar dan membentuk payung/jamur raksasa yang terlihat jelas dari jarak 40 km. Diabadikan oleh M. Taufiqurrahman (twitter @tofifoto) dari pusat kota Bima, Kabupaten Bima (Nusa Tenggara Barat) pada Jumat 30 Mei 2014 sore. Sumber: Taufiqurrahman, 2014.

Namun penaklukan itu benar adanya, meski dalam bentuk lain yang sungguh tak pernah diduga. Adalah letusan besar Gunung Sangeang Api pada 30 Mei 2014 yang menjadi penyebabnya. Apalagi aktivitas letusan Sangeang Api terus berlanjut hingga dua hari kemudian. Letusan-letusan itu secara akumulatif menyemburkan jutaan meter kubik debu vulkanik ke udara, dalam letusan pertama bahkan mencapai ketinggian sekitar 20.000 meter dpl (dari paras air laut rata-rata), lantas terbawa angin regional ke arah tenggara. Maka debu vulkanik Sangeang Api pun terbawa cukup jauh sampai sejauh sekitar 3.000 km hingga menyerbu udara Australia bagian utara.

Hujan debu yang dialami daratan Australia bagian utara memang tak separah guyuran debu dan pasir yang merejam sebagian propinsi Nusa Tenggara Barat dan Nusa Tenggara Timur di Indonesia. Namun konsentrasi debu vulkanik Sangeang Api di atas Australia utara tergolong cukup besar dan berpotensi membahayakan lalu lintas penerbangan, baik sipil maupun militer. Di waktu lalu, Australia menyaksikan sendiri bagaimana dampak debu vulkanik terhadap kinerja mesin jet seperti dialami pesawat Boeing-747 British Airways penerbangan 009 (nomor pesawat G-BDXH, kode panggil Speedbird 9, rute London-Auckland) pada 24 Juni 1983. Saat terbang di atas pulau Jawa, pesawat sempat terperangkap dalam kolom debu vulkanik salah satu letusan Gunung Galunggung sehingga terjadi gangguan berat yang sempat mematikan keempat mesinnya. Sehingga pesawat pun terjun bebas dari ketinggian 11.500 meter dpl menuju permukaan Samudera Indonesia (Samudera Hindia) dibawahnya. Beruntung, pada ketinggian lebih rendah satu-persatu mesin jetnya berhasil dinyalakan ulang sehingga pilot berhasil menghindari lautan dan memutuskan untuk mendarat darurat di bandara Halim Perdanakusuma (Jakarta).

Gambar 2. Kiri: pulau Sangeang (puncak Gunung Sangeang Api) yang impresif di tengah-tengah Laut Flores yang permai, diabadikan oleh astronot pesawat ulang-alik Atlantis saat menjalani misi antariksa STS 112 pada 7 hingga 18 Oktober 2001. Kanan: wajah kawah aktif Doro Api dan lingkungan sekitarnya, diabadikan oleh satelit Quickbird dengan warna nyata pada 2 Oktober 2005 dan kemudian diproses oleh LAPAN. Terlihat kubahlava 1985, yang kini telah jebol/hilang dalam letusan 30 Mei 2014 lalu. Sumber: NASA, 2002; LAPAN, 2014.

Gambar 2. Kiri: pulau Sangeang (puncak Gunung Sangeang Api) yang impresif di tengah-tengah Laut Flores yang permai, diabadikan oleh astronot pesawat ulang-alik Atlantis saat menjalani misi antariksa STS 112 pada 7 hingga 18 Oktober 2001. Kanan: wajah kawah aktif Doro Api dan lingkungan sekitarnya, diabadikan oleh satelit Quickbird dengan warna nyata pada 2 Oktober 2005 dan kemudian diproses oleh LAPAN. Terlihat kubahlava 1985, yang kini telah jebol/hilang dalam letusan 30 Mei 2014 lalu. Sumber: NASA, 2002; LAPAN, 2014.

Guna menghindari petaka serupa, maka VAAC (Volcanic Ash Advisory Committee) Darwin pun menerbitkan kode merah bagi ruang udara Australia bagian utara, yang melarang lalu lintas pesawat berawak apapun di sini khususnya untuk penerbangan sipil. Sebagai imbasnya, ratusan penerbangan dari dan ke bandara Darwin pun dibatalkan. Belakangan sejumlah penerbangan lainnya khususnya yang menuju ke Denpasar (Bali), misalnya dari Melbourne, pun turut dibatalkan. Kerugian pun tercetak dan ditaksir mencapai milyaran rupiah. Namun apa boleh buat, hal itu dianggap masih lebih baik ketimbang menjerumuskan lalu lintas udara ke dalam bencana yang bakal menyedot kerugian material jauh lebih besar. Cukup menarik bahwa keputusan ini berdasar atas kerja keras dari langit dalam memantau apa yang terjadi dengan Gunung Sangeang Api dan lingkungannya.

MTSAT-2 dan Landsat-8

Sebelum meletus kemarin, Gunung Sangeang Api telah berulangkali menjadi target menarik untuk dibidik dari langit, baik oleh satelit-satelit penginderaan dan sumberdaya Bumi maupun oleh sejumlah astronot dalam beberapa misi penerbangan antariksa berawak. Ketertarikan itu didasari impresifnya bentuk gunung berapi ini saat dilihat dari langit, yakni sebagai pulau yang membulat yang khas pulau vulkanik. Sejatinya pulau ini memang merupakan puncak sebuah gunung berapi aktif yang menyembul di atas paras air laut.

Gambar 3. Letusan Sangeang Api dalam empat jam pertamanya, diabadikan satelit MTSAT-2 dalam kanal inframerah pada resolusi rendah. Pukul 17:00 WITA nampak titik putih mendekati sferis muncul di atas lokasi Sangeang Api (panah kuning), pertanda puncak kolom letusan membumbung tinggi dan mulai melebar membentuk awan payung/jamur raksasa. Dalam tiga jam berikutnya, awan debu vulkanik tersebut terus melebar dan melonjong sembari beringsut ke arah timur-tenggara. Sumber: JMA, 2014.

Gambar 3. Letusan Sangeang Api dalam empat jam pertamanya, diabadikan satelit MTSAT-2 dalam kanal inframerah pada resolusi rendah. Pukul 17:00 WITA nampak titik putih mendekati sferis muncul di atas lokasi Sangeang Api (panah kuning), pertanda puncak kolom letusan membumbung tinggi dan mulai melebar membentuk awan payung/jamur raksasa. Dalam tiga jam berikutnya, awan debu vulkanik tersebut terus melebar dan melonjong sembari beringsut ke arah timur-tenggara. Sumber: JMA, 2014.

Letusan Sangeang Api pertama kali terdeteksi oleh satelit Himawari-7 atau dikenal juga sebagai satelit MTSAT-2 (Multifunction Transport Satellite-2). MTSAT-2 adalah satelit cuaca dan komunikasi milik Badan Meteorologi Jepang yang ditempatkan di orbit geostasioner, sehingga memiliki periode revolusi yang sama dengan periode rotasi Bumi yang menjadikannya selalu berada di atas permukaan Bumi yang sama. Dengan berkedudukan di atas Samudera Pasifik, maka satelit ini mampu mengamati kawasan Pasifik, Asia Timur, Asia tenggara dan Australia secara terus-menerus.

Pada resolusi rendah, letusan Sangeang Api pertama kali terlihat di citra MTSAT-2 pada pukul 17:00 WITA kanal inframerah sebagai titik putih yang nyaris membulat di atas pulau Sumbawa bagian timur. Titik putih ini cukup kontras bila dibandingkan dengan lingkungan sekitarnya yang nyaris tak berawan, khususnya di hampir seluruh kepulauan Sunda Kecil dan sebagian pulau Jawa. Dalam jam-jam berikutnya titik putih ini terus melebar dan melonjong untuk kemudian bergerak ke arah tenggara mengikuti angin regional. Dalam resolusi yang lebih tinggi, letusan Sangeang Api pertama kali terlihat di citra MTSAT-2 pada pukul 16:32 WITA, juga sebagai obyek putih mirip awan namun lebih padat. Pemandangan ini mengingatkan pada citra Letusan Kelud 2014 kemarin, hanya saja dimensi awan letusan Sangeang Api nampak lebih kecil. Selain itu juga tak terlihat pola bow shock-wave, yakni pola bergelombang yang disebabkan oleh interaksi tekanan gas vulkanik yang sangat tinggi dengan hembusan angin regional yang mencoba menggeser seluruh debu vulkanik menjauh, seperti halnya yang terjadi pada Letusan kelud 2014. Karena itu untuk sementara dapat dikatakan bahwa skala dan muntahan material vulkanik dalam Letusan Sangeang Api 2014 mungkin lebih kecil dibanding Letusan Kelud 2014, setidaknya menurut citra satelit MTSAT-2.

Gambar 4. Perkembangan letusan Sangeang Api pada 30 Mei 2014 pukul 19:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik masih terus membumbung dari Gunung Sangeang Api meski letusan telah berlangsung selama 4 jam lebih. Di atas pulau Sumba, debu vulkanik Sangeang Api bahkan membumbung hingga mendekati ketinggian 14.000 meter dpl. Sumber: CIMSS, 2014.

Gambar 4. Perkembangan letusan Sangeang Api pada 30 Mei 2014 pukul 19:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik masih terus membumbung dari Gunung Sangeang Api meski letusan telah berlangsung selama 4 jam lebih. Di atas pulau Sumba, debu vulkanik Sangeang Api bahkan membumbung hingga mendekati ketinggian 14.000 meter dpl. Sumber: CIMSS, 2014.

Puncak kolom letusan Sangeang Api jauh menembus ke dalam lapisan atmosfer yang lebih tinggi membuat suhunya merosot dramatis hingga di bawah minus 70 derajat Celcius seperti diperlihatkan oleh pengukuran radiometer. Dengan demikian ia telah memasuki lapisan stratosfer. Berbekal fakta tersebut maka NOAA/CIMSS Volcanic Ash Height memperkirakan debu vulkanik Sangeang Api membumbung hingga mencapai ketinggian setidaknya 14.000 meter dpl. Satelit MTSAT-2 juga memperlihatkan letusan Sangeang Api berlangsung berulang-ulang sepanjang 30 Mei 2014 tersebut. Berselang 10 jam setelah letusan pertama yang cukup besar, tepatnya pada 31 Mei 2014 pukul 02:00 WITA, terpantau debu vulkanik dari letusan berikutnya yang lebih kecil. Letusan kedua ini nampaknya telah terjadi setengah jam sebelumnya, seperti dilaporkan PVMBG (Pusat Vulkanologi dan Mitigasi Bencana Geologi). Dan berselang empat jam kemudian, yakni pada pukul 06:00 WITA, terjadi letusan ketiga yang tergolong cukup besar sehingga kembali melontarkan debu vulkaniknya sampai setinggi 14.000 meter dpl.

Gambar 5. Perkembangan letusan Sangeang Api pada 31 Mei 2014 pukul 07:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik kembali membumbung dari Gunung Sangeang hingga mendekati ketinggian 14.000 meter dpl tepat di atas gunung. Debu vulkanik ini merupakan bagian dari letusan ketiga. Sumber: CIMSS, 2014.

Gambar 5. Perkembangan letusan Sangeang Api pada 31 Mei 2014 pukul 07:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik kembali membumbung dari Gunung Sangeang hingga mendekati ketinggian 14.000 meter dpl tepat di atas gunung. Debu vulkanik ini merupakan bagian dari letusan ketiga. Sumber: CIMSS, 2014.

Selain MTSAT-2, letusan Sangeang Api juga dipantau melalui satelit Terra, sebuah satelit penginderaan Bumi yang dimiliki Badan Antariksa AS (NASA), khususnya lewat instrumen MODIS dalam kanal cahaya tampak. Lembaga Penerbangan dan Antariksa Nasional (LAPAN) memanfaatkan sinyal satelit ini untuk merekonstruksi sejauh mana dampak letusan Sangeang Api. Pada 31 Mei 2014 pukul 10:27 WITA, debu vulkanik Sangeang Api terlihat telah menyelimuti sebagian pulau Sumbawa, seluruh pulau Sumba, Flores dan Rote serta ujung barat daya pulau Timor. Sangeang Api sendiri terlihat masih menyemburkan debu vulkanik ke arah tenggara. Tiga jam kemudian Sangeang Api terlihat sudah tak menyemburkan debu vulkanik lagi, namun kawasan yang terselimuti debu vulkanik justru meluas.

Gambar 6. Panorama sebagian kepulauan Nusa tenggara dalam dua kesempatan berbeda, diabadikan oleh instrumen MODIS pada satelit Terra dan kemudian diproses oleh LAPAN, masing-masing pada 31 Mei 2014 pukul 10:27 WITA dan 13:22 WITA. Pada pukul 10:27 WITA, nampak Gunung Sangeang Api menyemburkan debu vulkanik pekat ke arah tenggara, dengan sebaran debu vulkanik menyelimuti sebagian pulau Sumbawa, hampir seluruh pulau Flores, seluruh pulau Sumba dan Rote serta ujung barat daya pulau Timor. Pada pukul 13:22 WITA, semburan debu vulkanik yang sama sudah tak terpantau, namun luas kawasan yang terselimuti debu vulkanik justru makin membesar. Sumber: LAPAN, 2014.

Gambar 6. Panorama sebagian kepulauan Nusa tenggara dalam dua kesempatan berbeda, diabadikan oleh instrumen MODIS pada satelit Terra dan kemudian diproses oleh LAPAN, masing-masing pada 31 Mei 2014 pukul 10:27 WITA dan 13:22 WITA. Pada pukul 10:27 WITA, nampak Gunung Sangeang Api menyemburkan debu vulkanik pekat ke arah tenggara, dengan sebaran debu vulkanik menyelimuti sebagian pulau Sumbawa, hampir seluruh pulau Flores, seluruh pulau Sumba dan Rote serta ujung barat daya pulau Timor. Pada pukul 13:22 WITA, semburan debu vulkanik yang sama sudah tak terpantau, namun luas kawasan yang terselimuti debu vulkanik justru makin membesar. Sumber: LAPAN, 2014.

Sehari berikutnya (1 Juni 2014), LAPAN kembali memantau Gunung Sangeang Api dengan memanfaatkan sinyal satelit penginderaan Bumi lainnya, yakni Landsat-8 yang dioperasikan oleh Badan Survei Geologi AS (USGS). Pada kanal cahaya tampak, berhasil diperoleh citra Gunung Sangeang Api dalam warna nyata. Gunung itu terlihat masih menyemburkan asap tebal namun kini berwarna keputihan ke arah barat-barat daya, atau berkebalikan arah dibanding saat letusan pertamanya. Jejak hempasan awan panas letusan pun terlihat di sisi selatan dan tenggara. Luncuran awan panas ke arah tenggara bahkan sampai ke bibir pantai dan nampaknya terus masuk ke dalam Laut Flores. Meski demikian volumenya mungkin cukup kecil sehingga tak mampu membangkitkan usikan air laut dalam bentuk tsunami.

Gambar 7. Pulau Sangeang (puncak Gunung Sangeang Api), diabadikan oleh satelit Landsat 8 pada 1 Juni 2014 dan kemudian diproses oleh LAPAN. Nampak debu vulkanik bercampur gas vulkanik masih menyembur dari kawah Doro Api, memastikan bahwa pusat Letusan Sangeang Api 2014 memang bersumber dari kawah tersebut. Debu dan gas vulkanik berhembus ke barat, atau berlawanan arah dibanding letusan pertama dua hari sebelumnya. Nampak sisi tenggara gunung berwarna abu-abu, pertanda telah terendapkannya material letusan di sana sebagai awan panas yang meluncur jauh hingga menyentuh bibir pantai. Sumber: LAPAN, 2014.

Gambar 7. Pulau Sangeang (puncak Gunung Sangeang Api), diabadikan oleh satelit Landsat 8 pada 1 Juni 2014 dan kemudian diproses oleh LAPAN. Nampak debu vulkanik bercampur gas vulkanik masih menyembur dari kawah Doro Api, memastikan bahwa pusat Letusan Sangeang Api 2014 memang bersumber dari kawah tersebut. Debu dan gas vulkanik berhembus ke barat, atau berlawanan arah dibanding letusan pertama dua hari sebelumnya. Nampak sisi tenggara gunung berwarna abu-abu, pertanda telah terendapkannya material letusan di sana sebagai awan panas yang meluncur jauh hingga menyentuh bibir pantai. Sumber: LAPAN, 2014.

Sementara Biro Meteorologi Australia khususnya VAAC Darwin memantau letusan Sangeang Api secara menerus dengan memanfaatkan satelit MetOp-A dan MetOp-B, sepasang satelit cuaca milik organisasi Eropa untuk satelit-satelit meteorologi (Eumetsat). Instrumen yang digunakan pada satelit tersebut terutama adalah GOME, yang aslinya digunakan untuk memantau distribusi lapisan Ozon di stratosfer secara kontinu. Namun dalam kasus letusan gunung berapi, GOME juga bisa dimanfaatkan untuk merekam pergerakan aerosol sulfat, yakni gas sulfurdioksida yang lantas bereaksi dengan uap air di atmosfer membentuk butir-butir asam sulfat yang bersifat koloid. Dengan kata lain instrumen GOME pun berkemampuan mendeteksi pergerakan debu vulkanik letusan sebuah gunung berapi dengan lebih baik dibanding instrumen/kamera yang bekerja kanal cahaya tampak.

Hingga 1 Juni 2014, instrumen GOME satelit MetOp-A dan MetOp-B secara berkesinambungan memperlihatkan bahwa aerosol sulfat letusan Sangeang Api masih terbentuk. Aerosol tersebut memang menyebar jauh ke arah timur dan tenggara hingga mencapai daratan Australia. Namun Konsentrasi aerosol sulfat terbesar ada di atas pulau Timor. Sekilas kuantitas aerosol sulfat letusan Sangeang Api memang jauh lebih lemah ketimbang letusan Kelud. Sehingga menguatkan dugaan yang telah terbentuk melalui observasi satelit MTSAT-2, bahwa Letusan Sangeang Api 2014 memang menyemburkan material vulkanik dalam jumlah lebih kecil ketimbang Letusan Kelud 2014.

Gambar 8. Sebaran aerosol sulfat letusan Sangeang Api, diabadikan oleh instrumen GOME pada satelit MetOp-A dan MetOp-B pada 1 Juni 2014. Nampak aerosol tersebar jauh hingga mencapai daratan Australia bagian utara, yang memaksa ditutupnya bandara Darwin untuk sementara. Panah merah dan kurva lonjong dengan garis merah putus-putus menunjukkan estimasi bilamana arah angin regional pada saat letusan terjadi menuju ke barat-barat laut, yang bakal membuat pulau Jawa terselimuti debu vulkanik. Sumber: Eumetsat, 2014.

Gambar 8. Sebaran aerosol sulfat letusan Sangeang Api, diabadikan oleh instrumen GOME pada satelit MetOp-A dan MetOp-B pada 1 Juni 2014. Nampak aerosol tersebar jauh hingga mencapai daratan Australia bagian utara, yang memaksa ditutupnya bandara Darwin untuk sementara. Panah merah dan kurva lonjong dengan garis merah putus-putus menunjukkan estimasi bilamana arah angin regional pada saat letusan terjadi menuju ke barat-barat laut, yang bakal membuat pulau Jawa terselimuti debu vulkanik. Sumber: Eumetsat, 2014.

Dampak

Berselang 3 hari pasca letusan pertamanya, Gunung Sangeang Api berangsur-angsur mereda. Semburan asap dan debu vulkanik memang masih terjadi berkali-kali, namun kini dengan tekanan jauh lebih lemah. Sehingga asap dan debu hanya menyembur hingga beberapa ratus meter saja di atas kawah Doro Api. Hujan debu juga sudah tidak terjadi lagi, baik di Kabupaten Bima maupun kabupaten-kabupaten di Nusa Tenggara yang tepat ada di sebelah tenggara Gunung Sangeang Api seperti Kabupaten Manggarai, Manggarai Barat dan Sumba Timur.

Meski mengejutkan dan tergolong besar, namun letusan Sangeang Api ternyata tidak diikuti dengan pengungsian penduduk khususnya yang bertempat-tinggal di Kecamatan Wera (Kabupaten Bima) yang menjadi lokasi terdekat ke gunung. Sebab selain sebagai gunung berapi laut, kawah aktif Gunung Sangeang Api juga berjarak cukup besar terhadap kampung Sangeang Darat sebagai pemukiman terdekat, yakni hampir 20 km. Sementara dalam status Siaga (Level III), PVMBG menetapkan daerah terlarang bagi Gunung Sangeang adalah hingga radius 5 km saja dari kawah aktif. Pada Sabtu 31 Mei 2014, sekitar 3.000 orang memang mengungsi secara mandiri ke perbukitan setelah letusan kedua dan ketiga terjadi, namun lebih didasari kehawatiran akan timbulnya tsunami. Kekhawatiran ini memang beralasan mengingat citra Landsat-8 memperlihatkan sebagian material vulkanik Letusan Sangeang Api 2014 meluncur sebagai awan panas letusan ke arah tenggara hingga menjangkau bibir pantai. Namun dengan material awan panas yang kecil, tsunami yang dikhawatirkan seperti diperlihatkan Letusan Krakatau 1883 maupun Letusan Tambora 1815 tidak terjadi. Pengungsian mandiri ini sekaligus memperlihatkan bahwa penduduk telah cukup memahami potensi bencana Gunung Sangeang Api.

Setelah dievaluasi lebih lanjut, Badan Nasional Penanggulangan Bencana (BNPB) menyatakan meskipun cukup besar namun letusan ini tidak menimbulkan korban jiwa. Penduduk yang sempat disangka hilang saat berladang di pulau Sangeang akhirnya berhasil ditemukan dalam kondisi selamat. Namun meski tiada pengungsi, dampak letusan Sangeang Api di Kabupaten Bima cukup telak. Selain membuat bandara Bima sempat ditutup (meski akhirnya dibuka kembali pada 1 Juni 2014), ribuan penduduk pun terpapar debu vulkanik yang lumayan pekat. Selain menyebabkan gangguan pernafasan ringan, paparan debu vulkanik juga mencemari sumber air setempat.

Bagaimanapun, patut disyukuri bahwa letusan Sangeang Api 2014 ini tidak menghamburkan debunya ke arah yang berlawanan. Andaikata angin regional pada Jumat sore 30 Mei 2014 itu mengarah ke barat-barat daya, maka niscaya debu vulkanik Sangeang Api akan menyelimuti hingga ke pulau Jawa. Meski tak sedahsyat horor akibat Letusan Kelud 2014, namun paparan debu vulkanik Sangeang Api tersebut jelas bakal bisa melumpuhkan bandara-bandara sibuk di pulau Jawa. Jika hal itu terjadi, lalu lintas udara dari dan ke pulau Jawa akan lumpuh untuk sementara dan berakibat pada kerugian yang luar biasa besar.

Referensi :

CIMSS. 2014. Eruption of the Sangeang Api volcano in Indonesia.

NASA. 2002. The Gateway to Astronaut Photography of Earth. NASA Earth Observatory Laboratory.

Volcano Planet. 2014. Sangeang Api Latest, 1 June 2014.

Pusdatin BNPB. 2014. Ribuan Warga Terdampak Abu Gunung Sangeang Api Membutuhkan Masker. Badan Nasional Penanggulangan Bencana.

LAPAN. 2014. Letusan Gunungapi Sangeang Api. Respon Tanggap Darurat Bencana Berbasis Satelit, Kedeputian Penginderaan Jauh, Lembaga Penerbangan dan Antariksa Nasional.

Sudibyo. 2014. Mengamati Letusan Kelud dari Angkasa. Majalah Geomagz, vol. 4 no. 1, Maret 2014, hal. 33-35.