Gempa Samudera Indonesia 2 Maret 2016, Gempa Besar di Tengah Lautan (dan Cukup Jauh dari Mentawai)

Dalam rilis awalnya, Badan Meteorologi Klimatologi dan Geofisika (BMKG) melansir ia memiliki magnitud 8,3. Beberapa waktu kemudian angka ini diperbaiki lewat rilis perbaikan, dengan menyatakan magnitudnya 7,9. Baik di angka magnitud 8,3 maupun 7,9 maka gempa bumi tektonik ini tetap tergolong gempa besar. Sumbernya sangat dangkal, yakni hanya 10 kilometer dpl (dari paras laut rata-rata). Episentrumnya terletak di tengah-tengah lautan. Daratan terdekat dengannya adalah Kepulauan Mentawai (propinsi Sumatra Barat). Dengan sebaris informasi awal ini, tak heran banyak yang terperanjat saat mendengar atau menerima kabar singkat bahwa gempa itulah yang meletup pada 2 Maret 2016 Tarikh Umum (TU) pukul 19:50 WIB tadi. Dengan embel-embel ‘gempa Mentawai’, sontak terbayang bahwa pusat gempanya berdekatan dengan kepulauan di sisi barat pulau Sumatra itu. Saya juga sempat beranggapan nampaknya inilah gempa besar yang telah lama diprediksi.

Sudah sejak bertahun silam beragam riset kegempaan masa silam menyajikan kesadaran bahwa Kepulauan Mentawai berdiri di atas monster megathrust. Mulai dari yang memotong-motong karang mikroatol guna menelisik sejarah naik turunnya pulau-pulau di kepulauan tersebut dari waktu ke waktu oleh deformasi akibat gempa besar/akbar dalam kurun milenium terakhir. Hingga dari radas-radas GPS yang ditanam guna mengetahui pergerakan pulau-pulau tersebut relatif terhadap daratan utama pulau Sumatra. Monster megathrust inilah sumber potensial untuk gempa jumbo. Andaikata ia melepaskan seluruh energinya, maka dengan panjang segmen hingga 400 kilometer dapat diprakirakan ia akan melepaskan gempa dengan magnitud sekitar 9. Tak hanya intensitas getarannya yang menakutkan, sebab mekanisme pematahan pada monster megathrust yang menghasilkan gempa ini juga akan menyebabkan dasar laut di atas sumber gempa terdeformasi vertikal. Inilah yang menyebabkan kolom air laut diatasnya bergolak hingga terbitlah tsunami. Tsunami segera berderap ke pesisir barat pulau Sumatra dimana prakiraan tinggi gelombangnya saat tiba di garis pantai sungguh membikin bulu kuduk meremang.

Gambar 1. Posisi sumber Gempa Samudera Indonesia 2 Maret 2016 (ditandai dengan 03-02-2016 M 7.9) terhadap daratan pulau Sumatra beserta koordinat episentrum dari gempa-gempa besar/akbar (magnitudo > 7) dalam radius hingga 1.000 kilometer. daratan terdekat ke sumber gempa ini berjarak tak kurang dari 680 kilometer. Sumber: USGS, 2016.

Gambar 1. Posisi sumber Gempa Samudera Indonesia 2 Maret 2016 (ditandai dengan 03-02-2016 M 7.9) terhadap daratan pulau Sumatra beserta koordinat episentrum dari gempa-gempa besar/akbar (magnitudo > 7) dalam radius hingga 1.000 kilometer. daratan terdekat ke sumber gempa ini berjarak tak kurang dari 680 kilometer. Sumber: USGS, 2016.

Namun saat mengecek koordinat episentrumnya dan mengeplotnya ke peta, keterperanjatan itu langsung surut. Episentrum gempa ini terletak jauh di tengah-tengah Samudera Indonesia (Indian Ocean). Kep. Mentawai memang daratan terdekat dengannya, namun itu pun masih sejarak tak kurang dari 680 km terhadap episentrum. Jarak yang sesungguhnya teramat jauh. Dari sini pula penamaan gempa ini sebagai Gempa Mentawai menjadi rancu, seperti dipaparkan geolog kegempaan pak Irwan Meilano. Penamaan tersebut juga mendatangkan problem psikologis khususnya bagi penduduk setempat. Dengan jarak yang cukup jauh dari episentrum, maka tak heran jika getaran gempanya terasa lamat-lamat hingga pelan di Kep. Mentawai dan daratan Sumatra. Model yang disajikan otoritas United States Geological Survey (USGS) memperlihatkan intensitas getaran yang dialami Kep. Mentawai dan P. Sumatra pada umumnya dalam gempa ini berkisar 3 MMI (Modified Mercalli Intensity). Intensitas sekecil itu bisa dirasakan publik pada umumnya sebagai getaran layaknya getaran yang kita rasakan saat berdiri di tepi jalan kala sebuah truk besar tengah melaju. Jarak terhadap episentrum yang jauh menghasilkan intensitas gempa yang kecil. Maka tak perlu terlalu mengkhawatirkan apakah guncangan gempa ini berdampak terhadap kondisi Kep. Mentawai.

Tsunami kecil

Bagaimana dengan tsunaminya? Hal itu sangat bergantung kepada bagaimana jenis mekanisme pematahan pada gempa ini. Ada tiga mekanisme pematahan, yakni pematahan naik (thrust), pematahan turun (normal) dan pematahan geser (strike). Simpelnya, pematahan naik membuat segmen kerakbumi di sumber gempa terangkat sehingga membukit/membentuk gundukan. Sementara pematahan turun menghasilkan lembah/cekungan. Pada dasarnya mekanisme pematahan naik dan turun inilah yang mampu memproduksi tsunami. Karena ia menghasilkan deformasi vertikal nan besar di dasar laut di sumber gempa, sehingga kolom air laut diatasnya akan bergolak dan menjadi tsunami.

Gambar 2. Model dislokasi kerakbumi di daratan pulau Sumatra sebagai dampak dari Gempa Samudera Indonesia 2 Maret 2016. Diprakirakan pulau Sumatra bergerser 2 cm ke arah timurlaut. Sumber: Meilano, 2016.

Gambar 2. Model dislokasi kerakbumi di daratan pulau Sumatra sebagai dampak dari Gempa Samudera Indonesia 2 Maret 2016. Diprakirakan pulau Sumatra bergerser 2 cm ke arah timurlaut. Sumber: Meilano, 2016.

Dalam rilisnya USGS menyebut Gempa Samudera Indonesia 2 Maret 2016 ini disebabkan oleh mekanisme pematahan geser. Ini adalah jenis pematahan yang tak menyebabkan deformasi vertikal dasar laut di lokasi sumber gempa. Analisis lebih lanjut memperlihatkan gempa besar ini diproduksi oleh patahnya segmen kerakbumi di dasar Samudera Indonesia seluas 80 x 40 km2. Segmen ini lantas melenting sejauh rata-rata 6 meter, dengan pelentingan maksimum 12 meter. Dengan kata lain, jika suatu saat sebelum gempa kita berkesempatan berdiri tepat di batas segmen ini dengan lingkungannya, maka di kesempatan berikutnya (pasca gempa) kita akan melihat batu yang ada di hadapan kita telah bergeser sejauh rata-rata 6 meter. Dengan jenis pematahan geser, maka pada gilirannya kemungkinan terbentuknya tsunami adalah cukup kecil. Model dislokasi yang dikerjakan pak Irwan Meilano dan Endra Gunawan memperlihatkan gempa ini menyebabkan pergeseran ke timur laut sejauh rata-rata 2 cm di pulau Sumatra.

Apabila ada tsunaminya, lagi-lagi jarak yang jauh dari sumber gempa berperan menentukan tingkat kedahsyatan tsunaminya saat tiba di pesisir. Pada dasarnya semakin besar magnitud gempanya maka semakin berenergi tsunaminya dan semakin tinggi gelombang yang terbentuk. Namun semakin jauh dari sumber tsunami, maka tinggi tsunaminya pun turut melorot. Dalam bahasa yang lebih teknis, semakin jauh dari sumber tsunami membuat energi tsunami kian terdissipasi kala ia berjuang melintasi samudera. Sehingga berdampak pada melemahnya sang tsunami dan melorotnya ketinggiannya. Perhitungan sederhana dengan menggunakan persamaan Iida memperlihatkan, dengan jarak 680 km dan memegang anggapan bahwa magnitudo tsunami = magnitudo gempa = 8,3 maka diperoleh prakiraan ketinggian tsunami di Kep. Mentawai pada kisaran 15 cm. Cukup kecil dan sangat sulit berdampak signifikan. Simulasi yang lebih kompleks dengan memanfaatkan program simulasi tsunami (yang berbasis persamaan-persamaan gelombang dangkal) juga menyajikan hasil yang mirip. Misalnya seperti yang dikerjakan mas Aditya Gusman. Dalam simulasinya nampak bahwa prakiraan tinggi gelombang di Kep. Mentawai berada pada kisaran 10 hingga 15 cm saja.

Gambar 3. Simulasi distribusi tinggi maksimum tsunami sebagai akibat Gempa Samudera Indonesia 2 Maret 2016. Nampak tinggi tsunami di Kepulauan mentawai berkisar antara 10 hingga 15 cm. Sumber: Gusman, 2016.

Gambar 3. Simulasi distribusi tinggi maksimum tsunami sebagai akibat Gempa Samudera Indonesia 2 Maret 2016. Nampak tinggi tsunami di Kepulauan mentawai berkisar antara 10 hingga 15 cm. Sumber: Gusman, 2016.

Bagaimana dalam realitasnya? Gempa Samudera Indonesia 2 Maret 2016 memang menghasilkan tsunami. Namun sangat kecil. BMKG mencatat tinggi tsunami yang terekam pada stasiun pasang surut di pelabuhan Padang (propinsi sumatra Barat) hanyalah 5 cm. Rekaman pasang surut di pelabuhan Tanahbala, Kep. Batu (propinsi Sumatra Utara) yang disajikan UNESCO/IOC Sea Level Monitoring juga hanya setinggi 5 cm. Usikan tsunami itu datang tepat sejam pasca gempa, menandakan bahwa kecepatan tsunami berkisar 700 km/jam. Namun dengan tinggi yang amat sangat rendah, tak ada dampak yang ditimbulkannya sejauh ini.

Gambar 4. Rekaman dinamika paras air laut di stasiun pasang surut pelabuhan Tanahbala, Kepulauan Batu (propinsi Sumatra Utara). Skala waktu dalam GMT (WIB - 7).Nampak paras air laut yang sedang berkecenderungan naik (sebagai imbas dari pasang naik harian) mendadak mengalami usikan liar dengan amplitudo sekitar 5 cm sejak pukul 21:00 WIB. Sumber: UNESCO/IOC, 2016.

Gambar 4. Rekaman dinamika paras air laut di stasiun pasang surut pelabuhan Tanahbala, Kepulauan Batu (propinsi Sumatra Utara). Skala waktu dalam GMT (WIB – 7).Nampak paras air laut yang sedang berkecenderungan naik (sebagai imbas dari pasang naik harian) mendadak mengalami usikan liar dengan amplitudo sekitar 5 cm sejak pukul 21:00 WIB. Sumber: UNESCO/IOC, 2016.


Dengan intensitas getaran yang lemah dan tsunami yang tak kalah lemahnya, maka Gempa Samudera Indonesia 2 Maret 2016 ini dapat dikatakan tak berdampak baik bagi Kep. Mentawai maupun daratan pulau Sumatra. Tetapi atas semua itu gempa besar ini tak menutupi fakta bahwa Kep. Mentawai masih menjadi salah satu kawasan rawan gempa dan tsunami di Indonesia. Mari tetap waspada (dan bersiaga pada waktunya), namun janganlah paranoia.

Referensi :

Irwan Meilano. 2016. komunikasi pribadi.

Aditya Gusman. 2016. komunikasi pribadi.

USGS. 2016. M7.8 – Southwest of Sumatra, Indonesia. National Earthquake Information Center United States Geological Survey.

Mengenal Kandidat Sumber Gempa Bumi dan Tsunami di Pulau Jawa

Pantai Logending di Kecamatan Ayah Kabupaten Kebumen (Jawa Tengah) bersiap menuju momen Matahari terbenam pada Senin 17 Juli 2006 Tarikh Umum (TU) sore. Obyek wisata pantai ini masih satu lokasi dengan Goa Jatijajar dan Goa Petruk di lingkungan karst Karangbolong, Gombong selatan. Inilah trio obyek wisata populer andalan Kabupaten Kebumen. Sore itu Pantai Logending relatif lengang. Hari itu adalah hari pertama masuk sekolah di tahun ajaran yang baru (2006-2007 TU). Hanya ada puluhan wisatawan lokal. Di hari-hari sebelumnya, pengunjung pantai ini setiap harinya bisa mencapai ribuan orang dalam beragam usia. Selain memiliki pantai datar bermuara sungai yang tepat berdampingan dengan Tanjung Karangbolong di sisi timur dan Teluk Penyu di sisi barat, pantai Logending juga memiliki bumi perkemahan yang kerap menjadi arena perkemahan para pelajar di musim liburan. Ditambah dengan aksesnya yang mudah, tempat yang rindang (penuh pepohonan) dan ketersediaan sarana prasarana yang memadai, tak pelak pantai ini menjadi pantai favorit bagi penduduk Kabupaten Kebumen dan kabupaten/kota tetangganya.

Gambar 1. Jejak kedahsyatan terjangan Tsunami 17 Juli 2006 di pantai Logending (Kabupaten Kebumen). Kiri: sebagian dinding bangunan WC umum yang ambrol dan terhempas hingga 2 meter ke utara dari semula. Kanan: tebing sungai yang tererosi berat hingga menghancurkan taludnya. Di latar belakang nampak bangunan pos TNI AL Logending. Tsunami yang menghantam pantai ini memiliki tinggi maksimum 7 meter dpl. Sumber: Sudibyo, 2006.

Gambar 1. Jejak kedahsyatan terjangan Tsunami 17 Juli 2006 di pantai Logending (Kabupaten Kebumen). Kiri: sebagian dinding bangunan WC umum yang ambrol dan terhempas hingga 2 meter ke utara dari semula. Kanan: tebing sungai yang tererosi berat hingga menghancurkan taludnya. Di latar belakang nampak bangunan pos TNI AL Logending. Tsunami yang menghantam pantai ini memiliki tinggi maksimum 7 meter dpl. Sumber: Sudibyo, 2006.

Siapa sangka, Senin sore itu adalah hari yang tak biasa dan bakal dikenang seterusnya bagi pantai Logending dan Kabupaten Kebumen. Sejarak 230 kilometer ke arah selatan-barat daya, Bumi sedang bergolak. Bagian kerak Samudera Indonesia (atau Samudera Hindia) yang bersisian dengan palung Jawa dalam segmen sepanjang 200 kilometer mendadak terpatahkan pada pukul 15:19 WIB. Gempa tektonik pun terjadilah, dengan magnitudo momen 7,7. Sehingga tergolong gempa besar. Karena daratan terdekat dengan episentrum adalah pantai Pangandaran, maka gempa ini acap disebut Gempa Pangandaran 17 Juli 2006. Meski ada pula yang menyebutnya Gempa Jawa 17 Juli 2006 atau Gempa Samudera Hindia 17 Juli 2006.

Namun pematahan kerak samudera pada gempa ini berlangsung lebih lambat ketimbang pematahan penyebab gempa bumi tektonik umumnya. Sehingga gempa besar ini merupakan gempa-ayun atau gempa-lambat (slow-quake). Akibatnya getarannya relatif tak terasa khususnya di daratan pulau Jawa bagian selatan. Tapi di sekeliling sumber gempa, getarannya demikian keras. Sehingga mampu menyebabkan longsoran berskala besar pada lereng curam di sisi utara Palung Jawa. Longsoran ini menyebabkan kolom air segara, yang sudah bergolak akibat terangkatnya dasar laut di atas sumber gempa, menjadi kian bergolak saja. Terbentuklah tsunami besar yang magnitudonya setingkat lebih tinggi dibanding magnitudo gempanya, satu ciri khas lain lagi dari gempa-lambat. Dengan segera gelora yang mematikan ini berderap ke dua arah berlawanan, yakni timur laut dan barat daya. Tsunami yang melejit ke timur laut melaju pada kecepatan antara 230 hingga 260 km/jam, berderap langsung ke arah sebagian pesisir selatan pulau Jawa yang berhadapan. Namun tak satupun penduduk di sana yang menyadari bahwa bencana hendak tiba. Demikian halnya di pantai Logending.

Didahului dua dentuman keras, tsunami menyerbu pantai Logending mulai pukul 16:09 WIB atau hampir sejam pascagempa. Lima gelora menggempur susul-menyusul, dengan gelombang pertama sebagai yang terbesar (tertinggi). Airbah segera menggenang hingga 1 meter dari permukaan tanah dan menderu deras hingga sejauh tak kurang 200 meter ke darat. Arus airbah demikian kuat hingga menyeret puluhan kapal nelayan ke daratan sampai berlubang-lubang atau malah patah terbelah. Arus airbah bahkan sanggup menjebol tembok bangunan seperti WC umum dan melubangi dinding pos TNI AL Logending. Warung-warung semi permanen kuliner khas Logending pun tak luput dari terjangan airbah tsunami. Kepanikan dan kekacauan sontak merebak. Orang-orang berlarian lintang-pukang menuju bukit. Tetapi puluhan orang gagal menyelamatkan diri. Mereka terseret arus airbah dan beberapa diantaranya menjadi korban. Salah satu korban bahkan ditemukan terdampar di pantai Parangtritis, Bantul (propinsi DI Yogyakarta), seratusan kilometer dari Logending.

Gambar 2. Menit-menit terjangan Tsunami 17 Juli 2006 di kolam PLTU Bunton (Kabupaten Cilacap) seperti yang direkam kamera sirkuit tertutup (CCTV). Air bah Tsunami terekam mulai memasuki kolam pada pukul 16:08 WIB. Pukul 16:19 WIB (kiri), gelombang ketiga mulai memasuki kolam hingga meluber dalam beberapa detik kemudian. Selang 9 menit kemudian (kanan), paras kolam telah kembali seperti semula sebelum tsunami melanda. Sumber: PLTU Bunton, 2006 dalam Lavigne dkk, 2007.

Gambar 2. Menit-menit terjangan Tsunami 17 Juli 2006 di kolam PLTU Bunton (Kabupaten Cilacap) seperti yang direkam kamera sirkuit tertutup (CCTV). Air bah Tsunami terekam mulai memasuki kolam pada pukul 16:08 WIB. Pukul 16:19 WIB (kiri), gelombang ketiga mulai memasuki kolam hingga meluber dalam beberapa detik kemudian. Selang 9 menit kemudian (kanan), paras kolam telah kembali seperti semula sebelum tsunami melanda. Sumber: PLTU Bunton, 2006 dalam Lavigne dkk, 2007.

Jarang

Tsunami ini menewaskan 16 warga Kabupaten Kebumen dengan 41 orang lainnya dinyatakan hilang. Dihitung dari paras air laut (dpl) saat itu, tinggi tsunami yang menggempur pantai Logending adalah 7 meter. Di antara sekujur pesisir Kabupaten Kebumen yang terhajar tsunami pada waktu yang sama, tinggi tsunami yang menerpa pantai Logending adalah yang terbesar (terkecil di pantai Suwuk sisi timur setinggi 2,5 meter dpl). Namun hal itu belum seberapa bila dibandingkan dengan hempasan tsunami di Kabupaten/Kota Cilacap. Pesisir Teluk Penyu di antara pantai Logending dan kota Cilacap diterjang tsunami dengan ketinggian bervariasi antara 2 hingga 5,5 meter dpl. Namun korban jiwa yang direnggutnya jauh lebih besar, yakni mencapai 157 orang. Meski demikian kota Cilacap patut bersyukur karena terhindar dari malapetaka yang jauh lebih buruk. Sebab sejatinya tsunami yang mengarah ke kota ini memiliki ketinggian sangat besar, yakni 21 meter dpl! Itu setara dengan gedung empat lantai. Beruntung gelombang pembunuh yang menggidikkan ini teredam sepenuhnya oleh keberadaan pulau Nusakambangan, sehingga kota Cilacap terlindungi. Secara akumulatif bencana tsunami ini merenggut nyawa 653 orang dan melukai 1.526 orang. Sebanyak 120 orang juga dinyatakan hilang. Lebih dari 1.600 bangunan rusak dalam beragam tingkat keparahan.

Bencana Gempa Pangandaran 17 Juli 2006 dan tsunami yang menyertainya seakan mengulangi bencana sejenis yang terjadi di pesisir selatan Jawa Timur 12 tahun sebelumnya. Saat itu, Jumat 3 Juni 1994 TU dinihari pukul 01:17 WIB, segmen sepanjang 160 kilometer yang berjarak 220 kilometer dari garis pantai Kabupaten Malang, Lumajang, Jember dan Banyuwangi mendadak terpatahkan. Terjadilah Gempa Banyuwangi 3 Juni 1994 yang tergolong gempa besar, karena magnitudo momennya 7,8. Tetapi ia juga bersifat gempa-ayun. Maka getaran gempa besar ini tak terasakan di daratan Jawa bagian timur. Apalagi merusak bangunan. Sebaliknya di sekeliling sumber gempa, getarannya demikian keras. Hingga mampu melongsorkan tebing curam di dasar laut dalam skala yang luar biasa.

Gambar 3. Bibir pantai yang tererosi berat hingga tergerus akibat terjangan Tsunami 3 Juni 1994 di pantai Rajegwesi (Kabupaten Banyuwangi). Tsunami setinggi maksimum 14 meter dpl menggempur pantai ini dan menggenang hingga 400 meter ke daratan. Sumber: Synolakis dkk, 1995.

Gambar 3. Bibir pantai yang tererosi berat hingga tergerus akibat terjangan Tsunami 3 Juni 1994 di pantai Rajegwesi (Kabupaten Banyuwangi). Tsunami setinggi maksimum 14 meter dpl menggempur pantai ini dan menggenang hingga 400 meter ke daratan. Sumber: Synolakis dkk, 1995.

Kisah selanjutnya pun menyerupai Gempa Pangandaran 17 Juli 2006. Dalam 50 menit pasca gempa, gelora tsunami menggempur pesisir Kabupaten Malang, Lumajang, Jember dan Banyuwangi serta sebagian pesisir selatan Bali. Tanpa peringatan dan tanpa ampun. Bentuk pantai yang berlekuk-lekuk dengan teluk-teluk kecilnya membuat tsunami terakumulasi di teluk-teluk kecil tersebut. Sehingga tingginya kembali berlipat ganda. Tinggi tsunami terbesar mencapai 15 meter dpl. Akibatnya sejumlah pesisir pun terhantam telak dan terbabat beserta penghuninya. Dalam petaka pagi buta itu, paling tidak 223 jiwa melayang dengan lebih dari 400 orang luka-luka berat dan ringan. Selain itu tak kurang dari 1.000 rumah hancur.

Sebelum dua bencana tsunami tersebut, pulau Jawa terhitung sangat jarang dilimbur airbah tsunami yang signifikan dan berdampak. Tsunami bersejarah terakhir yang menghantam pulau Jawa adalah tsunami produk Letusan dahsyat Krakatau 1883. Peristiwa tersebut menciptakan tsunami raksasa setinggi maksimum 33 meter dpl yang menghancurkan pesisir barat pulau Jawa yang berhadapan dengan selat Sunda. Korban yang direnggutnya mencapai tak kurang dari 36.000 jiwa. Namun tsunami ini disebabkan oleh letusan dahsyat gunung berapi, jenis peristiwa yang tergolong jarang terjadi. Sebaliknya tsunami yang ditimbulkan oleh gempa tektonik, yang lebih kerap terjadi, justru belum pernah ditemukan catatan sejarahnya di pulau Jawa hingga 1994 TU.

Jadi bagaimana tsunami 1994 dan tsunami 2006 bisa terjadi di pesisir selatan pulau Jawa? Dan masih adakah sumber gempa bumi dan tsunami potensial sejenis nun jauh di dasar samudera lepas pantai selatan pulau Jawa?

Zona Rekahan

Semua berpangkal dari geologi pulau Jawa yang khas. Pulau terpadat penduduknya di dunia ini dibentuk oleh interaksi konvergen antara dua lempeng tektonik besar dunia. Yang pertama adalah lempeng Sunda (Eurasia) yang bersifat kontinental (kerak benua) dan relatif stabil. Dan yang kedua adalah lempeng Australia yang oseanik (kerak samudera) dan bergerak relatif ke utara pada kecepatan antara 60 hingga 70 mm/tahun. Interaksi konvergen antara kedua lempeng tektonik besar ini menghasilkan subduksi (penyelusupan atau tunjaman). Karena berat jenis lempeng Australia lebih besar dibanding lempeng Sunda, maka lempeng Australia melekuk di sepanjang batas konvergensi untuk kemudian menunjam di bawah lempeng Sunda dengan membentuk sudut miring terhadap paras Bumi. Di sisi lempeng Sunda, subduksi tersebut membuat bagian lempeng Sunda di sini menjadi membengkak (menggelembung). Inilah yang kemudian muncul di atas paras air laut sebagai pulau Jawa. Batas konvergensi tersebut secara kasat mata terlihat sebagai palung laut. Yakni bagian dasar laut yang sempit mirip parit namun sangat dalam. Palung tersebut dikenal sebagai palung Jawa dengan titik terdalam (7.725 meter dpl) di lepas pantai Kebumen-Purworejo sejarak 260 km dari garis pantai. Titik ini sekaligus merupakan titik terdalam di Samudera Indonesia.

Gambar 4. Penampang melintang sederhana zona subduksi Jawa dengan sejumlah gejala khas subduksi didalamnya. Sumber: Sudibyo, 2015 berbasis peta Google Earth.

Gambar 4. Penampang melintang sederhana zona subduksi Jawa dengan sejumlah gejala khas subduksi didalamnya. Sumber: Sudibyo, 2015 berbasis peta Google Earth.

Seperti halnya subduksi di tempat lain, subduksi Jawa pun menampakkan sejumlah gejala yang khas. Misalnya busur pegunungan bawah laut yang sejajar dengan palung Jawa, yang dikenal sebagai busur luar Jawa. Busur luar Jawa terletak tepat di sisi utara palung Jawa dan sebagian diantaranya merupakan prisma/baji akresi. Prisma akresi merupakan akumulasi batuan sedimen campur-aduk yang tertumpuk dan tertekan kuat. Di antara busur luar dan daratan pulau Jawa terbentang cekungan yang juga ditimbuni sedimen, sebagai cekungan busur muka (forearc basin). Gejala lainnya adalah eksistensi vulkanisme yang memunculkan jajaran gunung-gemunung berapi andesitik. Jajaran tersebut membentuk busur dalam Jawa yang vulkanis (busur luar Jawa bersifat non vulkanis). Dan zona Benioff-Wadati sebagai zona sumber gempa bumi tektonik dengan kedalaman hiposentrum yang kian bertambah seiring kian menjauh dari palung. Gejala-gejala tersebut disebabkan oleh pergesekan antara sisi atas lempeng Australia yang telah menyelusup dengan sisi bawah lempeng Sunda yang membengkak. Kawasan pergesekan ini dikenal pula sebagai zona subduksi dan eksis hingga kedalaman 60 km dpl.

Zona subduksi Jawa merupakan sistem penunjaman yang bersifat tegak (frontal). Maksudnya, sumbu palung Jawa (yang berarah barat-timur) adalah relatif tegak lurus terhadap arah gerak lempeng Australia (yang berarah ke utara). Subduksi semacam ini membuat segenap gerakan lempeng Australia diakokmodasi sepenuhnya oleh zona subduksi Jawa. Sebagai akibatnya, maka tidak sempat terbentuk sistem patahan besar yang aktif di cekungan busur muka maupun daratan pulau Jawa sebagaimana halnya yang dialami pulau Sumatra. Sistem patahan besar aktif merupakan pusat konsentrasi gempa-gempa tektonik dangkal di daratan. Ini membawa pulau Jawa pada konsekuensi berikutnya, dimana gempa-gempa tektonik dangkal di daratan pulau Jawa tersebar di sejumlah titik, mengikuti sesar-sesar aktif nan pendek yang terbentuk di sana-sini.

Sekujur zona subduksi Jawa merupakan sumber gempa bumi tektonik potensial. Ia juga menjadi sumber potensial bagi tsunami, sepanjang syarat-syaratnya terpenuhi. Sebabnya adalah pergesekan antarlempeng (interplate), antara sisi atas lempeng Australia yang telah menyelusup dengan sisi bawah lempeng Sunda yang membengkak. Area pergesekan tersebut tidak memiliki pelumas sehingga subduksi kerap tersendat-sendat atau malah bahkan tertahan, bergantung pada sifat batuannya. Istilah teknisnya terkunci (locked). Bila subduksi terkunci sementara dorongan dari lempeng Australia selalu terjadi, maka zona subduksi akan turut terdorong ke mendekati daratan pulau Jawa (terdorong ke utara) secara perlahan mengikuti gerakan lempeng Australia. Gerakan tersebut tak dapat dirasakan manusia, namun bisa diindra dengan mudah melalui radas (instrumen) pengukur koordinat berakurasi tinggi. Situasi berbeda akan dijumpai bila subduksinya tak terkunci, maka zona subduksinya akan bergerak relatif berlawanan arah dibanding arah gerak lempeng Australia, yakni menuju samudera (ke arah selatan).

Gambar 5. Ilustrasi sederhana pematahan naik miring (oblique thrust) pada kerak bumi, antara sebelum pematahan (A) dan sesudah pematahan (B). Tanda panah hitam merupakan arah tegasan. Angka (1) menunjukkan besarnya lentingan (slip) sementara angka (2) menunjukkan besarnya gerak vertikal. Pematahan jenis inilah yang kerap terjadi pada zona subduksi dan bila melibatkan area yang sangat luas akan menghasilkan gempa besar atau gempa akbar yang disertai tsunami. Sumber: Sudibyo, 2015.

Gambar 5. Ilustrasi sederhana pematahan naik miring (oblique thrust) pada kerak bumi, antara sebelum pematahan (A) dan sesudah pematahan (B). Tanda panah hitam merupakan arah tegasan. Angka (1) menunjukkan besarnya lentingan (slip) sementara angka (2) menunjukkan besarnya gerak vertikal. Pematahan jenis inilah yang kerap terjadi pada zona subduksi dan bila melibatkan area yang sangat luas akan menghasilkan gempa besar atau gempa akbar yang disertai tsunami. Sumber: Sudibyo, 2015.

Subduksi yang terkunci ini tak bisa berlangsung untuk seterusnya. Apabila akumulasi dorongan lempeng Australia telah mulai melebihi ambang batas daya tahan batuan di area pergesekan antarlempeng, maka pematahan pun terjadilah. Terbitlah apa yang kita kenal sebagai gempa bumi tektonik. Gempa tektonik di zona subduksi umumnya memiliki sifat pematahan anjak miring (oblique thrust), mengikuti kemiringan lempeng Australia yang menyelusup. Saat gempa ini terjadi, maka kuncian pada subduksi sontak terlepas. Sehingga zona subduksi terdorong ke arah berlawanan dibanding semula, yakni ke arah samudera (menjauhi daratan pulau Jawa), dalam waktu relatif singkat. Jarak yang ditempuh zona subduksi kala terdorong ini disebut jarak lentingan (slip). Magnitudo (kekuatan) gempanya sangat bergantung pada zona rekahan atau zona-pecah, yakni luas area yang terpatahkan, dan besarnya pelentingan. Semakin luas area yang terpatahkan, maka semakin besar lentingan zona subduksinya dan semakin besar pula magnitudo gempanya.

Sebagai gambaran, gempa tektonik bermagnitudo 6 disebabkan oleh terbentuknya zona rekahan seluas 20 x 10 kilometer persegi yang melenting sejauh rata-rata 20 cm. Sementara gempa bermagnitudo 7 disebabkan oleh timbulnya zona-pecah yang lebih besar yakni seluas 50 x 25 kilometer persegi dengan lentingan rata-rata sebesar 100 cm. Dan gempa magnitudo 8 disebabkan oleh terbentuknya zona rekahan yang lebih luas lagi, yakni seluas 200 x 100 kilometer persegi, dengan jarak lentingan rata-rata adalah 200 cm. Mulai dari magnitudo 8 atau lebih, gempa tektonik di zona subduksi mendapatkan kehormatan menyandang nama gempa akbar atau gempa megathrust. Nama tersebut melekat karena pada magnitudo itu zona-pecahnya demikian besar dan begitu pula lentingannya.

Dengan sifat pematahan anjak miring, maka pelentingan pada gempa tektonik di zona subduksi selalu diimbangi oleh gerak vertikal (pengangkatan). Bila magnitudo gempanya besar (melebihi 6,5) dan sumber gempanya dangkal (kurang dari 50 kilometer dpl), maka gerak vertikal akan menyebabkan dasar laut di atas sumber gempa terangkat. Pengangkatan dasar laut inilah yang bisa memproduksi tsunami. Yakni saat kolom air laut di atas sumber gempa berolak dan berusaha memulihkan kembali kesetimbangannya. Pada dasarnya semakin besar magnitudo gempa di zona subduksi Jawa, maka akan semakin luas area dasar laut yang terangkat dan semakin besar pula pengangkatannya. Sehingga magnitudo tsunaminya pun akan semakin besar. Tetapi ada perkecualian. Sebuah gempa tektonik di zona subduksi dengan magnitudo yang lebih kecil dapat menghasilkan tsunami yang magnitudonya lebih besar. Inilah gempa-ayun. Mengacu pada kejadian tsunami 1994 dan 2006 di pulau Jawa serta tsunami 2010 di pulau Sumatra, maka perkecualian ini hanya akan terjadi apabila sumber gempa berada di prisma akresi. Dengan kata lain, perkecualian ini hanya muncul apabila episentrum gempa tepat berada di sisi palung.

Tiga Seismic Gap

Subduksi yang membentuk pulau Jawa telah berlangsung sejak 150 juta tahun silam. Dengan usia demikian tua maka subduksi Jawa dapat dikatakan relatif lebih padat dan stabil dibandingkan, katakanlah, subduksi sejenis di Samudera Pasifik seperti subduksi Chile maupun Alaska. Baik subduksi Chile atau Alaska dikenal sebagai pembangkit gempa akbar, masing-masing Gempa Chile 22 Mei 1960 (magnitudo 9,6) dan Gempa Alaska 27 Maret 1964 (magnitudo 9,2). Keduanya juga memproduksi tsunami dahsyat berenergi tinggi sehingga berkemampuan menyeberangi Samudera Pasifik tanpa mengalami susut energi signifikan. Akibatnya ia sanggup menghasilkan kehancuran dan kerusakan signifikan di pesisir yang berseberangan dari sumber tsunaminya, ribuan kilometer jauhnya.

Subduksi Jawa diperkirakan tidak memiliki potensi melepaskan gempa dan tsunami semacam itu. Jika umur subduksi dan kecepatan subduksi dipertimbangkan dengan menggunakan persamaan empiris Kanamori (Kanamori, 1986), maka dapat diprakirakan bahwa magnitudo maksimum dari gempa tektonik di zona subduksi Jawa adalah 7,5. Cukup mengesankan bahwa prakiraan ini ternyata hampir mendekati realitas, seperti diperlihatkan Gempa Banyuwangi 3 Juni 1994 (magnitudo 7,8) dan Gempa Pangandaran 17 Juli 2006 (magnitudo 7,7). Harus digarisbawahi bahwa prakiraan ini berdasar persamaan empiris. Sehingga tetap ada peluang subduksi Jawa untuk melepaskan gempa yang lebih besar bahkan hingga gempa akbar sekalipun.

Apalagi setelah kejadian Gempa akbar Sumatra-Andaman 26 Desember 2004 yang meluluhlantakkan propinsi Aceh dan merenggut korban jiwa sangat besar, terdapat konsensus di di kalangan ilmuwan kegempaan bahwa zona subduksi dimanapun kini harus dipandang berbahaya (berpotensi melepaskan gempa besar/akbar dan tsunaminya) sebelum benar-benar terbukti tak berbahaya. Sebab dalam kasus Gempa Sumatra-Andaman 26 Desember 2004, zona subduksinya pun tergolong tua (yakni 55 hingga 90 juta tahun). Dan persamaan empiris Kanamori memprakirakan magnitudo maksimum dari gempa tektonik yang bisa dilepaskan zona subduksi Aceh berkisar pada 7 hingga 8. Nyatanya Gempa Sumatra-Andaman 26 Desember 2004 justru jauh lebih besar, dengan magnitudo antara 9,1 hingga 9,3. Dari realitas inilah tak mengherankan bila dalam menyusun peta bahaya tsunami dan peta evakuasi tsunami di pesisir selatan pulau Jawa, magnitudo maksimum dari gempa hipotetis yang dijadikan dasar penyusunan peta (dengan multiskenario sumber) adalah 8,5.

Gambar 6. Distribusi episentrum gempa-gempa tektonik di pulau Jawa dan zona subduksinya, terhitung sejak 1 Januari 1980 TU hingga 1 Januari 2015 TU oleh Incorporated Research Institutions for Seismology (IRIS). Data dibatasi hanya pada gempa tektonik dengan kedalaman sumber kurang dari 70 kilometer dpl. Angka 2006 dan 1994 masing-masing menunjukkan dua sumber gempa masalalu di busur luar Jawa, yakni Gempa Pangandaran 17 Juli 2006 dan Gempa Bangyuwangi 3 Juni 1994. Sementara angka 2009 merupakan sumber gempa masalalu di cekungan busur muka, yakni Gempa Tasikmalaya 2 September 2009. Sumber: IRIS, 2015.

Gambar 6. Distribusi episentrum gempa-gempa tektonik di pulau Jawa dan zona subduksinya, terhitung sejak 1 Januari 1980 TU hingga 1 Januari 2015 TU oleh Incorporated Research Institutions for Seismology (IRIS). Data dibatasi hanya pada gempa tektonik dengan kedalaman sumber kurang dari 70 kilometer dpl. Angka 2006 dan 1994 masing-masing menunjukkan dua sumber gempa masalalu di busur luar Jawa, yakni Gempa Pangandaran 17 Juli 2006 dan Gempa Bangyuwangi 3 Juni 1994. Sementara angka 2009 merupakan sumber gempa masalalu di cekungan busur muka, yakni Gempa Tasikmalaya 2 September 2009. Sumber: IRIS, 2015.

Terhitung dari Selat Sunda di sebelah barat hingga Selat Bali di sebelah timur, panjang zona subduksi Jawa adalah 1.100 kilometer. Ini hanya sedikit lebih pendek ketimbang panjang zona rekahan Gempa Sumatra Andaman 26 Desember 2004 (yakni 1.300 kilometer). Bila segenap zona subduksi Jawa terpatahkan dalam satu peristiwa tunggal, dengan perkiraan lebar zona subduksinya 200 kilometer, maka gempa akbar yang dihasilkannya bisa mencapai magnitudo 9,2. Namun berkaca pada peristiwa tsunami (Tsunami 1994 dan Tsunami 2006) serta gempa-gempa besar abad ke-19 TU (Gempa 1840, Gempa 1867 dan Gempa 1875), maka patut diduga bahwa zona subduksi Jawa pun tersegmentasi (tersekat-sekat). Ini serupa dengan zona subduksi Sumatra.

Hanya saja jika segmentasi subduksi Sumatra telah teridentifikasi relatif lebih baik lengkap dengan siklus kegempaan maksimal tiap segmen, yang berulang setiap antara dua hingga enam abad sekali, tidak demikian halnya dengan Jawa. Busur luar Jawa yang sepenuhnya berada di bawah air laut, berbeda dengan busur luar Sumatra yang muncul di sejumlah lokasi sebagai pulau Simeulue, Nias, Enggano dan Kepulauan Mentawai. Akibatnya tiada radas pengukur koordinat geodetik (yakni GPS berpresisi sangat tinggi yang khusus digunakan untuk survei geodesi) yang bisa ditempatkan di busur luar Jawa untuk mengukur naik-turunnya busur luar Jawa dari waktu ke waktu. Juga tidak terdapat karang atol kecil (mikroatol) yang bisa digunakan untuk pengukuran serupa hingga ratusan atau bahkan ribuan tahun ke masa silam. Ketiadaan ini membuat para ilmuwan kegempaan dipaksa bersandar hanya pada lapisan-lapisan endapan tsunami purba. Aktivitas pencarian endapan tsunami purba dan pengukuran waktu pengendapannya (dengan teknik pertanggalan radioaktif) kini sedang gencar-gencarnya dilakukan di pesisir selatan Jawa oleh sejumlah lembaga terkait.

Beberapan temuan yang telah mengemuka misalnya bukti terjadinya peristiwa Tsunami 1921 dan Tsunami 1930 seperti dipaparkan tim ilmuwan gabungan BMKG (Badan Meteorologi Klimatologi dan Geofisika) dan ITB (Institut Teknologi Bandung). Endapan kedua peristiwa tersebut tersingkap baik di pantai Teleng (Kabupaten Pacitan) dan pantai Prigi (Kabupaten Trenggalek). Juga endapan dari peristiwa tsunami besar empat abad silam yang tersingkap di pantai Cikembulan di dekat Pangandaran (Kabupaten Ciamis), seperti ditemukan oleh tim LIPI (Lembaga Ilmu Pengetahuan Indonesia). Tsunami besar yang menghasilkan endapan di Cikembulan dipastikan lebih besar ketimbang Tsunami 2006. Kandidat endapan tsunami purba juga telah ditemukan pada tiga pantai di Kabupaten Gunungkidul dan Pacitan oleh tim gabungan Maipark Indonesia dan ITB. Ketiga lokasi endapan tsunami purba tersebut adalah di pantai Sepanjang (kedalaman 1,8 meter), pantai Baron (kedalaman 1,7 meter) dan pantai Teleng (kedalaman 0,6 meter). Kandidat endapat tsunami purba juga telah diidentifikasi tim BMKG di pesisir Teluk Penyu. Di pantai Logending, endapan tersebut terletak pada jarak sekitar 1 kilometer dari garis pantai.

Gambar 7. Dua contoh endapan paleotsunami. Kiri: endapan paleotsunami di tepi sungai Cikembulan, Pangandaran (Kabupaten Ciamis), produk tsunami besar empat abad silam. Kanan: kandidat endapan paleotsunami di pesisir Teluk Penyu (Kabupaten Cilacap) sejauh sekitar 1 kilometer dari garis pantai (kanan). Sumber: Yulianto dkk, 2010 & Daryono, 2015.

Gambar 7. Dua contoh endapan paleotsunami. Kiri: endapan paleotsunami di tepi sungai Cikembulan, Pangandaran (Kabupaten Ciamis), produk tsunami besar empat abad silam. Kanan: kandidat endapan paleotsunami di pesisir Teluk Penyu (Kabupaten Cilacap) sejauh sekitar 1 kilometer dari garis pantai (kanan). Sumber: Yulianto dkk, 2010 & Daryono, 2015.

Dengan penelitian yang sedang berjalan, tentu masih jauh dari pengambilan kesimpulan tentang segmentasi zona subduksi Jawa dan karakteristiknya. Tetapi pada saat ini, secara kasar, dapatlah dikatakan bahwa zona subduksi Jawa khususnya di busur luar terbagi ke dalam sedikitnya empat segmen berbeda. Segmen pertama terletak di selatan Jawa Barat, membentang dari tepian Selat Sunda hingga ke segmen kedua. Segmen pertama ini dapat disebut sebagai segmen Sunda, karena berhadapan dengan selat Sunda. Sementara segmen kedua, sebutlah segmen Pangandaran, adalah segmen sepanjang sekitar 200 kilometer yang menjadi lokasi sumber Gempa Pangandaran 17 Juli 2006. Segmen ketiga terletak di selatan Jawa Tengah dan DIY serta (sebagian) Jawa Timur. Segmen ketiga ini dapatlah disebut segmen Jawa Tengah. Dan yang keempat adalah segmen sepanjang sekitar 200 kilometer yang menjadi sumber Gempa Banyuwangi 3 Juni 1994. Segmen ini juga bisa dinamakan segmen Banyuwangi.

Di antara keempat segmen tersebut, segmen Pangandaran dan segmen Banyuwangi telah melepaskan energinya dalam gempa tektonik besar yang juga memproduksi tsunami signifikan dan mematikan. Sementara segmen Sunda dan Jawa Tengah belum. Kedua segmen tersebut memiliki perbedaan yang sangat jelas dibanding segmen Pangandaran dan Banyuwangi dalam peta seismisitas regional. Karena jarang terjadi gempa tektonik di segmen Sunda maupun Jawa Tengah, khususnya sejak pencatatan gempa modern dimulai pada 1960-an TU, apabila dibandingkan dengan kawasan sekitarnya. Area di zona subduksi yang jarang mengalami gempa tektonik dikenal sebagai kawasan kesenjangan seismik atau seismic gap. Kawasan semacam ini dicurigai sedang menimbun energi, yang kelak bakal dilepaskan dalam gempa kuat ataupun malah gempa besar.

Gambar 8. Estimasi tiga kawasan kesenjangan seismik (seismic gap) di zona subduksi Jawa, semata berdasar pada rendahnya frekuensi kegempaan di tiga lokasi tersebut. Tiga seismic gap ini memiliki potensi untuk menjadi sumber gempa besar (atau bahkan malah gempa akbar) dan tsunami merusak bagi pesisir selatan pulau Jawa di masa yang akan datang. Sumber: Sudibyo, 2015 berbasis data IRIS, 2015 dan Natawidjaja, 2007.

Gambar 8. Estimasi tiga kawasan kesenjangan seismik (seismic gap) di zona subduksi Jawa, semata berdasar pada rendahnya frekuensi kegempaan di tiga lokasi tersebut. Tiga seismic gap ini memiliki potensi untuk menjadi sumber gempa besar (atau bahkan malah gempa akbar) dan tsunami merusak bagi pesisir selatan pulau Jawa di masa yang akan datang. Sumber: Sudibyo, 2015 berbasis data IRIS, 2015 dan Natawidjaja, 2007.

Seismic gap pada segmen Sunda memiliki panjang sekitar 260 kilometer. Bila lebarnya dianggap 100 kilometer, maka magnitudo maksimum gempa tektonik yang bisa dilepaskannya mencapai 8,4. Sementara seismic gap di segmen Jawa Tengah panjangnya pun hampir sama, yakni sekitar 250 kilometer. Dengan lebar seismic gap ini juga dianggap 100 kilometer, maka magnitudo maksimum gempanya juga berkisar pada angka 8,4. Selain kedua segmen tersebut, ada pula kawasan menyerupai seismic gap namun berposisi lebih dekat ke daratan, yakni di cekungan busur muka. Kawasan tersebut berlokasi di lepas pantai Kabupaten Cilacap, Kebumen, Purworejo dan Kulonprogo. Karena juga berada di selatan Jawa Tengah, maka kawasan seismic gap ini dapatlah disebut sebagai segmen Jawa Tengah 2. Luas seismic gap pada segmen Jawa Tengah 2 lebih kecil, dengan panjang sekitar 150 kilometer dan lebar sekitar 100 kilometer. Dengan dimensi tersebut magnitudo maksimum untuk gempa tektonik yang bisa dilepaskan dari segmen Jawa Tengah 2 bisa mencapai 8,2. Dari angka-angka prakiraan ini dapat dimengerti mengapa ilmuwan kegempaan menempatkan gempa hipotetik dengan magnitudo maksimum 8,5 sebagai basis penyusunan peta bahaya tsunami dan peta evakuasi tsunami di pesisir selatan pulau Jawa.

Dengan ketiga seismic gap tersebut, maka pulau Jawa khususnya bagian selatan lebih rentan akan guncangan oleh gempa tektonik kuat atau malah gempa besar. Pesisir selatan pulau Jawa juga tetap berpotensi dilimbur tsunami. Bila segmen Sunda melepaskan energinya, tsunami merusak yang dibentuknya berpotensi menghantam pesisir selatan Jawa Barat, mulai dari Ujungkulon hingga Garut. Sebaliknya bila segmen Jawa Tengah yang melepaskan energinya, tsunami merusak berpotensi menghajar garis pantai selatan Jawa Tengah dan DI Yogyakarta serta sebagian Jawa Timur. Yakni mulai dari Cilacap hingga Blitar. Pesisir selatan Jawa Tengah dan DIY khususnya di antara Cilacap hingga Bantul juga berpotensi terkena hantaman tsunami merusak bilamana segmen Jawa Tengah 2 melepaskan energinya.

Gambar 9. Peta tingkat risiko bencana tsunami bagi pulau Jawa seperti dipublikasikan Badan Nasional Penanggulangan Bencana. Nampak jelas hampir segenap kabupaten/kota yang terletak di pesisir selatan pulau Jawa berisiko tinggi terhadap bencana tsunami. Sumber: BNPB, 2012.

Gambar 9. Peta tingkat risiko bencana tsunami bagi pulau Jawa seperti dipublikasikan Badan Nasional Penanggulangan Bencana. Nampak jelas hampir segenap kabupaten/kota yang terletak di pesisir selatan pulau Jawa berisiko tinggi terhadap bencana tsunami. Sumber: BNPB, 2012.

Meski karakteristik lebih lengkap dari zona subduksi Jawa belum sepenuhnya dipahami, namun kemungkinan eksistensi tiga seismic gap tersebut telah memberikan gambaran risiko pesisir selatan pulau Jawa terhadap ancaman bencana alam gempa bumi tektonik (khususnya gempa kuat atau bahkan gempa besar) dan bencana tsunami. Dengan risiko tersebut, langkah-langkah mitigasi pun mulai disusun. Khususnya dalam hal mitigasi bencana tsunami, yang memang lebih terprediksi, dalam aras mitigasi non fisik. Kabupaten dan kota yang berbatasan langsung dengan garis pantai selatan pulau Jawa telah mulai menyusun peta bahaya tsunami dan peta evakuasi tsunaminya masing-masing.

Secara akumulatif BNPB (Badan Nasional Penanggulangan Bencana) mencatat terdapat 23 kabupaten/kota yang berisiko terkena bencana tsunami di pulau Jawa. Secara akumulatif terdapat hampir 1,7 juta jiwa yang tinggal di pesisir kabupaten/kota yang berisiko tersebut. Berdasarkan jumlah jiwa yang berpotensi terpapar tsunami, Kota Cilacap (propinsi Jawa Tengah) adalah kawasan paling berisiko tsunami di pulau Jawa. Disusul dengan Kabupaten kebumen (juga di propinsi Jawa Tengah) pada peringkat kedua.

tsunami-jawa_kabupaten-terpaparBahan acuan:
Kementerian Pekerjaan Umum dan Perumahan Rakyat; 2006; Rehabilitasi Bencana Alam Gempa Bumi dan Tsunami di Selatan Pulau Jawa ; 25 Juli 2006

Anugrah dkk; 2015; A Preliminary Study of Paleotsunami Deposit Along the South Coast of East Java: Pacitan-Banyuwangi; AIP Conf. Proc. 1658, 050003 (2015). Bandung, Indonesia, 11–12 November 2014.

Adriansyah dkk; 2011; Pre-eliminary Results of Paleotsunami Investigation on Gunungkidul and Pacitan; Joint Convention IAGI-HAGI 2011, Makassar, Indonesia, 26-29 September 2011.

Kanamori; 2006; Seismological Aspects of the December 2004 Great Sumatta-Andaman Earthquake; Earthquake Spectra, 22 (S3). S1-S12. ISSN 8755-2930.

BNPB; 2012; Masterplan Pengurangan Risiko Bencana Tsunami; Badan Nasional Penanggulangan Bencana, Juni 2012.

Natawidjaja; 2007; Tectonic Setting Indonesia dan Pemodelan Gempa dan Tsunami; Pelatihan Pemodelan Tsunami Run-up, Kementerian Negara Riset dan Teknologi RI, 20 Agustus 2007.

Lavigne dkk; 2007; Field Observations of the 17 July 2006 Tsunami in Java; Nat. Hazards Earth Syst. Sci., 7 (2007), 177–183.

Synolakis dkk; 1995; Damage, Conditions of East Java 1994 of Tsunami Analyzed. Eos. Trans. AGU, vol. 76 no. 26 (June 1995), 257 & 261-261.

Yulianto dkk; 2010; Where the First Wave Arrives in Minutes, Indonesian Lessons on Surviving Tsunamis Near Their Sources; Intergovernmental Oceanographic Commission, United Nations Educational Scientific and Cultural Organisation, IOC-Brochure 2010-4.

Menemukan Chicxulub, di Balik Perburuan Kawah Pembunuh Dinosaurus

Tiap kali berbincang akan benda langit anggota tata surya yang berjuluk asteroid dan komet, di benak saya langsung terbayang sosok-sosok dinosaurus. Ya, pada kawanan hewan-hewan purba yang selama ini dipersepsikan berbadan besar dan tambun, meski sesungguhnya tidak seluruhnya demikian. Dinosaurus merajai seluruh benua selama ratusan juta tahun semenjak zaman Trias, tepatnya semenjak 231 juta tahun silam. Namun fosil-fosil mereka mendadak tak lagi dijumpai di lapisan-lapisan batuan yang berasal dari zaman Tersier awal, tepatnya mulai 65 juta tahun silam (atau dalam penelitian termutakhir, mulai 66 juta tahun silam). Dinosaurus tak menghilang sendirian. Dalam kurva kelimpahan genera makhluk hidup dari masa ke masa sepanjang 250 juta tahun terakhir yang disusun palentolog Jack Sepkoski dan David Raup yang dipublikasikan pada 1982 Tarikh Umum (TU) silam, jelas terlihat dinosaurus adalah bagian dari 76 % makhluk hidup sezaman yang mendadak menghilang. Selain dinosaurus, sejumlah anggota genera nanoplankton, tumbuhan darat, binatang laut dan darat tak bertulang belakang dan amfibi pun turut punah. Bedanya, mereka masih menyisakan sejumlah genera lainnya khususnya yang bertubuh kecil untuk bertahan hidup, sehingga tetap muncul dan bahkan berkembang pesat pada zaman geologi sesudahnya. Sementara sisanya beserta segenap dinosaurus, khususnya dinosaurus non burung, tak lagi dijumpai dalam kala dan zaman geologi sesudahnya.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Dinosaurus dan 76 % makhluk hidup sezaman itu menjadi korban dari peristiwa pemusnahan massal dalam skala global yang amat mencekik. Mulai dasawarsa 1980-an pencarian akan penyebab peristiwa dramatis tersebut mewarnai dunia ilmu pengetahuan yang terus berlanjut hingga ke abad ke-21 TU. Pencarian pun mengerucut pada dua kandidat. Yang pertama adalah dugaan peristiwa tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub (baca : chic-sa-lube) di sebagian Semenanjung Yucatan dan Teluk Meksiko (kini bagian dari Meksiko). Sementara kandidat kedua adalah dugaan letusan mahadahsyat gunung berapi areal yang memuntahkan magma basaltik dalam volume gigantis yang memproduksi Dataran Tinggi Dekan (kini bagian dari India). Keduanya terjadi pada rentang waktu hampir bersamaan dalam skala waktu geologi, yakni di perbatasan zaman Kapur dan Tersier sekitar 65 juta tahun silam. Sifat kedua kandidat itu sangat berbeda. Tumbukan pembentuk kawah Chicxulub berlangsung sangat singkat, hanya dalam waktu beberapa detik hingga beberapa jam saja. Sementara letusan gigantis Dataran Tinggi Dekan berlangsung dalam waktu hingga sejuta tahun

Setiap kandidat memiliki pendukungnya masing-masing. Namun hampir tiga dasawarsa kemudian, tepatnya pada tahun 2010 TU, terbentuk konsensus yang menyimpulkan tumbukan asteroid sebagai pembunuh dinosaurus dan pemusnah 76 % kelimpahan makhluk hidup sezaman. Setelah menganalisis seluruh literatur ilmiah terkait beserta segenap buktinya yang telah dihasilkan dalam dua dasawarsa terakhir, 41 ilmuwan prestisius dari berbagai disiplin ilmu seperti astronomi, kebumian dan geofisika menyepakati kesimpulan tersebut. Sebagai konsekuensinya, letusan gigantis Dataran Tinggi Dekan tak lagi dianggap sebagai penyebab peristiwa kepunahan massal 65 juta tahun silam. Meski mungkin berkontribusi dalam memperparah dampak lingkungan global akibat tumbukan asteroid raksasa tersebut.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Kawah raksasa Chicxulub adalah jejak paling jelas dari peristiwa tumbukan asteroid raksasa itu. Kawah tumbukan ini demikian akbar, berbentuk membulat dengan garis tengah tak kurang dari 170 kilometer. Namun ukuran sesungguhnya mungkin lebih besar lagi karena ada juga yang berpendapat terdapat tanda-tanda bahwa diameter kawah ini mencapai 300 kilometer. Kawah raksasa Chicxulub lahir kala asteroid raksasa bergaris tengah antara 5 hingga 15 kilometer jatuh menumbuk Bumi 65 juta tahun silam dalam peristiwa tumbukan benda langit. Tumbukan ini melepaskan energi kinetik yang sungguh luar biasa besar. Paling tidak 100 juta megaton energi dilepaskan, yang setara dengan peletusan 5 milyar bom nuklir Hiroshima secara serempak. Jika dibandingkan dengan energi letusan Gunung Toba 74.000 tahun silam, maka letusan gunung berapi terdahsyat di Bumi dalam 27 juta tahun terakhir itu hanyalah seper duaratus energi tumbukan asteroid raksasa ini. Apalagi jika dibandingkan dengan Peristiwa Chelyabinsk 2013 kemarin. Jelas sudah, inilah bencana alam terdahsyat dengan skala yang luar biasa !

Asteroid raksasa itu jatuh di perairan Teluk Meksiko purba yang adalah laut dangkal dengan kedalaman sekitar 150 meter. Maka megatsunami pun tercipta dan segera berderap mengarungi samudera. Gelombang setinggi ratusan meter menderu membanjiri pesisir-pesisir Amerika purba yang berhadapan. Bahkan di Eropa dan Afrika purba yang sudah cukup jauh dari lokasi tumbukan, tinggi megatsunami itu masih sekitar 100 meter kala tiba di pesisir.Namun bukan megatsunaminya yang menjadi masalah global yang sangat serius. Pembentukan kawah raksasa Chicxulub dibarengi semburan milyaran ton debu hingga jauh tinggi ke atmosfer. Pada saat yang sama, bongkah-bongkah batuan produk tumbukan yang terlontar ke angkasa sebagian berjatuhan lagi ke Bumi menjadi meteor dalam jumlah luar biasa besar. Udara pun terpanaskan hebat hingga kebakaran hutan spontan pun terjadilah dimana-mana bersamaan dengan badai api. Sebagai hasilnya milyaran ton jelaga pun terhembus ke udara. Selain debu dan jelaga, milyaran ton aerosol sulfat pun terlepas. Sulfat ini berasal dari gas belerang (sulfur dioksida), yang terbebaskan saat asteroid raksasa menumbuk dasar Teluk Meksiko yang dipenuhi endapan gipsum. Gas Belerang yang terproduksi segera bertemu uap air di atmosfer menjadi aerosol sulfat.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Ketiganya membumbung tinggi hingga memasuki lapisan stratosfer dan terdistribusikan ke segala arah. Karena berada di lapisan stratosfer, mereka tak bisa terlarut dan turun bersama air hujan. Hanya gravitasi yang mampu menurunkannya kembali ke permukaan Bumi. Namun dengan ukuran butir-butir debu, jelaga dan aerosol sulfat yang kecil, butuh waktu bertahun-tahun bagi gravitasi untuk bekerja mengendapkannya. Sepanjang waktu itu milyaran ton debu halus, jelaga dan aerosol sulfat terus melayang-layang dalam lapisan stratosfer. Tak sekedar melayang, mereka berkoalisi membentuk lapisan tabir surya alamiah khas produk tumbukan. Aerosol sulfat merupakan penyerap sinar Matahari yang efektif. Sementara debu dan jelaga menjadi pemantul sinar Matahari yang tak kalah efektifnya. Kehadiran ketiganya dalam jumlah luar biasa besar sebagai tabir surya alamiah di lapisan stratosfer menghalangi pancaran sinar Matahari yang seharusnya tiba di paras Bumi. Selain diserap, tabir surya tersebut juga memantulkan kembali sejumlah sinar Matahari ke angkasa, yang membuat albedo Bumi meningkat. Kombinasi kedua efek tersebut membuat intensitas sinar Matahari yang diterima di daratan dan lautan merosot demikian dramatis. Sehingga Bumi menjadi remang-remang gulita. Simulasi menunjukkan bahkan di siang bolong sekalipun situasinya masih lebih gelap ketimbang malam berhias Bulan purnama di hari yang normal.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Akibatnya sungguh buruk. Selain membuat suhu rata-rata paras Bumi anjlok dramatis dan jumlah penguapan pun berkurang dramatis dengan segala implikasinya ke sistem iklim dan cuaca Bumi, minimnya sinar Matahari juga memaksa tumbuh-tumbuhan darat dan fitoplankton di lautan berhenti berfotosintesis. Pelan namun pasti produsen makanan itu pun mati. Imbasnya segera merambat ke rantai makanan dan jaring-jaring makanan di segenap penjuru. Hewan-hewan yang menjadi konsumen, baik konsumen tingkat 1, 2 maupun 3 segera menyusul bergelimpangan akibat kelaparan. Dapat dikatakan segenap makhluk hidup yang bobotnya lebih dari 20 kilogram tewas bertumbangan. Hanya hewan-hewan kecil dan tumbuh-tumbuhan perintis saja yang sanggup bertahan.

Gravitasi dan Magnetik

Tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub mendorong kehidupan di Bumi memasuki saat-saat terpedihnya. Di era kontemporer, khususnya semenjak dasawarsa 1990-an, kengerian akan peristiwa ini mulai mengetuk pintu kesadaran umat manusia akan Bumi yang tidaklah steril dari hantaman komet dan asteroid, sebagaimana yang juga dialami planet-planet lainnya. Wajah Bumi pun pernah diwarnai kawah-kawah raksasa produk tumbukan, meski perjalanan waktu membuatnya dipahat erosi intensif atau bahkan terkubur di bawah ketebalan sedimen. Mata dunia semakin terbuka setelah menyaksikan untuk pertama kalinya bagaimana tumbukan benda langit bekerja, di planet lain. Selama tujuh hari berturut-turut semenjak 16 hingga 22 Juli 1994 TU, dunia menyaksikan bagaimana 21 fragmen komet Shoemaker-Levy 9 berjatuhan ke planet Jupiter. Secara akumulatif energi yang dilepaskannya pun mencapai ratusan juta megaton TNT, sebanding dengan peristiwa tumbukan asteroid raksasa 65 juta tahun silam. Kini asteroid dan komet pun dipandang dalam perspektif baru. Komet misalnya, tak lagi hanya dilihat sebagai benda langit eksotik yang mempunyai ‘ekor’ mempesona, namun juga menjadi salah satu potensi bahaya bagi Bumi meski dalam perspektif yang sangat berbeda dibanding ungkapan Aristoteles 2.000 tahun silam.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Namun jarang diketahui bahwa upaya pencarian, penemuan dan hubungan antara kawah raksasa Chicxulub dengan peristiwa pemusnahan massal 65 juta tahun silam berjalan dalam rangkaian yang mirip kisah-kisah detektif. Di dalamnya ada luapan energi dan semangat para pencarinya, yang ditingkahi pula dengan penolakan demi penolakan hingga hampir tiga dasawarsa seiring benturan asimetrik antara ‘kubu’ amatir vs profesional, sebelum kemudian bukti-bukti yang meyakinkan datang.

Ilmu tumbukan benda langit merupakan salah satu cabang ilmu pengetahuan yang usianya masih sangat muda. Secara formal cabang ilmu ini lahir pada 1963 TU seiring kerja keras Eugene M. Shoemaker, Nicholas M. Short, Edward Chao, B.M. French dan W. von Engelhardt dalam menganalisis dampak ledakan nuklir di medan percobaan nuklir Nevada (Amerika Serikat). Kala sebuah bom nuklir yang berjuluk Sedan (kekuatan 104 kiloton TNT) diledakkan di kedalaman 192 meter dari paras Bumi pada 5 Juli 1962 TU dan membentuk lubang kawah yang besar, Shoemaker sangat tertarik dengan morfologi kawahnya. Kawah produk ledakan Sedan memiliki diameter 426 meter dengan kedalaman 107 meter. Ia pun segera membandingkan kawah Sedan dengan kawah Barringer (Meteor) di Arizona (juga di Amerika Serikat) yang telah lama mengundang kontroversi akan asal-usulnya.

Perbandingan itu menunjukkan kawah Barringer nampaknya terbentuk oleh pelepasan energi 3,5 megaton TNT. Sementara analisis petrologi oleh M. Short menyimpulkan mineral-mineral kuarsa di dasar kawah Sedan telah mengalami metamorfosis dinamik tingkat tinggi akibat hadirnya tekanan sangat tinggi, minimal 200 ribu ton per meter persegi. Sementara di Arizona, analisis petrologi serupa yang dilakukan trio Chao, French dan Engelhardt di dasar kawah Barringer pun menemukan pola metamorfosis kuarsa yang sama. Ini memperlihatkan kawah Barringer juga dibentuk oleh aksi pelepasan energi yang melibatkan tekanan sangat tinggi. Secara alamiah hal semacam itu hanya bisa dihasilkan oleh tumbukan komet atau asteroid ke Bumi. Inilah tonggak berdirinya cabang ilmu tumbukan benda langit, sebagai hasil perkawinan silang antara ilmu kebumian dengan astronomi. Mulai saat itu para geolog harus lebih berhati-hati dalam mendeskripsikan morfologi cekungan bulat (bowl-shaped) di paras Bumi, tidak lagi sekedar mengidentifikasinya sebagai kawah maar, dolina, kaldera mud volcano ataupun erosi kubah garam.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Pada tahun 1966 TU pemuda belia Robert Baltosser yang juga geofisikawan yunior di Seismographic Service Corp, Tulsa (Amerika Serikat) berangkat ke Meksiko. Ia bertugas menganalisis data gravitasi PEMEX (perusahaan perminyakan nasional Meksiko) di kawasan Semenanjung Yucatan bagian utara, seiring terpilihnya tempat kerjanya sebagai salah satu kontraktor PEMEX. Sudah hampir dua dasawarsa PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan. Selama lima tahun sejak 1947 TU, PEMEX telah melakukan survei gravitasi di kawasan ini dengan harapan menemukan cekungan-cekungan potensial kaya minyak bumi. Mereka berhasil mengidentifikasi pola aneh setengah-melingkar di Semenanjung Yucatan bagian utara. Pola seperti itu biasanya menunjukkan ada sesuatu yang terpendam di dalam tanah. Berharap menjumpai cadangan minyak baru, PEMEX mengebor bagian utara kawasan berpola aneh tersebut di dua titik berbeda, yakni di Chicxulub Puerto dan Sacapuc. Sayangnya pengeboran yang menembus kedalaman hampir 1.000 meter itu tidak menghasilkan setetes minyak pun. Namun geolog yang mengawasi pengeboran itu mencatat satu hal yang aneh. Jika pada 800 meter pertama pemboran hanya menembus sedimen karbonat dan gipsum yang cerah, sejak kedalaman 800 meter pengeboran mulai menembus batuan beku kegelapan. Geolog itu menginterpretasikannya sebagai andesit, batuan beku khas di gunung berapi. Maka PEMEX pun berkesimpulan sumurnya telah menembus gunung berapi purba yang telah lama mati. Sumur pun ditutup dan pemburu minyak beralih ke lokasi lain.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Dua dasawarsa kemudian, pola setengah-melingkar itu tetap mengusik benak geofisikawan PEMEX. Apalagi harga minyak sedang meningkat sehingga penemuan cekungan-cekungan baru menjadi kebutuhan mendesak. Maka dipanggillah perusahaan yang mempekerjakan Baltosser. Kebetulan pemuda ini baru saja usai memetakan struktur Wells Creek di Tennesse (Amerika Serikat) secara gravitasi. Wells Creek adalah sebuah struktur bergaris tengah 13 kilometer yang sudah dipastikan sebagai produk tumbukan asteroid/komet, seiring telah teridentifikasinya kuarsa termetamorfosis dinamik tingkat tinggi didasarnya. Survei gravitasi Baltosser mengukuhkan hal itu, khususnya melalui peta anomali gravitasinya. Tatkala geofisikawan PEMEX menyodorkannya peta gravitasi Semenanjung Yucatan, Baltosser segera menyadari pola aneh setengah-melingkar itu memiliki banyak kemiripan dengan Wells Creek, hanya saja ukurannya 10 kali lebih besar. Maka spontan Baltosser pun berargumen pola setengah-melingkar di Semenanjung Yucatan itu jejak kawah tumbukan.

Namun sebuah perubahan dramatis tak terduga datang menerpa. Manajemen PEMEX sedang melaksanakan reorganisasi disertai perampingan pada semua lini. Geofisikawan PEMEX yang menjadi partner Baltosser turut diberhentikan. PEMEX juga menerapkan peraturan baru yang lebih ketat. Sehingga semua data hasil survei, termasuk peta yang dilihat Baltosser, tidak diperbolehkan keluar dari lingkungan PEMEX apalagi digandakan dan disebarluaskan. Baltosser pun pulang ke Tulsa sembari memendam rasa penasaran akan apa yang dilihatnya. Namun tanpa data di tangan untuk dianalisis, ia tak bisa berbuat apa-apa.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Bonanza minyak pasca berkecamuknya Perang Arab-Israel 1973 membuat permintaan minyak dunia kian melonjak. Seperti perusahaan minyak lainnya, PEMEX pun kian agresif mencari cekungan-cekungan minyak yang baru untuk mempertahankan dan bahkan meningkatkan produksinya. Segera PEMEX kembali mendiskusikan pola setengah-melingkar yang unik di Semenanjung Yucatan. Meski satu dasawarsa sebelumnya Baltosser menganggapnya sebagai kawah tumbukan, tak satupun geolog dan geofisikawan PEMEX yang sepaham. Mereka tetap memperkukuhi argumen gunung berapi purba dan menyebut kawasan Semenanjung Yucatan itu sebagai Central Yucatan Igneous Zone. Atas nama profesionalitas, mereka mengabaikan pendapat Baltosser dan menganggapnya sebagai sekedar imajinasi anak muda amatiran yang penuh energi menggelegak, masih idealis dan belum tahu apa-apa tentang realitas dunia. Namun PEMEX tetap membutuhkan survei baru sebagai pembanding guna mengetahui lebih lanjut apa yang tersembunyi di bawah Semenanjung Yucatan dan kawasan lepas pantainya. Syukur-syukur ada prospek minyak yang bisa dibor.

Maka pada 1978 TU datanglah perusahaan survei Western Geophysical (juga dari Amerika Serikat) sebagai pemain baru. Dalam rombongan ini terdapat pula Glenn Penfield, seorang geofisikawan ingusan namun sudah berpengalaman dengan pengukuran dan pembuatan peta magnetik kawasan. Selama tiga bulan di tahun 1976 TU Penfield menghabiskan waktunya di Alaska untuk melaksanakan survei aeromagnetik menggunakan radas magnetometer yang diterbangkan pesawat. Lebih dari 25.000 kilometer lintasan penerbangan ditempuhnya, beberapa melalui gunung-gemunung berapi besar di Alaska. Sehingga bagaimana anomali magnetis khas gunung berapi telah menjadi pengetahuannya, baik gunung berapi aktif yang tersingkap di paras Bumi maupun gunung berapi purba yang terpendam jauh di dalam tanah.

Divisi Aerosurvey perusahaan Western Geophysics mulai melaksanakan survei aeromagnetik di Semenanjung Yucatan sejak April 1978 TU. Selama berbulan-bulan kemudian Penfield dan rekan-rekannya menghabiskan waktu untuk terbang di atas kawasan pada altitud 5.000 meter dpl dengan lintasan barat-timur sejauh 400 kilometer. Lintasan terbang selanjutnya hanya bergeser 4 kilometer di sebelah lintasan terbang sebelumnya. Setelah usai, rute pesawat diubah menjadi berarah utara-selatan juga sejauh 400 kilometer, Namun selisih antar lintasan kali ini lebih lebar, yakni 20 kilometer. Dengan cara ini maka dihasilkan peta magnetik Teluk Meksiko dengan resolusi hingga 30 meter. Secara akumulatif panjang lintasan penerbangan survei tersebut mencapai kurang lebih 25.000 kilometer.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Sejak hari pertama survei aeromagnetik, Penfield sudah mendeteksi anomali medan magnetik di titik tertentu. Anomalinya memang kecil, antara 1 hingga 5 nanoTesla di atas rata-rata. Namun cakupan areanya cukup besar. Titik-titik anomali tersebut dijumpai di hampir setiap lintasan penerbangan survei, sepanjang April hingga Agustus 1978 TU. Setelah penerbangan usai, mulailah analisis dilakukan dalam periode September 1978 hingga Maret 1979 TU. Titik-titik anomali tiap lintasan penerbangan survei dimasukkan dalam perangkat lunak pengolah data Western Geophysics. Perangkat lunak itu juga memadukannya dengan peta topografi daratan Semenanjung Yucatan dan batimetri Teluk Meksiko. Hasilnya, ditemukanlah sebuah kawasan anomali magnetik yang sangat besar. Kawasan tersebut terkonsentrasi dalam sebuah struktur sirkular mengesankan berdiameter lebih dari 90 kilometer dan berimpit dengan Central Yucatan Igneous Zone.

Selain memanfaatkan perangkat lunak, Penfield juga menggunakan cara konvensional. Mereka mengeplot titik-titik anomali tersebut ke dalam peta kawasan. Keduanya merasa takjub saat melihat sejumlah titik di peta ternyata membentuk pola setengah-melingkar. Penfield pun berbagi cerita dengan rekan geofisikawannya di PEMEX. Si rekan, yang sama takjubnya, segera menggali timbunan arsip dan menyodorkan peta gravitasi Semenanjung Yucatan yang dilihat Baltosser satu dasawarsa sebelumnya. Kala dua peta ini digabungkan, jelas terlihat terlihat bagaimana pola setengah-melingkar peta gravitasi dan pola setengah-melingkar peta aeromagnetik membentuk satu kesatuan struktur sirkular bergaris tengah lebih dari 100 kilometer. Sama persis dengan hasil olahan perangkat lunak. Mengacu pengalamannya selama di Alaska, pola anomali magnetik berskala besar di Semenanjung Yucatan sangat berbeda dengan yang umumnya dijumpai di gunung berapi, baik aktif maupun purba. Penfield pun sependapat dengan Baltosser, bahwa Central Yucatan Igneous Zone lebih mungkin merupakan kawah tumbukan raksasa yang terpendam. Maka, sejak Agustus 1978 TU nama Struktur Chicxulub pun mulai bergaung.

Tapi senasib dengan Baltosser, PEMEX pun mengabaikan pendapat Penfield dan melemparkan laporannya ke kolong arsip di gudang data. Sesuai kebijakannya, PEMEX juga melarang Penfield memublikasikan apapun yang berbasis data PEMEX. Pada 1979 TU, PEMEX kembali mengebor daratan Yucatan di Yaxcopoil. Pengeboran sedalam 1.800 meter itu lagi-lagi tidak menemukan minyak, sehingga sumur pun ditutup dan ditinggalkan. Namun geolog yang menyupervisi pengeboran, yakni Burkhard Dressler dan David Kring, menjumpai keanehan yang mirip dengan temuan di sumur Chicxulub Puerto dan Sacapuc tiga dasawarsa sebelumnya. Pada kedalaman 800 meter tidak lagi dijumpai sedimen karbonat dan gipsum, namun justru ditemukan bebatuan mirip breksi, sejenis batuan sedimen yang tersusun dari bongkahan-bongkahan batu bersudut tajam. Breksi juga biasa dijumpai di kawasan gunung berapi, sehingga PEMEX tanpa ragu mengatakan sumur Yaxcopoil pun menembus gunung berapi purba di Central Yucatan Igneous Zone.

Menemukan Chicxulub

Selagi PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan namun sibuk memperkukuhi argumen gunung berapi purba, satu kuartet ilmuwan menggoncangkan dunia ilmu geologi, astronomi, biologi dan fisika lewat publikasi menggemparkan. Dalam bulan Juni 1980 TU kuartet ilmuwan Luis W. Alvarez, Walter Alvarez, Frank Asaro dan Helen Michel dari University of California (Berkeley) mengumumkan temuan tentang hubungan peristiwa pemusnahan massal 65 juta tahun silam dengan sumber ekstraterestrial berupa tumbukan komet/asteroid. Lewat analisis terhadap lapisan lempung hitam tipis yang terjepit di antara sedimen zaman Kapur dan Tersier dari sejumlah singkapan seperti di Gubbio (Italia), Stevns Klint (Denmark) dan Woodside Creek (Selandia Baru), mereka menemukan konsentrasi Iridium cukup pekat. Yakni antara 30 hingga 160 kali di atas normal. Iridium adalah salah satu logam yang ditemukan berlimpah dalam meteorit namun tidak di paras Bumi. Sehingga jika di daratan atau lautan terdapat temuan konsentrasi Iridium nan pekat, jelas sumbernya adalah debu-debu meteor dari langit. Jika Iridium di lempung hitam tipis tersebut dianggap berasal dari pengendapan debu-debu antariksa, maka butuh waktu setidaknya 500 ribu tahun untuk mencapai konsentrasi sepekat itu. Namun berselang setahun kemudian lewat analisis singkapan Caravaca (Spanyol), Jan Smit menyimpulkan deposisi lempung hitam berlangsung jauh lebih cepat yakni hanya dalam waktu sekitar 50 tahun.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Karena lapisan lempung hitam sejenis tersingkap pula di berbagai penjuru (dalam catatan terkini, ditemukan di lebih dari 350 singkapan di lima benua) Alvarez dkk meyakini skala peristiwa yang menyebabkannya bersifat global. Perhitungan Alvarez dkk menyimpulkan bahwa lempung hitam tipis tersebut hanya bisa dibentuk oleh tumbukan komet/asteroid berdiameter 10 +/- 4 km. Tumbukan komet/asteroid sebesar itu bakal menimbulkan kawah tumbukan raksasa bergaris tengah tak kurang dari 200-an kilometer. Tumbukan seukuran ini memproduksi debu sangat banyak yang terhambur ke atmosfer dan berperan sebagai tabir surya sehingga intensitas sinar Matahari di di paras Bumi turun drastis. Perhitungan menunjukkan pada puncaknya intensitas sinar Matahari yang diterima paras Bumi tinggal sepersepuluh juta dari normalnya. Maka fotosintesis akan terhenti, yang segera membunuh fitoplankton dan flora berdaun hijau. Selanjutnya giliran kawanan fauna yang tumbang berkalang tanah. Sayangnya Alvarez dkk tidak bisa menyodorkan bukti dimana lokasi kawah raksasa tersebut. Belakangan pada tahun 1984 TU Bruce Bohor dkk dari United States Geological Survey memperkuat argumen Alvares dkk. Bohor dkk menemukan butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi dalam lempung hitam di tepi Madrid Road, Colorado (Amerika Serikat). Setahun kemudian giliran Wendy Wolbach yang menemukan bahwa lapisan lempung hitam itu sangat kaya dengan butir-butir karbon mikro hasil kebakaran hutan konifer dalam skala global.

Penfield menyimak publikasi menggemparkan tersebut dan segera menyadari Struktur Chicxulub mungkin adalah kawah raksasa yang dibicarakan Alvarez dkk. Berdasar ketebalan sedimen di atas batuan mirip andesit/breksi di sumur Chicxulub Puerto dan Yaxcopoil, Penfield mengetahui umur struktur itu sekitar 80 juta tahun. Namun jika betul kawah tumbukan, umurnya bisa lebih muda karena faktor deposisi sedimen dasar kawah. Sehingga umur 65 juta tahun adalah masuk akal. Dengan rasa gembira meluap Penfield menghubungi Antonio Camargo, koleganya di Meksiko, menceritakan apa yang diketahuinya. Mereka akhirnya bersepakat untuk melaporkan Struktur Chicxulub serta kemungkinannya sebagai kawah raksasa penyebab pemusnahan massal 65 juta tahun silam dalam pertemuan ilmiah. Yang dituju adalah temu ilmiah geofisikawan dibawah tajuk Society of Exploration Geophysicist di Los Angeles (Amerika Serikat) pada bulan Oktober 1981. Di forum ini Penfield dan camargo memaparkan apa yang selama ini dikenal sebagai Central Yucatan Igneous Zone merupakan Struktur Chicxulub yang adalah kawah raksasa produk tumbukan komet/asteroid dan berkaitan dengan pemusnahan massal 65 juta tahun silam.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber:  Wilson, 2010.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber: Wilson, 2010.

Namun pertemuan Society of Exploration Geophysicist berlangsung bersamaan dengan pertemuan lain yang lebih presitisius, yakni Snowbird Conference di Utah (juga di Amerika Serikat). Berbeda dengan Society of Exploration Geophysicist, Snowbird conference dihadiri oleh para ilmuwan keplanetan, palentolog dan geolog yang secara khusus membahas peristiwa pemusnahan massal dan tumbukan komet/asteroid. Maka kala presentasi Penfield dan Camargo di Los Angeles ditanggapi dengan biasa-biasa saja dan bahkan cenderung dingin, konferensi di Utah justru begitu bersemangat menunggu pemaparan penyelidikan kandidat-kandidat kawah raksasa produk tumbukan yang memicu pemusnahan massal. Utah tak mengetahui sedikitpun bahwa Struktur Chicxulub sedang dipaparkan di Los Angeles. Nestapa Penfield bertambah setelah pejabat PEMEX mengecamnya secara terbuka. PEMEX kecewa data anomali magnetik milik mereka ternyata menjadi basis pemaparan di di Los Angeles.

Tapi Los Angeles jugalah yang mempertemukan Penfield dengan Carlos Byars, wartawan Houston Chronicle dan satu-satunya orang yang tertarik dengan presentasinya. Tanpa membuang waktu, Houston Chronicle edisi 13 Desember 1980 TU memajang artikel Penfield dan Camargo di halaman pertama dengan judul provokatif, lengkap dengan peta Struktur Chicxulub. Byars juga mempublikasikan tulisannya di majalah astronomi prestisius Sky and Telescope edisi Maret 1982 TU. Belakangan editor Sky and Telescope memangkas habis-habisan tulisannya sehingga hanya ditempatkan pada kolom singkat di halaman 249 dan 250. Byars pun khawatir tidak semua orang membacanya. Penfield sendiri terbang ke Houston (juga di Amerika Serikat) dan bertemu dengan pakar-pakar keplanetan di NASA Johnston Spaceflight Center. Salah satunya William Phinney. Phinney menekankan bahwa gagasan Struktur Chicxulub tidak akan dianggap remeh jika Penfield sanggup memperlihatkan bukti batuan metamorf dinamik tingkat tinggi dari struktur tersebut.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Saran Phinney membakar obsesi Penfield. Segera ia terbang ke Meksiko dan mencari sampel batuan khususnya di sekitar sumur-sumur yang pernah dibor PEMEX, atas biaya sendiri. Setelah tahu batuan dari sumur yang dibor di dasawarsa 1970-an dikirim ke Quetzalcoalcos, ia pun menyewa taksi dan pergi ke sana, hanya untuk mendapati gudang penyimpanan batuan sudah dibongkar dan diratakan dengan tanah. Tanpa patah semangat, Penfield menyigi jengkal demi jengkal puing-puing gudang guna mencari sisa-sisa batuan, namun tanpa hasil. Pencarian ke seluruh penjuru hingga 600 kilometer dari Merrida, dengan meneliti setiap cenote (telaga dolina) yang ada pun tidak mendapati batuan andesit/basalt yang dicarinya. Dari Merrida, ia pergi ke Sacapuc. Lokasi sumur Sacapuc ternyata sudah berubah jadi kandang babi dan berada di bawah timbunan kotoran. Mengabaikan bau kotoran dan rasa jijik, ia menggali hingga posisi sumur ketemu dan mencari batuan yang diinginkannya, lagi-lagi tanpa hasil. Lantas pergilah ia ke sumur di Chicxulub Puerto. Ketika sumur digali, disinilah bongkahan-bongkahan batuan yang dicarinya dijumpai sebagai penutup sumur. Penfield mengambil sampel seberat 9 kilogram, membersihkannya dari sisa-sisa semen penutup sumur dan segera dikirim ke Houston.

Lidah memang tak bertulang. Kerja keras Penfield tidak diapresiasi Phinney. Rupanya argumen gunung api purba di Semenanjung Yucatan juga telah merasuki benak ilmuwan-ilmuwan keplanetan NASA. Lebih dari itu, ilmuwan-ilmuwan itu pun terhinggapi penyakit profesionalitas layaknya geolog dan geofisikawan PEMEX. Mereka menganggap, sebagai profesional, merekalah yang lebih paham akan sifat dan dinamika kawah tumbukan. Apalagi dengan gencarnya misi antariksa antarplanet sejak dasawarsa 1960-an. Sementara Penfield yang hanya anak bawang. Sehingga meski Penfield datang membawa gagasan Stuktur Chicxulub dan segerobak sampel, ia hanyalah sosok amatir yang dianggap tidak memahami persoalan dan apa yang diungkapkannya sendiri, apalagi mengaitkannya dengan pemusnahan massal. So, genta perang amatir vs profesional kembali ditabuh. Sampel kiriman Penfield dicueki di Houston dan ilmuwan-ilmuwan NASA menganggap teka-teki Yucatan sudah usai dengan penjelasan tentang gunung api purba (Central Yucatan Igneous Zone).

Perang serupa juga dialami Byars. Setiap tahun, sebagai jurnalis, ia menghadiri pertemuan demi pertemuan di bawah Lunar and Planetary Science Conference (LPSC) di Houston. Dalam setiap sesi ia selalu berupaya meyakinkan ilmuwan yang dijumpainya mengenai Struktur Chicxulub, namun selalu ditolak. Byars dianggap sebagai jurnalis ilmiah yang baik, namun pembahasan kawah tumbukan dianggap bukan kompetensinya. Dalam salah satu pertemuan bahkan tulisan tentang Struktur Chicxulub yang disiapkannya langsung diserahkan seorang ilmuwan kepada mahasiswa S-1 binaannya. Belakangan sang mahasiswa malah menghilangkan tulisan tersebut. Situasi tak berubah memasuki tahun 1988 TU kala Snowbird Conference kedua diselenggarakan, juga mengambil tempat di Utah. Kelak Penfield menyebut periode sulit sepanjang Maret 1979 hingga Februari 1990 TU sebagai tahun-tahun yang penuh kebisuan.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Pada bulan Maret 1990 TU, kegigihan Byars menemukan hasilnya, Ia bersua Alan Hildebrand, pemuda tanggung lulusan University of Arizona yang sedang bersemangat mencari kawah tumbukan penyebab pemusnahan massal 65 juta tahun silam tanpa sponsor siapapun. Hildebrand sudah mendengar dari Jan Smit bahwa lapisan lempung hitam di Karibia lebih tebal dibanding tempat lain dimanapun, sehingga kawah tumbukan yang dicari tentu berada di dekat Kini. Hildebrand sebelumnya meneliti lapisan serupa di Beloc (Haiti) yang tebalnya mencapai 1 meter. Dari koleganya William Boynton, Hildebrand juga tahu lempung hitam tebal juga dijumpai di Texas, namun tidak setebal di Beloc. Esktrapolasi ketebalan lempung Texas, Beloc dan Karibia membuat Hildebrand dan Boynton berpendapat kawah raksasa itu mungkin saja ada di Colombia. Mereka segera menulis makalah ilmiah tentangnya yang akan dikirim ke jurnal Science. Menjelang pengiriman, Byars mempertemukannya dengan Penfield dan segera keduanya terlibat diskusi intensif akan Struktur Chicxulub. Hildebrand terpukau dengan teori Penfield dan mencantumkannya dalam tulisannya di Science.

Saat mengikuti wawancara kerja di Geological Survey of Canada, Hildebrand menyadari institusi ini menyimpan peta-peta gravitasi seluruh benua Amerika, termasuk Colombia dan Semenanjung Yucatan. Hildebrand agak kecewa ketika menemukan Colombia ternyata tidak memiliki anomali gravitasi yang diharapkannya. Sebaliknya justru di Semenanjung Yucatan-lah anomali gravitasi tersebut berada. Segera benaknya berbinar dengan satu nama : Penfield. Tanpa membuang waktu, Hildebrand terbang kembali ke Amerika Serikat untuk berdiskusi panjang lebar dengan Boynton, Penfield dan Camargo dengan disaksikan Byars. Akhirnya disusunlah makalah tentang Struktur Chicxulub. Pada April 1990 TU ia dikirim ke Nature, hanya untuk menerima penolakan langsung dari juri. Hildebrand menyadari salah satu alasan penolakan adalah tiadanya bukti langsung tentang Struktur Chicxulub sebagai kawah tumbukan.

Hildebrand segera bertanya-tanya pada semua orang yang dianggapnya tahu tentang nasib batuan hasil pengeboran PEMEX di dasawarsa 1970-an. Akhirnya didapat informasi akurat bahwa sebagian sampel batuan itu dikirim PEMEX ke Al Weidie di University New Orleans. Rupanya sampel-sampel itu dijadikan bahan untuk mempelajari sistem air bawah tanah di Semenanjung Yucatan. Begitu dikabarkan ke Penfield, segera ia terbang ke New Orleans dan berhasil memperoleh 600 kotak sampel yang dimaksud. Tanpa membuang waktu ia mengirimkan beberapa kotak ke Hildebrand. Hildebrand segera mengirimnya lagi ke Arizona dimana David Kring, mantan supervisor sumur Yaxcopoil yang kemudian bekerja di University of Arizona, telah menunggu bersama partnernya Jacobsen dan Pilkington. Segera terkuak bahwa sampel itu memang mengandung butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi. Inilah bukti yang dicari-cari itu. Struktur Chicxulub memang dibentuk oleh tumbukan komet/asteroid raksasa.

Kini teori Struktur Chicxulub telah menemukan bukti penyokong terkuatnya. Namun masih ada satu halangan menghadang: perang amatir vs profesional. Hildebrand segera menulis makalah ilmiah tentang bukti Struktur Chicxulub sebagai kawah tumbukan dengan menyertakan Penfield, Camargo, Boynton, Kring, Jacobsen dan Pilkington sebagai penulis tambahan. Makalah segera dikirimkan ke Nature, namun kembali juri menolaknya kali ini tanpa alasan yang jelas. Tapi alasannya diduga sangat personal, terkait status Hildebrand dkk yang dianggap amatiran. Tak menyerah dengan penolakan Nature, Hildebrand mengirimkan makalahnya ke jurnal lain, Geology, yang akhirnya memuatnya di edisi September 1991 TU. Dengan cepat publikasi ini memukau dunia. Ibarat bak air yang lepas sumbatnya, publikasi ini segera memantik perhatian besar akan Struktur Chicxulub.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Satu demi satu dukungan pun berdatangan. Carl C. Swisher dari Berkeley datang menyodorkan hasil pertanggalan radioaktif berbasis Kalium-Argon dengan kesimpulan umur struktur itu memang 65 juta tahun. Di tahun yang sama, 1991, Kevin Pope bersama Adriana Ocampo dan Charles Duller menuturkan pola sebaran cenote di Semenanjung Yucatan ternyata sangat dipengaruhi Stuktur Chicxulub. Konsentrasi terbesar cenote terletak di atas tepi kawah (cincin kawah) dan sebagian lagi di luar tepi kawah dimana produk tumbukan sebagian besar diendapkan. Hanya sebagian kecil saja yang dijumpai di dalam kawah, yakni di dalam area yang disebut puncak pusat (central peak). Jika Struktur Chicxulub tidak ada, cenote-cenote tersebut pun tak terbentuk. Implikasinya bakal membuat umat manusia mulai dari masa peradaban Maya di masa silam hingga sekarang sulit berkembang.

Referensi :

Penfield. 2009. Finding Chicxulub.

Verschuur. 1996. Impact! The Threat of Comets and Asteroids. Oxford University Press, New York, USA.

French. 1998. Traces of Catastrophe, A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar Planetary Institute, Arizona, USA.

Schulte dkk. 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 327, 5 March 2010, pp 1214-1218 + Supporting Materials .

Brien. 2006. Raton Basin Field Trip, Southern Colorado / Northern New Mexico, September 28 – October 1, 2006. Lunar Planetary Institute, Arizona, USA.

Wilson. 2010. The Best Cretaceous-Paleogene Boundary Yet. Wooster Geologist Blog.

Hildebrand dkk. 1990. Chicxulub Crater Size and Structure as Revealed by Horizontal Bouguer Gravity Gradients and Cenote Distribution. Lunar & Planetary Science XXVI, 603-604.

Mitigasi Tsunami Kabupaten Kebumen, Mengelola Ancaman dari balik Pegunungan yang Tenggelam

Bagian kedua dari dua tulisan

Kabupaten Kebumen adalah sebuah wilayah administratif yang terletak di propinsi Jawa Tengah bagian selatan. Uratnadi utama pulau Jawa bagian selatan, baik jalur jalan raya nasional maupun jalan kereta api, melintas di dalam kabupaten yang berbatasan dengan Kabupaten Banyumas dan Cilacap di sisi barat serta Kabupaten Purworejo di sebelah timur ini. Di selatannya membentang luas perairan Samudera Indonesia (Hindia). Dalam perspektif ilmu kebumian Kabupaten Kebumen merupakan ‘surga’. Sebab pada sebuah zona sempit di dalam kawasan Pegunungan Serayu Selatan yang membentang di sisi utara kabupaten inilah, yang melingkupi wilayah kecamatan Karanggayam, Karangsambung dan Sadang, tersingkap bebatuan yang demikian penting artinya dalam ilmu kebumian. Berbagai batuan sedimen (endapan) dengan lapisan-lapisan yang kadang nyaris vertikal berjejeran dengan batuan malihan (metamorf) dan bongkahan-bongkahan batuan beku yang terlampar dalam wilayah tak terlalu luas. Normalnya pemandangan seperti ini hampir mustahil dijumpai.

Keunikan itu telah memukau cendekiawan sekelas Junghunn sejak satu setengah abad silam. Namun barulah mulai setengah abad lalu penyebabnya ditemukan, lewat kerja keras seorang Sukendar Asikin. Bebatuan campur aduk di Kebumen utara ternyata adalah bukti langsung dari teori tektonik lempeng. Inilah teori ‘aneh’ yang dikembangkan dari gagasan seorang Alfred Wegener sejak menjelang Perang Dunia pertama, namun baru menjumpai bukti-bukti penyokongnya berpuluh tahun kemudian. Bebatuan campur aduk itu seharusnya hanya bisa dijumpai di palung laut, salah satu ekspresi permukaan dari subduksi lempeng oseanik yang berberat jenis lebih tinggi dengan lempeng kontinental yang berat jenisnya lebih rendah. Maka jelas, Kebumen utara dulu-dulunya pernah merupakan palung laut purba.

Palung laut purba di Kebumen utara terbentuk setidaknya semenjak 120 juta tahun silam seiring subduksi lempeng Australia yang bergerak ke utara dengan lempeng Eurasia yang stabil. Subduksi purba ini aktif setidaknya hingga 65 juta tahun yang lalu. Sebelum kemudian bergeser tigaratusan kilometer lebih ke selatan, ke lokasi yang sekarang. Semenjak itu lambat laun kawasan ini mulai terangkat. Dari yang semula berada di dasar palung kemudian menjadi bagian dasar samudera nan dalam. Lantas terus terangkat menjadi bagian laut dangkal. Dan akhirnya tersembullah seluruhnya ke atas permukaan samudera bersamaan dengan terdongkraknya pulau Jawa hingga seperti sekarang. Aktivitas inilah yang membentuk bentanglahan Kebumen masakini dengan segala eksotikanya. Inilah yang menjadikan Kebumen sebagai laboratorium alam dan pusat pendidikan calon-calon ahli kebumian se-Indonesia bahkan se-Asia tenggara.

Palung laut lokasi subduksi modern yang aktif pada saat ini merentang sepanjang lepas pantai selatan Pulau Jawa sebagai kelanjutan dari palung laut sejenis di lepas pantai barat Pulau Sumatra. Dari pesisir selatan Kebumen, bentangan palung laut itu berjarak sekitar 250 kilometer. Nyaris tak ada penghalang alamiah apapun antara palung laut dengan daratan Kebumen, baik berupa jajaran pegunungan maupun perbukitan. Faktor inilah yang membuat Kabupaten Kebumen rentan terhadap bencana tsunami. Termasuk ancaman tsunami dahsyat produk gempa akbar (megathrust) yang bisa dibangkitkan zona subduksi Jawa. Dalam catatan BNPB (Badan Nasional Penanggulangan Bencana), Kabupaten Kebumen merupakan wilayah administratif terentan kedua terhadap bencana tsunami di antara 19 kabupaten/kota di seantero pesisir selatan pulau Jawa setelah kota Cilacap. Terdapat 220.800 jiwa penduduk Kebumen khususnya di 8 kecamatan yang beresiko terpapar tsunami. Dari barat ke timur, kedelapan kecamatan tersebut masing-masing adalah kecamatan Ayah, Buayan, Puring, Petanahan, Klirong, Buluspesantren, Ambal dan Mirit. Inilah yang membuat pengenalan akan peta bahaya tsunami dan peta evakuasi tsunami Kabupaten Kebumen serta langkah-langkah evakuasinya menjadi penting.

Pegunungan yang Tenggelam

Mengapa Kabupaten Kebumen demikian beresiko terhadap bencana tsunami?

Saat membuka peta pulau Jawa layangkan jemari anda di sepanjang pesisir selatan. Akan lebih baik jika peta tersebut adalah peta geografis atau peta rupabumi. Akan kita jumpai jajaran pegunungan yang membentang di mayoritas pesisir selatan pulau Jawa mulai dari Pelabuhan Ratu di sebelah barat hingga Semenanjung Blambangan di sebelah timur. Inilah jajaran Pegunungan Selatan, atau yang di Jawa bagian tengah dikenal pula sebagai Pegunungan Sewu. Kaki selatan pegunungan ini langsung menjadi garis pantai selatan pulau Jawa. Namun tidak dengan bentangan antara pantai Pangandaran di sebelah barat hingga pantai Parangtritis di sebelah timur. Di sini Pegunungan Selatan menghilang. Kecuali di Tanjung Karangbolong dan Pegunungan Menoreh (Kulonprogo) segenap bentangan ini merupakan dataran rendah luas yang cukup lebar. Dataran rendah semacam ini sangat jarang dijumpai di pulau Jawa bagian selatan. Inilah dataran rendah tempat berdirinya Kabupaten Kebumen, Cilacap, Purworejo, Kulonprogo, Bantul dan Kota Cilacap. Kenapa bisa demikian?

Gambar 1. Rona keseluruhan pulau Jawa seperti terlihat dalam citra satelit pada kanal cahaya tampak yang disajikan laman GoogleMaps. Garis putus-putus menunjukkan bila pesisir utara maupun selatan Jawa Barat (kecuali area Banten) diproyeksikan hingga Jawa Timur (kecuali area tapal kuda). Terlihat jelas betapa pesisir utara Jawa Tengah menjorok ke selatan dari garis proyeksi. Sebaliknya pesisir selatan Jawa Tengah menjorok ke utara dan Pegunungan Selatan menghilang, berganti dataran rendah Cilacap-Kebumen-Purworejo-Kulonprogo. Sumber: Sudibyo, 2015 dengan basis GoogleMaps.

Gambar 1. Rona keseluruhan pulau Jawa seperti terlihat dalam citra satelit pada kanal cahaya tampak yang disajikan laman GoogleMaps. Garis putus-putus menunjukkan bila pesisir utara maupun selatan Jawa Barat (kecuali area Banten) diproyeksikan hingga Jawa Timur (kecuali area tapal kuda). Terlihat jelas betapa pesisir utara Jawa Tengah menjorok ke selatan dari garis proyeksi. Sebaliknya pesisir selatan Jawa Tengah menjorok ke utara dan Pegunungan Selatan menghilang, berganti dataran rendah Cilacap-Kebumen-Purworejo-Kulonprogo. Sumber: Sudibyo, 2015 dengan basis GoogleMaps.

Di lain kesempatan, layangkan jemari anda menyusuri pesisir selatan pulau Jawa di tempat yang sama. Akan kita jumpai garis pantai yang membentang di antara pantai Pangandaran hingga pantai Parangtritis cukup ‘aneh.’ Sebab mereka melekuk/menjorok lebih ke utara ketimbang garis pantai selatan pulau Jawa sebelah-menyebelahnya. Lalu layangkan lagi jemari anda, kali ini susuri pesisir utara pulau Jawa mulai dari Jakarta hingga Surabaya. Lagi-lagi akan kita jumpai keanehan serupa di antara pantai Cirebon hingga pantai Semarang. Berkebalikan terhadap garis pantai di pesisir selatan kawasan yang sama, garis pantai pesisir utara di sini menjorok jauh ke selatan. Bila semenanjung Muria kita pisahkan dari konteks pembahasan pesisir utara pulau Jawa mengingat kedudukannya sebagai pulau vulkanis tersendiri yang awalnya terpisah dari daratan utama Jawa, maka keanehan itu akan kita jumpai mulai dari pantai Cirebon hingga pantai (purba) Rembang. Dengan mengecualikan kawasan Banten dan tapal kuda Jawa Timur, sepasang keanehan itu membuat bagian tengah pulau Jawa lebih ramping ketimbang tetangga sebelah barat maupun timurnya. Ada apa ini?

Sekarang mari bayangkan kita menyelami Samudera Indonesia di sebelah selatan Jawa Tengah. Bayangkan penyelaman dilakukan hingga ke dasar laut, hingga sejauh 50 km dari garis pantai. Akan kita dapati dasar laut di kawasan ini lebih dalam jika dibandingkan lepas pantai selatan Jawa Barat maupun Jawa Timur untuk jarak yang sama. Namun tidak seluruhnya dalam. Ada bagian yang lebih dangkal yang berbentuk segitiga dengan puncak segitiga tepat ujung Tanjung Karangbolong. Tepat di sisi barat segitiga ini merupakan dasar laut lebih dalam yang dinamakan Dalaman Barat (western deep), yang meliputi lepas pantai Cilacap hingga Pangandaran. Sebaliknya tepat di sisi timur segitiga itu terdapat Dalaman Timur (eastern deep), yang mencakup lepas pantai Kebumen hingga Bantul. Mengapa bisa seperti ini?

Keunikan ini telah menggayuti benak para ahli kebumian sejak lebih dari setengah abad silam, tepatnya sejak era van Bemmelen di tahun 1949 Tarikh Umum (TU). Namun baru di awal abad ke-21 TU ini jawabannya terkuak lewat kerja keras Awang Harun Satyana. Keunikan tersebut ternyata ditatah oleh aktivitas tektonik masa silam. Yakni lewat aktifnya sistem patahan besar Kebumen-Muria-Meratus dan sistem patahan besar Cilacap-Pamanukan-Lematang. Patahan besar Kebumen-Muria-Meratus membentang sepanjang lebih dari 1.000 kilometer. Ia bermula dari Tanjung Karangbolong masakini dan menerus ke arah timur laut melewati Semenanjung Muria dan dasar Laut Jawa hingga akhirnya berujung di Pegunungan Meratus (Kalimantan Selatan). Patahan besar ini bersifat geser kiri (left lateral). Artinya bila kita berdiri tepat di satu sisinya, maka sisi yang berseberangan dengan kita akan terlihat bergerak ke kiri. Seperti halnya semua patahan maupun patahan besar modern, gerakan ini senilai beberapa milimeter saja setahunnya. Namun dalam jangka waktu geologi, yakni jutaan tahun, nilai pergerakan itu akan menghasilkan pergeseran hingga puluhan atau bahkan ratusan kilometer.

Sementara sistem patahan besar Cilacap-Pamanukan-Lematang pun membentang hingga lebih dari 1.000 kilometer. Dimulai pulau Nusakambangan masa kini dan merentang ke arah barat laut melewati Pamanukan (Jawa Barat), dasar Laut Jawa, sisi utara Kepulauan Seribu dan berujung di Lematang (Sumatra Selatan). Berbeda dengan patahan besar Kebumen-Muria-Meratus, sistem patahan besar Cilacap-Pamanukan-Lematang ini bersifat geser kanan (right lateral). Beberapa bagian dari sistem patahan besar ini mungkin masih aktif di masakini, misalnya sesar Kroya (Cilacap) maupun sesar Baribis (Subang). Hal tersebut berbeda dengan sistem patahan besar Kebumen-Muria-Meratus, yang aktif mulai sekitar 65 juta tahun silam sehingga kini sudah sangat tua dan sepenuhnya mati.

Gambar 2. Diagram skematik sederhana yang memperlihatkan keberadaan sistem patahan besar Kebumen-Muria-Meratus dan Cilacap-Pamanukan-Lematang. Berpuluh juta tahun silam saat keduanya itu masih aktif sepenuhnya dengan arah gerak ditunjukkan oleh tanda panah kuning, gabungan aktivitas keduanya membuat sebagian pesisir selatan Jawa Tengah terangkat hingga 2.000 meter lalu terkunci (panah hitam). Sebagian zona pengangkatan kini tersisa sebagai karst Tanjung Karangbolong. Sementara sisi timur dan baratnya terbenam ke dasar laut. Sebaliknya pesisir utara Jawa Tengah juga turut terbenam, sebagai kompensasi isostatik. Sumber: Sudibyo, 2015 diadaptasi dari Satyana & Purwaningsih, 2002.

Gambar 2. Diagram skematik sederhana yang memperlihatkan keberadaan sistem patahan besar Kebumen-Muria-Meratus dan Cilacap-Pamanukan-Lematang. Berpuluh juta tahun silam saat keduanya itu masih aktif sepenuhnya dengan arah gerak ditunjukkan oleh tanda panah kuning, gabungan aktivitas keduanya membuat sebagian pesisir selatan Jawa Tengah terangkat hingga 2.000 meter lalu terkunci (panah hitam). Sebagian zona pengangkatan kini tersisa sebagai karst Tanjung Karangbolong. Sementara sisi timur dan baratnya terbenam ke dasar laut. Sebaliknya pesisir utara Jawa Tengah juga turut terbenam, sebagai kompensasi isostatik. Sumber: Sudibyo, 2015 diadaptasi dari Satyana & Purwaningsih, 2002.

Mari bayangkan kita kembali ke masa berjuta tahun silam, tatkala kedua sistem patahan besar yang berbeda itu masih aktif sepenuhnya. Kedua sistem patahan besar itu seakan membentuk sisi-sisi segitiga raksasa. Segitiga tersebut meliputi mayoritas daratan Jawa Tengah dan sisi timur daratan Jawa Barat. Seluruh segitiga ini didorong oleh kedua sistem patahan besar itu ke arah selatan. Akibatnya puncak segitiga raksasa itu, yang terletak di Tanjung Karangbolong masakini, pun didesak perlahan hingga membumbung naik sampai terkunci. Terjadilah pengangkatan hingga setinggi 2.000 meter dari posisinya semula. Sebagai konsekuensinya maka alas segitiga, yakni bentangan pesisir utara Jawa Tengah, terkena kompensasi isostatik yang membuatnya secara perlahan-lahan terbenam hingga di bawah paras Laut Jawa. Inilah yang menyebabkan garis pantai utara Jawa Tengah menjorok ke selatan.

Erosi selama berjuta tahun lantas memahat dan mengikis kawasan puncak segitiga raksasa ini. Namun saat ini pun kita masih bisa melihat sisa-sisanya sebagai karst Tanjung Karangbolong dengan puncak tertingginya 600 meter dpl (dari paras air laut). Dorongan yang sama juga yang membuat bebatuan campur aduk jejak palung purba terangkat dan tersingkap di Karangsambung-Karanggayam-Sadang. Lebih ke selatan lagi, aktivitas kedua sistem patahan besar itu membuat Pegunungan Selatan di bentangan Pangandaran-Parangtritis pun merosot jauh secara perlahan-lahan hingga akhirnya tenggelam di bawah paras air laut.

Aktivitas tektonik dan erosi terus membentuk rona rupabumi Kebumen. Erosi mengikis gunung dan pegunungan untuk kemudian menghanyutkan tanahnya ke sejumlah sungai. Saat sungai-sungai tersebut menuangkan airnya ke Samudera Indonesia, tanah pun turut terhanyut untuk kemudian mengendap sebagai massa tanah bergeometri menyerupai kipas. Sehingga dinamakan kipas endapan/kipas aluvial. Di ujung utara Tanjung Karangbolong terdapat kipas aluvial Gombong (KAG), hasil pengendapan sungai Jatinegara, Gombong, Kemit dan Kejawang (Karanganyar). Kota Gombong berdiri di atas kipas aluvial ini dengan elevasi 19 meter dpl. Di sebelah timurnya terdapat kipas aluvial Kebumen (KAK) yang membentang luas mulai dari Karanganyar, Buluspesantren utara hingga Kutowinangun. Kipas aluvial ini dibentuk sungai Luk Ulo. Ia tersusun dari batuan sedimen lempung berpasir (lempung pasiran) yang sangat baik untuk bahan baku batubata dan genteng. Maka tak mengherankan industri batubata dan genteng tumbuh dengan baik di sini. Kipas aluvial Kebumen juga menjadi landasan bagi berdirinya kota Kebumen, yang menempati elevasi 21 meter dpl. Dan di sebelah timurnya terdapat kipas aluvial Prembun (KAP), yang membentang hingga ke perbatasan Kebumen-Purworejo. Sungai membentuk kipas aluvial ini diantaranya adalah sungai Bedegolan dan Wawar.

Gambar 3. Rona dataran rendah Kabupaten Kebumen dalam citra satelit pada kanal cahaya tampak yang disajikan GoogleEarth. Terlihat lokasi delta purba yang kini merupakan kipas aluvial Gombong, kipas aluvial Kebumen dan kipas aluvial Prembun. Di sebelah selatan kipas-kipas aluvial ini terlihat kawasan pantai tua dan pantau muda. Kawasan rawan bencana tsunami di Kabupaten Kebumen mencakup kawasan pantai muda dan (sebagian) pantai tua ini. Sumber: Sudibyo, 2015 diadaptasi dari Ansori dkk, 2010.

Gambar 3. Rona dataran rendah Kabupaten Kebumen dalam citra satelit pada kanal cahaya tampak yang disajikan GoogleEarth. Terlihat lokasi delta purba yang kini merupakan kipas aluvial Gombong, kipas aluvial Kebumen dan kipas aluvial Prembun. Di sebelah selatan kipas-kipas aluvial ini terlihat kawasan pantai tua dan pantau muda. Kawasan rawan bencana tsunami di Kabupaten Kebumen mencakup kawasan pantai muda dan (sebagian) pantai tua ini. Sumber: Sudibyo, 2015 diadaptasi dari Ansori dkk, 2010.

Pada waktu yang sama aktivitas tektonik secara perlahan-lahan mengangkat sisi selatan pulau Jawa hingga menyembul ke atas paras air laut. Pertumbuhan kipas-kipas aluvial itu pun terhenti. Muara sungai-sungai pun bergeser lebih jauh ke selatan. Rawa-rawa sempat terbentuk di sana-sini. Namun lama kelamaan semuanya mengering dan tertimbun tanah yang terus dipasok sungai-sungai. Terbentuklah dataran rendah. Hembusan angin laut secara terus-menerus membentuk sejumlah pematang pantai, yakni bukit-bukit pasir yang merentang cukup panjang sejajar pantai. Di sela-sela pematang pantai terdapat lembah-lembah kecil. Dari garis pantai hingga 4 kilometer ke daratan merupakan kawasan pantai muda. Di sini terdapat 3 hingga 4 pematang pantai yang tingginya bervariasi antara 1 hingga 3 meter dari lembah disampingnya. Lembah-lembah tersebut umumnya menjadi kebun/sawah atau pemukiman. Namun ada pula yang dialiri sungai-sungai kecil. Seperti sungai Kejawan dan Rama di Puring yang mengalir ke kanal/sungai Telomoyo di barat. Juga sungai Aren dan Kating di Klirong yang mengalir ke timur menuju sungai Luk Ulo. Serta sungai Pucang dan Gede di Ambal dan Mirit, yang juga mengalir ke timur hingga bermuara ke sungai Wawar. Sementara antara 4 hingga 7 kilometer dari garis pantai ke daratan merupakan kawasan pantai tua. Terdapat sejumlah pematang pantai pula di sini, namun lebih landai. Di banyak tempat bahkan pematang-pematang pantainya sudah diratakan/didatarkan untuk pemukiman.

Pantai berdataran rendah inilah wajah dominan pesisir selatan Kabupaten Kebumen. Dari 58 kilometer garis pantai di kabupaten ini, 45 kilometer diantaranya merupakan pantai berdataran rendah. Inilah garis pantai yang menjadikan Kabupaten Kebumen demikian rentan akan tsunami.

Peta Bahaya dan Evakuasi

Pasca bencana tsunami 2006 yang menewaskan puluhan penduduk Kabupaten Kebumen serta menimbulkan kerugian material cukup besar, kebutuhan akan mitigasi bencana tsunami mulai mengemuka. Termasuk kebutuhan akan peta bahaya tsunami, yang hingga 2006 TU itu belum dimiliki Kabupaten Kebumen. Sebagai tindak lanjut kerjasama pemerintah Jerman (melalui Departemen Pendidikan dan Penelitian) dan Indonesia (melalui Kantor Menteri Negara Riset dan Teknologi) dalam payung GITEWS (German-Indonesia Tsunami Early Warning System), maka dibentuklah Kelompok Kerja Kebumen untuk Pemetaan Bahaya Tsunami. Kelompok kerja tersebut bertugas pada 2009 hingga 2010 TU dengan tujuan untuk menghasilkan dua peta. Peta pertama adalah peta bahaya tsunami (PBT) multiskenario bagi Kabupaten Kebumen hingga skala 1:25.000. Sementara peta kedua adalah peta evakuasi tsunami (PET) bagi Kabupaten Kebumen.

Kedua peta tersebut disusun sebagai bagian dari kerangka sistem peringatan dini tsunami Indonesia atau InaTEWS (Indonesia tsunami early warning system) di bawah BMKG (Badan Meteorologi Klimatologi dan Geofisika). Sistem peringatan dini ini mengenal tiga status. Status pertama adalah “Waspada” yang hanya berlaku untuk garis pantai dan tepi sungai. Status kedua adalah “Siaga” yang berlaku untuk kawasan zona merah. Dan status ketiga adalah “Awas” yang berlaku untuk kawasan zona kuning. Baik dalam peta bahaya tsunami maupun peta evakuasi tsunami Kabupaten Kebumen terdapat dua zona, yang dibentuk mengikuti tingkat peringatan BMKG. Zona pertama adalah zona merah, yang berlaku untuk status “Siaga.” Sementara zona kedua adalah zona kuning, berlaku bila BMKG mengeluarkan status “Awas.” Kedua peta tersebut disusun dengan memperhitungkan sejumlah aspek (geomorfologi, elevasi dan jarak dari pantai) tanpa mempertimbangkan hasil pemodelan genangan akibat invasi tsunami ke daratan.

Gambar 4. Tingkatan status tsunami beserta kode warnanya seperti disajikan sistem peringatan dini tsunami Indonesia (InaTEWS) yang berada di bawah Badan Meteorologi Klimatologi dan Geofisika. Sumber: BMKG, 2015.

Gambar 4. Tingkatan status tsunami beserta kode warnanya seperti disajikan sistem peringatan dini tsunami Indonesia (InaTEWS) yang berada di bawah Badan Meteorologi Klimatologi dan Geofisika. Sumber: BMKG, 2015.

Peta bahaya dan evakuasi tsunami Kabupaten Kebumen merupakan peta multiskenario. Gempa akbar (megathrust) menjadi salah satunya lewat tiga skenario gempa besar/akbar. Masing-masing adalah gempa hipotetik berkekuatan 7,5 skala magnitudo (SM), 8 SM dan 8,5 SM. Skenario lainnya yang dimasukkan adalah potensi tsunami dari longsoran besar bawah laut, baik yang menyertai kejadian gempa besar (seperti kasus Gempa Pangandaran 2006) maupun yang tidak. Faktor lainnya yang dipertimbangkan adalah invasinya ke daratan hingga menghasilkan genangan (inundation). Melambatnya kecepatan sisi muka tsunami, sementara sisi belakangnya masih melaju lebih cepat, membuat tinggi gelombang saat tiba di garis pantai mengalami run-up hingga belasan atau bahkan puluhan kali lipat lebih tinggi dibanding semula. Tsunami yang sudah meninggi inilah yang bakal menginvasi daratan yang tepat berhadapan dengan garis pantai.

Seberapa jauh invasi ke daratan terjadi sangat dipengaruhi oleh tinggi gelombang di garis pantai, bentuk pantai, topografi daratan di belakang pantai dan rapat tidaknya vegetasi (tumbuhan) di pantai. Makin tinggi tsunami saat tiba di garis pantai, maka makin jauh invasinya ke daratan. Pantai yang berlekuk-lekuk (berteluk) akan mengalami invasi tsunami lebih besar dibanding pantai datar, karena tsunami menjadi terakumulasi (terkumpul) dalam lekuk-lekuk tersebut. Demikian halnya pantai bermuara sungai akan mengalami invasi tsunami lebih besar, apalagi sungai menjadi jalan bebas hambatan bagi tsunami untuk merangsek ke darat. Dan dua pantai dengan bentuk sama persis akan bernasib berbeda kala tsunami melanda jika terdapat perbedaan dalam kerapatan tumbuhan di pantai. Semakin rapat tumbuhannya, maka peranannya mereduksi energi tsunami kian besar sehingga invasinya kian berkurang.

Zonasi

Peta bahaya tsunami dan peta evakuasi Kabupaten Kebumen telah memasukkan faktor-faktor tersebut. Saat diterapkan ke segenap garis pantai Kabupaten Kebumen, dijumpai tiga kawasan. Kawasan pertama adalah Tanjung Karangbolong. Di sini zona merah dan zona kuning hanya mencakup area sempit selebar garis pantai. Bila terjadi tsunami dengan status “Siaga” maupun “Awas”, maka siapa saja yang sedang berada di pantai-pantai Pedalen, Menganti, Karangbata, Pecaron (Srati) dan Pasir bisa langsung mengevakuasi diri ke bukit-bukit yang ada di belakang setiap pantai tersebut. Jarak yang harus ditempuh pun tak jauh.

Gambar 5. Pantai Petanahan (Karanggadung), contoh pantai datar di Kabupaten Kebumen. Di sebelah kiri nampak bukit-bukit pasir yang membentuk pematang pantai, sementara di sebelah kanan terlihat perairan Samudera Indonesia. Tanda panah menunjukkan invasi maksimum/genangan terjauh akibat bencana tsunami 2006, yang mencapai 60 meter dari garis pantai. Sumber: Sudibyo, 2006.

Gambar 5. Pantai Petanahan (Karanggadung), contoh pantai datar di Kabupaten Kebumen. Di sebelah kiri nampak bukit-bukit pasir yang membentuk pematang pantai, sementara di sebelah kanan terlihat perairan Samudera Indonesia. Tanda panah menunjukkan invasi maksimum/genangan terjauh akibat bencana tsunami 2006, yang mencapai 60 meter dari garis pantai. Sumber: Sudibyo, 2006.

Sementara kawasan kedua adalah kawasan pantai datar yang ada di dua tempat. Tempat pertama ada di antara muara sungai Telomoyo dan Luk Ulo. Di sini zona merah mencakup area selebar hingga 300 meter dari garis pantai. Sementara zona kuning mencakup area hingga selebar 1.000 meter dari garis pantai. Maka baik zona merah ataupun zona kuning berada di kawasan pantai muda. Zona merah dan kuning di sini meliputi kecamatan Puring, Petanahan dan Klirong. Desa-desa yang tercakup adalah Surorejan, Puring, Sidoharjo, Karangrejo, Karanggadung dan Tegalretno. Obyek wisata yang tercakup meliputi pantai Petanahan (Karanggadung). Tidak ada bukit di kawasan ini. Sehingga kala BMKG menyatakan terjadi tsunami dengan status “Siaga”, evakuasi hanya bisa dilakukan ke arah utara hingga sejauh minimal 200 meter. Sementara saat statusnya “Awas”, evakuasi pun ke arah utara namun hingga sejauh minimal 1.000 meter.

Sementara pantai datar yang kedua ada di antara muara sungai Luk Ulo dan Wawar. Berbeda dengan pantai datar di antara muara sungai Telomoyo dan Luk Ulo, di sini situasinya lebih kompleks seiring adanya sungai Pucang dan Gede yang cukup panjang dan mengalir ke timur hingga bermuara di sungai Wawar. Zona merah memang tetap mencakup area selebar hingga 300 meter dari garis pantai. Namun zona kuning-nya jauh lebih lebar, yakni mencakup area hingga selebar 4.000 meter dari garis pantai. Meski demikian harus dicatat bahwa zona kuning selebar 4.000 meter ini hanya berlaku dalam skenario terburuk, yakni bila terjadi gempa akbar yang setara gempa-akbar Sumatra-Andaman 26 Desember 2004 (berkekuatan 9,3 SM). Di luar skenario terburuk, zona kuning tetap selebar 1.000 meter dari garis pantai.

Zona merah maupun zona kuning (baik dalam skenario terburuk maupun bukan) merupakan kawasan pantai muda yang meliputi kecamatan Buluspesantren, Ambal dan Mirit. Desa-desa yang tercakup diantaranya Setrojenar, Brecong, Entak, Ambalresmi, Petangkuran, Miritpetikusan dan Tlogodepok. Obyek wisata yang tercakup meliputi pantai Bocor (Setrojenar). Di kawasan ini pun tidak ada bukit. Sehingga bila BMKG menyatakan terjadi tsunami dengan status “Siaga”, evakuasi hanya bisa dilakukan ke arah utara hingga sejauh minimal 200 meter. Sementara saat statusnya “Awas”, evakuasi pun ke arah utara namun hingga sejauh minimal 1.000 meter.

Dan kawasan yang ketiga atau yang terakhir adalah pantai bermuara sungai. Terdapat empat lokasi demikian, masing-masing adalah muara sungai Bodo, Telomoyo, Luk Ulo dan Wawar. Muara sungai Bodo terletak di kecamatan Ayah sekaligus menjadi tapalbatas antara Kabupaten Kebumen dan Cilacap. Di sini terdapat pantai Logending atau pantai Ayah yang demikian populer. Zona merah di sini merentang hingga sejauh 1.700 meter dari muara, atau hingga 2.600 meter dari muara untuk di tepi sungai. Sementara zona kuning merentang hingga sejauh 6.000 meter dari muara. Desa-desa yang tercakup adalah Ayah dan Candirenggo. Prinsip utama evakuasi di kawasan muara sungai adalah sebisa mungkin menghindar dari tepi sungai hingga sejarak minimal 500 meter dan tidak boleh melewati jembatan yang melintas di sungai tersebut. Karena muara sungai Bodo terletak tepat di sisi barat Tanjung Karangbolong, maka bila BMKG menyatakan terjadi tsunami baik dengan status “Siaga” maupun “Awas”, maka penduduk atau pengunjung harus mengevakuasi diri ke arah timur menuju bukit-bukit gamping Tanjung Karangbolong. Karena cukup dekat, maka jarak evakuasinya relatif pendek.

Situasi yang mirip juga dijumpai di lokasi kedua, yakni muara sungai Telomoyo. Sisi barat muara sungai ini merupakan bagian dari kecamatan Buayan sekaligus sisi timur Tanjung Karangbolong. Zona merah di sini merentang hingga 900 meter dari muara. Sementara zona kuning menjulur hingga 5.000 meter dari muara. Desa-desa yang tercakup adalah Karangbolong, Jladri dan Adiwarno. Saat terjadi tsunami baik dalam status “Siaga” atau “Awas”, maka evakuasi ke bukit-bukit Tanjung Karangbolong adalah pilihan terbaik dengan jarak evakuasi yang relatif pendek.

Namun tidak demikian dengan sisi timurnya. Bentang lahan di sini tergolong dataran rendah, sementara guna menuju bukit-bukit di Tanjung Karangbolong mau tak mau harus melewati jembatan (yang terlarang dalam evakuasi tsunami). Zona merah dan kuning di sini masing-masing merentang 900 dan 5.000 meter dari muara. Desa-desa yang tercakup adalah Tambakmulyo dan Weton Kulon, yang menjadi bagian kecamatan Puring. Sebuah obyek wisata yang baru tumbuh dan populer ada pula di sini, yakni pantai Suwuk. Prinsip evakuasi tsunami di sini tetap adalah menjauhi pantai dan tepi sungai. Maka bila BMKG menyatakan terjadi tsunami dengan status “Siaga” penduduk dan pengunjung harus mengevakuasi diri ke arah timur untuk kemudian ke utara menuju perbatasan desa Tambakmulyo dan Weton Kulon. Sedangkan jika tsunami berstatus “Awas”, maka evakuasi harus dilakukan hingga mencapai desa Kedaleman Wetan.

Hal serupa juga berlaku di lokasi ketiga, yakni muara sungai Luk Ulo. Sisi barat muara sungai ini merupakan bagian kecamatan Klirong sementara sisi timurnya masuk kecamatan Buluspesantren. Desa-desa yang tercakup adalah Tanggulangin, Pandan Lor dan Ayamputih. Karena sungai Luk Ulo berbelok ke barat sebelum bermuara, maka patokan jarak untuk zona merah dan kuning adalah garis pantai yang lurus dengan tepi sungai. Zona merahnya merentang hingga sejauh 1.000 meter dari garis pantai. Sementara zona kuning menjulur hingga 4.200 meter dari garis pantai, atau hingga ke sekitar titik pertemuan sungai Luk Ulo dengan sungai Kedungbener.

Prinsip evakuasi tsunaminya tetap sama, yakni menjauhi pantai dan tepi sungai. Saat BMKG menyatakan terjadi tsunami dengan status “Siaga”, penduduk Tanggulangin harus mengevakuasi diri ke arah utara menuju desa Tambakprogaten. Sementara bila tsunami berstatus “Awas”, evakuasi penduduk Tanggulangin dan Pandan Lor diarahkan menuju ke desa Tambakprogaten atau ke sebelah baratnya lagi. Di sisi timur muara sungai Luk Ulo, penduduk Ayamputih diarahkan mengevakuasi diri ke utara kemudian ke timur menuju desa Setrojenar bagian utara baik pada saat status “Siaga” maupun “Awas.”

Gambar 6. Pantai Suwuk, contoh pantai bermuara di Kabupaten Kebumen. Di latar belakang nampak bukit-bukit yang menjadi bagian pantai Karangbolong. Sementara di latar depan aliran sungai Telomoyo sedang mengalir menuju Samudera Indonesia. Dalam bencana tsunami 2006, invasi maksimumnya mencapai 300 meter terhitung dari muara sungai. Sumber: Sudibyo, 2006.

Gambar 6. Pantai Suwuk, contoh pantai bermuara di Kabupaten Kebumen. Di latar belakang nampak bukit-bukit yang menjadi bagian pantai Karangbolong. Sementara di latar depan aliran sungai Telomoyo sedang mengalir menuju Samudera Indonesia. Dalam bencana tsunami 2006, invasi maksimumnya mencapai 300 meter terhitung dari muara sungai. Sumber: Sudibyo, 2006.

Dan hal yang sama pun diterapkan di lokasi keempat. Yakni muara sungai Wawar, yang juga tapalbatas Kabupaten Kebumen dengan Purworejo. Seperti halnya sungai Luk Ulo, sungai Wawar pun berbelok ke barats ebelum bermuara. Dan bahkan di dekat muaranya terdapat laguna, yang kini menjadi bagian dari tempat wisata baru bernama pantai Lembupurwo. Maka patokan jarak untuk zona merah dan kuning adalah garis pantai yang lurus dengan tepi sungai. Zona merahnya menjulur hingga 1.500 meter dari garis pantai. Sementara zona kuningnya hingga 4.500 meter dari garis pantai. Seluruhnya merupakan bagian dari kecamatan Mirit, yang mencakup desa-desa Mirit, Tlogopragoto, Lembupurwo, Wiromartan dan Rowo.

Bila BMKG menyatakan terjadi tsunami dengan status “Siaga”, maka penduduk desa Tlogopragoto, Lembupurwo dan Wiromartan serta pengunjung pantai Lembupurwo harus mengevakuasi diri ke utara lalu ke barat hingga desa Wergonayan. Langkah serupa juga berlaku pada saat statusnya “Awas”, hanya saja kini melibatkan pula desa Mirit dan Rowo.

Penutup

Peta bahaya dan peta evakuasi tsunami Kabupaten Kebumen sejatinya telah cukup lengkap. Selain membagi kawasan pesisir Kabupaten Kebumen ke dalam dua zona sesuai dengan tingkatan status yang bisa disajikan sistem peringatan dini tsunami Indonesia di bawah BMKG, jalur-jalur evakuasi dan titik-titik penerimaan pengungsi (titik kumpul) juga sudah ditetapkan.

Masalah utama tinggal bagaimana penerapannya? Khususnya bagi 220.800 penduduk yang tinggal di kawasan pesisir Kebumen. Bagaimana agar penduduk yang berpotensi terdampak bisa memahami dan mengimplementasikan apa yang telah disusun dalam kedua peta tersebut? Hanya ada tiga jalan, yakni sosialisasi, latihan dan pendidikan. Peta bahaya dan peta evakuasi tsunami Kabupaten Kebumen takkan bermanfaat bila tak disosialisasikan ke masyarakat. Langkah sosialisasi memang sudah dilakukan, misalnya oleh BPBD Kabupaten Kebumen dan PMI Cabang Kebumen. Sosialisasi akan lebih bagus lagi tatkala menyertakan media, khususnya media sosial yang penetrasinya lebih jauh ke publik. Sementara jalan kedua adalah latihan. Sosialisasi akan lebih bagus lagi tatkala masyarakat di kawasan pesisir juga diajak berlatih simulasi tsunami. Sehingga jalur-jalur evakuasi dan titik-titik penerimaan pengungsi bisa lebih melekat dalam benak setiap insan. Sementara jalan yang ketiga adalah lewat pendidikan, khususnya bagi generasi muda. Pendidikan tentang bencana alam khususnya tsunami sekaligus pengenalan peta bahaya dan peta evakuasi serta simulasinya seyogyanya bisa dilakukan pada siswa-siswi di sekolah-sekolah yang ada di kawasan pesisir Kebumen. Sebab mitigasi terbaik dalam menghadapi tsunami adalah apa yang telah tertanam dalam benak tiap insan.

Akhir kata, tak satupun insan yang berharap bahwa zona subduksi di Samudera Indonesia lepas pantai selatan Jawa Tengah akan melepaskan energinya. Prinsip utama mitigasi adalah selalu berharap yang terbaik. Namun di saat yang sama, bersiaplah untuk hal-hal yang terburuk. Andaikata pelepasan itu kelak terjadi dalam wujud gempa besar/akbar beserta tsunaminya, Kabupaten Kebumen seyogyanya bisa mengantisipasi efek terburuk yang datang sebagai gelora tsunami.

Seperti apa peta bahaya tsunami dan peta evakuasi tsunami Kabupaten Kebumen dalam format yang lengkap? Silahkan lihat di sini.

Referensi :

Ansori dkk. 2010. Evaluasi Potensi dan Konservasi Kawasan Tambang Pasir Besi pada Jalur Pantai Selatan Di Kabupaten Purworejo-Kebumen, Jawa Tengah. UPT Balai Informasi dan Konservasi Kebumian Karangsambung LIPI.

Satyana & Purwaningsih. 2002. Lekukan Struktur Jawa Tengah, Suatu Segmentasi Sesar Mendatar. Makalah Pertemuan Ilmiah Tahunan Ikatan Ahli Geologi Indonesia (IAGI), Yogyakarta-Central Java Section, Basement Tectonics of Central Java, Maret 2002.

Raditya dkk. 2010. Catatan Proses Pemetaan Bahaya Tsunami Kabupaten Purworejo. Kerjasama Pemkab Purworejo dan GITEWS (German-Indonesia Tsunami Early Warning System).

Menuju Kebumen Siaga Tsunami

Bagian pertama dari dua tulisan

Peristiwanya sudah berlalu satu dasawarsa. Bekas-bekasnya pun sebagian besar sudah tak ada. Kota-kota yang dulu begitu merana dibuatnya, kini menggeliat kembali dalam rutinitas sehari-hari layaknya sedia kala. Bencana dahsyat itu seperti telah lenyap ditelan masa. Hanya di sejumlah lokasi saja jejak-jejak kedahsyatannya masih tersisa. Namun tidak demikian di sanubari dan benak sebagian besar insan Indonesia. Bencana itu masih demikian membekas, seakan baru terjadi kemarin sore saja.

Minggu 26 Desember 2004 Tarikh Umum (TU) awalnya mungkin dianggap bakal menjadi sebuah hari Minggu biasa saja bagi Indonesia. Di benak banyak orang mungkin bakal ada sedikit kemeriahan. Tahun 2014 TU bakal segera tutup buku. Tahun dimana Indonesia menjalani pemilu yang menentukan, namun terlaksana tanpa huru-hara seperti ramalan sejumlah orang. Terkecuali bagi ujung utara pulau Sumatra. Keributan masih terjadi di sini, sering masih berlakunya status darurat militer. Aparat militer masih terus mencoba menekan dan menghimpit anasir-anasir separatis hingga ke tubir kemampuannya. Baku tembak kerap terjadi diberbagai tempat. Namun secara umum Indonesia relatif tenang, aman dan bersiap menyongsong masa depan.

Semua berubah drastis semenjak pukul 07:59 WIB. Pada jam itu, ujung utara pulau Sumatra bergetar. Gempa bumi tektonik melanda. Sejatinya gempa tektonik bukanlah hal yang aneh bagi kawasan ini. Di dasar samudera lepas pantai barat pulau ini terdapat zona subduksi dimana lempeng India dan Australia melekuk ke bawah lempeng Eurasia. Palung laut yang panjang membentang dari barat laut ke tenggara merupakan wujud fisiknya. Sementara di darat, sebuah sistem patahan besar membentang dari Banda Aceh di utara hingga Selat Sunda di selatan, yang menampakkan dirinya sebagai lembah-lembah lurus panjang di sela-sela Pegunungan Bukit Barisan. Itulah sistem patahan besar Sumatra yang legendaris. Baik zona subduksi maupun sistem patahan besar Sumatra adalah generator tektonik yang produktif.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Tapi gempa ini bukanlah gempa biasa. Di ujung utara pulau Sumatra itu, tanah bergetar keras dan berayun-ayun laksana lautan yang sedang bergelora. Orang-orang yang merasakannya tak kuasa berdiri tegak. Banyak benda berjatuhan. Beberapa bangunan di kota-kota seperti Banda Aceh, Calang dan Meulaboh runtuh. Getaran bahkan masih sanggup meretakkan kaca-kaca bangunan di Medan, kota yang di pantai timur Sumatra. Getaran itu berlangsung cukup lama. Orang-orang merasakannya lebih dari 10 menit. Sementara instrumen pencatat gempa (seismometer) mencatatnya dengan riuh selama 15 menit lebih, menjadikannya durasi gempa terlama yang pernah tercatat sepanjang sejarah ilmu kegempaan (seismologi) modern. Magnitud (kekuatan)-nya juga luar biasa. Dengan getaran yang luar biasa keras, satuan pengukuran standar gempa bumi yang kita kenal sebagai skala Richter (SR) pun tersaturasi dan tak dapat digunakan dengan baik. Sehingga satuan pengukuran yang lebih spesifik pun digunakan, yakni skala Magnitudo (SM). Gempa bumi 26 Desember 2014 TU di ujung utara pulau Sumatra itu ternyata memiliki magnitud 9,3 SM. Inilah gempa terbesar nomor dua yang pernah tercatat sepanjang sejarah seismologi modern setelah Gempa Chile 1960.

Dengan magnitud-nya yang demikian besar, ilmu kegempaan modern menggolongkan getaran tak biasa di ujung utara pulau Sumatra sebagai gempa akbar (megathrust). Ini jenis gempa yang langka karena melibatkan pematahan kerak bumi dalam luasan yang sangat besar hingga puluhan ribu kilometer persegi. Pematahan ini disertai pergeseran (pelentingan) massa batuan yang terpatahkan dengan jarak yang fantastis, hingga puluhan meter. Gempa jenis ini selalu terjadi di zona subduksi. Semenjak seismologi modern bersemi di dekade 1930-an TU, umat manusia baru menyaksikan enam peristiwa gempa akbar. Dan getaran tak biasa di ujung utara pulau Sumatra itu adalah gempa akbar ketujuh, yang kemudian dikenal sebagai Gempa akbar Sumatra-Andaman 26 Desember 2004 atau disebut juga gempa akbar Sumatra-Andaman 2004.

Begitu menyadari sebuah gempa akbar telah terjadi di Samudera Indonesia di Minggu pagi 26 Desember 2014 TU itu, Pacific Tsunami Warning Center (PTWC) yang berkedudukan di Hawaii (Amerika Serikat) segera melakukan simulasi dan hasilnya segera disebar. Sebab pasca sebuah gempa akbar, akan ada bencana lain yang menyusul dengan skala yang tak kalah dahsyatnya. Namun tiadanya infrastruktur sistem peringatan dini di sekujur pesisir Samudera Indonesia membuat peringatan itu tak dapat disalurkan hingga ke masyarakat akar rumput yang berpotensi terdampak.

Bencana pun terjadilah tanpa bisa dihindari. Dalam waktu sejam pasca gempa, kota Banda Aceh dilimbur gelora dari arah samudera. Itulah tsunami. Tingginya tak kepalang tanggung, hingga 20 meter dan bahkan lebih. Air bah menginvasi daratan hingga sejauh 4 kilometer dari garis pantai. Tak hanya Banda Aceh. Kota-kota lain di pesisir barat propinsi Aceh pun tak luput dari terjangan seperti Meulaboh dan Calang. Di Lhoknga, tsunami bahkan menggempur sebagai gelora setinggi bukit. Tinggi gelombangnya mencapai 50 meter! Begitu memasuki kota, air bah tsunami melanda dan menggerus apa saja yang dilaluinya, kecuali bangunan berkualitas baik. Jaringan jalan raya berkualitas baik di Banda Aceh justru menjadi jalan bebas hambatan bagi tsunami untuk menginvasi daratan lebih jauh lagi. Jika kecepatan tsunami saat tiba di pesisir umumnya berkisar 20 hingga 30 kilometer/jam, saat menggempur daratan melalui jalan raya Banda Aceh justru ia melejit hingga secepat 60 kilometer/jam !

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Tsunami dahsyat tak hanya menyerbu Indonesia. Segenap negara yang pesisirnya berhadapan dengan Samudera Indonesia turut merasakannya seperti Thailand, Malaysia, Myanmar, Sri Lanka, India, Bangladesh, Maladewa, Yaman dan bahkan hingga ke benua Afrika meliputi Somalia, Tanzania, Afrika Selatan, Kenya dan Madagaskar. Lebih dari seperempat juta jiwa, tepatnya 280.000 orang, terbunuh oleh terjangan tsunami ini. Ini menjadikannya bencana tsunami paling mematikan semenjak awal peradaban manusia, melampaui rekor yang semula dipegang tsunami produk Gempa Messina 1908 (Italia) yang menewaskan 123.000 orang. Dari 280.000 korban, sekitar 200.000 diantaranya adalah orang Indonesia khususnya penduduk yang bermukim di sepanjang pesisir barat dan utara propinsi Aceh. Bersama dengannya 1,74 juta orang dipaksa mengungsi dengan lebih dari setengah juta diantaranya berasal dari Indonesia. Massifnya skala bencana tsunami ini membuat tsunami produk Letusan Krakatau 1883 yang merenggut nyawa 36.417 jiwa (angka resmi) atau 120.000 jiwa (angka perkiraan) terasa kecil. Bencana ini pun membuat tsunami paling mematikan di Indonesia dalam abad ke-20, yakni tsunami produk Gempa Flores 1992 yang menelan korban 2.500 jiwa, menjadi terasa demikian kerdil.

Raksasa Pembangkit Gelora

Dahsyatnya bencana tsunami dalam Gempa akbar Sumatra-Andaman 2004 sontak mengejutkan dunia. Berbagai anggapan yang aneh-aneh tentang penyebab bencana pun diapungkan. Satu yang sempat menarik perhatian adalah anggapan bencana itu bagian dari konspirasi. Gempa akbar tersebut dan tsunami yang menyertainya dianggap terjadi akibat diledakkannya bom termonuklir di dasar Samudera Indonesia yang kemudian memicu rentetan bencana. Anggapan serupa masih tetap muncul tujuh tahun kemudian, tatkala gempa akbar berikutnya yakni Gempa akbar Tohoku (Jepang) 2011 datang mengguncang. Gempa akbar Tohoku 2011 juga menerbitkan tsunami, yang menjalar hingga sekujur pesisir Samudera Pasifik dengan korban jiwa pun cukup besar. Kali ini yang dituding bukan lagi bom termonuklir, melainkan fasilitas riset pemantauan ionosfer di bawah tajuk HAARP (High-frequency Active Auroral Research Program).

Tanpa harus menelaah jauh-jauh, tak sulit untuk mementahkan anggapan konspirasi ini. Jika bom termonuklir memicu rentetan bencana di ujung utara pulau Sumatra, kemana semua sampah radioaktif yang khas produk ledakan nuklirnya? Padahal salah satu ciri khas tsunami adalah ia mengaduk-aduk dasar samudera demikian rupa sehingga sedimen/endapan yang semula teronggok di dasar laut pun akan diangkutnya dan diendapkan di daratan yang diserbunya. Selain itu bagaimana peristiwa serupa pernah terjadi di sini dalam 600 hingga 700, 1.200 hingga 1.400 dan 1.800 hingga 2.100 tahun silam seperti ditemukan para ahli kegempaan belakangan? Di atas semua itu, anggapan konspirasi hanyalah mencoba mencari kambing hitam atas suatu bencana sehingga tak bermanfaat untuk mengantisipasi bencana sejenis di kelak kemudian hari.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Dalam pandangan seismologi modern, peristiwa gempa akbar dan tsunami yang menyertainya lebih merupakan akibat dari interaksi konvergen (saling bertemu) antara dua lempeng tektonik di zona subduksinya. Dalam kasus Gempa akbar Sumatra-Andaman 2004 itu dua lempeng tektonik yang saling bertemu adalah lempeng India yang oseanik (lempeng samudera) dan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental (lempeng benua). Karena berat jenisnya lebih tinggi, maka saat lempeng India bertemu dengan mikrolempeng Burma, ia melekuk dan selanjutnya menyelusup kebawahnya dengan sudut tertentu hingga akhirnya memasuki lapisan selubung atas (asthenosfer).

Mulai dari titik pelekukan, bagian atas lempeng India bersentuhan dengan bagian bawah mikrolempeng Burma, membentuk zona subduksi. Jalur dimana lempeng India melekuk secara kasat mata terlihat sebagai palung laut. Sementara mikrolempeng Burma mengelembung dan menyembul ke atas paras laut sebagai bagian dari daratan Aceh sebelah barat. Lempeng India bergerak relatif ke utara-timur laut dengan kecepatan 53 mm/tahun, sementara mikrolempeng Burma relatif tak bergerak. Posisi pulau Sumatra yang melintang membuat palung lautnya pun turut melintang, sehingga pergerakan lempeng India relatif terhadap zona subduksinya bersifat miring (oblique). Di lepas pantai barat ujung utara pulau Sumatra, kecepatan pergerakan itu 30 mm/tahun relatif terhadap zona subduksi. Sementara di sebelah utaranya, yakni di Kepulauan Andaman dan Nicobar, kecepatan relatifnya bahkan mendekati nol.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Idealnya pergerakan lempeng India dalam zona subduksinya dengan mikrolempeng Burma tidak terganggu. Namun dalam realitanya tidak demikian. Karena gaya gesek antar batuan dalam dua lempeng yang berbeda tersebut, pergerakan lempeng India terhalangi oleh gesekannya dengan mikrolempeng Burma. Mikrolempeng tersebut bahkan dapat terkunci ke lempeng India. Sehingga selagi lempeng India terus bergerak ke utara-barat laut, zona subduksinya (beserta palung laut dan pulau-pulau kecil didekatnya) pun turut bergeser ke arah yang sama, lebih mendekat ke pulau Sumatra. Ibarat pegas raksasa, mikrolempeng Burma jadi terdesak dan mulai memendek. Namun pemendekan ini memiliki batas maksimum. Saat tegangan batuan telah melampaui daya ikat antar batuan di zona kuncian, maka kunciannya itu pun terpatahkan. Mikrolempeng Burma spontan melenting kembali sehingga palung laut pun kembali menjauhi pulau Sumatra. Pematahan diikuti pelentingan inilah yang menghasilkan gempa bumi tektonik dan kemudian tsunami. Dalam gempa akbar, pematahan yang terjadi melibatkan luasan sangat besar dengan pelentingan yang tak kalah fantastisnya.

Gempa akbar Sumatra-Andaman 2004 melibatkan pematahan sepanjang 1.600 kilometer di zona subduksi lepas pantai barat Sumatra dan kepulauan Andaman-Nicobar, mulai dari pulau Simeulue di selatan hingga pulau Preparis di utara. Lebar pematahannya 150 kilometer. Sehingga area yang terpatahkan mencapai 1.600 x 150 kilometer persegi atau setara dengan separuh luas pulau Sumatra! Pelentingan yang terjadi bervariasi antara 10 meter hingga 30 meter. Akibat pelentingan ini maka palung laut di sepanjang pulau Simeulue hingga ke pulau Preparis mengalami pengangkatan vertikal yang bervariasi antara 1 hingga 5 meter. Dengan kata lain, dasar samudera di atas sumber gempa terdongkrak naik. Inilah yang membuat massa air laut diatasnya turut terangkat hingga ke permukaan samudera. Usikan dahsyat inilah yang menerbitkan tsunami dahsyat yang amat mematikan.

Tsunami bukanlah gelombang laut biasa. Ia memiliki periode yang cukup lama, yakni antara beberapa menit hingga 30 menit. Sementara periode ombak akibat hembusan angin hanya berkisar beberapa detik hingga 20 detik saja. Panjang gelombangnya pun sangat besar, puluhan hingga hingga 200 kilometer. Sementara panjang ombak produk hembusan angin hanyalah antara 60 hingga 150 meter. Dengan panjang gelombang yang jauh melebihi kedalaman samudera dimanapun, tsunami memiliki karakteristik mengaduk-aduk lautan yang dilewatinya hingga ke dasar. Sementara ombak produk hembusan angin hanya berefek di paras/permukaan laut saja. Kecepatannya pun berbeda jauh. Di tengah samudera, sebuah tsunami bisa melaju secepat 700 kilometer/jam atau sama cepatnya dengan pesawat jumbo jet komersial! Bandingkan dengan ombak produk hembusan angin yang hanya melaju pada kecepatan antara 30 hingga 60 kilometer/jam saja.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Kala tiba di pesisir, baik tsunami maupun ombak akan sedikit berubah perilakunya. Namun perbedaannya dramatis. Bagi ombak, ia akan melambat dan terpecah saat mendekati pesisir sehingga hanya mengguyur garis pantai. Tsunami pun melambat pula jelang tiba di pesisir, dengan kecepatan merosot drastis hingga hanya antara 20 sampai 30 kilometer/jam. Tapi karena panjang gelombangnya amat sangat besar bila dibandingkan dengan ombak, maka tsunami tak terpecah. Sebaliknya ketinggiannya justru kian meningkat akibat efek akumulasi tatkala bagian tsunami yang lebih cepat mendesak bagian tsunami yang sudah melambat. Karena itu bila di tengah-tengah samudera ketinggian tsunami hanyalah berkisar setengah meter atau kurang, jelang tiba di pesisir ia bisa berlipat kali lebih besar hingga beberapa meter atau bahkan belasan/puluhan meter. Fenomena ini disebut run-up. Karena itu saat menerjang garis pantai, tsunami lebih mirip dengan gelombang pasang sehingga ia melanda/menginvasi daratan hingga jarak cukup jauh, bergantung pada run-up-nya. Bedanya, jika penjalaran gelombang pasang biasa berlangsung cukup lambat (dalam hitungan jam), tsunami menyerbu cukup cepat (hanya dalam hitungan menit pasca tiba di garis pantai). Karena itu daya rusaknya jauh lebih besar.

Tsunami di Pesisir Selatan Jawa

Di Indonesia, zona subduksi tak hanya dijumpai di lepas pantai ujung utara pulau Sumatra saja. Namun juga di tempat-tempat lain di sekujur tanah Nusantara ini. Dapat dikatakan separuh dari garis pantai kepulauan ini berhadapan dengan zona subduksi. Termasuk segenap pesisir selatan pulau Jawa.

Sebelum 2004 TU, para ahli kegempaan bersilang pendapat mengenai potensi zona-zona subduksi di Indonesia dalam menghasilkan gempa akbar. Pada umumnya mereka sepakat bahwa potensi gempa akbar jauh lebih tinggi bagi kawasan pesisir Samudera Pasifik, dimanapun berada. Sebab di sini zona subduksinya berumur relatif muda secara geologis, yakni 20 juta tahun di selatan (Chile) dan 40 juta tahun di utara (Alaska). Zona subduksi yang muda ini dianggap kurang padat sehingga lebih mudah terpatahkan. Sebaliknya zona subduksi di Samudera Indonesia, khususnya di sepanjang kepulauan Indonesia, relatif lebih tua. Di sekitar pulau Simeulue umurnya 55 juta tahun. Sementara di Kepulauan Andaman-Nicobar umurnya jauh lebih tua yakni hampir 90 juta tahun. Terdapat hubungan antara umur zona subduksi dan kecepatan lempeng samudera relatif terhadap zona subduksi dengan magnitud maksimum gempa tektonik yang bisa dibangkitkannya. Untuk zona subduksi lempeng India dengan mikrolempeng Burma, magnitud maksimum itu berkisar antara 8 hingga 8,2 skala Magnitudo. Anggapan ini berantakan setelah Gempa akbar Sumatra-Andaman 2004 meletup, yang berkekuatan hingga 9,3 skala Magnitudo.

Pasca 2004 TU, kini para ahli kegempaan menyepakati seluruh zona subduksi yang ada dimanapun harus dipandang memiliki potensi serupa Sumatra-Andaman. Termasuk zona subduksi di lepas pantai pesisir selatan Pulau Jawa. Di zona subduksi ini lempeng Australia yang oseanik bersubduksi dengan lempeng Eurasia yang kontinental. Lempeng Australia bergerak ke utara-timur laut pada kecepatan 67 mm/tahun sementara lempeng Eurasia (yang menjadi landasan pulau Jawa) relatif stabil. Subduksi telah berumur 130 juta tahun dan menghasilkan zona subduksi yang hampir tepat tegaklurus terhadap arah gerak lempeng Australia (head-on). Sebelum 2004 TU, magnitud maksimum gempa tektonik yang bisa dibangkitkan zona subduksi ini diperkirakan hanya sekitar 7,7 skala Magnitudo. Namun pasca 2004 TU, perkiraannya berubah dramatis. Sejumlah ahli kegempaan bahkan berpendapat gempa akbar dengan magnitud hingga 9 skala Magnitudo berpotensi terjadi di sini. Sumber gempanya bisa di sisi selatan Selat Sunda, atau di lepas pantai selatan Jawa Tengah. Jika gempa akbar sebesar ini terjadi, tsunami dahsyat bakal menggempur pesisir selatan pulau Jawa dengan ketinggian bisa mencapai 10 meter atau bahkan lebih.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Salah satu kesulitan dalam mengidentifikasi apakah sebuah gempa akbar bisa terjadi di zona subduksi terletak pada minimnya data. Pada umumnya gempa tektonik, termasuk gempa akbar, selalu berulang di sumber yang sama. Namun periode ulangnya sangat lama, hingga beberapa ratus tahun untuk gempa akbar. Sementara seismologi modern dengan instrumen seismometernya baru berjalan kurang dari seabad ini. Apalagi pencatatan pergerakan lempeng tektonik di suatu daerah, itu baru berlangsung semenjak dekade 1980-an saja. Maka untuk mengetahui potensi gempa akbar di suatu tempat, para ahli kegempaan memanfaatkan pendekatan tak langsung. Baik dengan jalan menyelidiki naik-turunnya daratan melalui naik-turunnya karang di pulau-pulau kecil tepat di sebelah sebuah palung laut (seperti dilakukan di pulau Sumatra) maupun dengan menyelidiki lapisan-lapisan endapan takbiasa yang diproduksi sebuah tsunami di sepanjang pesisir.

Lewat analisis karang, kita mengetahui salah satu sumber gempa akbar di pulau Sumatra ada di segmen Kepulauan Mentawai. Gempa akbar di sini terjadi pada sekitar tahun 1370, 1600 serta yang terakhir pada 1797 dan 1833 TU. Dengan demikian gempa akbar dan tsunami besarnya di segmen Kepulauan Mentawai terjadi setiap 200 hingga 230 tahun sekali. Sementara sedimen pesisir di Thailand dan Simeule memperlihatkan gempa akbar dan tsunami besar di segmen Simeulue-Andaman-Nicobar berulang jauh lebih lama, yakni setiap 600 hingga 700 tahun sekali.

Bagaimana dengan pesisir selatan Pulau Jawa?

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Pesisir selatan Jawa Timur dilimbur tsunami produk gempa besar Banyuwangi 3 Juni 1994 (7,8 skala Magnitudo). Tinggi maksimum tsunaminya mencapai 15 meter dan menginvasi daratan hingga sejauh 400 meter. Korban jiwa yang direnggutnya tercatat 238 orang. Sementara pesisir selatan Jawa Barat dan sebagian Jawa Tengah dihantam tsunami dari gempa besar Pangandaran 17 Juli 2006 (7,7 skala Magnitudo). Tsunaminya menghantam pesisir mulai dari pantai Pangandaran (Jawa Barat) hingga pantai Parangtritis (DI Yogyakarta) dengan tinggi maksimum 21 meter di pulau Nusakambangan. Tsunami ini menelan korban jiwa hingga lebih dari 700 orang. Baik gempa besar Banyuwangi 1994 maupun Pangandaran 2006 merupakan gempa pembangkit tsunami yang takbiasa. Mereka terjadi tepat di sisi utara palung laut dengan getaran yang cukup lama, sehingga disebut sebagai gempa-lambat atau gempa-ayun (slow earthquake) yang getarannya tak begitu dirasakan di daratan pulau Jawa. Di lokasi sumber gempanya, getaran gempa menyebabkan tebing-tebing curam di sisi utara palung runtuh, menciptakan longsoran bawah laut yang massif. Kombinasi pengangkatan dasar laut di lokasi sumber gempa dan longsoran massif ini membangkitkan tsunami yang tak biasa. Meski bersifat lokal, namun ketinggiannya di pesisir dan invasinya ke daratan amat sangat besar dibanding tsunami yang hanya disebabkan oleh gempa saja.

Sebelum kedua peristiwa tersebut, pesisir selatan Pulau Jawa antara pantai Pangandaran hingga Parangtritis juga pernah diterpa tsunami pada 1921 TU. Tsunami ini produk gempa besar (7,5 skala Richter) di seberang zona subduksi, namun tinggi gelombangnya kecil sehingga tidak menghasilkan kerusakan dan korban jiwa berarti. Sebelum itu tsunami lokal tercatat juga terjadi pada 1840 dan 1859 TU. Keduanya menerpa pesisir selatan pulau Jawa di antara Kebumen (Jawa Tengah) hingga Pacitan (Jawa Timur).

Tsunami yang lebih besar namun tak begitu tercatat dalam sejarah nampaknya terjadi empat abad silam, atau di abad ke-16 TU. Jejaknya ditemukan sebagai lapisan endapan takbiasa khas tsunami di dekat muara sungai Cikembulan, Pangandaran (Jawa Barat) oleh tim LIPI (Lembaga Ilmu Pengetahuan Indonesia). Endapan ini lebih tebal ketimbang endapan tsunami 2006 sehingga mungkin berasal dari gempa besar berskala 8 skala Magnitudo atau lebih. Peristiwa tersebut nampaknya dicatat oleh pujangga kerajaan Mataram Islam di zaman pemerintahan Sultan Agung pada Babad ing Sangkala. Peristiwa tersebut nampaknya terjadi pada tahun 1618 atau 1619 TU, sepuluh tahun jelang agresi Mataram ke kedudukan VOC Belanda di Batavia (kini Jakarta). Tsunami tersebut nampaknya berdampak signifikan dan mungkin melahirkan legenda Nyi Roro Kidul (Ratu Kidul). Legenda sejenis, meski kalah populer, juga dijumpai di tempat-tempat lain mulai dari masyarakat Mentawai di sebelah barat hingga ke masyarakat Flores di sebelah timur.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Berapa tahun sekali periode ulang gempa besar/akbar dan tsunami yang menyertainya di lepas pantai pesisir selatan pulau Jawa memang belum diketahui hingga kini. Namun jelas bahwa di masa silam hal itu pernah terjadi. Dan kelak juga pasti akan terjadi lagi. Ini hanya soal kapan waktunya dan seberapa besar magnitudonya. Maka suka tak suka, pesisir selatan pulau Jawa memang harus berbenah dan bersiap untuk menghadapinya. Termasuk Kabupaten Kebumen di propinsi Jawa Tengah, yang memiliki garis pantai unik sepanjang 58 kilometer. Ada lebih dari 220 ribu jiwa yang hidup di sepanjang pesisir Kabupaten Kebumen yang berpotensi terdampak jika bencana tsunami tersebut benar-benar terjadi, apalagi jika sekelas tsunami produk gempa akbar Sumatra-Andaman 2004.

Bagaimana Kabupaten Kebumen menyiagakan diri mengantisipasi ancaman tsunami ini? Simak di bagian kedua dari tulisan ini.

Referensi :

Yulianto dkk. 2010. Where the First Wave Arrives in Minutes, Indonesian Lessons on Surviving Tsunamis Near Their Sources. Intergovernmental Oceanographic Commission, United Nations Educational Scientific and Cultural Organisation, IOC-Brochure 2010-4.

BNPB. 2012. Masterplan Pengurangan Risiko Bencana Tsunami. Badan Nasional Penanggulangan Bencana, Juni 2012.

Natawidjaja. 2007. Tectonic Setting Indonesia dan Pemodelan Gempa dan Tsunami. Pelatihan Pemodelan Tsunami Run-up, Kementerian Negara Riset dan Teknologi RI, 20 Agustus 2007.

Komet Siding-Spring, Komet Yang Bakal Nyaris Menubruk Planet Mars

Minggu 19 Oktober 2014 pukul 18:29 UTC (GMT). Atau di Indonesia Senin dinihari 20 Oktober 2014 pukul 01:29 WIB. Inilah saat-saat dimana sebutir benda langit yang tak terlalu besar, dengan dimensi sekitar 700 meter atau seukuran sebuah bukit, bakal melesat cepat dalam jarak teramat dekat untuk skala astronomi. Ia melesat pada kecepatan 56 km/detik atau 201.600 kilometer perjamnya pada jarak hanya 131.800 kilometer. Jika dibandingkan dengan jarak rata-rata Bumi-Bulan yang besarnya 384.400 kilometer, maka benda langit itu lewat dalam jarak nyaris tiga kali lipat lebih dekat dibanding Bulan. Beruntung situasi ini tidak terjadi di Bumi kita, melainkan pada planet tetangga terdekat kedua kita. Yakni si planet merah: Mars. Dan benda langit yang bakal melesat cepat sekaligus melintas-cukup dekat itu pun juga bukan benda langit biasa, yakni komet. Inilah benda langit mini dan eksotis anggota tata surya yang dikenal gemar menyemburkan debu, pasir dan bahkan kadang kerikil hingga bongkahan seukuran batu beserta gas-gas tertentu, menyerupai letusan gunung berapi kosmik di langit. Komet ini memang tak bakal bertubrukan dengan Mars. Namun debu dan pasir yang disemburkannya bakal sampai ke planet itu. Kala menembus atmosfer Mars, rombongan debu itu bakal menciptakan panorama hujan meteor yang mengagumkan. Sekaligus mengkhawatirkan.

Gambar 1. Komet Siding-Spring (titik potong garis kuning vertikal dan horizontal) pada 24 September 2014 TU lalu. Diabadikan dengan teleskop Schmidt Bimasakti di Observatorium Bosscha oleh Evan Irawan Akbar. Inilah komet yang bakal melintas-sangat dekat dengan planet Mars pada 20 Oktober 2014 dinihari waktu Indonesia kelak. Sumber: Observatorium Bosscha, 2014.

Gambar 1. Komet Siding-Spring (titik potong garis kuning vertikal dan horizontal) pada 24 September 2014 TU lalu. Diabadikan dengan teleskop Schmidt Bimasakti di Observatorium Bosscha oleh Evan Irawan Akbar. Inilah komet yang bakal melintas-sangat dekat dengan planet Mars pada 20 Oktober 2014 dinihari waktu Indonesia kelak. Sumber: Observatorium Bosscha, 2014.

Komet yang bakal mencetak sejarah itu adalah komet Siding-Spring (C/2013 A1). Semenjak ditemukan pada hari pertama tahun 2013 Tarikh Umum (TU) silam lewat mata tajam sistem penyigi langit yang bersenjatakan teleskop reflektor Uppsala Southern Schmidt 50 cm di Observatorium Siding-Spring (Australia), darinya nama komet ini berasal, komet Siding-Spring sudah menggemparkan jagat ilmu pengetahuan. Observasi awal mengindikasikan orbit komet ini berpotongan dengan orbit Mars hingga tingkat ketelitian tertentu. Dan observasi awal memprakirakan pada 20 Oktober 2014 dinihari waktu Indonesia, baik planet Mars maupun sang komet Siding-Spring akan sama-sama sedang melintasi titik perpotongan orbit tersebut, sehingga tumbukan benda langit diprakirakan tak terhindarkan.

Lebih hebohnya lagi, dengan kecepatan 56 km/detik dan ukuran inti komet berdasar observasi awal diperkirakan bergaris tengah hingga 50 kilometer, tumbukan akan berlangsung sangat dahsyat. Simulasi awal menunjukkan permukaan Mars bakal berhias sebentuk kawah raksasa bergaris tengah hingga 500 kilometer alias separuh panjang pulau Jawa! Bersamaan dengan pembentukan kawah raksasa ini akan terlepas energi hingga 24 milyar megaton TNT. Itu setara dengan 1,2 trilyun bom nuklir Hiroshima yang diledakkan secara serempak, tingkat pelepasan energi yang belum pernah disaksikan umat manusia sepanjang sejarah peradabannya.

Di pekan-pekan berikutnya sang komet terus menjadi target observasi yang berlangsung dari berbagai titik di sekujur Bumi. Segudang data berharga pun diperoleh. Kini kita mengetahui bahwa komet Siding-Spring ini adalah komet dengan periode yang amat sangat panjang hingga beberapa juta tahun. Akibatnya orbitnya pun demikian lonjing hingga nyaris tak terbedakan dengan orbit parabola. Fakta ini menunjukkan bahwa komet Siding-Spring nampaknya mirip komet ISON di tahun silam, yakni sama-sama komet yang baru beranjangsana untuk pertama kalinya ke lingkungan tata surya bagian dalam setelah melejit keluar dari awan komet Opik-Oort, ‘rumah’-nya bayi-bayi komet. Dengan perihelion 1,399 SA (satuan astronomi) atau setara 209 juta kilometer dari Matahari, komet Siding-Spring takkan mendekat ke Matahari hingga melampaui orbit Bumi kita. Namun yang paling menarik perhatian adalah bagaimana komet ini akan berposisi demikian dekat dengan planet Mars.

Gambar 2. Gambaran sederhana bagaimana posisi planet Mars beserta kedua satelit alamiahnya (yakni Phobos dan Deimos) terhadap komet Siding-Spring saat komet mencapai jarak terdekatnya dengan planet itu. Sumber: Wikipedia, 2014.

Gambar 2. Gambaran sederhana bagaimana posisi planet Mars beserta kedua satelit alamiahnya (yakni Phobos dan Deimos) terhadap komet Siding-Spring saat komet mencapai jarak terdekatnya dengan planet itu. Sumber: Wikipedia, 2014.

Perhitungan dan simulasi terbaru berdasarkan segudang data observasi termutakhir memang menunjukkan bahwa prakiraan tumbukan yang mengerikan di atas ternyata tak beralasan. Orbit komet Siding-Spring ternyata tak berpotongan dengan Mars, melainkan hanya saling berjejeran cukup dekat. Hal itu terjadi pada Senin dinihari 20 Oktober 2014 waktu Indonesia. Inti komet Siding-Spring bakal lewat pada ketinggian 131.800 kilometer dari paras planet Mars. Dalam perspektif Mars, jarak perlintasan ini masih lebih jauh ketimbang ketinggian dua satelit alamiahnya, masing-masing Phobos (tinggi rata-rata 6.000 kilometer dari paras planet) dan Deimos (tinggi rata-rata 20.000 kilometer dari paras planet). Namun dalam 100 menit kemudian planet Mars akan mencapai situasi yang lebih ekstrim, yakni berjarak terdekat terhadap orbit komet Siding-Spring yakni sejarak ‘hanya’ 23.500 kilometer dari paras planet itu. Jarak yang cukup dekat ini tentu bakal menghasilkan implikasi tersendiri. Apalagi Mars adalah target paling seksi dalam misi-misi antariksa termutakhir. Kini tercatat tujuh misi antariksa aktif di Mars, 5 pengorbit dan 2 robot penjelajah, yang dikelola oleh 3 negara/gabungan negara-negara.

Mengamplas Mars

Potensi tubrukan komet Siding-Spring ke planet Mars memang telah dikesampingkan sepenuhnya semenjak 8 April 2013 TU lewat segudang data observasi terbaru. Namun melintas-dekatnya sebuah komet di dekat sebuah planet tetap akan berdampak tersendiri.

Data terbaru memperlihatkan inti komet Siding-Spring tidaklah sebesar 50 kilometer, melainkan hanya 700 meter saja. Namun saat melintas-sangat dekat dengan Mars, paparan intensitas cahaya Matahari sudah cukup tinggi karena jaraknya terhadap Matahari sudah lebih kecil dibanding ambang batas 3,5 SA (satuan astronomi). Akibatnya sudah cukup banyak butir-butir es dan bekuan senyawa volatil (mudah menguap) di dalam inti komet yang tersublimasi. Gas-gas tersebut awalnya terakumulasi dalam cebakan-cebakan di bawah permukaan inti komet, untuk kemudian tersembur keluar ke lingkungan sekitar. Semburan ini mengangkut pula partikel-partikel material penyusun inti komet mulai dari seukuran debu hingga bongkah. Gas dan partikel yang tersembur menyusun sejenis atmosfer sementara (temporer) di sekeliling inti komet, yang disebut kepala komet (coma). Tekanan angin Matahari akan membuat sebagian material penyusun kepala komet terhembus menjauhi inti komet menjadi ekor komet.

Gambar 3. Gambaran artis saat komet Siding-Spring melintas-sangat dekat dengan planet Mars dalam skala astronomi. Kombinasi unik posisi Mars dan Matahari membuat ekor gas dan ekor debu komet tidak mengarah langsung ke planet Mars. Wahana antariksa tidak digambarkan dalam ukuran sebenarnya. Sumber: NASA, 2014.

Gambar 3. Gambaran artis saat komet Siding-Spring melintas-sangat dekat dengan planet Mars dalam skala astronomi. Kombinasi unik posisi Mars dan Matahari membuat ekor gas dan ekor debu komet tidak mengarah langsung ke planet Mars. Wahana antariksa tidak digambarkan dalam ukuran sebenarnya. Sumber: NASA, 2014.

Di sinilah potensi masalah muncul. Saat melintas-sangat dekat dengan planet Mars, dimensi coma Siding-Spring diperkirakan akan sepuluh kali lipat lebih besar ketimbang dimensi Mars sendiri. Sehingga praktis selama beberapa jam di Senin dinihari 20 Oktober 2014 waktu Indonesia itu, segenap planet Mars beserta satelit-satelit alamiahnya bakal tercelup ke dalam coma Siding-Spring yang penuh debu. Maka partikel-partikel debu Siding-Spring pun bakal melejit ke planet Mars pada kecepatan 56 km/detik relatif terhadap planet tersebut. Hujan meteor pun bakal terjadi saat partikel-partikel debu tersebut mencoba menembus atmosfer Mars. Ini akan menampakkan pemandangan hujan meteor nan luar bisa di planet tersebut, dengan intensitas cukup besar hingga berpotensi menjadi badai. Simulasi memperlihatkan hujan meteor Siding-Spring di Mars akan jauh lebih intensif ketimbang hujan meteor Perseids maupun Geminids di Bumi kita dengan prediksi ZHR (zenith hourly rate) mencapai sekitar 1.500 meteor/jam sehingga bisa menyandang status badai meteor. Hanya badai meteor Leonids 1999 saja yang mengungguli pesona hujan meteor Siding-Spring ini.

Dengan ukuran mikroskopisnya, tiada meteor Siding-Spring yang bakal sampai ke permukaan planet Mars. Masalahnya adalah bagaimana jika partikel-partikel meteoroid dari debu komet Siding-Spring ini berbenturan dengan wahana-wahana antariksa tak berawak aktif di orbit di Mars? Saat ini terdapat lima wahana antariksa aktif. Diurutkan dari yang paling senior masing-masing adalah Mars Odyssey (Amerika Serikat), Mars Reconaissance Orbiter/MRO (Amerika Serikat), Mars Express (gabungan negara-negara Eropa) serta dua yang baru datang pada September 2014 TU lalu yakni Mars Atmosphere and Volatile Evolution Mission/MAVEN (Amerika Serikat) dan Manglayaan/Mars Orbiter Mission (India). Seluruh wahana penyelidik ini tentu telah dirancang untuk menghadapi situasi tubrukan meteoroid, baik yang bersifat periodik maupun sporadik. Namun sanggupkah mereka bertahan kala berhadapan dengan guyuran meteoroid Siding-Spring? Akankah meteoroid-meteoroid Siding-Spring laksana mengamplas wahana-wahana antariksa antariksa tersebut?

Badan antariksa Amerika Serikat (NASA) memandang cukup serius potensi ancaman meteoroid Siding-Spring ini. Sehingga sejumlah kajian pun dilakukan guna mengevaluasi status meteor dan mitigasinya. Sejauh ini NASA menyimpulkan, kombinasi unik posisi Mars dan Matahari membuat meteoroid Siding-Spring takkan berdampak banyak sepanjang wahana-wahana antariksa tersebut di-reorientasi sehingga tidak berhadapan langsung dengan arah kedatangan partikel-partikel meteoroid. Hal ini berlaku sepanjang partikel-partikel meteoroid tersebut adalah debu-debu mikroskopis, yang di atas kertas merupakan ukuran partikel yang paling mungkin menjangkau planet Mars. Lain halnya jika wahana-wahana antariksa tersebut ditubruk material seukuran kerikil atau malah yang lebih besar lagi, meski menurut NASA peluang kejadian ini adalah kecil.

Gambar 4. Salah satu hasil kajian NASA terkait potensi terjadinya hujan/badai meteor di Mars seiring perlintasan-sangat dekat komet Siding-Spring. Kiri: planet Mars terlihat tersapu oleh debu mikroskopis komet Siding-Spring meski tidak dalam intensitas terbesar. Kanan: prakiraan fluks hujan meteor Siding-Spring (CSS) di Mars (ellips merah), dibandingkan dengan beberapa hujan meteor di Bumi seperti Perseids (ellips hitam). Hujan meteor Perseids berintensitas sekitar 100 meteor/jam, sementara hujan meteor Siding-Spring diprakirakan bakal mencapai 1.500 meteor/jam. Hanya badai meteor Leonids 1999 (Lst) yang bisa menandinginya. Sumber: NASA, 2014.

Gambar 4. Salah satu hasil kajian NASA terkait potensi terjadinya hujan/badai meteor di Mars seiring perlintasan-sangat dekat komet Siding-Spring. Kiri: planet Mars terlihat tersapu oleh debu mikroskopis komet Siding-Spring meski tidak dalam intensitas terbesar. Kanan: prakiraan fluks hujan meteor Siding-Spring (CSS) di Mars (ellips merah), dibandingkan dengan beberapa hujan meteor di Bumi seperti Perseids (ellips hitam). Hujan meteor Perseids berintensitas sekitar 100 meteor/jam, sementara hujan meteor Siding-Spring diprakirakan bakal mencapai 1.500 meteor/jam. Hanya badai meteor Leonids 1999 (Lst) yang bisa menandinginya. Sumber: NASA, 2014.

Masalah lainnya yang juga menjadi perhatian adalah bagaimana coma Siding-Spring akan berinteraksi dengan atmosfer atas Mars selama perlintasan-terdekatnya. Diprediksikan akan terjadi kenaikan suhu bersamaan dengan meningkatnya jumlah atom Hidrogen di lapisan atmosfer atas Mars selama puluhan jam kemudian. Ini akan membuat atmosfer Mars secara umum sedikit mengembang sehingga bakal mencakup sebagian kecil orbit wahana antariksa MRO dan MAVEN. Keduanya diprediksi bakal mengalami gaya gesek atmosfer antara 2 hingga 40 kali lipat lebih besar ketimbang normal. Sehingga kecepatannya bakal menurun dan akibatnya orbitnya pun bakal kian menurun merendah terhadap paras planet ini. Masalah ini dapat diatasi dengan menyalakan mesin roket kedua wahana guna mengembalikannya ke orbit normal. Meski seberapa banyak bahan bakar yang akan dikonsumsinya belum bisa diketahui untuk saat ini.

Pelajaran

Saat komet Siding-Spring berada pada jarak terdekatnya dengan planet Mars, kedua benda langit itu sama-sama akan berjarak cukup jauh dari Bumi kita. Yakni sejauh 1,6 SA atau 240 juta kilometer. Karena itu tak ada yang perlu dikhawatirkan. Bumi sama sekali tak terimbas oleh peristiwa langit yang satu ini. Apalagi komet Siding-Spring sendiri takkan mendekat ke Matahari hingga melampaui orbit Bumi.

Gambar 5. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Tumbukan bakal melepaskan energi 61.000 megaton TNT dan menghasilkan bola api ledakan bersuhu 10.000 derajat Celcius sebesar 13 km sembari membentuk kawah berdiameter 5,4 kilometer. Sumber: DowntoEarth, 2014.

Gambar 5. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Tumbukan bakal melepaskan energi 61.000 megaton TNT dan menghasilkan bola api ledakan bersuhu 10.000 derajat Celcius sebesar 13 km sembari membentuk kawah berdiameter 5,4 kilometer. Sumber: DowntoEarth, 2014.

Namun demikian ada banyak pelajaran yang bisa dipetik dari peristiwa langit nan langka ini. Salah satunya, umat manusia dapat lebih memahami apa yang terjadi tatkala sebuah komet melintas terlalu dekat dengan sebuah planet. Sepanjang sejarah umat manusia, kita belum pernah mengalami situasi yang sama dengan planet Mars pada saat ini. Komet yang pernah melintas-terdekat ke Bumi kita masihlah berjarak 2,26 juta kilometer yakni komet Lexell (D/1770 L1) pada 1 Juli 1770 TU dan komet SOHO (P/1999 J6) yang melintas sejauh 1,79 juta kilometer pada 12 Juni 1999 TU. Tak seperti yang dialami komet Shoemaker-Levy 9 saat melintas-terlalu dekat dengan planet Jupiter pada Juli 1992 TU, jarak terdekat komet Siding-Spring ke planet Mars masih jauh lebih besar ketimbang orbit Roche Mars. Sehingga gaya pasang surut gravitasi Mars masih belum cukup mampu untuk meremukkan inti komet ini menjadi kepingan-kepingan lebih kecil. Namun gaya gravitasi tersebut bakal cukup mampu untuk menggeser orbit komet Siding-Spring. Sehingga periodenya diprediksikan bakal memendek menjadi sekitar 1 juta tahun.

Selain bagaimana partikel-partikel debu komet dan kepala komet bakal berdampak terhadap sebuah planet, peristiwa langit ini juga menyediakan kesempatan langka mempelajari komet secara langsung dari dekat seiring adanya lima wahana antariksa aktif di orbit Mars. Data-data yang bakal diperoleh akan sangat menambah pengetahuan kita tentang dunia per-komet-an. Ini melengkapi apa yang sedang diupayakan misi antariksa Rosetta di orbit inti komet Churyumov-Gerasimenko, meski dalam aspek yang sedikit berbeda.

Gambar 6. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Terbentuk kawah berdiameter 5,4 kilometer dengan kedalaman hampir 500 meter sehingga mampu menampung segenap bangunan monumental seperti Menara Eiffel dengan mudah. Sumber: DowntoEarth, 2014.

Gambar 6. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Terbentuk kawah berdiameter 5,4 kilometer dengan kedalaman hampir 500 meter sehingga mampu menampung segenap bangunan monumental seperti Menara Eiffel dengan mudah. Sumber: DowntoEarth, 2014.

Di atas semua itu, pengamatan mendetail akan peristiwa langit yang langka ini bakal turut membantu mengembangkan mitigasi menghadapi bencana kosmik tumbukan benda langit. Mari anggap terdapat sebuah komet hipotetis yang sifat-sifatnya sangat mirip dengan komet Siding-Spring ini, namun orbitnya berpotongan dengan orbit Bumi dan tepat sedang menuju ke Bumi. Jika massa jenis inti kometnya dianggap 1 gram per sentimeter kubik, maka dengan diameter 700 meter dan kecepatan 56 km/detik, tumbukan komet hipotetik ini dengan Bumi akan melubangi kerak Bumi dengan sebentuk kawah besar: diameter 5.400 meter dan kedalaman hampir 500 meter. Saat komet tepat mencium Bumi, akan terbentuk fireball (bola api tumbukan) bersuhu sangat panas (hingga 10.000 derajat Celcius) berukuran sekitar 13 kilometer. Bumi pun akan berguncang keras dengan magnitudo hingga 8 skala Richter. Energi kinetik yang terlepas dalam tumbukan ini pun sungguh luar biasa, mencapai 61.000 megaton TNT atau setara 3 juta bom nuklir Hiroshima yang diledakkan secara serempak.

Gambar 7. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Atas: gelombang kejutnya sanggup berdampak hingga sejauh Bandung, sementara sinar inframerahnya menghasilkan dampak termal hingga sejauh Lampung dan Jawa Tengah. Bawah: tsunami yang akan terbentuk apabila titik tumbuk komet hipotetik ini di tengah-tengah Samudera Indonesia (Hindia). Sumber: KillerAsteroids, 2014.

Gambar 7. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Atas: gelombang kejutnya sanggup berdampak hingga sejauh Bandung, sementara sinar inframerahnya menghasilkan dampak termal hingga sejauh Lampung dan Jawa Tengah. Bawah: tsunami yang akan terbentuk apabila titik tumbuk komet hipotetik ini di tengah-tengah Samudera Indonesia (Hindia). Sumber: KillerAsteroids, 2014.

Andaikata komet hipotetik ini jatuh di kawasan Monas (Jakarta), maka bola api tumbukannya akan tumbuh dan berkembang demikian rupa menjadi gelombang kejut. Kekuatan gelombang kejutnya sanggup merontokkan bangunan beton hingga sejauh Merak di sebelah barat dan Karawang-Bandung di sebelah timur. Sinar inframerah berintensitas tinggi yang dihasilkannya sanggup menghasilkan luka bakar tingkat satu hingga kawasan Jawa Tengah di sebelah timur dan Lampung di sebelah barat. Dipindah kemanapun lokasi titik tumbuknya, dampaknya akan serupa. Sebaliknya andaikata komet hipotetik ini jatuh di tengah-tengah Samudera Indonesia (Hindia), tsunami setinggi minimal 7 meter akan menerpa segenap pesisir Asia selatan dan tenggara. Korban jiwa dan kerugian material yang berjatuhan tentu bakal tak terperi. Harus dicatat, itu semua merupakan dampak tumbukan komet hipotetik berdiameter ‘hanya’ 700 meter. Komet yang lebih besar tentu akan menghasilkan dampak berlipat ganda.

Semua itu memang hanya simulasi, meski memiliki basis latar belakang ilmiah yang cukup kuat. Bagaimana melindungi umat manusia dari bencana kosmik yang mengerikan semacam itu menjadi salah satu sasaran yang ingin dicapai ilmu pengetahuan dan teknologi termutakhir. Harapannya agar umat manusia bisa melanjutkan peradabannya hingga batas kemampuannya. Dan agar kita tak senaas kawanan dinosaurus, yang punah secara besar-besaran pada 65 juta tahun silam dilumat dampak global tumbukan benda langit seukuran Gunung Everest.

Perhatian:

Pemilihan kawasan Monas (Jakarta) sebagai lokasi titik tumbuk komet hipotetik di atas hanyalah pemisalan. Ia dapat digantikan oleh tempat-tempat lainnya dimanapun di permukaan Bumi sepanjang berada di daratan.

Referensi :

Zurek. 2014. Comet C/2013 A1 Siding-Spring, Comet Environment Modeling. NASA Jet Propulsion Laboratory, 6 Juni 2014.

Menelisik Letusan Krakatau 15 Abad Silam, Letusan yang Memisahkan Pulau Jawa dan Sumatra?

Selat sempit itu mirip benar dengan segitiga raksasa kala dilihat dari ketinggian udara. Saat itu, di dekat puncak segitiga ini berdiri kokoh sebuah gunung berapi. Ia tegak menjulang perkasa seakan memaku buana. Tubuhnya (mungkin) demikian besarnya sehingga kakinya membentang begitu lebar, nyaris menutup seluruh perairan laut yang ada di sana. Tak heran jika gunung berapi besar ini ibarat jembatan penyatu dua pulau besar itu, yang semula dipisahkan oleh selat sempit tersebut. Orang bisa menyeberang dari satu pulau ke pulau yang lain dengan berjalan menyusuri kaki gunung. Selat itu pun seakan berubah menjadi sebuah teluk nan besar.

Namun semuanya berubah total di suatu ketika 15 abad silam. Berawal dari getaran demi getaran yang terus mengguncang,disusul asap mengepul dari puncak sang gunung dan lama-kelamaan kian memekat, maka tibalah saat gunung berapi itu mempertontonkan kedahsyatannya. Letusan sangat dahsyat pun terjadilah. Pada puncak letusannya, sekitar 400.000 meter kubik magma disemburkan gunung berapi dalam setiap detiknya. Maka setiap detiknya gunung itu memuntahkan magma dalam jumlah yang cukup untuk mengisi 17.000 mobil tanki bahan bakar berkapasitas 24.000 liter. Uap panas, gas vulkanik nan mencekik, bebatuan membara dan debu vulkanik pekat disemburkan hingga ketinggian berpuluh kilometer ke atmosfer. Sebagian diantaranya berjatuhan kembali ke Bumi, menggelapkan langit kedua pulau besar yang ada didekatnya. Sebagian lagi melayang di dalam lapisan stratosfer dan memicu efek dramatik yang terasa dampaknya di segenap penjuru permukaan Bumi dalam jangka panjang. Bersamaan dengan gelap pekatnya langit kedua pulau besar didekatnya, tubuh gunung pun mulai ambruk ke dasar laut. Gelora raksasa pun tercipta, dengan tinggi luar biasa saat tiba di pesisir sehingga mampu menerjang berkilo-kilometer ke daratan. Gelora raksasa segera menyapu bersih apa dan siapa saja yang dilintasinya.

Gambar 1. Panorama Kepulauan Krakatau yang ikonik. Gundukan di latar depan adalah Gunung Anak Krakatau, dengan leleran lava produk letusan tahun 1975 yang telah membeku di bagian kanan bawah. Jauh di latar belakang terlihat pulau Rakata, yang adalah salah satu titik tertinggi dinding kaldera Letusan Krakatau 1883 yang mencuat di atas permukaan Laut. Kepulauan Krakatau mendunia lewat letusan dahsyatnya di tahun 1883. Namun jejak-jejak lapisan debu tebal yang tersingkap di berbagai pulau di kepulauan ini menunjukkan bahwa gunung berapi ini telah meletus dahsyat lebih dari sekali sepanjang sejarahnya. Sumber: Direktorat Vulkanologi (kini PVMBG), 1979.

Gambar 1. Panorama Kepulauan Krakatau yang ikonik. Gundukan di latar depan adalah Gunung Anak Krakatau, dengan leleran lava produk letusan tahun 1975 yang telah membeku di bagian kanan bawah. Jauh di latar belakang terlihat pulau Rakata, yang adalah salah satu titik tertinggi dinding kaldera Letusan Krakatau 1883 yang mencuat di atas permukaan Laut. Kepulauan Krakatau mendunia lewat letusan dahsyatnya di tahun 1883. Namun jejak-jejak lapisan debu tebal yang tersingkap di berbagai pulau di kepulauan ini menunjukkan bahwa gunung berapi ini telah meletus dahsyat lebih dari sekali sepanjang sejarahnya. Sumber: Direktorat Vulkanologi (kini PVMBG), 1979.

Begitu klimaks drama menggidikkan ini usai, pemandangan baru pun tersaji sudah. Gunung berapi besar itu lenyap hampir sepenuhnya. Apa yang semula menjadi tempat berdirinya gundukan tinggi besar ibarat paku buana itu pun kini berganti total menjadi pemandangan samudera. Dua pulau besar itu pun kembali terpisahkan. Tak ada lagi jembatan alamiah yang menjadi penghubung keduanya seperti sedia kala. Di kemudian hari salah satu pulau besar itu dikenal sebagai pulau Jawa, sementara pulau lainnya adalah pulau Sumatra. Dan kelak di kemudian hari, di tengah-tengah perairan dimana gunung berapi besar itu dahulu pernah ada, tumbuh sebentuk gunung berapi lainnya meski dimensinya jauh lebih kecil. Kelak kita mengenalnya sebagai Gunung Krakatau.

Petaka

Siapa yang tak kenal dengan Gunung Krakatau? Walaupun ia hanyalah sebentuk gundukan kecil mungil berasap di tengah-tengah keluasan perairan Selat Sunda, namun namanya sungguh meraksasa. Apalagi jika bukan karena Letusan Krakatau 1883 yang demikian menggetarkan. Letusan yang baru kita peringati kejadiannya untuk ke-131 kalinya di Agustus 2014 ini. Namun amukan Gunung Krakatau di tahun 1883 itu sejatinya bukanlah letusan terbesar yang pernah dialami si gunung lasak ini sepanjang sejarahnya.

Kala ilmu kegunungapian terus berkembang hingga menjadi seperti sekarang, para ahli kegunungapian pun berdatangan ke sudut-sudut kepulauan Krakatau ini. Mereka mengabadikan, menganalisis dan mendokumentasikan setiap singkapan bebatuan yang ada. Kini kita tahu bahwa lapisan-lapisan debu vulkanik yang bertumpukan di kepulauan ini menunjukkan betapa dalam setidaknya 8.000 tahun terakhir, gunung ini telah meletus dahsyat sebanyak sedikitnya tiga kali. Kedahsyatan tersebut tecermin lewat eksistensi tiga lapisan debu vulkanik yang cukup tebal dibanding lapisan-lapisan sejenis lainnya. Pada dasarnya semakin tebal lapisan debu vulkaniknya maka semakin besar pula skala letusannya.

Lapisan debu tebal teratas merupakan lapisan yang termuda yang dihasilkan Letusan Krakatau 1883. Namun letusan itu, yang dahsyatnya tak kepalang untuk ukuran manusia modern itu, sejatinya merupakan letusan terkecil dari ketiga letusan dahsyat dalam sejarah Krakatau. Peringkat kedua ditempati oleh Letusan Krakatau 1215, yang terjadi pada tahun 1215 berdasarkan pertanggalan radioaktif pada batang/ranting kayu yang mengarang (menjadi arang) di dalam lapisan debunya. Skala letusannya mungkin setara dengan letusan 1883, yakni sama-sama menempati 6 VEI (Volcanic Explosivity Index). Meski berdasarkan ketebalan lapisan debunya, Letusan Krakatau 1215 nampaknya menyemburkan material letusan dalam jumlah sedikit lebih besar ketimbang Letusan Krakatau 1883. Dan pemuncaknya adalah letusan sangat dahsyat yang menghasilkan lapisan debu demikian tebal, hingga setebal 25 meter. Belum ada sisa kayu yang telah mengarang yang berhasil dijumpai pada lapisan debu tebal ini, sehingga letusan pembentuknya terjadi belum bisa ditentukan berdasarkan teknik pertanggalan karbon radioaktif. Berdasarkan ketebalan debunya, letusan ini diperkirakan memiliki skala 7 VEI. Sejauh ini hanya Letusan Tambora 1815 dan Letusan Samalas (Rinjani) 1257 yang menyamai skala letusannya.

Gambar 2. Kiri: singkapan lapisan-lapisan debu tebal produk letusan dahsyat pada terbing terjal di salah satu sudut Kepulauan Krakatau. Nampak lapisan debu setebal 25 meter yang diduga merupakan produk letusan sangat dahsyat di abad ke-6. Kanan: vulkanolog Haraldur Sigurdsson nampak sedang menuruni tebing terjal itu guna menyelidiki lebih lanjut. Sumber: Wohletz, 2000.

Gambar 2. Kiri: singkapan lapisan-lapisan debu tebal produk letusan dahsyat pada terbing terjal di salah satu sudut Kepulauan Krakatau. Nampak lapisan debu setebal 25 meter yang diduga merupakan produk letusan sangat dahsyat di abad ke-6. Kanan: vulkanolog Haraldur Sigurdsson nampak sedang menuruni tebing terjal itu guna menyelidiki lebih lanjut. Sumber: Wohletz, 2000.

Tengara akan letusan sangat dahsyat yang membentuk lapisan debu setebal hingga 25 meter itu nampaknya datang dari sumber tertulis nan jauh di luar kepulauan Nusantara. Tepatnya di Cina. Sebuah berita Cina, yakni kronik Nan Shi, mencatat suara gemuruh mirip guntur di kejauhan yang terdengar dari barat daya pada suatu waktu di tahun 535. Peristiwa ini merupakan awal dari malapetaka besar yang menghantam imperium Cina sepanjang tahun 536-537. Kronik yang sama menuturkan betapa pada titimangsa Desember 536, debu kuning pekat mengguyur daratan di seluruh wilayah kekaisaran laksana hujan salju. Lantas sepanjang bulan Juli dan Agustus tahun berikutnya, udara membeku dan salju turun dengan derasnya di tengah-tengah masa yang seharusnya merupakan musim panas. Kronik Bei Shi pun mencatat hal senada. Akibatnya lahan pertanian pun hancur membuat produksi pangan merosot drastis. Kelaparan pun segera merebak dimana-mana dan merenggut korban-korbannya dalam jumlah sangat besar. Demikian parah situasinya sehingga kaisar sampai memberlakukan dekrit pengampunan pajak.

Namun petaka besar di tahun 535-536 itu ternyata tak hanya melanda Cina. Di Semenanjung Korea bagian utara, kerajaan Koguryo pun berjuang hidup mati mempertahankan diri setelah mendadak dihantam banjir besar. Banjir besar yang salah musim itu segera disusul dengan merebaknya wabah penyakit. Nada pesimisme yang sama juga dijumpai di Kepulauan Jepang lewat kronik Nihon Shoki. Kronik itu menuturkan betapa terjadi perubahan cuaca yang tak biasa yang disusul hancurnya lahan pertanian.

Tak hanya di Cina, Korea dan Jepang, malapetaka sejenis ternyata juga tercatat di kawasan pesisir Laut Tengah (Mediterania). Seorang uskup John dari Efesus (kini bagian dari Turki) menuliskan dalam kroniknya berapa pemandangan aneh terjadi di langit, saat Matahari seakan–akan kehilangan kecerahannya hingga hanya sedikit lebih terang saja dibanding Bulan. Situasi ini bertahan hingga 18 bulan lamanya. Bersamaan dengannya terjadi kelaparan besar menyusul hancurnya lahan pertanian akibat cuaca ekstrim yang salam musim. Tak hanya kelaparan yang melanda, wabah penyakit sampar (pes) pun bergentayangan mencari korban-korbannya. Hal senada juga diutarakan senator Cassiodorus di imperium Romawi pada saat yang hampir sama.

Gambar 3. Lokasi dimana terdapat catatan sejarah setempat terkait peristiwa dramatis di tahun 535, beserta data-data kronologis yang berhasil digali dari analisis lingkaran tahun kayu-kayu tua, sedimen dasar danau dan lembaran-lembaran es. Semua menunjukkan adanya gangguan iklim dramatis selama beberapa tahun, yang secara alamiah lebih mungkin disebabkan oleh letusan gunung berapi yang sangat dahsyat. Sumber: Sudibyo, 2014 dengan data dari Wohletz, 2000.

Gambar 3. Lokasi dimana terdapat catatan sejarah setempat terkait peristiwa dramatis di tahun 535, beserta data-data kronologis yang berhasil digali dari analisis lingkaran tahun kayu-kayu tua, sedimen dasar danau dan lembaran-lembaran es. Semua menunjukkan adanya gangguan iklim dramatis selama beberapa tahun, yang secara alamiah lebih mungkin disebabkan oleh letusan gunung berapi yang sangat dahsyat. Sumber: Sudibyo, 2014 dengan data dari Wohletz, 2000.

Bagi Eropa dan Asia, peristiwa aneh di tahun 535-536 ini adalah momen yang mengantarkan peradaban mereka memasuki abad kegelapan. Kekuasaan imperium Romawi mulai melemah sehingga sebagian wilayahnya mulai diambil-alih suku-suku Jermania nan perkasa yang bermigrasi dari Mongolia akibat bencana kelaparan. Pada saat yang sama peradaban Kristen Arian (rival terbesar Katolik Roma) pun berakhir secara misterius. Di Jazirah Arabia bagian selatan, peristiwa aneh itu memperparah situasi dalam peradaban Himyarit yang telah melemah seiring bobolnya bendungan Ma’rib. Kelaparan berkepanjangan dan wabah sampar kian melemahkannya hingga pada puncaknya mengambrukkan peradaban itu. Sampar semula hanya terkonsentrasi di Afrika timur. Namun kekeringan dahsyat menyebabkan populasi tikus merajalela tanpa bisa dikontrol lagi oleh para predatornya yang keburu mati kelaparan. Tikus-tikus pembawa kutu-kutu inang sampar selanjutnya memasuki pelabuhan–pelabuhan di pesisir Afrika timur dan terbawa armada kapal dagang yang berlayar melintasi Laut Merah dan terusan Trajanus ke Laut Tengah. Dengan cara inilah wabah sampar bergentayangan hingga mencapai Arabia selatan, Mediterania dan bahkan kepulauan Inggris serta lembah Mesopotamia.

Data

Baiklah, semua itu adalah catatan sejarah. Dan sejarah kerap bersifat multitafsir kala dipandang kembali dari masa yang lebih kemudian, dari zaman yang telah berubah. Namun bagaimana dengan catatan-catatan yang lebih independen, yakni jejak-jejak yang tak terkotori campur tangan manusia?

Petunjuk menarik datang dari lingkaran tahunan di dalam batang-batang kayu yang sangat tua. Lingkaran tahunan adalah lapisan kambium yang telah menjadi lapisan kayu pada tumbuhan berkayu keras. Sifat lapisan kambium ini khas, dimana tebal tipisnya dipengaruhi oleh normal tidaknya kehidupan tumbuhan bersangkutan terkait banyak sedikitnya jumlah air dan pencahayaan Matahari yang bisa diserap. Pada dasarnya berkurangnya jumlah air dan penyinaran Matahari akan menghasilkan lapisan kayu lebih tipis, demikian sebaliknya.

Analisis yang telah dilakukan terhadap lingkaran tahunan kayu-kayu tua di daratan Irlandia menunjukkan pada abad ke-6 dijumpai lapisan-lapisan kayu yang lebih tipis, terjadi semenjak tahun 535 dan berlangsung hingga 10 tahun kemudian. Analisis perbandingan dengan kayu-kayu tua di tempat lainnya menunjukkan fenomena ini bukanlah khas Irlandia semata. Sebab dijumpai pula di bagian Eropa lainnya seperti Swedia barat laut, Finlandia utara, Semenanjung Yamal (Rusia), Yunani dan Polandia. Juga didapati di daratan Amerika utara seperti di Sierra Nevada dan Carolina utara, maupun di Amerika selatan seperti di Chile selatan dan Argentina selatan. Bahkan di tempat sejauh dan seterpencil Tasmania (Australia) juga dijumpai hal serupa. Maka dapat dikatakan bahwa pasca tahun 535 hingga beberapa tahun kemudian iklim Bumi secara umum mengalami gangguan lumayan berat, sehingga jumlah air (dalam wujud curah hujan) merosot drastis bersamaan dengan berkurangnya penyinaran Matahari.

Gambar 4. Atas: dinamika ketebalan lingkaran kayu pada lingkaran tahunan kayu-kayu tua yang berhasil diekstrak dari Siberia (Rusia), Finlandia dan Swedia dalam rentang kronologi sejak tahun 1 hingga 1997. Garis merah menunjukkan lapisan kayu dari tahun 535 hingga beberapa tahun kemudian, nampak memiliki ketebalan paling kecil dibanding yang lain. Bawah:  dinamika kadar asam sulfat yang berhasil diekstrak dari lembaran es di proyek pengeboran GRIP (Greenland). Kadara asam sulfat tertinggi adalah pada tahun 535 hingga beberapa tahun kemudian (ditunjukkan dengan pensil). Sumber: Wohletz, 2000.

Gambar 4. Atas: dinamika ketebalan lingkaran kayu pada lingkaran tahunan kayu-kayu tua yang berhasil diekstrak dari Siberia (Rusia), Finlandia dan Swedia dalam rentang kronologi sejak tahun 1 hingga 1997. Garis merah menunjukkan lapisan kayu dari tahun 535 hingga beberapa tahun kemudian, nampak memiliki ketebalan paling kecil dibanding yang lain. Bawah:dinamika kadar asam sulfat yang berhasil diekstrak dari lembaran es di proyek pengeboran GRIP (Greenland). Kadara asam sulfat tertinggi adalah pada tahun 535 hingga beberapa tahun kemudian (ditunjukkan dengan pensil). Sumber: Wohletz, 2000.

Petunjuk lain gangguan iklim Bumi pada saat itu datang dari dasar sejumlah danau di berbagai penjuru. Sebuah danau mendapatkan airnya dari kawasan tangkapan air yang ada disekitarnya. Kala hujan mengguyur, air jatuh ke kawasan ini sembari menyeret partikel-partikel tumbuhan (umumnya bulir serbuk sari) lantas mengalir ke danau melalui alur parit-parit kecil dengan membawa serta partikel-partikel tanah. Seluruh partikel itu lalu diendapkan di dasar danau dan pengendapan berlangsungs ecara berkesinambungan. Pada saat gangguan iklim terjadi, berkurangnya curah hujan akan membuat tumbuh-tumbuhan hidup di bawah normal. Sehingga jumlah serbuk sari yang diproduksinya akan menyusut, pun demikian serbuk sari yang mengendap di dasar danau. Pengeboran terhadap dasar danau-danau di benua Amerika seperti danau Titicaca dan Marcachoca (keduanya di Amerika selatan) serta danau Chichancanab dan Punta Laguna (keduanya di Amerika tengah) memperlihatkan gejala itu. Dibantu dengan teknik pertanggalan radioaktif, maka terkuak bahwa mulai tahun 535 hingga beberapa tahun kemudian jumlah serbuk sari yang mengendap di dasar danau jauh lebih sedikit dibanding sebelumnya maupun sesudahnya. Hal ini menunjukkan dengan jelas terjadinya gangguan iklim Bumi, terutama lewat menurunnya jumlah curah hujan.

Baiklah, dari data lingkaran tahunan di kayu-kayu tua dan endapan dasar danau tersebut, kita tahu ada sesuatu yang terjadi di tahun 535 yang dampaknya menghantam sistem iklim Bumi dengan begitu telak. Namun apa penyebabnya? Di sinilah kita berhutang kepada para ahli glasiologi, yang bertekun diri menantang bahaya pergi ke tempat-tempat terpencil yang sangat dingin baik, di kawasan kutub maupun di pucuk-pucuk pegunungan bersalju. Bukan untuk berwisata maupun memompa adrenalin sekuat tenaga, namun untuk mengebor lembaran-lembaran es di sana dan membawanya pulang ke laboratorium berpendingin khusus. Lapisan-lapisan es pada dasarnya terbentuk dari guyuran hujan salju yang terus terakumulasi selama bertahun-tahun. Saat jatuh ke Bumi, butir-butir salju membawa serta partikulat dan gas apapun yang ada di udara pada saat itu. Maka es beku dalam lembaran-lembaran es dimanapun berada sejatinya memuat informasi tentang apa yang dialami atmosfer Bumi kita hingga kurun waktu ribuan atau bahkan puluhan ribu tahun silam.

Saat lembaran–lembaran es di Greenland (lewat proyek GRIP dan Dye 3) serta Antartika (lewat proyek Byrd) dibor, analisisnya menghasilkan temuan menarik yang terkait langsung peristiwa tahun 535. Dengan dibantu teknik pertanggalan karbon radioaktif, diketahui bahwa pada lapisan es yang berasal dari tahun 535 terkandung asam sulfat dalam jumlah besar, yang mencapai 5 kali lipat di atas normal. Asam sulfat umum dijumpai dalam atmosfer Bumi dalam wujud aerosol sebagai produk aktivitas vulkanisme. Namun kadar asam sulfat yang sangat besar menandakan terjadi sesuatu yang di luar kebiasaan, baik berupa letusan gunung berapi yang dahsyat maupun tumbukan benda langit (komet atau asteroid) yang cukup besar. Kadar asam sulfat dari tahun 535 itu adalah yang tertinggi sepanjang 2.000 tahun terakhir. Ia masih lebih tinggi dibanding kadar asam sulfat dari tahun 1815 (produk Letusan Tambora 1815), apalagi dari tahun 1883 (produk Letusan Krakatau 1883). Belakangan pengeboran lembaran es di gletser Quelccaya di Pegunungan Andes (Amerika selatan) juga menjumpai hal senada. Bahwa lonjakan asam sulfat itu dijumpai baik di lingkaran kutub utara (yakni di Greenland) maupun selatan (yakni Antartika) menandakan bahwa peristiwa yang menjadi penyebabnya haruslah berlokasi di kawasan khatulistiwa’ dan sekitarnya.

Saat semua data tersebut dibandingkan dengan catatan sejarah, terkuaklah sebuah fakta: terjadi sebuah peristiwa di luar normal (entah dalam wujud letusan gunung berapi yang sangat dahsyat ataupun tumbukan benda langit) mengambil tempat di kepulauan Nusantara, khususnya yang berada di arah barat daya dari Nanking/Nanjing (ibukota imperium Cina di abad ke-6 dan tempat kronik Nan shi ditulis). Peristiwa itu menghembuskan partikulat debu dalam jumlah sangat banyak ke atmosfer hingga demikian tinggi untuk kemudian terdistribusi ke segenap penjuru lapisan stratosfer. Maka tercipta lapisan debu bercampur aerosol asam sulfat, entah sebagai tabir surya vulkanik maupun tabir surya tumbukan, yang berkemampuan sangat efektif dalam mereduksi pancaran sinar Matahari yang seharusnya dihantarkan ke permukaan Bumi tanpa gangguan.

Maka Matahari pun nampak seakan-akan lebih redup. Penurunan suhu rata-rata permukaan Bumi pun terjadilah. Es meluas dimana-mana. Produksi uap air secara umum berkurang sehingga curah hujan pun turut berkurang. Iklim jadi kacau. Akibatnya lahan pertanian hancur. Produksi tanaman pangan merosot drastis, membuat dunia kelaparan. Suhu udara yang lebih dingin dan orang-orang yang daya tahan tubuhnya menurun (akibat kelaparan) memudahkan bakteri patogen menyebar melampaui area tradisionalnya. Maka abad kegelapan pun terjadilah. Tak sulit membayangkan bahwa jutaan orang, angka yang sangat signifikan bagi populasi penduduk Bumi masa itu, meregang nyawa menjadi korbannya. Tak heran jika ada yang berpendapat, surga seakan sedang menjauh dari dunia. Murka-Nya seakan sedang menjelma.

Simulasi

Bagian kepulauan Nusantara yang berada di arah barat daya dari kota Nanking mencakup pulau Sumatra dan Jawa serta pulau-pulau kecil disekitarnya sekarang. Sampai saat ini di kawasan ini belum dijumpai eksistensi kawah produk tumbukan benda langit, khususnya yang berasal dari abad ke-6. Sehingga penyebab peristiwa di tahun 535 itu lebih mungkin adalah letusan gunung berapi sanga dahsyat. Pulau Sumatra dan Jawa memang dipadati oleh gunung-gemunung berapi aktif. Namun saat kita mencari gunung berapi mana yang meletus demikian dahsyatnya di abad ke-6, telunjuk akan terarah ke satu titik: Gunung Krakatau.

Letusan Krakatau di abad ke-6 merupakan letusan yang paling samar datanya. Ada lapisan debu sangat tebal (setebal 25 meter) yang tertinggal di kepulauan Krakatau, namun belum bisa diketahui umurnya mengingat tiadanya jejak kayu yang mengarang yang bisa digunakan untuk penentuan umur dengan teknik pertanggalan karbon radioaktif. Di sisi lain, data sejarah memperlihatkan adanya keterputusan peradaban di abad ke-6, yang ditandai dengan punahnya kebudayaan Pasemah (Lampung) dan Aruteun/Holotan (Jawa Barat). Di luar Indonesia, sejumlah peradaban juga diketahui berakhir kala memasuki abad ke-6, misalnya Beikthano (Myanmar), peradaban pantai barat Malaya (Malaysia) dan peradaban Oc Eo (Kampuchea). Ada banyak faktor yang menyebabkan sebuah peradaban berakhir. Dan letusan dahsyat gunung berapi dapat menjadi salah satu faktornya, seperti terlihat pada berakhirnya peradaban Papekat dan Tambora di pulau Sumbawa akibat Letusan Tambora 1815.

Ada sebuah karya sastra klasik di tanah Jawa yang samar-samar menyajikan penggambaran mencekam akan peristiwa letusan dahsyat sebuah gunung berapi di masa silam. Yakni kitab Pustaka Raja Purwa, yang ditulis oleh R Ng (Raden Ngabehi) Ranggawarsita sang pujangga besar terakhir di tanah Jawa pada 1869 di istana Kasunanan Surakarta. Kitab ini sejatinya merupakan kumpulan cerita yang berakar dari kitab Mahabharata dan Ramayana nan tersohor. Sehingag kisah-kisah didalamnya berakar dari awal milenium di tanah India, dengan beberapa bagiannya telah dimodifikasi agar sesuai dengan situasi tanah Jawa. Di salah satu bagian kitab yang menjadi acuan para dalang wayang kulit itu tersurat kisah menggetarkan. Tertera, betapa pada suatu waktu bumi Jawa dikejutkan oleh dentuman keras melebihi halilintar yang datang dari arah Gunung Batuwara dan Gunung Kapi. Tanah pun bergetar keras yang segera diikuti amukan petir dan halilintar. Suasana menjadi gulita bahkan meski di siang hari. Hujan mengguyur sangat deras. Dan beberapa saat kemudian air bah yang tak biasa pun menggenang hebat, menjalar dari Gunung Kapi di barat hingga Gunung Kamula di timur. Setelah semua itu usai, Jawa terpisah dari Sumatra.

Gunung Batuwara kini kita kenal sebagai Gunung Pulosari, salah satu gunung berapi anak di lingkungan kaldera Dano (Banten). Gunung Kapi terletak di sisi barat Gunung Batuwara. Hanya ada satu gunung berapi yang sesuai dengan ciri-ciri Gunung Kapi ini, yakni Gunung Krakatau.

Baik, mari anggap Gunung Krakatau menjadi biang keladi perubahan iklim dramatis di tahun 535, yang menggiring segenap dunia berperadaban menuju ke abad kegelapan lewat letusan sangat dahsyatnya. Nah seberapa besar letusan tersebut?

Gambar 5. Peta kedalaman dasar Selat Sunda berdasar arsip Angkatan Laut Inggris di era perang Napoleon, dipadukan dengan peta topografi daratan Sumatra dan Jawa. Nampak cekungan nyaris membulat selebar sekitar 50 km yang diduga adalah kaldera raksasa produk Letusan Krakatau Purba. Sumber: Wohletz, 2000.

Gambar 5. Peta kedalaman dasar Selat Sunda berdasar arsip Angkatan Laut Inggris di era perang Napoleon, dipadukan dengan peta topografi daratan Sumatra dan Jawa. Nampak cekungan nyaris membulat selebar sekitar 50 km yang diduga adalah kaldera raksasa produk Letusan Krakatau Purba. Sumber: Wohletz, 2000.

Inilah yang ditelusuri seorang Ken Wohletz, ahli kegunungapian (vulkanolog) di Laboratorium Nasional Los Alamos (Amerika Serikat), tempat senjata nuklir pertama dirakit dan diledakkan. Para ahli kegunungapian pada umumnya telah dapat menerima bahwa apa yang kini kita kenal sebagai Kepulauan Krakatau sejatinya merupakan relik (sisa) dari Gunung Krakatau Purba yang demikian besar. Gunung tersebut mungkin menjulang setinggi hingga 2.000 meter dari permukaan laut dengan bentangan kakinya melampar hingga selebar 12 km. Letusan sangat dahsyat di masa silam melenyapkan hampir seluruh tubuhnya dan membentuk kaldera berdiameter sekitar 7 km. Sebagian dinding kaldera yang masih tersembul di atas Selat Sunda sebagai pulau Rakata, Sertung dan Panjang. Pada satu titik di pulau Rakata, kelak di kemudian hari tumbuh Gunung Krakatau yang pada klimaksnya berkembang membesar dengan tiga puncak utamanya: Rakata, Danan dan Perbuwatan. Pasca letusan 1883, seluruh tubuh Gunung Krakatau lenyap menjadi kaldera, kecuali sebagian pulau Rakata. Di tengah-tengah kaldera letusan 1883 inilah tumbuh Gunung Anak Krakatau yang kita kenal sekarang.

Tapi menurut Wohletz, ukuran Gunung Krakatau Purba mungkin lebih besar. Merujuk peta kedalaman Selat Sunda dalam arsip Angkatan Laut Inggris yang berasal dari masa pendudukan di tanah Jawa pada era perang Napoleon, Wohletz mendapati adanya cekungan besar (bergaris tengah sekitar 50 km). Cekungan ini dipagari oleh Kepulauan Krakatau, pulau Sebesi, pulau Sebuku, kaki Gunung Rajabasa dan pulau Sangiang. Jejak tepian cekungan ini di Pulau Sangiang nampak sebagai tebing terjal yang menyayat sebagian tubuh gunung berapi purba pembentuk pulau itu. Terletak tepat di lokasi gunung berapi aktif, tafsiran terbaik akan eksistensi cekungan ini adalah kemungkinan besar merupakan kaldera, lubang besar yang ditinggalkan di permukaan Bumi (dalam hal ini di dasar Selat Sunda) akibat letusan yang teramat dahsyat. Jika kalderanya sebesar ini maka jelas Gunung Krakatau Purba bertubuh jauh lebih besar. Kaki gunungnya mungkin membentang hingga mencakup area berdiameter 50 km atau lebih. Ketinggiannya nampaknya melebihi tinggi Gunung Rajabasa (1.281 meter dpl), mungkin hingga setinggi 3.000 meter atau bahkan lebih.

Gambar 6. Tebing terjal di Pulau Sangiang, yang secara menakjubkan memperlihatkan penampang bagian puncak gunung berapi purba dengan dua kawahnya. Tebing terjal ini kemungkinan merupakan salah satu titik tertinggi dari (dugaan) dinding kaldera raksasa Krakatau Purba yang lebarnya sekitar 50 km. Sumber: Bronto, 2012.

Gambar 6. Tebing terjal di Pulau Sangiang, yang secara menakjubkan memperlihatkan penampang bagian puncak gunung berapi purba dengan dua kawahnya. Tebing terjal ini kemungkinan merupakan salah satu titik tertinggi dari (dugaan) dinding kaldera raksasa Krakatau Purba yang lebarnya sekitar 50 km. Sumber: Bronto, 2012.

Agar sebuah gunung sebesar ini bisa ambruk dan lenyap menjadi kaldera yang berada di bawah permukaan laut, maka harus terjadi subsidens (amblesan) sebesar sekitar 100 meter. Subsidens ini disebabkan oleh kosongnya kantung magma dangkal di dasar gunung seiring dimuntahkannya magma secara besar-besaran dalam letusan yang sangat dahsyat. Jika dianggap diameter kantung magma dangkal tersebut sekitar 50 km, maka subsidens sebesar 100 meter ini hanya bisa disebabkan oleh tersemburnya magma menjadi rempah letusan sebanyak sekitar 200 kilometer kubik (200.000 juta meter kubik).

Lewat program komputer Erupt3 yang dikembangkannya, Wohletz pun telah menyimulasikan sejumlah aspek dalam letusan dahsyat tersebut, dengan bersandar pada beberapa anggapan. Sebelum meletus dahsyat, tubuh Gunung Krakatau Purba demikian besar sehingga menyembul ke atas permukaan Selat Sunda sebagai pulau vulkanis. Pulau ini demikian besar sehingga menutupi hampir seluruh bagian perairan Selat Sunda yang membentang di antara kaki Gunung Rajabasa (Sumatra) hingga Anyer (Jawa). Sebagai gunung berapi laut, perilaku Gunung Krakatau Purba sangat dipengaruhi berlimpahnya air laut yang mengepungnya dari segenap penjuru. Saat letusan mulai terjadi rempah letusan disemburkan Gunung Krakatau Purba hingga setinggi sekitar 20 km dari paras Selat Sunda, sebagai erupsi freatik. Erupsi freatik ini terjadi saat magma segar yang sedang mendesak naik mulai bertemu dengan air laut yang meresap di dalam tubuh gunung, menghasilkan uap panas bertekanan tinggi yang lantas mendobrak titik lemah di sekitar puncak. Tersemburlah uap air bersama debu vulkanik dari magma tua yang sudah membatu.

Erupsi freatik menciptakan lubang letusan, memperlebarnya dan mengawali retak-retak ke segenap arah hingga mulai melemahkan kekuatan batuan penyusun tubuh gunung. Kekuatan yang melemah memungkinkan magma mulai tersembur, lama-kelamaan dalam jumlah kian membesar dan bertekanan sangat tinggi. Terjadilah erupsi magmatik dalam tipe erupsi ultraplinian. Menyeruak dengan suhu sekitar 900 derajat Celcius, magma yang keluar sebagai batuapung dan debu vulkanik melesat dengan kecepatan awal sangat tinggi, sekitar dua kali lipat kecepatan suara, kala terlepas dari lubang letusan. Akibatnya mereka tersembur hingga setinggi 50 km dari paras selat Sunda dan lantas membentuk struktur menyerupai cendawan raksasa, untuk kemudian berjatuhan kembali ke Bumi. Hujan debu vulkanik pekat dan batuapung mengguyur deras hingga radius sekitar 60 km dari lubang letusan.

Gambar 7. Salah satu hasil simulasi program Erupt3 tentang karakter (kemungkinan) Letusan Krakatau Purba 535. Atas: saat letusan hendak mencapai puncaknya sebagai tipe ultraplinian yang menyemburkan material setinggi 60 km dan membentuk awan cendawan raksasa. Bawah: klimaks letusan ditandai dengan letusan tipe freatoplinian akbar dengan semburan material setinggi  30 km dan membentuk awan panas. Kombinasi dua tipe letusan inilah yang membentuk kaldera selebar 50 km dengan memuntahkan 200 kilometer kubik magma. Sumber: Wohletz, 2000.

Gambar 7. Salah satu hasil simulasi program Erupt3 tentang karakter (kemungkinan) Letusan Krakatau Purba 535. Atas: saat letusan hendak mencapai puncaknya sebagai tipe ultraplinian yang menyemburkan material setinggi 60 km dan membentuk awan cendawan raksasa. Bawah: klimaks letusan ditandai dengan letusan tipe freatoplinian akbar dengan semburan material setinggi 30 km dan membentuk awan panas. Kombinasi dua tipe letusan inilah yang membentuk kaldera selebar 50 km dengan memuntahkan 200 kilometer kubik magma. Sumber: Wohletz, 2000.

Pengeluaran magma secara besar-besaran dalam tahap ini membuat kantung magma dangkal di dasar gunung mulai terkosongkan. Bobot tubuh gunung yang sangat besar membuat retak-retak di sekujur tubuhnya kian bertambah. Subsidens pun mulai terjadi. membuat kian banyak saja air laut yang merasuk. Pada saat yang sama tubuh gunung yang kian melemah memungkinkannya memuntahkan magma dalam jumlah lebih besar. Maka klimaks letusan pun terjadilah, saat air laut bercampur langsung dengan magma panas membara membentuk erupsi bertipe freatoplinian akbar. Gelegar suara letusannya terdengar jauh hingga ke daratan Cina. Setiap detiknya gunung ini memuntahkan sekitar 400.000 meter kubik magma yang membentuk debu, lapili (kerikil), bom vulkanik (bongkahan besar) dan batuapung. Rempah vulkanik yang lebih besar dan berat dari debu dan batuapung menyembur hingga ketinggian sekitar 30 km. Setelah membentuk struktur cendawan raksasa, rempah letusan ini pun berjatuhan kembali ke Bumi dalam kondisi masih cukup panas sehingga menjadi awan panas (piroklastika) letusan. Awan panas diperkirakan menjalar hingga sejauh 60 km dari lubang letusan memanggang benda apa saja yang dilewatinya. Setelah klimaks letusan terlampaui, intensitas letusan pun berkecenderungan menurun. Pada saat yang sama tubuh gunung pun terus menghancur dan melesak ke dalam laut membentuk kaldera. Air laut yang masih terus merasuk terus bercampur dengan sisa-sisa magma yang tak tersembur, menghasilkan semburan uap panas bertekanan tinggi bercampur debu vulkanik yang kembali menghambur hingga setinggi sekitar 20 km. Erupsi freatik ini menjadi bab penutup dari kedahsyatan letusan itu.

Dengan memuntahkan sekitar 200 kilometer kubik magma, Letusan Krakatau Purba adalah 25 % lebih besar ketimbang Letusan Tambora 1815 (volume magma 160 kilometer kubik) dan 10 kali lebih dahsyat dari Letusan Krakatau 1883 (volume magma 20 kilometer kubik). Lewat program Erupt3-nya, Wohletz menyimpulkan terkurasnya magma sebanyak itu menyebabkan Gunung Krakatau Purba mengalami subsidens dan mengubah topografinya secara dramatis. Hampir segenap tubuh gunung lenyap terbenam menjadi kaldera, kecuali sebagian kecil area puncak yang masih menyembul di atas permukaan Selat Sunda sebagai pulau kecil. Maka bentang lahan yang selama ini seakan menjembatani pulau Jawa dan Sumatra pun terputus sudah.

Gambar 8. Hasil simulasi program Erupt3 terkait (kemungkinan) perubahan topografi Gunung Krakatau Purba antara sebelum dan sesudah letusan dahsyatnya di tahun 535. Sebelum letusan, tubuh gunung merentang demikian lebar hingga berperan sebagai jembatan alamiah penghubung daratan pulau Sumatra dan Jawa. Setelah letusan, jembatan tersebut menghilang berganti dengan kaldera 50 km yang tergenangi air laut sebagai bagian dari Selat Sunda. Sumber: Wohletz, 2000.

Gambar 8. Hasil simulasi program Erupt3 terkait (kemungkinan) perubahan topografi Gunung Krakatau Purba antara sebelum dan sesudah letusan dahsyatnya di tahun 535. Sebelum letusan, tubuh gunung merentang demikian lebar hingga berperan sebagai jembatan alamiah penghubung daratan pulau Sumatra dan Jawa. Setelah letusan, jembatan tersebut menghilang berganti dengan kaldera 50 km yang tergenangi air laut sebagai bagian dari Selat Sunda. Sumber: Wohletz, 2000.

Letusan sangat dahsyat yang mengambil tempat di sebuah pulau vulkanis ini jelas membentuk gelora raksasa atau tsunami. Tsunami terbentuk seiring ambruknya tubuh gunung ke dasar laut bersamaan dengan hempasan awan panas yang menjalar di dasar laut. Seberapa besar daya hancur tsunaminya belum bisa diketahui. Di sisi lain, dampak letusan sangat dahsyat ini sangat terasa di sekujur penjuru Bumi. Dari 200 kilometer kubik magma, 10 hingga 80 kilometer kubik diantaranya berupa debu vulkanik halus yang terinjeksi demikian tinggi hingga memasuki lapisan stratosfer. Namun tak hanya debu. Letusan juga mengubah sekitar 150 meter kubik air laut menjadi uap sebanyak sekitar 200.000 kilometer kubik. Separuh diantaranya mengembun kembali di ketinggian rendah, namun sisanya membumbung tinggi memasuki lapisan stratosfer dan berubah menjadi kristal-kristal es. Pada saat yang sama juga tersembur sekitar 180 juta ton gas belerang, yang lantas bereaksi dengan uap air membentuk tetes-tetes asam sulfat. Sirkulasi atmosferik di lapisan stratosfer membuat debu, aerosol asam sulfat dan kristal es tersebar ke segenap penjuru dan menciptakan tabir surya vulkanik demikian tebal. Ketebalannya mencapai sekitar 20 hingga 150 meter, yang melayang di ketinggian 30 km tanpa bisa dicuci oleh proses cuaca.

Dampaknya sangat menyiksa Bumi hingga beberapa tahun kemudian. Tabir surya vulkanik nan tebal ini menghalangi 50 % cahaya Matahari yang seharusnya diteruskan ke Bumi. Terjadilah penurunan suhu rata-rata permukaan Bumi, yang bisa mencapai 5 derajat Celcius di bawah normal. Imbasnya udara menjadi lebih dingin, tutupan es pun menyebar keluar dari lingkaran kutub dan jumlah uap air yang diproduksi dari lautan pun menurun. Akibat lebih lanjutnya, cuaca pun sangat terganggu. Kekeringan berlangsung dimana-mana, meski tak jarang juga terjadi hujan sangat lebat hingga badai yang salah musim. Keberadaan kristal-kristal es di lapisan stratosfer pun berdampak pada hancurnya lapisan Ozon. Sinar ultraviolet beta dari Matahari pun membanjir deras tanpa terhalangi dan bekerja merusak sel-sel makhluk hidup. Secara keseluruhan letusan ini benar-benar membuat Bumi menjadi tak nyaman ditinggali makhluk hidup, khususnya manusia. Tak heran jika abad kegelapan pun terjadilah.

Masa Depan

Di atas kertas, seperti itulah kedahsyatan Letusan Krakatau Purba, yang diperkirakan terjadi pada tahun 535. Tentu saja butuh penelitian lebih lanjut guna memastikan apakah semua atau sebagian hasil simulasi itu memang benar-benar terjadi ataukah tidak. Yang jelas, lapisan debu setebal 20 meter yang terjepit di antara lapisan produk letusan 8.000 tahun silam dan lapisan produk Letusan Krakatau 1215 memastikan bahwa pada suatu waktu di masa silam Gunung Krakatau memang pernah meletus dengan kedahsyatan letusan yang jauh lebih besar ketimbang Letusan Krakatau 1883.

Sifat Gunung Krakatau yang gemar meletus dahsyat dan menghancurkan dirinya sendiri, setidaknya sudah tiga kali terjadi, tentu harus menjadi perhatian. Terlebih kawasan Selat Sunda kian memegang peranan penting. Perairan ini menjadi salah satu urat nadi terpenting bagi Indonesia modern, sebagai jalur penghubung antara pulau Sumatra dan Jawa lewat laut. Bahkan kelak jalur darat pun bakal tersambung dengan Jembatan Selat Sunda, meski pembangunannya masih dalam rencana dan terus menuai kontroversi. Pusat-pusat pertumbuhan ekonomi juga terus berdiri di sini. Alangkah baiknya jika segenap kepentingan manusia yang didirikan di kawasan ini tetap menyesuaikan diri dengan sifat alamiah Gunung Krakatau. Itu untuk kebaikan kita sendiri. Karena kita manusialah yang harus menyesuaikan diri dengan dinamika alam semesta, bukan sebaliknya. Dalam kasus Gunung Krakatau, kitalah yang harus bersiap semenjak dini andaikata gunung berapi lasak ini kembali mempertontonkan kedahsyatannya di masa depan.

Referensi:

Wohletz. 2000. Were the Dark Ages Triggered by Volcano-related Climate Changes in the 6th Century? EOS Trans Amer Geophys Union 48(81), F1305.

Bronto. 2012. Gunung Padang Berdasarkan Pandangan Geologi Gunung Api. Kertas Kerja Rembug Nasional Gunung Padang, Pusat Penelitian Arkeologi Nasional Kementerian Pendidikan dan Kebudayaan RI.