Gempa Pelabuhan Ratu, Sebuah Catatan Singkat

Gambar 1. Peta intensitas getaran dari Gempa Pelabuhan Ratu 2 Agustus 2019 (magnitudo 7,4) menurut BMKG

Hingga 2 jam pasca Gempa Pelabuhan Ratu 2 Agustus 2019, tak terdeteksi adanya usikan khas tsunami pada stasiun-stasiun pasangsurut BIG (Badan Informasi Geospasial) terdekat, yakni stasiun Pelabuhan Ratu (Jawa Barat) dan stasiun Binangeun (Banten). Laut terlihat normal seperti biasanya. Patut disyukuri, mengingat berdasarkan kedudukan lokasi episentrum dan durasi gempa yang lumayan lama sempat membuat saya menerka mungkin ini jenis gempa unik yang dikenal sebagai slow-quake atau tsunami-earthquake. Yakni jenis gempa yang bsa memproduksi tsunami lebih besar ketimbang skala gempanya itu sendiri.

Dengan magnitudo 7,4 menurut rilis awal BMKG, maka gempa ini melepaskan energi 1,89 megaton TNT (setara 95 butir bom nuklir Nagasaki) yang merambat sebagai gelombang seismik. Energi totalnya tentu jauh lebih besar lagi, namun nggak perlu lah disinggung di sini. Yang jelas gempa ini bersumber dari area seluas 75 x 27 kilometer persegi. di area tersebut terjadi pematahan kerak bumi yang menimbulkan pergeseran rata-rata 260 cm (dengan pergeseran maksimal 330 cm). Pergeserannya besar? Ya. Namun mekanisme sumber gempanya (beachball) didominasi oleh pematahan mendatar (strike slip).

Komponen pergeseran vertikal sangat kecil. Dalam hitungan pak Widjo Kongko (dan saya juga setuju), hanya sekitar 5 cm saja. Dengan pergeseran vertikal yang kecil maka andaikata pergeseran tersebut juga mencapai dasar Samudera Indonesia di atas sumber gempa, deformasi dasar laut yang terjadi bakal sangat kecil. Usikan kolom air laut diatasnya pun bakal sangat kecil sehingga tsunami tak terbentuk. Keyakinan pribadi bahwa gempa ini tak menimbulkan tsunami juga datang dari lamanya durasi gempa, yang mengindikasikan bahwa sumber gempa tersebut relatif dalam. Hampir segenap tsunami merusak yang dibangkitkan oleh gempa bumi memiliki gempa dengan sumber yang dangkal / sangat dangkal.

Tentu saja, semua ini hanya bisa dituliskan dalam beberapa waktu pascagempa. Ya 2 jam untuk saya sendiri, di tengah sok sibuk ini dan itu serta data lebih lengkap telah berdatangan dari sana sini Namun jika anda misalnya bertugas di ruang operasi Sistem Peringatan Dini Tsunami Indonesia (InaTEWS) di gedung BMKG Kemayoran, Jakarta, dimana sahabat saya pak Daryono bertahta, anda hanya punya waktu lima menit untuk menganalisis sebelum menyebarluaskan informasi. Ya hanya lima menit, dengan data yang masih terbatas. Sistem peringatan dini tsunami Indonesia memang dirancang harus cepat, mengingat kajian-kajian menunjukkan banyak pesisir Indonesia yang hanya punya waktu kurang dari 15 menit sebelum terjangan tsunami datang manakala sumber gempanya berada persis di hadapannya. Bahkan dalam kasus khusus seperti di Palu 2018 lalu, tsunami menggempur pantai hanya dalam tempo 3 menit (!).

Semoga Gempa Pelabuhan Ratu 2019 ini tidak menelan korban. Pelajaran yang bisa diambil, bagi saya pribadi, tetaplah waspada namun jangan berlebihan. Manakala kelak ada gempa bumi lagi dengan peringatan dini tsunami-nya, cermati daerah-daerah mana saja yang tergolong Waspada dan Siaga. Kita yang berada di luar daerah itu silahkan tetap waspada, namun tak perlu ikut-ikutan mengungsi.

Sesar Sorong yang Gemar Mendorong, Gempa Halmahera Selatan 14 Juli 2019

Di ujung utara kawasan kepala burung pulau Irian berdirilah kota pantai bernama Sorong. Dahulu suku Biak menamakan tempat ini sebagai Soren, satu pengingat akan lautnya yang dalam dan bergelora. Kata Soren lama-kelamaan mengalami transformasi tipis-tipis menjadi Sorong. Penamaan Soren jelas memperlihatkan kearifan lokal suku Biak akan karakter kebumian setempat. Sorong memang berdiri di atas lembah sempit dan panjang, yang menatah kawasan kepala burung pulau Irian demikian rupa. Di bagian yang tergenangi air laut, lembah itu memang terkenal dalam dan penuh ombak.

Gambar 1. Sebagian zona sesar Sorong dalam peta model elevasi digital. Nampak jelas meski di dasar laut sekalipun sesar Sorong tetap berbentuk lembah sempit panjang. Sumber: SEARG, 2016.

Sesar Sorong

Dan itu bukan lembah biasa. Cendekiawan kebumian masakini mengidentifikasinya sebagai sesar Sorong. Tepatnya Zona Sesar Sorong. Inilah salah satu sesar (patahan) aktif terpanjang di Indonesia selain sistem Sesar Besar Sumatera yang lebih dulu melegenda. Terhitung dari pesisir timur Teluk Cenderawasih, zona sesar Sorong membentang sepanjang 1.900 km ke arah barat hingga berujung di Kepulauan Banggai (propinsi Sulawesi tengah). Itu setara dua kali lipat panjang pulau Jawa.

Luar biasanya lagi, zona sesar Sorong memiliki banyak cabang dan hampir semuanya aktif bergerak dan berpotensi menjadi sumber gempa tektonik. Salah satu cabangnya melintasi pulau Halmahera bagian selatan, dikenal sebagai segmen Bacan, dan pada Minggu 14 Juli 2019 TU (Tarikh Umum) terpatahkan. Terjadilah Gempa Halmahera Selatan (magnitudo 7,3) yang menyebabkan kerusakan dan memicu tsunami kecil. BNPB (Badan Nasional Penanggulangan Bencana) mencatat, hingga empat hari pascagempa tela tercatat korban 6 orang tewas, 51 orang luka-luka dan 3.104 orang mengungsi. Jumlah bangunan yang rusak terdiri atas 871 buah rumah dan 7 buah sekolah.

Sepak terjang sesar Sorong tak terlepas dari rumitnya kawasan Indonesia bagian timur. Termasuk bumi para raja, Laut Maluku. Di kawasan Indonesia timur inilah tiga lempeng tektonik besar dunia bertemu dalam kawasan yang disebut triple junction, yaitu lempeng Eurasia, lempeng Australia dan lempeng Pasifik. Zona sesar Sorong merupakan pembatas antara lempeng Australia yang bersifat kontinental (lempeng benua) dan relatif stabil dengan lempeng Laut Filipina dan Carolina yang bergerak ke barat. Karenanya zona sesar Sorong merupakan sesar geser yang aktif dan bergerak kecepatan yang relatif tinggi, yakni 32 mm/tahun.

Gambar 2. Sebagian zona sesar Sorong yang berada di lingkungan kepala burung pulau Irian dan sekitarnya. Nampak sesar Sorong memiliki sejumlah cabang. Salah satu cabangnya yang melintas di pulau h
Halmahera bagian selatan merupakan sumber Gempa Halmahera Selatan 14 Juli 2019 (magnitudo 7,3). Sumber: Permana & Gaol, 2018.

Dalam proses pembentukan pulau Sulawesi yang unik, karena menjadi kawasan dimana triple junction berada, sesar Sorong memegang peranan penting. Lewat sesar Sorong-lah sebagian kepala burung Irian dibelah-belah. Sebagian diantaranya didorong jauh ke arah pulau Sulawesi hingga akhirnya berbenturan. Bagian yang terdorong membentur itu kini menjadi kepulauan Banggai – Sula dan kepulauan Buton – Tukang Besi. Proses tersebut terjadi dalam kurun 11 hingga 5 juta tahun silam dalam peristiwa yang oleh pak Awang Satyana, salah satu cendekiawan kebumian terkemuka negeri ini, disebut sebagai Benturan Keempat. Ini adalah bagian dari lima kejadian benturan (collision) yang membentuk tanah Indonesia dalam kurun 50 juta tahun terakhir. Dengan karakternya yang gemar mendorong-dorong, tak salah jika sesar ini menyandang nama sesar Sorong.

Pusat studi gempabumi nasional dalam Peta Sumber dan Bahaya Gempa Indonesia 2017 membagi sesar Sorong ke dalam sejumlah segmen aktif. Yakni 13 segmen aktif dalam zona sesar Sorong sendiri, 1 segmen aktif pada sesar Sula utara dan 3 segmen aktif pada zona sesar Yapen. Magnitudo maksimum yang bisa dibangkitkan oleh segmen-segmen ini bervariasi mulai dari magnitudo 6,6 (pada segmen West Salawati yang panjangnya 45 km) hingga magnitudo 8,1 (pada segmen sesar Sula utara dengan panjang 405 km).

Gempa Halmahera

Meski memiliki belasan segmen aktif, diduga masih banyak bagian-bagian dari sesar Sorong yang belum tercakup ke dalam Peta 2017. Baik karena masih diteliti maupun belum akibat terbatasnya sumberdaya. Salah satu segmen yang belum tercakup adalah segmen Bacan yang melintasi pulau Halmahera bagian selatan serta pulau Bacan. Segmen Bacan inilah yang diduga kuat merupakan sumber Gempa Halmahera Selatan 14 Juli 2019.

Gambar 3. Sumber Gempa Halmahera Selatan 14 Juli 2019 berdasarkan analisis seismik cepat IRIS (Incorporated Research Institutions for Seismology). Panjang sumber gempa sekitar 65 km dengan lebar 24 km yang berarah tenggara-baratlaut. Sumber: IRIS, 2019.

Gempa itu tergolong gempa besar, magnitudonya 7,2 menurut rilis BMKG (Badan Meteorologi Klimatologi dan Geofisika) atau 7,3 menurut USGS (United States Geological Survey). Gempa tersebut sangat dangkal, kedalaman sumbernya hanyalah 10 km. Penyebab gempa adalah terjadinya pematahan yang bersifat mendatar pada segmen kerak bumi seluas 65 x 24 km2 yang berarah tenggara-baratlaut di ujung selatan pulau Halmahera. Pada area itu terjadi pergeseran sebesar 240 sentimeter (rata-rata) dimana pergeseran maksimumnya mencapai 295 sentimeter. Meski sifat pematahannya mendatar namun terdapat komponen gerak vertikal turun (subsidence) sebesar yang relatif kecil, yakni sekitar 20 sentimeter. Pada magnitudo 7,3 maka energi yang dilepaskan Gempa Halmahera Selatan 14 Juli 2019 sebagai gelombang seismik mencapai 1.340 kiloton TNT atau setara dengan 67 butir bom nuklir Nagasaki. Energi totalnya sendiri jauh lebih besar.

Karena sangat dangkal dan memiliki pergeserannya relatif besar, terbuka kemungkinan sumber gempa mencuat juga di paras Bumi diatasnya dan memproduksi pengamblesan. Nampaknya demikianlah yang terjadi. Bilamana gerak vertikal turun sebesar 20 sentimeter terjadi pula pada paras Bumi di atas sumber gempa yang sebagian diantaranya merupakan dasar laut, maka tsunami bisa tercipta. Di atas kertas, jika segenap area sumber gempa berada di dasar laut, maka tsunami yang terbentuk kecil sehingga pada jarak 160 km diperhitungkan hanya akan setinggi 25 sentimeter, secara kasar.

Gambar 4. Simulasi Widjo Kongko terkait pembangkita tsunami kecil dalam gempa Halmahera Selatan 14 Juli 2019. Atas: perkiraan bentuk sumber tsunami, dengan warna biru menunjukkan bagian dasar laut yang mengalami penurunan. Bawah : perkiraan tinggi tsunami dengan tinggi maksimum di pesisir pulau Widi sebesar sekitar 50 sentimeter. Sumber : Widjo Kongko, 2019.

Pak Widjo Kongko, salah satu cendekiawan tsunami Indonesia, memiliki pandangan sendiri terkait tsunami kecil ini. Menurutnya, sumber Gempa Halmahera Selata 14 Juli 2019 memiliki luas 70 x 18 km2. Pada paras bumi di atas sumber gempa terjadi gerak vertikal menurun sejauh maksimum 18 sentimeter. Tsunami yang terbentuk diperhitungkan memiliki tinggi maksimum sekitar 50 sentimeter, yang terjadi di pesisir pulau Widi. Sementara pesisir tenggara pulau Halmahera diterpa tsunami setinggi sekitar 20 hingga 25 sentimeter saja. Dan pada pulau Gebe, tinggi tsunami diperhitungkan kurang dari 20 sentimeter.

Gambar 5. Rekaman dinamika paras air laut di stasiun pasangsurut Gebe dalam peristiwa Gempa Halmahera Selatan 14 Juli 2019. Atas : data asli, bawah : data yang telah dinormalisasi ke elevasi nol. Nampak jelas pola tsunami dengan periode 15 menit dan tinggi maksimum 8 sentimeter. Sumber: Widjo Kongko, 2019 berdasar data BIG dan BPPT.

Faktanya stasiun pasangsurut Gebe yang dikelola BIG (Badan Informasi Geospasial), 161 km di sebelah timur sumber gempa, memang merekam usikan kecil tsunami. Tinggi tsunami yang terekam hanyalah 8 sentimeter dengan periode 15 menit. Tsunami kecil ini terekam dalam 35 menit pasca gempa, sehingga diperhitungkan melaju dengan kecepatan 276 km/jam. Dengan periode yang relatif besar yakni 15 menit, maka tsunami kecil ini murni diproduksi pergerakan segmen kerak bumi yang menjadi sumber gempa, tanpa diikuti oleh faktor-faktor lain seperti misalnya longsoran dasar laut. Dan dengan tinggi hanya 8 sentimeter, maka jelas area sumber tsunami lebih kecil ketimbang area sumber gempa, disebabkan oleh adanya daratan (pulau Halmahera bagian selatan) yang menjadi bagian sumber gempa.

Di atas semua fakta tersebut, tinggi tsunami ini cukup kecil dibandingkan ambang batas 25 sentimeter. Sehingga tidak memicu sistem peringatan dini tsunami Indonesia untuk mengeluarkan amaran.

Gambar 6. Distribusi episentrum gempa-gempa susulan dan gempa utama (bintang biru) dalam peristiwa Gempa Halmahera Selatan 14 Juli 2019. Nampak area episentrum membentuk huruf L, menandakan terdapat sedikitnya dua sesar yang bergerak dalam gempa ini. Segitiga terbalik menunjukkan posisi seismometer BMKG. Sumber: Dimas Sianipar, 2019 berdasarkan data BMKG.

Hingga empat hari pascagempa, telah terjadi 65 kali gempa susulan. Hal yang wajar bagi sebuah peristiwa gempa bumi tektonik. Cukup menarik saat episentrum gempa-gempa susulan diplot ke dalam peta seperti yang dilakukan mas Dimas Sianipar, seismolog muda Indonesia, dijumpai dua area. Area pertama berimpit dengan lokasi sumber gempa sebagaimana diperhitungkan sebelumnya berdasarkan analisis distribusi gelombang seismik. Sementara area kedua berada di sisi utara area pertama dan seakan menyudut siku-siku. Sehingga menjulur ke pulau Bacan. Di area kedua ini juga dijumpai dua gempa susulan dengan mekanisme sumber berupa pematahan menurun dan cukup dalam. Munculnya dua area episentrum gempa-gempa susulan ini mengindikasikan bahwa Gempa Halmahera Selatan 14 Juli 2019 menyebabkan reaktivasi (pergerakan) sedikitnya dua sesar.

Referensi :

SEARG. 2016. Sorong Fault Zone. South East Asia Research Group, Royal Holloway University of London, UK. Diakses 16 Juli 2019 TU.

Permana & Gaol. 2018. Sesar Geser Sorong segmen Sorong-Kofiau, Papua Barat, Indonesia: Bukti dari data Batimetri dan SBP. Jurnal Geologi Kelautan, vol. 16 no. 1 (Juni 2018), halaman 37-50.

Satyana & Herawati. 2011. Sorong Fault Tectonism and Detachment of Salawati Island: Implications for Petroleum Generation and Migration in Salawati Basin, Bird’s Head Papua. Proceeding Indonesia Petroleum Association 35th Annual Convention & Exhibition IPA11-G-183, May 2011.

Widjo Kongko. 2019. komunikasi personal.

Dimas Sianipar. 2019. komunikasi personal.

Kala Matahari Menjadi Dua, Asteroid Meledak di Udara dekat Kutub Utara

Peristiwa Bering 2018. Itulah namanya. Satu peristiwa ledakan-benda-langit-di-udara (airburst) yang sejatinya telah terjadi pada Rabu 19 Desember 2018 TU (Tarikh Umum) pukul 06:48 WIB mengambil tempat di atas Laut Bering beratus kilometer lepas pantai timur Semenanjung Kamchatka atau tak jauh dari perbatasan Russia dan Amerika Serikat. Tak kurang dari 96 kiloton energi ledakan dilepaskan airburst ini. Sementara energi totalnya sendiri diperhitungkan mencapai 173 kiloton TNT, membuatnya hampir seterang Matahari pada saat airburst terjadi. Andaikata di sekitar ground zero (yakni titik yang tepat berada di bawah lokasi airburst) terdapat pemukiman penduduk, niscaya mereka bakal terkesiap menyaksikan langit siang bolong (tepatnya pukul 11:48 waktu setempat) mendadak laksana berhias dua Matahari.

Gambar 1. Ilustrasi sebuah peristiwa airburst yang memvisualisasikan dengan jelas lintasan benda langit (kiri atas citra) hingga bola api airburst (tengah dan kanan citra) serta hempasan gelombang kejut dan sinar panas airburst ke paras Bumi yang berupa daratan berhutan belantara (bagian bawah citra). Peristiwa Bering 2018 pada dasarnya seperti ini, hanya saja terjadi di atas lautan pada ketinggian yang cukup besar. Sumber: atas perkenan Don Davis, tanpa tahun.

Dan andaikata pula Peristiwa Bering 2018 terjadi tiga dasawarsa silam, di tengah puncak Perang Dingin, niscaya alarm bahaya serangan nuklir Uni Soviet (pendahulu Russia) akan berdering-dering nyaring dan siaga nuklir mungkin akan segera diberlakukan. Dan dunia bakal selangkah lebih dekat lagi ke perang nuklir yang ditakuti siapapun. Beruntung Peristiwa Bering 2018 terjadi di masakini, kala pemantauan langit dan cara membedakan ledakan nuklir terhadap aksi pelepasan berenergi tinggi yang mirip telah bisa dilakukan dengan beragam metode.

Bhangmeter dan Mikrobarometer

Peristiwa Bering 2018 sejatinya langsung terdeteksi oleh setidaknya 3 instrumen (radas) berbeda. Dan segera diketahui oleh para cendekia yang berspesialisasi padanya. Namun memang baru dipublikasikan kepada umum dalam pertengahan Maret 2019 TU ini saja. Dari ketiga radas tersebut, yang pertama adalah satelit mata-mata yang dikelola Departemen Pertahanan Amerika Serikat. Satelit rahasia ini dilengkapi bhangmeter, instrumen pengukur tingkat energi melalui fluks cahaya inframerah yang dipancarkan. Bhangmeter memungkinkan mengukur energi optis dari kilatan cahaya Peristiwa Siberia 2018 sekaligus membedakannya dari kilatan cahaya ledakan nuklir. Pada ledakan nuklir, bhangmeter akan menampilkan kurva khas dengan dua bukit (double-peak) dan sebaliknya pada peristiwa non-nuklir tidak demikian.

Gambar 2. Saat-saat asteroid mini tanpa-nama mengalami airburst di atas Chelyabinsk (Russia) pada 15 Februari 2013 TU. airburst terjadi di ketinggian 30 km dpl dan demikian benderang hingga mencapai 30 kali lipat lebih terang dari Matahari pada puncaknya. Peristiwa Bering 2018 pada dasarnya serupa, hanya pelepasan energinya jauh lebih kecil. Sumber: NASA APOD, 2013.

Radas yang kedua adalah satelit Himawari-8 yang dikelola Badan Meteorologi Jepang, sebuah satelit cuaca berkemampuan tinggi yang dipangkalkan di orbit geostasioner (ketinggian 35.792 km dpl atas garis khatulistiwa) pada lokasi di Samudera Pasifik bagian barat. Sehingga Himawari 8 mampu menyajikan liputan dari sebagian besar daratan Asia, segenap Australia dan segenap perairan Samudera Pasifik. Dan yang ketiga adalah radas mikrobarometer di daratan yang terpsang di sebuah stasiun infrasonik yang bagian jaringan CTBTO (the Comprehensive nuclear Test Ban Treaty Organization), lembaga pengawas penegakan larangan ujicoba nuklir segala matra yang berada di bawah payung PBB (Perserikatan Bangsa-Bangsa). Meski sama-sama dirancang mengendus aktivitas peledakan nuklir khususnya matra atmosferik dan paras Bumi, berbeda dengan satelit mata-mata yang dilengkapi bhangmeter, radas mikrobarometer mengandalkan kemampuan mengendus gelombang infrasonik berpola khas. Detonasi senjata nuklir atmosferik dan permukaan bumi melepaskan gelombang kejut ke udara yang sebagian kecil diantaranya lantas bertransformasi menjadi gelombang infrasonik yang menjalar jauh dan bisa dideteksi.

Pada Peristiwa Bering 2018, bhangmeter sebuah satelit mata-mata merekam kilatan cahaya yang setara pancaran energi optis sebesar 130 TeraJoule. Kurva yang diperolehnya tidak mirip ledakan nuklir. Sehingga disimpulkan sebagai kejadian airburst sebuah benda langit, karena hanya tumbukan benda langit (asteroid atau komet) sajalah yang memiliki tingkat energi setara ledakan nuklir.

Peristiwa Bering 2018 juga dideteksi oleh setidaknya 10 stasiun infrasonik di berbagai penjuru, melewati gelombang infrasonik pada durasi lebih dari 10 detik. Misalnya pada stasiun infrasonik IS18 yang terpasang di pulau Greenland (Denmark). Sinyal infrasonik Peristiwa Bering 2018 yang terekam disini memiliki durasi 20 – 25 detik. Radas mikrobarometer tidak bisa menghasilkan perkiraan energi total sebuah peristiwa, mengingat akurasinya buruk. Peristiwa yang sama juga terpantau satelit Himawari 8 khususnya pada kanal cahaya tampak, Meskipun analisis citranya baru dilaksanakan pada pertengahan Maret 2019 TU ini. Pada citra satelit ini, Peristiwa Bering 2018 nampak sebagai garis berwarna kuning-jingga di antara taburan awan yang berwarna putih. Di samping garis kuning-jingga ini terdeteksi juga garis kehitaman, yang mengesankan sebagai jejak lintasan benda langit tersebut sebelum mengalami airburst.

Analisis Departemen Pertahanan Amerika Serikat yang kemudian dipublikasikan badan antariksa AS (NASA), sebagai bagian kerangka kerjasama yang terbentuk pasca Peristiwa Chelyabinsk 2013, menunjukkan Peristiwa Bering 2018 memiliki energi total 173 kiloton TNT. Hal senada juga diperlihatkan dari analisis sinyal infrasonik, yang menjumpai angka mendekati 200 kiloton TNT. Sehingga secara teknis relatif sama, terlebih mengingat akurasi pengukuran energi airburst lewat sinyal infrasonik yang cenderung buruk. Titik airburst terletak di ketinggian 26 km dpl. Dan benda langit yang terlibat melesat secepat 32 km/detik (115.200 km/jam) dengan membentuk sudut 70º terhadap bidang horizontal di titik targetnya.

Asteroid Mini

Apa penyebab Peristiwa Bering 2018?

Dalam hemat saya, asteroid lah biang keladinya. Analisis saya dengan memanfaatkan serangkaian persamaan matematis dari Collins dkk (Collins, 2005) mengindikasikan penyebab Peristiwa Bering 2018 adalah asteroid dengan komposisi menyerupai meteorit akondrit, tepatnya dengan massa jenis 4.000 kg/m3. Meteorit akondrit adalah salah satu tipe meteorit yang diduga berasal dari bagian kerak benda langit terestrial seperti Mars maupun Bulan. Mereka terlempar ke antariksa oleh rangkaian tumbukan benda langit mahadahsyat di masa silam, lantas melayang-layang layaknya asteroid pada umumnya di keluasan antariksa.

Jika dianggap berbentuk bulat seperti bola, asteroid penyebab Peristiwa Bering 2018 memiliki garis tengah 8,8 meter sehingga merupakan asteroid kecil. Maka massanya sekitar 1.400 ton. Statistik memperlihatkan meteoroid seukuran ini (baik asteroid kecil maupun kepingan komet) memasuki atmosfer Bumi sekali dalam rata-rata setiap 28 tahun.

Gambar 3. Potongan citra satelit Himawari 8 pada kanal cahaya tampak untuk kawasan Samudera Pasifik bagian utara. Jejak Peristiwa Bering 2018 nampak jelas sebagai titik-titik cahaya berwarna kuning-jingga membentuk sebuah garis di antara tebaran awan-awan putih (tanda panah). Jejak diperbesar dalam gambar inset. Sumber: Japan Meteorology Agency, 2018.

Saat memasuki atmosfer Bumi bagian atas, gerak dan kecepatan meteoroid ini menyebabkan kolom udara yang dilintasinya mengalami tekanan ram yang kian membesar. Selain membuatnya bertransformasi menjadi meteor super terang (superfireball), tekanan ram yang kian membesar pada akhirnya akan memecah-belah asteroid tersebut mulai dari ketinggian 54 km dpl. Pemecah-belahan ini terus berlangsung dan kian intensif seiring kian jauh superfireball memasuki atmosfer. Hingga pada ketinggian 26 km dpl terjadilah proses pemecah-belahan yang paling intensif, membuat pecahan-pecahan yang terbentuk sontak mengalami deselerasi besar laksana direm di udara. Timbullah airburst yang melepaskan energi hingga 96 kiloton TNT. Pada saat airburst ini terbentuk kilatan cahaya sangat terang dengan tingkat terang (magnitudo semu) setara 70 % Matahari.

Bagaimana Dampaknya?

Seberapa besar sih energi airburst ini? Ledakan bom nuklir Nagasaki berkekuatan 20 kiloton TNT, sehingga airburst tersebut hampir lima kali lipat lebih dahsyat ketimbang bom nuklir Nagasaki. Secara keseluruhan Peristiwa Bering 2018 ini delapan kali lipat lebih dahsyat ketimbang ledakan bom nuklir Nagasaki.

Adakah dampaknya?

Meski energinya terkesan sangat besar bagi kita, namun dengan titik pelepasan energi yang jauh di ketinggian (yakni 26 km dpl) membuat dampaknya ke paras Bumi boleh dikata minimal, bahkan nyaris tidak ada. Pada dasarnya dampak tumbukan benda langit (termasuk dalam peristiwa airburst) mirip dengan dampak ledakan nuklir pada titik yang sama. Dengan mengacu simulasi ledakan nuklir (Dolan dan Glasstone, 1977) maka diperhitungkan pada ground zero saja besarnya tekanan lebih (overpressure) dari gelombang kejut airburst ini hanyalah 183 Pa (atau 19 kg/m2). Ini masih di bawah nilai ambang batas yang besarnya 200 Pa, yakni overpressure minimum yang bisa menghasilkan kerusakan teringan akibat papasan gelombang kejut. Yakni berupa retaknya kaca jendela.

Demikian halnya dengan pelepasan sinar panasnya. Simulasi ledakan nuklir memang memperlihatkan potensi munculnya sinar panas (thermal rays) sebagai imbas terbentuknya bola api airburst. Bola api airburst ini diperhitungkan bergaris tengah 295 meter dan sangat panas (suhu lebih dari 3.000º C) namun umurnya sangat singkat (kurang dari 1 detik). Pada ground zero, fluks panas akibat pembentukan bola api airburst ini diperhitungkan hanya 4,63 kiloJoule/m2. Sementara ambang batas fluks panas bagi luka bakar paling ringan (yakni luka bakar tingkat satu) adalah 5,16 kiloJoule/m2. Sedangkan untuk bisa menghasilkan kerusakan fisik teringan (yakni dalam bentuk terbakarnya/hangusnya kulit batang pohon) dibutuhkan fluks panas minimal 9,93 kiloJoule/m2. Jadi, seperti halnya dalam aspek gelombang kejut, Peristiwa Bering 2018 tidak memberikan dampak dalam hal paparan sinar panasnya.

Gambar 4. Rekaman gelombang infrasonik produk Peristiwa Bering 2018 yang ditangkap oleh stasiun IS8 di pulau Greenland (Denmark), ribuan kilometer jauhnya dari ground zero. Sumber: Peter Brown, 2019.

Sehingga tidak ada dampak lebih lanjut yang dialami kawasan Laut Bering dan sekitarnya akibat Peristiwa Bering 2018. Berbeda halnya dengan Peristiwa Chelyabinsk 2013, yang memiliki ketinggian airburst relatif sama namun energinya jauh lebih besar (hampir 4 kali lipat lebih besar). Sehingga dampaknya ke ground zero dan sekitarnya cukup signifikan terutama dalam aspek gelombang kejut.

Adakah Meteoritnya?

Karena terjadi di tengah laut maka mustahil untuk mengetahui apakah Peristiwa Bering 2018 memproduksi meteorit yang bisa menjadikannya peristiwa boloid dan bukan hanya sekedar superfireball. Secara teoritis minimal 0,1 % dari massa meteoroid yang berbentuk asteroid mini akan selamat dari proses penghancuran di atmosfer Bumi dan melanjutkan perjalanannya hingga mendarat di paras Bumi sebagai meteorit. Untuk Peristiwa Bering 2018, maka sisa meteoroid itu akan setara dengan massa 1,4 ton. Garis tengahnya akan sebesar 0,88 meter, jika sisa meteoroid itu dianggap berbentuk bola sempurna.

Apabila meteorit itu jatuh sebagai bongkahan tunggal ke perairan Samudera Pasifik, maka kecepatannya saat menyentuh air masih 152 m/detik (546 km/jam). Tumbukan ini akan menciptakan tsunami kecil yang khas dengan panjang gelombang 129 meter dan menjalar melintasi perairan dengan kecepatan sekitar 122 km/jam. Tsunami ini demikian kecil sehingga dalam jarak 3 km saja dari titik tumbukannya hanya akan setinggi 0,15 meter. Faktanya sistem peringatan dini tsunami Pasifik tak mendeteksi usikan khas tsunami di Samudera Pasifik bagian utara. Ini menjadi indikasi bahwa kalaupun Peristiwa Bering 2018 memproduksi meteorit, maka meteorit itu jatuh tercebur ke laut bukn sebagai bongkahan tunggal (seperti halnya dalam peristiwa Chelyabinsk 2013). Melainkan sebagai kepingan-kepingan berukuran kecil yang sangat banyak sehingga tak berdampak serius kepada perairan yang dijatuhinya.

Referensi :

Collins dkk. 2005. Earth Impact Effects Program: A Web based Computer program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science no. 6 vo. 40 (2005), halaman 817-840.

Collins dkk. 2017. A Numerical Assessment of Simple Airblast Models of Impact Airbursts. Meteoritics & Planetary Science no. 8 vo. 52 (2017), halaman 1542-1560.

Dolan & Glasstone. 1977. The Effects of Nuclear Weapons. Washington DC (USA), Department of Defense and Energy, 3rd edition.