Kala Matahari Menjadi Dua, Asteroid Meledak di Udara dekat Kutub Utara

Peristiwa Bering 2018. Itulah namanya. Satu peristiwa ledakan-benda-langit-di-udara (airburst) yang sejatinya telah terjadi pada Rabu 19 Desember 2018 TU (Tarikh Umum) pukul 06:48 WIB mengambil tempat di atas Laut Bering beratus kilometer lepas pantai timur Semenanjung Kamchatka atau tak jauh dari perbatasan Russia dan Amerika Serikat. Tak kurang dari 96 kiloton energi ledakan dilepaskan airburst ini. Sementara energi totalnya sendiri diperhitungkan mencapai 173 kiloton TNT, membuatnya hampir seterang Matahari pada saat airburst terjadi. Andaikata di sekitar ground zero (yakni titik yang tepat berada di bawah lokasi airburst) terdapat pemukiman penduduk, niscaya mereka bakal terkesiap menyaksikan langit siang bolong (tepatnya pukul 11:48 waktu setempat) mendadak laksana berhias dua Matahari.

Gambar 1. Ilustrasi sebuah peristiwa airburst yang memvisualisasikan dengan jelas lintasan benda langit (kiri atas citra) hingga bola api airburst (tengah dan kanan citra) serta hempasan gelombang kejut dan sinar panas airburst ke paras Bumi yang berupa daratan berhutan belantara (bagian bawah citra). Peristiwa Bering 2018 pada dasarnya seperti ini, hanya saja terjadi di atas lautan pada ketinggian yang cukup besar. Sumber: atas perkenan Don Davis, tanpa tahun.

Dan andaikata pula Peristiwa Bering 2018 terjadi tiga dasawarsa silam, di tengah puncak Perang Dingin, niscaya alarm bahaya serangan nuklir Uni Soviet (pendahulu Russia) akan berdering-dering nyaring dan siaga nuklir mungkin akan segera diberlakukan. Dan dunia bakal selangkah lebih dekat lagi ke perang nuklir yang ditakuti siapapun. Beruntung Peristiwa Bering 2018 terjadi di masakini, kala pemantauan langit dan cara membedakan ledakan nuklir terhadap aksi pelepasan berenergi tinggi yang mirip telah bisa dilakukan dengan beragam metode.

Bhangmeter dan Mikrobarometer

Peristiwa Bering 2018 sejatinya langsung terdeteksi oleh setidaknya 3 instrumen (radas) berbeda. Dan segera diketahui oleh para cendekia yang berspesialisasi padanya. Namun memang baru dipublikasikan kepada umum dalam pertengahan Maret 2019 TU ini saja. Dari ketiga radas tersebut, yang pertama adalah satelit mata-mata yang dikelola Departemen Pertahanan Amerika Serikat. Satelit rahasia ini dilengkapi bhangmeter, instrumen pengukur tingkat energi melalui fluks cahaya inframerah yang dipancarkan. Bhangmeter memungkinkan mengukur energi optis dari kilatan cahaya Peristiwa Siberia 2018 sekaligus membedakannya dari kilatan cahaya ledakan nuklir. Pada ledakan nuklir, bhangmeter akan menampilkan kurva khas dengan dua bukit (double-peak) dan sebaliknya pada peristiwa non-nuklir tidak demikian.

Gambar 2. Saat-saat asteroid mini tanpa-nama mengalami airburst di atas Chelyabinsk (Russia) pada 15 Februari 2013 TU. airburst terjadi di ketinggian 30 km dpl dan demikian benderang hingga mencapai 30 kali lipat lebih terang dari Matahari pada puncaknya. Peristiwa Bering 2018 pada dasarnya serupa, hanya pelepasan energinya jauh lebih kecil. Sumber: NASA APOD, 2013.

Radas yang kedua adalah satelit Himawari-8 yang dikelola Badan Meteorologi Jepang, sebuah satelit cuaca berkemampuan tinggi yang dipangkalkan di orbit geostasioner (ketinggian 35.792 km dpl atas garis khatulistiwa) pada lokasi di Samudera Pasifik bagian barat. Sehingga Himawari 8 mampu menyajikan liputan dari sebagian besar daratan Asia, segenap Australia dan segenap perairan Samudera Pasifik. Dan yang ketiga adalah radas mikrobarometer di daratan yang terpsang di sebuah stasiun infrasonik yang bagian jaringan CTBTO (the Comprehensive nuclear Test Ban Treaty Organization), lembaga pengawas penegakan larangan ujicoba nuklir segala matra yang berada di bawah payung PBB (Perserikatan Bangsa-Bangsa). Meski sama-sama dirancang mengendus aktivitas peledakan nuklir khususnya matra atmosferik dan paras Bumi, berbeda dengan satelit mata-mata yang dilengkapi bhangmeter, radas mikrobarometer mengandalkan kemampuan mengendus gelombang infrasonik berpola khas. Detonasi senjata nuklir atmosferik dan permukaan bumi melepaskan gelombang kejut ke udara yang sebagian kecil diantaranya lantas bertransformasi menjadi gelombang infrasonik yang menjalar jauh dan bisa dideteksi.

Pada Peristiwa Bering 2018, bhangmeter sebuah satelit mata-mata merekam kilatan cahaya yang setara pancaran energi optis sebesar 130 TeraJoule. Kurva yang diperolehnya tidak mirip ledakan nuklir. Sehingga disimpulkan sebagai kejadian airburst sebuah benda langit, karena hanya tumbukan benda langit (asteroid atau komet) sajalah yang memiliki tingkat energi setara ledakan nuklir.

Peristiwa Bering 2018 juga dideteksi oleh setidaknya 10 stasiun infrasonik di berbagai penjuru, melewati gelombang infrasonik pada durasi lebih dari 10 detik. Misalnya pada stasiun infrasonik IS18 yang terpasang di pulau Greenland (Denmark). Sinyal infrasonik Peristiwa Bering 2018 yang terekam disini memiliki durasi 20 – 25 detik. Radas mikrobarometer tidak bisa menghasilkan perkiraan energi total sebuah peristiwa, mengingat akurasinya buruk. Peristiwa yang sama juga terpantau satelit Himawari 8 khususnya pada kanal cahaya tampak, Meskipun analisis citranya baru dilaksanakan pada pertengahan Maret 2019 TU ini. Pada citra satelit ini, Peristiwa Bering 2018 nampak sebagai garis berwarna kuning-jingga di antara taburan awan yang berwarna putih. Di samping garis kuning-jingga ini terdeteksi juga garis kehitaman, yang mengesankan sebagai jejak lintasan benda langit tersebut sebelum mengalami airburst.

Analisis Departemen Pertahanan Amerika Serikat yang kemudian dipublikasikan badan antariksa AS (NASA), sebagai bagian kerangka kerjasama yang terbentuk pasca Peristiwa Chelyabinsk 2013, menunjukkan Peristiwa Bering 2018 memiliki energi total 173 kiloton TNT. Hal senada juga diperlihatkan dari analisis sinyal infrasonik, yang menjumpai angka mendekati 200 kiloton TNT. Sehingga secara teknis relatif sama, terlebih mengingat akurasi pengukuran energi airburst lewat sinyal infrasonik yang cenderung buruk. Titik airburst terletak di ketinggian 26 km dpl. Dan benda langit yang terlibat melesat secepat 32 km/detik (115.200 km/jam) dengan membentuk sudut 70º terhadap bidang horizontal di titik targetnya.

Asteroid Mini

Apa penyebab Peristiwa Bering 2018?

Dalam hemat saya, asteroid lah biang keladinya. Analisis saya dengan memanfaatkan serangkaian persamaan matematis dari Collins dkk (Collins, 2005) mengindikasikan penyebab Peristiwa Bering 2018 adalah asteroid dengan komposisi menyerupai meteorit akondrit, tepatnya dengan massa jenis 4.000 kg/m3. Meteorit akondrit adalah salah satu tipe meteorit yang diduga berasal dari bagian kerak benda langit terestrial seperti Mars maupun Bulan. Mereka terlempar ke antariksa oleh rangkaian tumbukan benda langit mahadahsyat di masa silam, lantas melayang-layang layaknya asteroid pada umumnya di keluasan antariksa.

Jika dianggap berbentuk bulat seperti bola, asteroid penyebab Peristiwa Bering 2018 memiliki garis tengah 8,8 meter sehingga merupakan asteroid kecil. Maka massanya sekitar 1.400 ton. Statistik memperlihatkan meteoroid seukuran ini (baik asteroid kecil maupun kepingan komet) memasuki atmosfer Bumi sekali dalam rata-rata setiap 28 tahun.

Gambar 3. Potongan citra satelit Himawari 8 pada kanal cahaya tampak untuk kawasan Samudera Pasifik bagian utara. Jejak Peristiwa Bering 2018 nampak jelas sebagai titik-titik cahaya berwarna kuning-jingga membentuk sebuah garis di antara tebaran awan-awan putih (tanda panah). Jejak diperbesar dalam gambar inset. Sumber: Japan Meteorology Agency, 2018.

Saat memasuki atmosfer Bumi bagian atas, gerak dan kecepatan meteoroid ini menyebabkan kolom udara yang dilintasinya mengalami tekanan ram yang kian membesar. Selain membuatnya bertransformasi menjadi meteor super terang (superfireball), tekanan ram yang kian membesar pada akhirnya akan memecah-belah asteroid tersebut mulai dari ketinggian 54 km dpl. Pemecah-belahan ini terus berlangsung dan kian intensif seiring kian jauh superfireball memasuki atmosfer. Hingga pada ketinggian 26 km dpl terjadilah proses pemecah-belahan yang paling intensif, membuat pecahan-pecahan yang terbentuk sontak mengalami deselerasi besar laksana direm di udara. Timbullah airburst yang melepaskan energi hingga 96 kiloton TNT. Pada saat airburst ini terbentuk kilatan cahaya sangat terang dengan tingkat terang (magnitudo semu) setara 70 % Matahari.

Bagaimana Dampaknya?

Seberapa besar sih energi airburst ini? Ledakan bom nuklir Nagasaki berkekuatan 20 kiloton TNT, sehingga airburst tersebut hampir lima kali lipat lebih dahsyat ketimbang bom nuklir Nagasaki. Secara keseluruhan Peristiwa Bering 2018 ini delapan kali lipat lebih dahsyat ketimbang ledakan bom nuklir Nagasaki.

Adakah dampaknya?

Meski energinya terkesan sangat besar bagi kita, namun dengan titik pelepasan energi yang jauh di ketinggian (yakni 26 km dpl) membuat dampaknya ke paras Bumi boleh dikata minimal, bahkan nyaris tidak ada. Pada dasarnya dampak tumbukan benda langit (termasuk dalam peristiwa airburst) mirip dengan dampak ledakan nuklir pada titik yang sama. Dengan mengacu simulasi ledakan nuklir (Dolan dan Glasstone, 1977) maka diperhitungkan pada ground zero saja besarnya tekanan lebih (overpressure) dari gelombang kejut airburst ini hanyalah 183 Pa (atau 19 kg/m2). Ini masih di bawah nilai ambang batas yang besarnya 200 Pa, yakni overpressure minimum yang bisa menghasilkan kerusakan teringan akibat papasan gelombang kejut. Yakni berupa retaknya kaca jendela.

Demikian halnya dengan pelepasan sinar panasnya. Simulasi ledakan nuklir memang memperlihatkan potensi munculnya sinar panas (thermal rays) sebagai imbas terbentuknya bola api airburst. Bola api airburst ini diperhitungkan bergaris tengah 295 meter dan sangat panas (suhu lebih dari 3.000º C) namun umurnya sangat singkat (kurang dari 1 detik). Pada ground zero, fluks panas akibat pembentukan bola api airburst ini diperhitungkan hanya 4,63 kiloJoule/m2. Sementara ambang batas fluks panas bagi luka bakar paling ringan (yakni luka bakar tingkat satu) adalah 5,16 kiloJoule/m2. Sedangkan untuk bisa menghasilkan kerusakan fisik teringan (yakni dalam bentuk terbakarnya/hangusnya kulit batang pohon) dibutuhkan fluks panas minimal 9,93 kiloJoule/m2. Jadi, seperti halnya dalam aspek gelombang kejut, Peristiwa Bering 2018 tidak memberikan dampak dalam hal paparan sinar panasnya.

Gambar 4. Rekaman gelombang infrasonik produk Peristiwa Bering 2018 yang ditangkap oleh stasiun IS8 di pulau Greenland (Denmark), ribuan kilometer jauhnya dari ground zero. Sumber: Peter Brown, 2019.

Sehingga tidak ada dampak lebih lanjut yang dialami kawasan Laut Bering dan sekitarnya akibat Peristiwa Bering 2018. Berbeda halnya dengan Peristiwa Chelyabinsk 2013, yang memiliki ketinggian airburst relatif sama namun energinya jauh lebih besar (hampir 4 kali lipat lebih besar). Sehingga dampaknya ke ground zero dan sekitarnya cukup signifikan terutama dalam aspek gelombang kejut.

Adakah Meteoritnya?

Karena terjadi di tengah laut maka mustahil untuk mengetahui apakah Peristiwa Bering 2018 memproduksi meteorit yang bisa menjadikannya peristiwa boloid dan bukan hanya sekedar superfireball. Secara teoritis minimal 0,1 % dari massa meteoroid yang berbentuk asteroid mini akan selamat dari proses penghancuran di atmosfer Bumi dan melanjutkan perjalanannya hingga mendarat di paras Bumi sebagai meteorit. Untuk Peristiwa Bering 2018, maka sisa meteoroid itu akan setara dengan massa 1,4 ton. Garis tengahnya akan sebesar 0,88 meter, jika sisa meteoroid itu dianggap berbentuk bola sempurna.

Apabila meteorit itu jatuh sebagai bongkahan tunggal ke perairan Samudera Pasifik, maka kecepatannya saat menyentuh air masih 152 m/detik (546 km/jam). Tumbukan ini akan menciptakan tsunami kecil yang khas dengan panjang gelombang 129 meter dan menjalar melintasi perairan dengan kecepatan sekitar 122 km/jam. Tsunami ini demikian kecil sehingga dalam jarak 3 km saja dari titik tumbukannya hanya akan setinggi 0,15 meter. Faktanya sistem peringatan dini tsunami Pasifik tak mendeteksi usikan khas tsunami di Samudera Pasifik bagian utara. Ini menjadi indikasi bahwa kalaupun Peristiwa Bering 2018 memproduksi meteorit, maka meteorit itu jatuh tercebur ke laut bukn sebagai bongkahan tunggal (seperti halnya dalam peristiwa Chelyabinsk 2013). Melainkan sebagai kepingan-kepingan berukuran kecil yang sangat banyak sehingga tak berdampak serius kepada perairan yang dijatuhinya.

Referensi :

Collins dkk. 2005. Earth Impact Effects Program: A Web based Computer program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science no. 6 vo. 40 (2005), halaman 817-840.

Collins dkk. 2017. A Numerical Assessment of Simple Airblast Models of Impact Airbursts. Meteoritics & Planetary Science no. 8 vo. 52 (2017), halaman 1542-1560.

Dolan & Glasstone. 1977. The Effects of Nuclear Weapons. Washington DC (USA), Department of Defense and Energy, 3rd edition.

Dua Tahun Peristiwa Tumbukan Asteroid di Russia, Apa yang Telah Kita Ketahui?

Dua tahun sudah terlewat dari sebuah masa pada Jumat 15 Februari 2013 Tarikh Umum (TU). Dua tahun yang lalu, jagat astronomi dibikin terhenyak oleh sebuah peristiwa luar biasa yang mengambil lokasi di sisi barat Pegunungan Ural (Russia). Tepatnya di Chelyabinsk dan sekitarnya, kawasan yang di masa Perang Dunia 2 hingga puncak Perang Dingin menjadi tempat Uni Soviet (pendahulu Russia) mengencangkan otot-ototnya lewat industri militer berkelas raksasa. Di Jumat pagi tersebut, tepatnya pada pukul 09:20 waktu setempat (10:20 WIB), rutinitas harian kota Chelyabinsk sontak terhenti oleh sebuah peristiwa aneh. Langit pagi yang cerah meski dingin, saat itu musim dingin belum usai di Russia, mendadak sontak berganti dengan munculnya cahaya terang-benderang dalam sekejap. Demikian terangnya sehingga melebihi benderangnya Matahari. Sejurus kemudian tanah mulai bergetar. Udara seperti ditekan, hingga kabel-kabel yang bergelantungan pun mulai berayun-ayun. Kaca-kaca jendela mulai pecah berkeping-keping. Menghujani siapapun yang ada didekatnya tanpa ampun. Alarm mobil-mobil yang diparkir pun mulai meraung-raung. Kekacauan merajalela dimana-mana.

Gambar 1. Salah satu gambar ikonik Peristiwa Chelyabinsk 2013, yakni kala asteroid-tanpa-nama telah memasuki atmosfer Bumi dan mengalami kilatan cahaya pertama hingga lebih terang ketimbang Matahari. Kilatan cahaya ini terjadi saat asteroid, yang telah berubah menjadi boloid, sampai di ketinggian 29,7 kilometer dpl. Garis putih tebal lurus dibelakangnya adalah awan debu lurus (train) yang dibentuk boloid mulai dari ketinggian 97 kilometer dpl. Sumber: NASA APOD, 2013.

Gambar 1. Salah satu gambar ikonik Peristiwa Chelyabinsk 2013, yakni kala asteroid-tanpa-nama telah memasuki atmosfer Bumi dan mengalami kilatan cahaya pertama hingga lebih terang ketimbang Matahari. Kilatan cahaya ini terjadi saat asteroid, yang telah berubah menjadi boloid, sampai di ketinggian 29,7 kilometer dpl. Garis putih tebal lurus dibelakangnya adalah awan debu lurus (train) yang dibentuk boloid mulai dari ketinggian 97 kilometer dpl. Sumber: NASA APOD, 2013.

Dalam beberapa jam kemudian kekacauan di Chelyabinsk dan sekitarnya mendunia. Kekacauan ini merupakan akibat dari peristiwa tumbukan benda langit. Yakni melesat jatuhnya benda langit mini anggota tata surya (asteroid atau komet) ke permukaan Bumi dengan segala imbasnya. Kejadian di Chelyabinsk dan sekitarnya secara formal kemudian disebut sebagai Peristiwa Tumbukan benda langit Chelyabinsk 2013, atau disingkat sebagai Peristiwa Chelyabinsk 2013 saja. Secara kronologis Peristiwa Chelyabinsk 2013 merupakan peristiwa tumbukan benda langit paling energetik yang pernah disaksikan umat manusia modern dalam kurun 80 tahun terakhir, setelah Peristiwa Curuca (Brazil) 1930. Dan sepanjang abad ke-21 TU ini, Peristiwa Chelyabinsk 2013 hingga saat ini merupakan peristiwa tumbukan benda langit terenergetik, menumbangkan rekor yang semula dipegang Peristiwa Bone (Indonesia) 2008.

Besar dan kompleksnya Peristiwa Chelyabinsk 2013 menggamit minat ilmuwan dari beragam disiplin ilmu. Semangat mereka demikian besarnya, hal yang tak pernah dialami bagi peristiwa sejenis sebelumnya. Mereka datang dari kalangan astronomi, astrofisika, geofisika, geologi dan bahkan kedokteran. Tak hanya dari Russia, para ilmuwan itu berduyun-duyun datang dari Eropa, Amerika dan bahkan Asia. Sebagian diantaranya lantas menyatukan diri dalam sebuah konsorsium yang menamakan dirinya sebagai The Chelyabinsk Airburst Consortium. Kini, dua tahun setelah semua kehebohan itu, kerja keras para ilmuwan konsorsium itu telah membuahkan hasil. Tulisan ini pun didasarkan atas hasil kerja keras mereka, 59 ilmuwan The Chelyabinsk Airburst Consortium dengan penulis pertama Olga P. Popova, yang dimuat dalam jurnal ilmu pengetahuan Science setahun silam.

Peristiwa Chelyabinsk 2013 menjadi peristiwa tumbukan benda langit yang sarat data, hal yang juga belum pernah terjadi sebelumnya. Puluhan, bahkan mungkin ratusan, rekaman video mengabadikannya. Baik melalui radas (instrumen) semi-otomatis seperti kamera dasbor mobil dan kamera keamanan sirkuit tertutup (CCTV) maupun manual yang harus mendapat sentuhan langsung tangan manusia seperti kamera digital, kamera ponsel pintar dan yang lainnya. Peristiwa ini juga membuat ribuan bangunan rusak, sehingga memungkinkan dilakukannya analisis mendetail akan posisi dan dinamika penyebab kerusakannya. Rekaman tak kasat mata lainnya, dalam bentuk rekaman seismik dan rekaman infrasonik pun melimpah. Getaran di kerak bumi seiring peristiwa tersebut direkam oleh seismometer-seismometer yang berlokasi hingga ratusan kilometer jauhnya dari kawasan Chelyabinsk. Sementara rekaman infrasoniknya bahkan lebih spektakuler. Salah satu dari 11 stasiun infrasonik dalam jejaring CTBTO (the Comprehensive nuclear Test Ban Treaty Organization) bahkan berada di kawasan Antartika, ribuan kilometer dari Chelyabinsk.

Apa yang sesungguhnya terjadi di ketinggian udara Pegunungan Ural hingga berdampak ke daratan kawasan Chelyabinsk dan sekitarnya mulai bisa kita pahami. Informasi ini tak hanya sekedar memuaskan rasa keingintahuan umat manusia semata. Namun lebih jauh dari itu, juga sangat bermanfaat untuk mengantisipasi bilamana kelak benda langit sejenis ‘menyerang’ kita lagi. Dan harapan berikutnya, semoga saja informasi tersebut juga turut membantu umat manusia berinovasi mengembangkan ‘payung’ (sistem pertahanan) untuk mengeliminasi ‘serangan’ benda langit sejenis kelak. Bukan hanya sekedar duduk diam dan menunggu nasib.

Asteroid

Peristiwa Chelyabinsk 2013 merupakan tumbukan sebuah asteroid-tanpa-nama. Berdasarkan meteorit yang tersisa, asteroid-tanpa-nama itu memiliki kerapatan 3,3 gram dalam setiap sentimeter kubiknya. Ini lebih padat dibandingkan batuan beku yang kita kenal di Bumi, misalnya andesit (2,5 hingga 2,8 gram dalam tiap sentimeter kubik). Jika berbentuk bulat seperti bola, maka asteroid itu merupakan bongkahan batuan padat dengan garis tengah 19,8 meter. Massanya 13.000 ton. Sebelum jatuh menumbuk Bumi, asteroid beredar mengelilingi Matahari dalam sebentuk orbit lonjong di antara orbit Venus dan orbit Jupiter. Perihelionnya (yakni titik terdekat ke Matahari) berdekatan dengan orbit Venus, yakni hanya sejarak 110,5 juta kilometer. Sebaliknya titik aphelionnya (yakni titik terjauh dari Matahari) berjarak 417 juta kilometer atau tepat di tengah-tengah kawasan Sabuk Asteroid. Orbit asteroid memiliki kemiringan (inklinasi) 4,9 derajat terhadap ekliptika (bidang edar Bumi mengelilingi Matahari). Asteroid-tanpa-nama ini butuh waktu 2,34 tahun untuk menyusuri orbitnya beredar mengelilingi Matahari sekali putaran. Sebelum jatuh menumbuk Bumi sebagai Peristiwa Chelyabinsk 2013, ia tiba di titik perihelionnya tepat pada detik-detik pergantian tahun 2012 ke 2013 TU.

Gambar 2. Orbit asteroid-tanpa-nama penyebab Peristiwa Chelyabinsk 2013, dibandingkan dengan orbit planet-planet terestrial saat dilihat dari jarak 3 satuan astronomis di atas kutub utara Matahari. Dibandingkan orbit planet-planet, orbit asteroid tersebut jauh lebih lonjong, yang merentang di antara orbit Venus hingga kawasan Sabuk Asteroid. Sumber: Sudibyo, 2015 dengan basis Starry Night Backyard 3.0 dan data dari Popova dkk, 2013.

Gambar 2. Orbit asteroid-tanpa-nama penyebab Peristiwa Chelyabinsk 2013, dibandingkan dengan orbit planet-planet terestrial saat dilihat dari jarak 3 satuan astronomis di atas kutub utara Matahari. Dibandingkan orbit planet-planet, orbit asteroid tersebut jauh lebih lonjong, yang merentang di antara orbit Venus hingga kawasan Sabuk Asteroid. Sumber: Sudibyo, 2015 dengan basis Starry Night Backyard 3.0 dan data dari Popova dkk, 2013.

Dengan demikian asteroid ini merupakan asteroid dekat Bumi kelas Apollo, karena perihelionnya lebih kecil ketimbang orbit Bumi sebaliknya aphelionnya lebih besar. Perbandingan dengan basisdata jumbo yang memuat ratusan ribu data asteroid yang telah kita temukan menunjukkan asteroid-tanpa-nama ini masih berkerabat dengan asteroid 86039 (1999 NC43). Asteroid 86039 (1999 NC43) adalah asteroid besar (garis tengah 2,2 kilometer) yang ditemukan pada 4 Juli 1999 TU silam lewat sistem penyigi langit semi-otomatis LINEAR (Lincoln Near-Earth Asteroid Research). Penyusuran lebih lanjut memperlihatkan baik asteroid 86039 (1999 NC43) maupun asteroid-tanpa-nama tersebut kemungkinan berasal dari satu induk yang sama dalam keluarga asteroid Flora yang bermukim di sisi dalam kawasan Sabuk Asteroid. Keduanya terlempar dari kawasan setelah mengalami resonansi sekular akibat gangguan gravitasi Jupiter. Setelah keduanya terdorong memasuki kawasan tata surya bagian dalam, giliran gangguan gravitasi Mars dan Bumi yang lambat laun mengubah orbit kedua asteroid sedikit demi sedikit. Perubahan gradual ini membuat keduanya menjadi asteroid dekat Bumi. Bedanya orbit asteroid-tanpa-nama kemudian berpotongan dengan orbit Bumi, sementara orbit asteroid 86039 (1999 NC43) tidak.

Asteroid-tanpa-nama ini juga diduga adalah bagian keluarga asteroid Baptistina. Alasannya kadar mineral piroksen dan olivinnya setara dengan kadar rata-rata piroksen dan olivin keluarga asteroid Baptistina. Yakni 23 % dan 28 %. Keluarga asteroid Baptistina berasal dari sebuah asteroid raksasa (garis tengah 170 kilometer) penghuni bagian tengah yang berkeping-keping dalam kurun antara 90 hingga 160 juta tahun silam. Salah satu anggota keluarga asteroid Baptistina yang terkenal adalah asteroid-tanpa-nama berdiameter 10 kilometer yang jatuh menumbuk Bumi 65 juta tahun silam. Tumbukannya melepaskan energi teramat besar dan dampak teramat merusak ke segenap penjuru hingga melenyapkan 75 % kelimpahan spesies makhluk hidup saat itu. Termasuk kawanan dinosaurus. Maka, apabila dugaan itu benar, asteroid-tanpa-nama penyebab Peristiwa Chelyabinsk 2013 masih berkerabat dengan asteroid raksasa pemusnah dinosaurus.

Gambar 3. Kawah raksasa Chicxulub (diameter 170 kilometer) di batas Semenanjung Yucatan dan Teluk Meksiko, berdasarkan peta gradien gravitasi Bouguer. Kawah raksasa ini terbentuk 65 juta tahun silam akibat hantaman asteroid raksasa bergaris tengah 10 kilometer. Terbentuknya kawah raksasa ini menandai bencana ekologis mahadahsyat di Bumi akibat tumbukan benda langit. Bencana tersebut turut melenyapkan populasi dinosaurus. Berdasarkam komposisi mineral piroksen dan olivinnya, ada dugaan bahwa asteroid-tanpa-nama yang menjadi penyebab Peristiwa Chelyabinsk 2013 masih berkerabat dengan asteroid pembentuk kawah raksasa Chicxulub. Sumber: Hildebrand dkk, 1990.

Gambar 3. Kawah raksasa Chicxulub (diameter 170 kilometer) di batas Semenanjung Yucatan dan Teluk Meksiko, berdasarkan peta gradien gravitasi Bouguer. Kawah raksasa ini terbentuk 65 juta tahun silam akibat hantaman asteroid raksasa bergaris tengah 10 kilometer. Terbentuknya kawah raksasa ini menandai bencana ekologis mahadahsyat di Bumi akibat tumbukan benda langit. Bencana tersebut turut melenyapkan populasi dinosaurus. Berdasarkam komposisi mineral piroksen dan olivinnya, ada dugaan bahwa asteroid-tanpa-nama yang menjadi penyebab Peristiwa Chelyabinsk 2013 masih berkerabat dengan asteroid pembentuk kawah raksasa Chicxulub. Sumber: Hildebrand dkk, 1990.

Airburst

Pada Jumat pagi 15 Februari 2013 TU, asteroid-tanpa-nama ini berada di salah satu titik nodalnya, yakni titik potong orbitnya dengan orbit Bumi. Pada saat yang sama Bumi-pun sedang berada di titik nodal tersebut. Maka tak terelakkan lagi, asteroid pun menumbuk Bumi. Asteroid memasuki atmosfer Bumi pada kecepatan 19,16 km/detik (~69.000 km/jam) dengan lintasan membentuk sudut 18,3° terhadap paras Bumi. Segera ia bergesekan dengan molekul-molekul udara, serupa dengan yang diderita setiap benda apapun (baik alamiah maupun buatan) yang mencoba menerobos atmosfer. Gesekan kuat menghasilkan tekanan ram yang cukup tinggi dibarengi dengan suhu tinggi pula, yang segera menggerus permukaan asteroid. Maka asteroid pun berubah menjadi meteor. Karena besarnya ukurannya, meteor yang dihasilkannya pun demikian terang hingga bisa dikategorikan sebagai boloid.

Sejumlah kamera mulai merekam boloid ini sebagai titik cahaya mulai dari ketinggian 97 kilometer dpl (dari paras air laut rata-rata). Semakin jauh boloid menembus atmosfer maka lapisan-lapisan udara yang dihadapinya kian menebal. Dorongan kuat seiring penetrasi boloid menyebabkan gelombang tekanan udara atau gelombang kejut mulai terbentuk. Gelombang kejut terbentuk sejak boloid berada di ketinggian 90 kilometer dpl. Semakin jauh boloid menembus atmosfer, tekanan ram-nya kian membesar. Maka permukaan boloid mulai tergerus (menguap) membentuk partikel-partikel debu. Akumulasi partikel-partikel tersebut membentuk awan debu di sepanjang lintasan yang telah dilaluinya, sehingga nampak sebagai awan lurus (train) yang khas. Selain teramati dengan jelas dari darat, awan lurus tersebut juga berhasil dipantau oleh sejumlah satelit.

Gambar 4. Dinamika boloid dalam Peristiwa Chelyabinsk 2013 dari detik ke detik, seperti direkam oleh A. Ivanov di Kamensk-Uralskiy. A: tepat saat kilatan cahaya pertamanya (yang lebih terang dari Matahari). B: pasca pemecah-belahan brutal di ketinggian 27 kilometer dpl. C: jelang kilatan cahaya yang kedua. D: pasca kilatan cahaya yang kedua. E: dua bongkahan besar tersisa, terjadi kilatan cahaya yang ketiga. F: bongkahan kedua lenyap, tinggal bongkahan pertama yang masih bercahaya. G: bongkahan kedua mulai meredup, namun masih melaju. H: bongkahan kedua kian redup meski masih melaju. Sumber: Popova dkk, 2013.

Gambar 4. Dinamika boloid dalam Peristiwa Chelyabinsk 2013 dari detik ke detik, seperti direkam oleh A. Ivanov di Kamensk-Uralskiy. A: tepat saat kilatan cahaya pertamanya (yang lebih terang dari Matahari). B: pasca pemecah-belahan brutal di ketinggian 27 kilometer dpl. C: jelang kilatan cahaya yang kedua. D: pasca kilatan cahaya yang kedua. E: dua bongkahan besar tersisa, terjadi kilatan cahaya yang ketiga. F: bongkahan kedua lenyap, tinggal bongkahan pertama yang masih bercahaya. G: bongkahan kedua mulai meredup, namun masih melaju. H: bongkahan kedua kian redup meski masih melaju. Sumber: Popova dkk, 2013.

Produksi debu berlangsung kontinu, untuk kemudian mendadak melonjak hebat sejak di ketinggian 54 kilometer dpl. Boloid juga kian benderang. Dari yang semula hanya seterang Venus, kecemerlangannya terus meningkat menjadi seterang dan bahkan ratusan kali lipat lebih terang dari Bulan purnama. Kini cahayanya bahkan telah sanggup menciptakan bayang-bayang pada benda-benda di paras Bumi yang tersinarinya. Pada ketinggian 29,7 kilometer dpl terjadi kilatan cahaya (flare) yang menghasilkan cahaya lebih benderang dari Matahari (!) meski hanya sesaat. Dari kota Chelyabinsk, saat kilatan itu terjadi boloid terlihat memiliki magnitudo visual -28,8 atau 13 kali lebih terang dari Matahari. Bahkan di kota kecil Korkino, yang tepat berada di bawah lintasan boloid, ia hampir 30 kali lebih benderang ketimbang Matahari!

Pasca terjadinya kilatan pertama, boloid mengalami pemecah-belahan brutal pada ketinggian 27 kilometer dpl. Pasca pemecah-belahan brutal ini, terjadilah kilatan cahaya kedua pada ketinggian 23,9 kilometer dpl. Magnitudo semu kilatan kedua ini adalah -20,5 sehingga 1.300 kali lebih terang ketimbang Bulan purnama. Pada pemecah-belahan brutal di ketinggian 27 kilometer dpl, dua bongkahan besar melejit dalam lintasannya masing-masing, kumplit dengan awan debu lurusnya sendiri. Kedua bongkahan kemudian melanjutkan perjalanannya hingga bongkahan kedua tiba di ketinggian 18,5 kilometer dpl. Di sinilah terjadi kembali sebuah kilatan cahaya yang ketiga. Kilatan ketiga ini memiliki magnitudo semu -16,5 sehingga 30 kali lebih terang dari Bulan purnama. Bongkahan kedua kemudian lenyap dari pandangan mata pasca kilatan ketiga. Sementara bongkahan pertama, yang melaju sedikit lebih cepat tak mengalami kilatan semenjak dari ketinggian 23,9 kilometer dpl, terus melanjutkan perjalanannya hingga mencapai ketinggian 13,6 kilometer dpl untuk kemudian tak nampak lagi. Dengan tiga kilatan cahaya terjadi tinggi di udara tanpa disertai terbentuknya kawah tumbukan di Bumi, jelas Peristiwa Chelyabinsk 2013 tergolong sebagai peristiwa airburst (ledakan di udara).

Gambar 5. Bagaimana Peristiwa Chelyabinsk 2013 menghasilkan bayang-bayang yang sangat tegas pada benda-benda yang tersinarinya kala terjadi kilatan cahaya pertama, seperti direkam oleh sejumlah kamera keamanan. A: bayang-bayang tiang lampu (tanda panah) di Lapangan Revolusi Chelyabinsk. Lintasan boloid berada di arah pandang kamera. B: bayang-bayang pohon, patung dan tiang lampu (tanda panah) bangunan administratif Cherbakul. Lintasan boloid berada di belakang arah pandang kamera. Disajikan oleh Eduard Kalinin. Sumber: Popova dkk, 2013.

Gambar 5. Bagaimana Peristiwa Chelyabinsk 2013 menghasilkan bayang-bayang yang sangat tegas pada benda-benda yang tersinarinya kala terjadi kilatan cahaya pertama, seperti direkam oleh sejumlah kamera keamanan. A: bayang-bayang tiang lampu (tanda panah) di Lapangan Revolusi Chelyabinsk. Lintasan boloid berada di arah pandang kamera. B: bayang-bayang pohon, patung dan tiang lampu (tanda panah) bangunan administratif Cherbakul. Lintasan boloid berada di belakang arah pandang kamera. Disajikan oleh Eduard Kalinin. Sumber: Popova dkk, 2013.

Pantauan satelit memperlihatkan energi kinetik boloid yang berubah menjadi cahaya dalam segenap lintasannya, termasuk ketiga kilatan tersebut, adalah 90 kiloton TNT (trinitrotoluena). Secara keseluruhan hingga ketinggian tersebut boloid telah melepaskan 590 kiloton TNT energi kinetik. Itu setara dengan 29 butir bom nuklir Hiroshima yang diledakkan serempak. Tekanan ram yang kian membesar saat boloid menembus atmosfer yang lebih rendah membuat boloid tak sekedar tergerus, namun juga membuatnya terpecah-belah. Terutama saat besarnya tekanan telah melampaui daya tahan mineral-mineral penyusun tubuh asteroid-tanpa-nama yang menjadi boloid tersebut. Pemecah-belahan mulai berlangsung di sekitar ketinggian 40 kilometer dpl. Namun pemecah-belahan yang sangat intensif terjadi di antara ketinggian 32 hingga 29 kilometer dpl, atau tepat sebelum boloid mengalami kilatan pertamanya. Pemecah-belahan intensif tersebut menghasilkan ribuan keping meteor. Masing-masing keping terus melaju namun dengan kecepatan jauh lebih lambat. Pemecah-belahan yang sangat intensif dibarengi dengan boloid yang mencapai puncak kecemerlangannya segera menimbulkan implikasi lanjutan yang lebih serius.

Saat tiba di ketinggian 29,7 kilometer dpl kecepatan boloid masih sebesar 18,6 km/detik ( ~67.000 km/jam). Jelas terlihat ia mengalami perlambatan (deselerasi) meski kecil. Namun setelah terpecah-belah demikian massif dan kecemerlangannya mencapai puncaknya, boloid masih terus terfragmentasi hingga tiba di ketinggian 27 kilometer dpl. Produksi debunya berhenti di ketinggian 26,2 kilometer dpl. Hingga ketinggian tersebut, sebanyak 76 % massa awal boloid berubah menjadi awan debu lurus yang khas dan pekat. Sementara 24 % sisanya, yang setara dengan 3.120 ton, menjadi ribuan keping meteor yang mayoritas berukuran kecil. Keping-keping tersebut melesat pada lintasannya masing-masing. Namun pada ketinggian 27 hingga 23 kilometer dpl, keping-keping itu kembali mengalami perlambatan hebat dan tergerus. Partikel-partikel debu pun kembali terbentuk. Dalam beberapa kasus, keping-keping meteor yang terlalu kecil bahkan tergerus hingga habis. Maka keping-keping meteor yang tersisa tinggal bermassa antara 4 hingga 6 ton.

Gambar 6. Awan debu lurus (train) yang khas dalam Peristiwa Chelyabinsk 2013 dari waktu ke waktu. Angka-angka menunjukkan perkiraan ketinggian dalam kilometer dpl. A: 5 detik setelah terbentuk, awan masih sempit dan pekat dengan emisi warna merah dan merah jingga. B: 35 detik setelah terbentuk, masih tersisa warna jingga yang kemungkinan adalah emisi cahaya dari molekul-molekul NO. C: 46 hingga 73 detik setelah terbentuk, warna merah jingga masih tersisa. D: 1,5 menit pasca terbentuk, awan debu lurus mulai melebar dan menipis. Berdasarkan pada pemotretan yang dilakukan Marat Ahmetvaleev dan Evgueny Tvogorov. Sumber: Popova dkk, 2013.

Gambar 6. Awan debu lurus (train) yang khas dalam Peristiwa Chelyabinsk 2013 dari waktu ke waktu. Angka-angka menunjukkan perkiraan ketinggian dalam kilometer dpl. A: 5 detik setelah terbentuk, awan masih sempit dan pekat dengan emisi warna merah dan merah jingga. B: 35 detik setelah terbentuk, masih tersisa warna jingga yang kemungkinan adalah emisi cahaya dari molekul-molekul NO. C: 46 hingga 73 detik setelah terbentuk, warna merah jingga masih tersisa. D: 1,5 menit pasca terbentuk, awan debu lurus mulai melebar dan menipis. Berdasarkan pada pemotretan yang dilakukan Marat Ahmetvaleev dan Evgueny Tvogorov. Sumber: Popova dkk, 2013.

Dalam peristiwa ini separuh energi kinetik boloid, yakni sebesar 295 kiloton TNT, terlepas di sepanjang lintasannya hingga ke titik terjadinya kilatan pertama. Sementara kilatan pertama melepaskan 30 % energi kinetik boloid, setara dengan 177 kiloton TNT. Kilatan kedua melepaskan 15 % energi kinetik, setara 88,5 kiloton TNT. Dan kilatan ketiga melepaskan hanya 5 % energi kinetik boloid, setara dengan 29,5 kiloton TNT. Pelepasan energi kinetik boloid secara bertahap disusul dengan tiga kilatan berturut-turut melipatgandakan intensitas gelombang kejutnya. Selagi menjalar di udara, gelombang tekanan udara ini memproduksi juga gelombang akustik dengan gelombang infrasonik sebagai salah stau komponennya. Gelombang infrasonik berkemampuan menjalar jauh. Bahkan hingga mencapai Antartika, seperti yang direkam radar mikrobarometer stasiun CTBTO disana. Saat gelombang akustik menyentuh daratan tepat di bawah lintasan boloid, terjadi konversi menjadi gelombang seismik dalam rupa gelombang Rayleigh (gelombang permukaan).

Sinar Panas

Tumbukan benda langit memang bukanlah peristiwa ledakan senjata nuklir. Tumbukan benda langit tak pernah memandarkan sinar radioaktif ataupun memproduksi sampah radioaktif layaknya ledakan senjata nuklir. Namun keduanya memiliki beberapa ciri khas yang sama, misalnya dalam hal pelepasan energi sangat besar pada tempo sangat singkat. Karena itu dampak peristiwa tumbukan terhadap Bumi kerap dianalisis dengan pendekatan dampak ledakan nuklir, khususnya jika energi kinetik asteroid/komet itu cukup besar. Termasuk dalam peristiwa airburst. Dampak sebuah airburst dapat dianalisis berdasarkan pendekatan dampak ledakan nuklir atmosferik (titik ledaknya berada di udara), khususnya pada ketinggian cukup besar (eksoatmosferik). Energi sangat besar yang dilepaskan dalam peledakan senjata nuklir strategis secara eksoatmosferik akan menghasilkan dua dampak utama, yakni sinar panas dan gelombang kejut. Dua dampak utama tersebut pun teramati dalam airburst Peristiwa Chelyabinsk 2013.

Gambar 7. Peta area yang terkena dampak sinar panas Peristiwa Chelyabinsk 2013. Lingkaran ungu mewakili lokasi para korban yang merasakan sensasi terbakar di kulit (sunburn). Lingkaran merah mewakili lokasi para korban yang mengalami sensasi terbakar di retina. Lingkaran kuning mewakili lokasi para korban yang merasa terbutakan untuk sementara waktu. Dan lingkaran jingga mewakili lokasi para korban yang matanya teriritasi. Garis hitam berujung panah merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Gambar 7. Peta area yang terkena dampak sinar panas Peristiwa Chelyabinsk 2013. Lingkaran ungu mewakili lokasi para korban yang merasakan sensasi terbakar di kulit (sunburn). Lingkaran merah mewakili lokasi para korban yang mengalami sensasi terbakar di retina. Lingkaran kuning mewakili lokasi para korban yang merasa terbutakan untuk sementara waktu. Dan lingkaran jingga mewakili lokasi para korban yang matanya teriritasi. Garis hitam berujung panah merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Dampak sinar panas dalam Peristiwa Chelyabinsk 2013 mewujud pada mata pedih (disamping silau) dari orang-orang yang menatap boloid ini secara langsung. Sebagai hasilnya, ada 180 orang yang matanya teriritasi, 70 orang merasa terbutakan untuk sesaat dan 11 orang merasakan sensasi retina yang terbakar. Namun tidak ada kasus kerusakan mata permanen bagi orang-orang tersebut, baik di lensa mata maupun kornea. Di luar dari dampak pada mata, terdapat 20 orang yang melaporkan sensasi terbakar pada kulit (sunburn). Beberapa mereka merasakan sensasi tersebut di leher bagian belakang kala membelakangi boloid. Juga terdapat 315 orang yang merasa mendadak panas dan 415 orang yang merasa mendadak hangat. Jika dibandingkan dengan proyeksi lintasan boloid di paras Bumi, maka area yang terdampak sinar panas dalam Peristiwa Chelyabinsk 2013 adalah hingga garis paralel 200 kilometer di sebelah utara dan hingga garis paralel 120 kilometer di selatan. Korban terparah dampak sinar panas terdapat di Korkino, 30 kilometer dari proyeksi titik kilatan pertama. Di sini seseorang mengalami luka-luka menengah akibat sunburn di wajahnya yang disusul mengelupasnya sebagian kulit wajah.

Sinar panas merupakan imbas langsung dari terjadinya airburst dalam Peristiwa Chelyabinsk 2013. Sinar panas merupakan gelombang elektromagnetik dalam rentang frekuensi tertentu, yang didominasi sinar ultraungu, yang dipancarkan dari sebuah sumber dan memiliki intensitas sangat tinggi. Tingginya intensitas membuatnya mampu menimbulkan aneka efek fisis saat mengenai manusia/benda. Jika melampaui ambang batas tertentu, sinar panas mampu menimbulkan luka-luka bakar dalam aneka tingkat, mulai dari tingkat satu (paling ringan) hingga tingkat tiga (paling parah dan berpotensi fatal). Ia juga mampu membuat benda-benda terbakar spontan, mulai dari kertas koran (paling ringan) hingga kain (paling parah), bergantung pada intensitasnya.

Dalam Peristiwa Chelyabinsk 2013, sinar panas dipancarkan kala boloid mengalami kilatan pertama sekaligus meraih puncak kecemerlangannya sehingga boloid sempat lebih benderang dari Matahari. Intensitas tertinggi dari sinar panas produk airburst Peristiwa Chelyabinsk 2013 adalah 200 Joule per meter persegi, yang terjadi di Korkino. Intensitas tersebut masih jauh dari ambang intensitas untuk menyebabkan luka bakar tingkat satu (127,94 kiloJoule per meter persegi) maupun terbakarnya kertas koran (258,74 kiloJoule per meter persegi). Sehingga nyaris tak ada efek fisis yang ditimbulkannya, kecuali sensasi rasa terbakar. Korban terparah di Korkino merupakan kasus khusus, karena ia tak hanya menerima paparan sinar panas langsung dari boloid yang sedang dalam tahap kilatan pertamanya namun juga dari hasil pemantulan sinar panas oleh lapisan-lapisan salju yang mengitarinya. Sebagai akibatnya ia menerima paparan total sinar panas hingga sekitar 1.000 Joule per meter persegi, sehingga terjadi kasus eritema (sebagian kulit wajah mengelupas).

Gelombang Kejut

Dampak paling kasat mata Peristiwa Chelyabinsk 2013 adalah gelombang kejutnya. Kaca-kaca jendela dari total 7.320 buah bangunan pecah akibat hempasan gelombang kejut. Bangunan-bangunan tersebut meliputi 740 buah gedung sekolah dan universitas, 296 buah gedung fasilitas kesehatan, 110 buah gedung organisasi kebudayaan, 48 gedung olahraga serta 6.097 buah gedung apartemen dan rumah. Serpihan kaca-kaca jendela yang melesat beterbangan melukai ribuan orang dalam bentuk luka iris. Selain itu hempasan gelombang kejut juga mampu menjatuhkan orang yang berdiri tegak, khususnya di dekat proyeksi lintasan boloid. Sehingga luka-luka memar pun terjadi. Tercatat 1.613 orang mendatangi fasilitas medis untuk perawatan luka-lukanya. 112 orang diantaranya harus menjalani rawat inap dengan 2 diantaranya menderita luka berat.

Gambar 8. Kerusakan akibat dampak gelombang kejut Peristiwa Chelyabinsk 2013 di Yemanzhelinsk. A: kaca jendela yang pecah. B dan D: pembersihan dan perbaikan sementara. C: kerangka jendela yang terdorong masuk. E, F dan H: jendela yang hilang di gedung sekolah. G: eternit yang jebol. Foto-foto dari Victor I. Gubar. Sumber: Popova dkk, 2013.

Gambar 8. Kerusakan akibat dampak gelombang kejut Peristiwa Chelyabinsk 2013 di Yemanzhelinsk. A: kaca jendela yang pecah. B dan D: pembersihan dan perbaikan sementara. C: kerangka jendela yang terdorong masuk. E, F dan H: jendela yang hilang di gedung sekolah. G: eternit yang jebol. Foto-foto dari Victor I. Gubar. Sumber: Popova dkk, 2013.

Selain menyebabkan ribuan orang luka-luka, hempasan gelombang kejut Peristiwa Chelyabinsk 2013 juga menyebabkan sejumlah kerusakan fisik dan masalah lainnya. Atap sebuah pabrik seng di Chelyabinsk ambruk. Kerangka jendela sejumlah bangunan yang tepat berada di bawah lintasan boloid melesak ke dalam. Bahkan ada eternit yang jebol, meski atapnya sendiri tidak mengalami masalah serius. Disamping itu ribuan alarm mobil dibuat meraung-raung, menambah suasana menjadi hiruk pikuk. Getaran yang ditimbulkan papasan gelombang kejut juga membuat aliran listrik di berbagai tempat sempat terputus. Juga sambungan telepon seluler. Getaran juga membuat katup pemutus otomatis pada sistem pipa gas kota terpicu. Sehingga aliran gas sempat terputus.

Gambar 9. Peta area yang terkena dampak gelombang kejut Peristiwa Chelyabinsk 2013. Lingkaran merah mewakili lokasi bangunan yang mengalami kerusakan berdasarkan temuan Popova dkk. Sementara lingkaran ungu mewakili bangunan yang rusak berdasarkan data badan layanan darurat setempat. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Gambar 9. Peta area yang terkena dampak gelombang kejut Peristiwa Chelyabinsk 2013. Lingkaran merah mewakili lokasi bangunan yang mengalami kerusakan berdasarkan temuan Popova dkk. Sementara lingkaran ungu mewakili bangunan yang rusak berdasarkan data badan layanan darurat setempat. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Seperti halnya dampak sinar panas, dampak gelombang kejut pun menjalar cukup jauh. Pemetaan menunjukkan, jika dibandingkan dengan proyeksi lintasan boloid di paras Bumi maka area yang terdampak gelombang kejut dalam Peristiwa Chelyabinsk 2013 adalah hingga garis paralel 120 kilometer di sebelah utara dan selatan. Pecahnya kaca-kaca jendela diakibatkan oleh tekanan lebih (overpressure) lebih besar dari 500 Pascal. Perhitungan menunjukkan dampak gelombang kejut yang diperlihatkan dalam Peristiwa Chelyabinsk 2013 konsisten dengan ledakan nuklir berkekuatan 520 kiloton TNT dengan titik ledak dinamis yang berpindah-pindah antara ketinggian 34 hingga 27 kilometer dpl dan antara ketinggian 24 hingga 19 kilometer dpl menyusuri lintasan boloid. Dengan demikian 88 % dari energi kinetik boloid diubah menjadi gelombang kejut sementara sisanya menjadi cahaya (termasuk sinar panas).

Ada sedikit perbedaan antara gelombang kejut produk ledakan nuklir atmosferik dengan boloid. Gelombang kejut produk ledakan nuklir eksoatmosferik umumnya menjalar sebagai bentuk sferis (mirip bola) karena berasal dari sumber ledakan titik. Ini karena titik ledaknya relatif tidak bergerak atau terpatok pada ketinggian tertentu. Sebaliknya gelombang kejut boloid pada awalnya berbentuk kerucut, sebagai imbas dari tekanan ram yang diproduksinya semenjak mulai memasuki lapisan atmosfer yang lebih padat. Yakni mulai dari ketinggian 90 atau 100 kilometer dpl. Seiring penjalaran gelombang kejut, maka bentuk kerucut ini pun melebar mengikuti waktu. Namun bila terjadi peristiwa airburst, ujung kerucut ini segera menumpul akibat penjalaran gelombang kejut baru dari titik-titik pelepasan energi (titik-titik kilatan cahaya).

Gambar 10. Model gelombang kejut dalam Peristiwa Chelyabinsk 2013 sebagai distribusi nilai P/Po (Po = tekanan udara di paras Bumi) dengan energi 520 kiloton TNT dan gelombang kejut dilepaskan di sepanjang lintasan boloid, bukan hanya di satu titik. Sumbu vertikal mewakili ketinggian (dalam kilometer dpl). Sementara sumbu horizontal mewakili jarak relatif dari proyeksi titik kilatan cahaya pertama di paras Bumi. Atas: distribusi gelombang kejut saat boloid tepat telah lenyap di ketinggian 13,6 kilometer dpl. Nampak gelombang kejut masih berbentuk kerucut sangat ramping. Tengah: 25 detik kemudian, gelombang kejut sudah melebar dengan ujung lebih tumpul sebagai imbas terjadinya tiga peristiwa kilatan cahaya (sekaligus pelepasan energi). Bawah: 90 detik kemudian, sebagian gelombang kejut sudah tiba di daratan. Sumber: Popova dkk, 2013.

Gambar 10. Model gelombang kejut dalam Peristiwa Chelyabinsk 2013 sebagai distribusi nilai P/Po (Po = tekanan udara di paras Bumi) dengan energi 520 kiloton TNT dan gelombang kejut dilepaskan di sepanjang lintasan boloid, bukan hanya di satu titik. Sumbu vertikal mewakili ketinggian (dalam kilometer dpl). Sementara sumbu horizontal mewakili jarak relatif dari proyeksi titik kilatan cahaya pertama di paras Bumi. Atas: distribusi gelombang kejut saat boloid tepat telah lenyap di ketinggian 13,6 kilometer dpl. Nampak gelombang kejut masih berbentuk kerucut sangat ramping. Tengah: 25 detik kemudian, gelombang kejut sudah melebar dengan ujung lebih tumpul sebagai imbas terjadinya tiga peristiwa kilatan cahaya (sekaligus pelepasan energi). Bawah: 90 detik kemudian, sebagian gelombang kejut sudah tiba di daratan. Sumber: Popova dkk, 2013.

Meteorit

Selain sinar panas dan gelombang kejutnya, Peristiwa Chelyabinsk 2013 juga menghasilkan guyuran meteorit ke daratan dibawahnya. Ukuran dan bobot meteoritnya beragam. Namun dibandingkan sinar panas dan gelombang kejut, guyuran meteorit nyaris tak berdampak pada bangunan, apalagi manusia. Hanya ada satu bangunan, milik keluarga Biryukovy di Emazhelinska, yang atapnya berlubang kecil akibat hantaman meteorit kecil. Meteor tersebut ditemukan di dekat lantai. Tak ada yang terluka olehnya.

Gambar 11. Satu-satunya bangunan yang mengalami kerusakan akibat hantaman meteorit dalam Peristiwa Chelyabinsk 2013. Sebutir meteorit kecil, nampak dipegang Popova dengan tangan kiri, menghantam pinggir atap bangunan ini. Akibatnya pinggiran atap itu pun berlubang (tanda panah). Sumber: Popova dkk, 2013.

Gambar 11. Satu-satunya bangunan yang mengalami kerusakan akibat hantaman meteorit dalam Peristiwa Chelyabinsk 2013. Sebutir meteorit kecil, nampak dipegang Popova dengan tangan kiri, menghantam pinggir atap bangunan ini. Akibatnya pinggiran atap itu pun berlubang (tanda panah). Sumber: Popova dkk, 2013.

Meteorit-meteorit yang dijumpai dalam Peristiwa Chelyabinsk 2013 terserak di sekitar proyeksi lintasan boloid di paras Bumi. Meteorit yang lebih ringan mengalami hambatan udara lebih besar dan lebih mudah tertiup angin. Sehingga ia butuh waktu lebih lama untuk mendarat dan mendarat dengan kecepatan kecil. Sebaliknya meteorit-meteorit yang lebih berat tidak demikian, sehingga mereka lebih cepat mendarat dan dengan kecepatan lebih besar. Meteorit-meteorit yang lebih ringan mendarat pada jarak yang lebih dekat terhadap proyeksi titik kilatan cahaya pertama di paras Bumi dibandingkan dengan meteorit yang lebih jauh. Maka meteorit dengan massa 10 gram sudah ditemukan pada jarak 18 kilometer dari proyeksi titik kilatan cahaya pertama, sementara meteorit 100 gram pada jarak 33 kilometer dan meteorit 1 kilogram pada jarak 43 kilometer. Perhitungan menunjukkan masing-masing meteorit tersebut jatuh pada kecepatan 37 meter/detik (133 km/jam), 55 meter/detik (198 km/jam) dan 82 meter/detik (295 km/jam). Perhitungan juga menunjukkan meteorit-meteorit tersebut jatuh dalam waktu 347 detik, 235 detik dan 158 detik pasca kilatan cahaya pertama.

Gambar 12. Peta area temuan meteorit dalam Peristiwa Chelyabinsk 2013, yang ditandai dengan lingkaran kuning. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Angka 14, 18, 24 dan seterusnya di sisi garis hitam menunjukkan ketinggian boloid pada saat melintas. Sumber: Popova dkk, 2013.

Gambar 12. Peta area temuan meteorit dalam Peristiwa Chelyabinsk 2013, yang ditandai dengan lingkaran kuning. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Angka 14, 18, 24 dan seterusnya di sisi garis hitam menunjukkan ketinggian boloid pada saat melintas. Sumber: Popova dkk, 2013.

Salah satu aspek menarik Peristiwa Chelyabinsk 2013 adalah ditemukannya meteorit cukup besar sekaligus cukup berat. Segera setelah semua kehebohan di kawasan Chelyabinsk dan sekitarnya, penduduk di sekitar Danau Cherbakul dikejutkan dengan adanya sebentuk lubang aneh di dataran es permukaan danau. Danau ini terletak 40 kilometer di sebelah barat-barat laut kota Chelyabinsk. Perhitungan menunjukkan danau ini terletak di sekitar ujung lintasan boloid Peristiwa Chelyabinsk 2013. Lubang aneh tersebut berbentuk lonjong dengan ukuran 7 x 8 meter persegi. Semula lubang aneh ini diduga hadir akibat ulah manusia, yang iseng membentuk lubang di dataran es setebal 70 cm dengan kapak es. Namun di sekeliling lubang ini lalu dijumpai banyak meteorit kecil-kecil. Seluruhnya terdapat 51 buah meteorit kecil, yang terserak dalam radius 5 hingga 50 meter dari lubang aneh itu. Muncul kecurigaan bahwa lubang aneh tersebut terbentuk secara alamiah, akibat hantaman meteorit yang berukuran besar. Apalagi setelah kamera keamanan sirkuit tertutup di kediaman Nikolaj Mel’nikov yang menghadap ke danau memperlihatkan memang ada obyek besar jatuh ke danau. Hanya 1 menit 2,5 detik pasca kamera merekam permukaan danau yang mendadak lebih terang (akibat paparan cahaya boloid), gumpalan asap putih menyeruak dari sebuah titik di tengah-tengah danau lantas terbawa angin. Gumpalan asap putih itu nampaknya butir-butir es atau salju yang terhambur ke udara akibat jatuhnya meteorit besar. Karena resolusinya, kamera tersebut tak menangkap obyek meteorit saat hendak jatuh ke danau.

Gambar 13. Dinamika dataran es di permukaan Danau Cherbakul pada saat Peristiwa Chelyabinsk 2013, seperti direkam kamera keamanan di kediaman Nikolaj Mel'nikov. Waktu dalam GMT (UTC). 03:20:32,20: lansekap danau diterangi oelh cahaya boloid khususnya dari kilatan cahaya pertamanya. 03:21:34,72: gumpalan asap putih yang adalah titik-titik es atau salju yang terhambur ke udara akibat hantaman meteorit besar ke permukaan danau mulai terbentuk (tanda panah). 03:22:44,20: gumpalan asap putih (tanda panah) telah membesar dan bergeser ke kanan akibat hembusan angin. 03:26:52,20: gumpalan asap putih (tanda panah) kian bergeser ke kanan oleh hembusan angin. Sumber: Popova dkk, 2013.

Gambar 13. Dinamika dataran es di permukaan Danau Cherbakul pada saat Peristiwa Chelyabinsk 2013, seperti direkam kamera keamanan di kediaman Nikolaj Mel’nikov. Waktu dalam GMT (UTC). 03:20:32,20: lansekap danau diterangi oleh cahaya boloid khususnya dari kilatan cahaya pertamanya. 03:21:34,72: gumpalan asap putih yang adalah titik-titik es atau salju yang terhambur ke udara akibat hantaman meteorit besar ke permukaan danau mulai terbentuk (tanda panah). 03:22:44,20: gumpalan asap putih (tanda panah) telah membesar dan bergeser ke kanan akibat hembusan angin. 03:26:52,20: gumpalan asap putih (tanda panah) kian bergeser ke kanan oleh hembusan angin. Sumber: Popova dkk, 2013.

Pengukuran dengan radas magnetometer-gradiometer menunjukkan adanya sebentuk obyek besar padat dan kaya besi terbenam di dasar danau. Obyek padat dan kaya besi adalah salah satu ciri khas meteorit. Namun saat danau diselami di awal mula, hasilnya mengecewakan. Penyelam hanya menemukan sebentuk cekungan lumayan besar di lumpur tebal di dasar danau. Butuh lebih dari setengah tahun kemudian, setelah lapisan es mencair sepenuhnya dan menghilang di musim panas, untuk dapat menemukan meteorit besar tersebut. Pada 24 September 2013 TU penyelam Alexei Lyahov menemukan bongkahan 1,5 kilogram, yang adalah meteorit dan diyakini merupakan bagian dari meteorit besar tersebut. Pencarian mencapai puncaknya pada 16 Oktober 2013 TU kala sebongkah batu besar dengan volume 0,1533 meter kubik dan massa 500 kilogram berhasil diangkat dari dasar danau. Inilah meteorit terbesar produk Peristiwa Chelyabinsk 2013.

Perhitungan menunjukkan meteorit besar ini jatuh dengan kecepatan 225 meter/detik (810 km/jam) pada saat menyentuh permukaan es Danau Cherbakul. Meteorit besar ini adalah bagian dari bongkahan pertama, yang terbentuk saat boloid mengalami pemecah-belahan brutal di ketinggian 27 kilometer dpl. Tak seperti bongkahan kedua yang hancur berkeping-keping dalam kilatan cahaya ketiga di ketinggian 18,5 kilometer dpl, bongkahan pertama terus melaju tanpa mengalami kilatan maupun pemecah-belahan signifikan lagi hingga tiba di ketinggian 13,6 kilometer dpl. Setelah itu bongkahan pertama lenyap dari pandangan mata. Namun ia masih melanjutkan perjalanannya hingga akhirnya tercebur di Danau Cherbakul.

Gambar 14. Lubang yang dibentuk oleh hantaman meteorit besar di dataran es permukaan Danau Cherbakul dilihat dari udara (kanan) beserta sejumlah meteorit kecil yang ditemukan disekitar lubang (kiri). Sumber: Popova dkk, 2013.

Gambar 14. Lubang yang dibentuk oleh hantaman meteorit besar di dataran es permukaan Danau Cherbakul dilihat dari udara (kanan) beserta sejumlah meteorit kecil yang ditemukan disekitar lubang (kiri). Sumber: Popova dkk, 2013.

Perhitungan juga menunjukkan, andaikata meteorit besar ini jatuh ke tanah dampaknya pun lumayan. Dengan kecepatan 810 km/jam maka tanah yang ditumbuknya akan berubah menjadi cekungan kawah tumbukan bergaris tengah 5 meter dengan kedalaman maksimum 1 meter. Dari cekungan ini akan terhambur tanah produk tumbukan sebanyak 9 meter kubik. Dapat dibayangkan apa yang akan terjadi jika meteorit besar ini menghantam sebidang tanah yang terdapat bangunan atau aktivitas manusia. Korban jiwa bakal tak terelakkan.

Epilog

Lebih dari seabad sebelum kejadian di Chelyabinsk, Russia (saat itu masih kekaisaran Russia) juga didera oleh peristiwa serupa. Kilatan cahaya yang sangat benderang diiringi suara gemuruh khas ledakan yang sangat besar (dan misterius) terjadi di kawasan Tunguska, Siberia, pada 30 Juni 1908 TU. Segera setelah itu diketahui bahwa lebih dari 80 juta pepohonan yang terserak di kawasan seluas 2.000 kilometer persegi di tengah-tengah belantara Siberia ambruk. Arah jatuhnya pohon-pohon tersebut pun khas. Di tengah-tengah kawasan ini masih tersisa area kecil dengan pepohonan yang masih tegak, namun telah kehilangan cabang-cabang dan ranting-rantingnya. Getaran seismik yang setara dengan gempa 5,0 skala Richter pun mengguncang seismometer-seismometer di sekujur Eurasia. Perubahan tekanan udaranya terekam hingga ke stasiun di Inggris Raya. Selama beberapa hari kemudian langit senja Eropa dan Asia terlihat lebih terang, pemandangan yang mengingatkan pada langit senja pasca Letusan Krakatau 1883 maupun pasca Letusan Tambora 1815. Pengukuran di observatorium Gunung Wilson (Amerika Serikat) memperlihatkan bahwa semenjak peristiwa tersebut langit belahan Bumi utara cenderung lebih kotor, yang bertahan hingga berbulan-bulan kemudian. Situasi tersebut lagi-lagi mengingatkan kembali pada langit pasca Letusan Krakatau 1883 dan pasca Letusan Tambora 1815.

Gambar 15. Atas: dua bongkahan besar nampak melejit dari titik dimana boloid Peristiwa Chelyabinsk 2013 mengalami pemecah-belahan brutal di ketinggian 27 kilometer dpl. Masing-masing adalah bongkahan pertama (1) dan bongkahan kedua (2). Bongkahan kedua lenyap di ketinggian 18,5 kilometer dpl bersamaan dengan kilatan cahaya ketiga. Bawah: meteorit terbesar dan terberat dalam Peristiwa Chelyabinsk 2013, yang berhasil diangkat dari dasar Danau Cherbakul lebih dari setengah tahun setelah kejatuhannya. Meteorit besar ini adalah bongkahan pertama yang berhasil selamat tiba di paras Bumi dan membentur permukaan danau dengan kecepatan 810 km/jam. Sumber: Popova dkk, 2013.

Gambar 15. Atas: dua bongkahan besar nampak melejit dari titik dimana boloid Peristiwa Chelyabinsk 2013 mengalami pemecah-belahan brutal di ketinggian 27 kilometer dpl. Masing-masing adalah bongkahan pertama (1) dan bongkahan kedua (2). Bongkahan kedua lenyap di ketinggian 18,5 kilometer dpl bersamaan dengan kilatan cahaya ketiga. Bawah: meteorit terbesar dan terberat dalam Peristiwa Chelyabinsk 2013, yang berhasil diangkat dari dasar Danau Cherbakul lebih dari setengah tahun setelah kejatuhannya. Meteorit besar ini adalah bongkahan pertama yang berhasil selamat tiba di paras Bumi dan membentur permukaan danau dengan kecepatan 810 km/jam. Sumber: Popova dkk, 2013.

Kini kita menyebut kejadian itu sebagai Peristiwa Tunguska 1908. Seperti halnya peristiwa Chelyabinsk, kejadian di Tunguka pun disebabkan oleh tumbukan benda langit yang berujung pada peristiwa airburst. Hanya saja energi kinetik boloid yang terlepas di Tunguska jauh lebih besar, yakni antara 10 hingga 15 megaton TNT dengan estimasi tertinggi hingga 30 megaton TNT. Dengan demikian ia 17 hingga 25 kali lebih energetik (maksimum 51 kali lebih energetik) ketimbang Peristiwa Chelyabinsk 2013. Ketinggian lokasi airburst-nya pun lebih rendah, yakni antara 6 hingga 10 kilometer dpl. Mujur bahwa Peristiwa Tunguska 1908 terjadi tepat di jantung hutan belantara Siberia yang tak berpenghuni (manusia). Bila berlangsung di pusat pemukiman manusia apalagi di pusat peradaban modern, entah apa jadinya.

Secara umum Peristiwa Chelyabinsk 2013, bersama dengan Peristiwa Tunguska 1908, mendemonstrasikan dengan telanjang apa yang selama ini menjadi kekhawatiran para ilmuwan, khususnya astronom dan astrofisikawan. Yakni bahwa tumbukan benda langit khususnya yang melepaskan energi kinetik besar, hingga berada dalam rentang kekuatan ledakan senjata nuklir taktis maupun strategis, memproduksi dampak perusak yang sama dengan ledakan nuklir (minus radiasinya). Termasuk jika sebuah tumbukan benda langit berujung hanya pada kejadian airburst tanpa terbentuknya kawah tumbukan. Peristiwa Chelyabinsk 2013 memperlihatkan betapa sebutir asteroid yang garis tengahnya 20 meter sanggup menghasilkan kerusakan ringan-sedang dalam wilayah yang cukup luas di Bumi. Ini memperlihatkan betapa rentannya peradaban manusia modern dalam menghadapi ancaman bahaya tumbukan benda langit, mengingat asteroid berdiameter 20 meter adalah terhitung kecil bila dibandingkan dengan dimensi asteroid pada umumnya. Termasuk di kalangan populasi asteroid dekat Bumi.

Apa yang harus dilakukan? Sejauh ini sistem penyigian langit semi-otomatis yang kita miliki sejatinya telah sanggup mendeteksi asteroid dekat-Bumi seukuran 20 meter atau lebih yang melintas di dekat Bumi. Dalam beberapa kasus khusus, asteroid yang berukuran lebih kecil pun sanggup diendus, bahkan hingga sekecil 1 meter! namun keberhasilan tersebut dibatasi oleh banyak faktor. Salah satunya kurang meratanya distribusi teleskop/observatorium yang terlibat dalam sistem penyigian langit saat ini, yang masih terkonsentrasi di belahan Bumi utara dan di benua-benua tertentu saja. Di sisi lain keampuhan sistem penyigian langit tersebut juga sangat terbatasi bila berhadapan dengan asteroid/komet yang geometri orbitnya demikian rupa sehingga magnitudo semu asteroid/komet baru akan mencapai ambang batas deteksi hanya dalam beberapa jam sebelum jatuh menumbuk Bumi. Asteroid-tanpa-nama yang menjadi penyebab Peristiwa Chelyabinsk 2013 pun demikian.

Jika upaya deteksi benda langit yang berpotensi menumbuk Bumi telah mendapat kemajuan besar, tak demikian dengan upaya antisipasinya. Sejauh ini belum ada satu perangkat teknis yang memadai dan teruji untuk mengeliminasi potensi ancaman sebuah benda langit. Baik kala benda langit tersebut masih cukup jauh dan sedang menyusuri orbitnya untuk menuju ke Bumi. Ataupun kala ia sudah menjadi boloid di lapisan atmosfer atas. Pun demikian bagaimana mereduksi bahayanya. Meski dampak tumbukan benda langit menyerupai dampak ledakan senjata nuklir (minus radiasinya), sejauh ini hanya negara-negara adidaya seperti Russia dan Amerika Serikat yang telah memperkenalkan mitigasi bencana ledakan nuklir. Begitupun, Peristiwa Chelyabinsk 2013 memperlihatkan betapa mitigasi bencana ledakan nuklir masih harus dikembangkan lagi jika hendak diaplikasikan ke dalam mitigasi bencana tumbukan benda langit. Jalan masih panjang, pekerjaan rumah masih banyak.

Referensi :

Popova dkk. 2013. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization. Science no. 342 (2013) October 2013 + Supplementary Materials.

Hildebrand dkk. 1990. Chicxulub Crater Size and Structure as Revealed by Horizontal Bouguer Gravity Gradients and Cenote Distribution. Lunar & Planetary Science XXVI, 603-604.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Kala Asteroid Sebesar Rumah Lewat di Atas Indonesia

Bagaimana perasaan anda jika mengetahui sebongkah batu besar, sebesar sebuah rumah kecil, melejit cepat laksana kilat dalam senyap di atas Indonesia dalam malam gelap gulita? Takjub? Terkaget-kaget? Atau malah menggigil ketakutan dan membayangkan bakal terjadi apa yang digambarkan Hollywood dalam film “Deep Impact” ?

Gambar 1. Asteroid 2014 UF56 (bintik redup di titik potong garis kuning horizontal dan vertikal), diabadikan pada 25 Oktober 2014 TU dengan teleskop reflektor 43 cm VirtualTelescope di Italia. Dua hari kemudian asteroid ini lewat dalam jarak yang cukup dekat dengan Bumi kita, dalam skala astronomi. Sumber: Gianluca Masi, 2014.

Gambar 1. Asteroid 2014 UF56 (bintik redup di titik potong garis kuning horizontal dan vertikal), diabadikan pada 25 Oktober 2014 TU dengan teleskop reflektor 43 cm VirtualTelescope di Italia. Dua hari kemudian asteroid ini lewat dalam jarak yang cukup dekat dengan Bumi kita, dalam skala astronomi. Sumber: Gianluca Masi, 2014.

Peristiwa tersebut benar-benar terjadi pada Senin 27 Oktober 2014 Tarikh Umum (TU) lalu, tepatnya di malam hari waktu Indonesia. Bongkahan batu besar itu adalah sebuah asteroid tanpa-nama yang diberi kode 2014 UF56. Diameternya 14 meter, dengan massa diperkirakan antara 2.900 hingga 5.800 ton. Ia baru ditemukan dua hari sebelumnya, tepatnya Sabtu 25 Oktober 2014 TU, lewat teleskop reflektor 180 cm (f-ratio 2,7) di Observatorium Kitt Peak, Arizona (Amerika Serikat) selagi menyisir langit dalam program penyigian Spacewatch. Segera diketahui asteroid 2014 UF56 ini adalah bagian dari asteroid yang gemar berdekat-dekat ke Bumi dalam skala astronomi, tepatnya asteroid dekat Bumi (ADB) kelas Apollo. Orbitnya melonjong dan melambung di antara orbit Venus hingga kawasan sabuk asteroid. Tepatnya dengan perihelion 0,87 SA (satuan astronomi) atau 130 juta kilometer dari Matahari dan aphelion 3,38 SA atau 506 juta kilometer dari Matahari. Ia membutuhkan waktu hingga 3,1 tahun lamanya guna mengelilingi Matahari sekali putaran.

Konfigurasi orbitnya demikian rupa sehingga pada Selasa 28 Oktober 2014 TU dinihari, tepatnya pada pukul 04:22 WIB, sang asteroid akan menempati titik terdekatnya ke Bumi dengan jarak ‘hanya’ 158.000 kilometer. Maka pada saat itu asteroid 2014 UF56 adalah 2,3 kali lipat lebih dekat ketimbang Bulan kita. Kala menempati titik terdekatnya ke Bumi, saat itu asteroid 2014 UF56 berada di atas Samudera Pasifik lepas pantai Peru, Amerika Selatan. Antara 9 hingga 7 jam sebelumnya, tepatnya pada Senin 27 Oktober 2014 TU pukul 19:00 hingga 21:00 WIB, asteroid 2014 UF56 praktis melayang di atas Indonesia. Saat itu ia melejit pada ketinggian mulai 457.000 hingga 382.000 kilometer di atas paras laut Indonesia, atau masih lebih jauh ketimbang Bulan. Ia melintas mulai dari di atas pulau Halmahera, pulau Sulawesi bagian utara, pulau Kalimantan hingga akhirnya keluar dari Indonesia setelah lewat di atas pulau Sumatra. Asteroid ini praktis lewat tepat di atas kepala penduduk kota Gorontalo dan Pontianak. Sejam setelah meninggalkan kepulauan Nusantara, barulah bongkahan asteroid ini mulai menempuh lintasan yang menjadikannya lebih dekat ke Bumi dibanding Bulan dan bertahan hingga berjam-jam kemudian.

Gambar 2. Peta proyeksi lintasan asteroid 2014 UF56 di Indonesia pada 27 Oktober 2014 mulai pukul 19:00 WIB. Asteroid bergerak ke arah barat. Garis putus-putus menunjukkan proyeksi lintasan yang diestimasikan. Nampak asteroid melintas di atas pulau Halmahera, Sulawesi, Kalimantan dan Sumatra. Disimulasikan dengan Starry Night Backyard 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Gambar 2. Peta proyeksi lintasan asteroid 2014 UF56 di Indonesia pada 27 Oktober 2014 mulai pukul 19:00 WIB. Asteroid bergerak ke arah barat. Garis putus-putus menunjukkan proyeksi lintasan yang diestimasikan. Nampak asteroid melintas di atas pulau Halmahera, Sulawesi, Kalimantan dan Sumatra. Disimulasikan dengan Starry Night Backyard 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Dimensi asteroid 2014 UF56 ini sekitar satu setengah kali lebih besar dibanding asteroid-tanpa-nama yang memasuki atmosfer Bumi dalam Peristiwa Bone (8 Oktober 2009 TU) di atas Sulawesi Selatan (Indonesia). Sebaliknya ukurannya pun satu setengah kali lebih kecil ketimbang asteroid-tanpa-nama lainnya yang juga menerobos atmosfer, kali ini dalam Peristiwa Chelyabinsk (13 Februari 2013 TU) di Siberia (Russia). Namun berbeda dengan keduanya, asteroid 2014 UF56 tidak memiliki potensi untuk jatuh ke Bumi setidaknya hingga 100 tahun mendatang. Ketiadaan potensi inilah yang membuat asteroid 2014 UF56 tak pernah tercantum dalam Sentry Risk Table NASA, sebuah tabel yang memeringkatkan seluruh asteroid-asteroid dekat Bumi yang sudah teramati berdasarkan peluang tumbukan, skala Palermo dan skala Torino-nya. Karena itu meski ia lewat pada jarak yang relatif cukup dekat ke Bumi kita, khususnya dalam skala astronomi, ia tidak mendatangkan petaka.

Apa yang akan terjadi jika asteroid 2014 UF56 mengalami nasib sebaliknya, yakni benar-benar jatuh ke Bumi?

Asteroid ini akan menjadi meteroroid dan selanjutnya menjadi meteor-terang (fireball) begitu menerobos masuk ke lapisan-lapisan udara Bumi kita. Namun ia takkan sampai ke daratan, kecuali hanya sebagian sangat kecil (kurang lebih 0,1 % massa awal). Selagi melesat cepat dalam atmosfer kita, ia akan memijar hingga pada puncaknya bakal seterang hingga dua kali lipat lebih terang dibanding Bulan purnama. Meteor-terang ini takkan sanggup menahan tekanan besar sajian atmosfer sehingga akan terfragmentasi (terpecah-belah) pada ketinggian antara 44 hingga 65 kilometer dpl (dari paras laut rata-rata). Selanjutnya pada ketinggian antara 22 hingga 30 kilometer dpl, mayoritas fragmen meteor-terang ini akan sangat terlambatkan hingga melepaskan hampir seluruh energi kinetiknya dalam peristiwa mirip ledakan di udara (airburst). Energi yang dilepaskan berkisar antara 91 hingga 182 kiloton TNT. Ini setara dengan 5 hingga 9 butir bom nuklir Hiroshima yang diledakkan serempak.

Gambar 3. Peta proyeksi lintasan asteroid 2014 UF56 dalam lingkup global semenjak 27 Oktober 2014 pukul 19:00 WIB hingga 13 jam kemudian. Asteroid bergerak ke arah barat melintasi Indonesia, Afrika bagian tengah dan Amerika Selatan. Tanda bintang (*) adalah proyeksi dimana asteroid 2014 UF56 mencapai titik terdekatnya ke Bumi kita, yakni 'hanya' sejauh 158.000 kilometer di atas paras Samudera Pasifik. Disimulasikan dengan Starry Night Backyar 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Gambar 3. Peta proyeksi lintasan asteroid 2014 UF56 dalam lingkup global semenjak 27 Oktober 2014 pukul 19:00 WIB hingga 13 jam kemudian. Asteroid bergerak ke arah barat melintasi Indonesia, Afrika bagian tengah dan Amerika Selatan. Tanda bintang (*) adalah proyeksi dimana asteroid 2014 UF56 mencapai titik terdekatnya ke Bumi kita, yakni ‘hanya’ sejauh 158.000 kilometer di atas paras Samudera Pasifik. Disimulasikan dengan Starry Night Backyar 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Apa dampaknya? Pelepasan energi setinggi 91 kiloton TNT pada ketinggian 30 kilometer dpl takkan berdampak ke daratan yang tepat berada dibawahnya. Namun pelepasan energi sebesar 182 kiloton TNT pada ketinggian yang lebih rendah, yakni 22 kilometer dpl, masih sanggup membuat kaca-kaca jendela pada bangunan di daratan yang tepat ada dibawahnya bergetar atau bahkan retak akibat hempasan gelombang kejutnya. Sekilas dampak ini mirip dengan apa yang terjadi dalam Peristiwa Bone. Jika mau dibandingkan lagi, dampaknya bakal jauh lebih ringan ketimbang Peristiwa Chelyabinsk yang melukai ribuan orang dan merusak ratusan bangunan dengan total kerugian puluhan milyar rupiah itu. Jadi, andaikata asteroid 2014 UF56 benar-benar jatuh ke Bumi, dampaknya relatif minimal.

Sukses deteksi asteroid 2014 UF56 merupakan bagian dari upaya umat manusia mengenali dan memitigasi potensi bencana dari langit dalam wujud tumbukan benda langit (komet dan asteroid). Kini lewat sistem-sistem penyigi langit, baik yang masih maupun yang pernah aktif, kita telah mampu memetakan sekurang-kurangnya 90 % populasi asteroid dekat Bumi yang diameternya melebihi 1.000 meter. Asteroid seukuran ini menjadi target untuk dipetakan karena potensi bahayanya yang mengerikan, dapat menyebabkan bencana dalam lingkup global di Bumi. Setelah asteroid besar ini relatif terpetakan, target selanjutnya adalah menyisir dan memetakan asteroid-asteroid yang lebih kecil. Yakni yang berukuran antara 140 meter hingga 1.000 meter. Sebab disadari asteroid yang berukuran menengah pun masih sanggup mendatangkan bencana dalam lingkup lokal hingga regional kala menubruk Bumi. Tantangannya cukup besar dan berat, mengingat jumlah asteroid berukuran menengah ini diestimasikan mencapai jutaan hingga puluhan juta butir. Dengan terpetakannya populasi asteroid besar maupun menengah, maka potensi bahaya dari mereka relatif dapat dideteksi secara lebih dini. Sehingga langkah-langkah mitigasi pun diharapkan dapat disusun dan dilaksanakan.

Referensi :

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Asteroid 2014 RC dan “Kawah Meteor” Nikaragua

Bongkahan besar itu akhirnya melanjutkan perjalanannya dengan selamat meski melintas pada jarak cukup dekat terhadap Bumi kita. Ya. Pada puncak perlintasannya asteroid 2014 RC berhasil dibidik dan diamati sifat-sifatnya lewat sejumlah teleskop dari berbagai penjuru. Benderangnya malam dengan cahaya Bulan yang mendekati purnamanya memang membuat asteroid yang di atas kertas pun sudah sangat redup (magnitudo semu +11,5) jadi lebih sulit diamati. Namun beberapa observatorium dari sejumlah penjuru berhasil mencetak sukses. Sebut saja Observatorium Siding Spring (Australia), Virtual Telescope Project di Ceccano (Italia) serta observatorium Lowell di Arizona dan NASA Infrared Telescope Facility di Hawaii (keduanya di Amerika Serikat).

Lewat kerja keras mereka kini kita telah selangkah lebih maju dalam memahami sifat-sifat asteroid. Teleskop inframerah NASA memperlihatkan betapa asteroid 2014 RC memantulkan hingga 25 % cahaya Matahari yang menerpanya. Angka ini hampir menyamai kemampuan Bumi (memantulkan 30 % cahaya Matahari) dan jauh lebih besar ketimbang Bulan yang hanya sanggup memantulkan 12 % saja sinar Matahari yang jatuh kepadanya. Dengan kata lain asteroid ini memiliki albedo hingga 0,25.

Gambar 1. Film pendek yang memperlihatkan pergerakan asteroid 2014 RC di latar depan bintang-bintang saat hendak mencapai titik terdekatnya ke Bumi, diabadikan lewat teleskop Hall diameter 105 cm di Observatorium Lowell, Arizona (Amerika Serikat). Film dibuat dengan menggabungkan sejumlah citra/foto terpisah yang diambil dalam waktu berurutan. Sumber: Lowell Observatory, 2014.

Gambar 1. Film pendek yang memperlihatkan pergerakan asteroid 2014 RC di latar depan bintang-bintang saat hendak mencapai titik terdekatnya ke Bumi, diabadikan lewat teleskop Hall diameter 105 cm di Observatorium Lowell, Arizona (Amerika Serikat). Film dibuat dengan menggabungkan sejumlah citra/foto terpisah yang diambil dalam waktu berurutan. Sumber: Lowell Observatory, 2014.

Albedo ini lumayan tinggi. Albedo dalam nilai ini menunjukkan bahwa asteroid 2014 RC banyak mengandung mineral-mineral logam. Sehingga strukturnya relatif lebih padat. Massa jenisnya pun relatif tinggi. Dengan albedo demikian maka asteroid 2014 RC adalah bagian keluarga asteroid tipe S. Yakni asteroid-asteroid yang komposisinya didominasi oleh besi dan magnesium silikat. Asteroid tipe S merupakan keluarga asteroid dengan populasi terbanyak kedua di lingkung tata surya kita, yakni mencakup 17 % dari seluruh asteroid yang telah ditemukan hingga saat ini.

Selain mencerminkan strukturnya, nilai albedo yang lumayan tinggi juga berimplikasi pada ukuran sang asteroid. Semula asteroid ini dianggap berdiameter sekitar 20 meter berdasarkan asumsi albedonya hanya senilai 0,05 seperti halnya asteroid pada umumnya. Namun kini dengan nilai albedo 0,25 dipastikan bahwa ukuran asteroid 2014 RC adalah tak lebih besar dari 12 meter. Dan karena menjadi bagian dari asteroid tipe S, massa jenis 2014 RC diperkirakan berada di sekitar 3 gram di setiap sentimeter kubiknya. Sehingga saat menjangkau titik terdekatnya terhadap Bumi, asteroid 2014 RC mengangkut energi kinetik sebesar 73 kiloton TNT. Energi tersebut hampir menyamai 4 butir bom nuklir Hiroshima yang diledakkan secara serempak.

Gambar 2. Asteroid 2014 RC diabadikan per 7 September 2014 jelang pukul 24:00 WIB dengan teleskop robotik reflektor astrograf 43 cm di Observatorium Siding Spring (Australia). Teleskop diarahkan mengikuti gerakan bintang-bintang dengan waktu penyinaran (paparan) 60 detik. Asteroid bergerak dengan kecepatan sudut yang tinggi sehingag nampak sebagai garis lurus panjang. Sumber: Remanzacco Observatory, 2014.

Gambar 2. Asteroid 2014 RC diabadikan per 7 September 2014 jelang pukul 24:00 WIB dengan teleskop robotik reflektor astrograf 43 cm di Observatorium Siding Spring (Australia). Teleskop diarahkan mengikuti gerakan bintang-bintang dengan waktu penyinaran (paparan) 60 detik. Asteroid bergerak dengan kecepatan sudut yang tinggi sehingag nampak sebagai garis lurus panjang. Sumber: Remanzacco Observatory, 2014.

Di samping bisa menentukan ukurannya dengan tingkat ketelitian yang jauh lebih tinggi, observasi yang digelar tatkala asteroid 2014 RC menghampiri titik terdekatnya ke Bumi itu juga menjumpai fakta mencengangkan lainnya. Asteroid ternyata berotasi sangat cepat pada sumbunya, dengan periode rotasi hanya 15,8 detik. Ini adalah periode rotasi benda langit terpendek bagi anggota tata surya yang pernah teramati. Begitu cepatnya maka panjang siang hari di asteroid ini hanya akan berlangsung selama 7,9 detik. Begitupun panjang malam harinya.

Nikaragua

Tiga belas jam sebelum asteroid 2014 RC mencapai titik terdekatnya ke planet kita sebuah peristiwa aneh terjadi di pinggiran bandara internasional Augusto Cesar Sandino di kota Managua (Nikaragua). Petugas bandara dan penduduk sekitar melaporkan adanya dentuman keras disertai getaran tanah menjelang tengah malam, tepatnya sekitar pukul 23:05 waktu setempat. Keesokan paginya di kawasan penyangga bandara dijumpai lubang besar membulat nan aneh dengan bentuk mirip mangkuk, yang menghamburkan tanah alluvial ke sekelilingnya. Terdapat juga pepohonan yang rubuh. Diameter lubang besar ini sekitar 12 meter dengan kedalaman maksimum 5 meter. Di dasar lubang dijumpai bongkahan-bongkahan tanah berukuran besar yang kasar (blocky).

Gambar 3. Cekungan besar mirip mangkuk yang terbentuk di kawasan pinggiran bandara internasional Sandino di dekat kota Managua (Nikaragua), diabadikan dari udara oleh militer Nikaragua. Sumber: National Geographic, 2014.

Gambar 3. Cekungan besar mirip mangkuk yang terbentuk di kawasan pinggiran bandara internasional Sandino di dekat kota Managua (Nikaragua), diabadikan dari udara oleh militer Nikaragua. Sumber: National Geographic, 2014.

Temuan ini, bersama dengan fakta terjadinya dentuman menggelegar beserta tanah bergetar, sontak menghebohkan jagat. Ia mengingatkan semua orang pada peristiwa sejenis 1,5 tahun silam. Yakni tatkala asteroid 2012 DA14 melintas-dekat Bumi hingga hanya sejarak 27.700 kilometer saja di atas sudut barat daya pulau Sumatra (Indonesia). Beberapa jam sebelumnya, Rusia dikejutkan oleh munculnya kilatan cahaya singkat di langit namun benderangnya melebihi Matahari, yang disusul dengan hempasan kuat di udara dan getaran tanah. Awan nan lurus segera terlihat memanjang di langit. Ribuan orang luka-luka ringan hingga sedang, akibat terkena pecahan kaca-kaca jendela yang hancur berkeping oleh hempasan udara. Sejumlah bangunan ambruk. Beberapa orang bahkan melaporkan ada rasa pedih di kulit ibarat lama terpapar sinar Matahari tropik. Total kerugian material mencapai puluhan milyar rupiah. Penyelidikan lebih lanjut menunjukkan bahwa peristiwa yang kemudian lebih dikenal sebagai Peristiwa Chelyabinsk atau Tumbukan Chelyabinsk disebabkan oleh jatuhnya asteroid tak-bernama sebesar sekitar 20 meter ke Bumi. Atmosfer Bumi masih sanggup meredamnya sehingga ia keburu hancur berkeping dan melepaskan sebagian besar energi kinetiknya menyerupai ledakan di udara (airburst). Namun tetap saja dampak pelepasan energi tersebut, dalam rupa rambatan gelombang kejut (gelombang tekanan di udara) tetap terasakan di permukaan Bumi yang ada dibawahnya. Inilah yang menciptakan kerusakan berskala luas di kawasan Chelyabinsk dan sekitarnya serta merenggut korban luka-luka.

Apakah hal serupa juga yang terjadi di Nikaragua barusan?

Gambar 4. Perbandingan antara "kawah meteor" Nikaragua dengan kawah Meteor Carancas (Peru). Cincin kawah setebal 1 meter dan bongkah-bongkah tanah yang kasar nampak menghiasi kawah Carancas, hal yang tak dijumpai di "kawah" Nikaragua. SUmber: Space.com, 2014 & Brown dkk, 2008.

Gambar 4. Perbandingan antara “kawah meteor” Nikaragua dengan kawah Meteor Carancas (Peru). Cincin kawah setebal 1 meter dan bongkah-bongkah tanah yang kasar nampak menghiasi kawah Carancas, hal yang tak dijumpai di “kawah” Nikaragua. SUmber: Space.com, 2014 & Brown dkk, 2008.

Pemerintah Nikaragua segera membentuk komisi penyelidik beranggotakan sejumlah astronom dan geosifikawan untuk menguak peristiwa tersebut. Sejauh ini geofisikawan Instituto Nicaraguense de Estudios Territoriales (INETER) menyebut lubang besar itu terbentuk akibat tumbukan benda langit (meteor) dan dikaitkan dengan kepingan asteroid yang mungkin menjadi bagian dari asteroid 2014 RC. Maka lubang besar itu boleh disebut sebagai “kawah meteor” Nikaragua. Namun demikian banyak astronom dan geofisikawan di luar Nikaragua yang tak sependapat.

Faktor

Dalam hemat penulis, ada empat faktor yang membuat “kawah meteor” Nikaragua diragukan keabsahannya sebagai produk tumbukan meteor. Yang pertama, terbentuknya kawah tumbukan seukuran itu seharusnya didahului penampakan boloid (bolide), yakni meteor yang sangat terang disertai suara gemuruh, di langit. Simulasi sederhana memperlihatkan agar sebuah meteoroid yang dianggap sebagai bagian pecahan 2014 RC dapat menghasilkan kawah tumbukan bergaris tengah 12 meter, maka ia harus berukuran sekitar 10 meter dengan massa sekitar 1.600 ton. Saat memasuki atmosfer Bumi meteoroid akan berpijar sangat terang dengan kecerlangan menyamai Bulan purnama. Andaikata terjadi peristiwa airburst, kecerlangannya bahkan akan berlipat-lipat kali Bulan purnama atau malah bahkan mendekati benderangnya Matahari.

Pemandangan seperti itu akan sangat mudah dilihat di langit, bahkan di kala siang sekalipun. Kita umat manusia pernah menyaksikan langsung betapa sebentuk boloid dengan terang hampir menyamai Matahari terlihat di siang bolong dan kemudian jatuh di Desaguadero (Peru) pada 15 September 2007. Inilah Peristiwa Carancas. Titik jatuhnya boloid itu pun kini dikenal sebagai kawah Carancas (diameter 13,5 meter), kawah tumbukan termuda di Bumi. Dengan situasi tersebut maka boloid pun bahkan masih bisa disaksikan kala langit tertutupi awan sekalipun. Apalagi di saat malam. Apalagi jika terjadi di sebuah kota besar seperti Managua, yang adalah ibukota Nikaragua. Apalagi di dekat sebuah bandara internasional yang sibuk dan nyaris tak pernah tidur. Ketiadaan ini membuat status “kawah meteor” Nikaragua diragukan.

Gambar 5. Gambaran sederhana bagaimana masuknya meteoroid ke atmosfer Bumi yang berujung peristiwa airburst menghasilkan gelombang infrasonik dan gelombang gempa, dua jenis gelombang berbeda yang memungkinkan untuk mendeteksi (sekaligus mengonfirmasi) peristiwa tersebut. Sumber: Sudibyo, 2014 dengan gambar latarbelakang dari Neisius, 2004.

Gambar 5. Gambaran sederhana bagaimana masuknya meteoroid ke atmosfer Bumi yang berujung peristiwa airburst menghasilkan gelombang infrasonik dan gelombang gempa, dua jenis gelombang berbeda yang memungkinkan untuk mendeteksi (sekaligus mengonfirmasi) peristiwa tersebut. Sumber: Sudibyo, 2014 dengan gambar latarbelakang dari Neisius, 2004.

Yang kedua, saat meteoroid yang bersumber dari pecahan asteroid berukuran kecil (dalam skala astronomi) memasuki atmosfer Bumi, pada umumnya hanya menyisakan 1 % saja massanya untuk menjadi meteorit. Sisanya terhambur di dalam atmosfer sebagai partikulat berukuran debu. Di sisi lain, kawah tumbukan bergaris tengah 12 meter dapat dibentuk oleh meteorit tunggal seukuran 2,2 meter (massa hampir 16 ton) yang jatuh pada kecepatan 700 kmjam, menyamai kecepatan jelajah pesawat jet komersial. Jika meteorit ini dianggap sebagai bongkahan tunggal yang tersisa dari sebuah meteoroid, maka sebelum memasuki atmosfer Bumi meteoroid itu akan bermassa sekitar 1.600 ton dengan diameter 10 meter. Mayoritas massanya memang akan terhambur menjadi partikulat debu, Namun andaikata terjadi peristiwa airburst, maka akan terbentuk kepingan dan bongkahan seukuran kerikil atau lebih besar lagi. Mereka akan berjatuhan sebagai meteorit ke permukaan Bumi dibawahnya, dalam sebuah kawasan ellips (lonjong) seluas beberapa kilometer persegi.

Lokasi “kawah meteor” Nikaragua berada di pinggiran kota Managua. Jika benar ia dibentuk oleh meteor, seharusnya ada kawasan ellips tempat meteorit berjatuhan. Kawasan itu sangat mungkin berimpit dengan pemukiman di pinggiran kota. Dan meteorit-meteorit yang mengguyur pemukiman ini tentu akan menyebabkan hujan batu yang mudah diidentifikasi. Ketiadaan temuan meteorit dalam jarak tertentu dari “kawah meteor menjadi salah satu faktor untuk meragukan statusnya.

Yang ketiga, kawah meteor berdiameter kecil pada umumnya berbentuk mirip mangkuk, khususnya bila meteoroidnya memiliki lintasan yang terhadap paras Bumi membentuk sudut 30 derajat atau lebih. Namun cekungan mirip mangkuk ini mempunyai sejumlah ciri khas, yakni salah satunya memiliki tepi yang meninggi sebagai tanggul yang melingkari cekungan. Fenomena ini dikenal sebagai cincin kawah. Cincin kawah merupakan konsekuensi dari hantaman berkecepatan sangat tinggi dari meteorit ke tanah. Sehingga tanah target tergerus dan terciprat ke sekelilingnya hingga mengendap dengan posisi lapisan-lapisan tanahnya terbalik dibanding semula. Akibat lainnya, hantaman berkecepatan sangat tinggi juga akan menghamburkan material tanah dalam wujud bongkahan beraneka ukuran keluar dari kawah ke lingkungan sekelilingnya hingga radius tertentu.

Hal tersebut tak teramati di “kawah meteor” Nikaragua. Nyaris tak ada cincin kawah di “kawah meteor” tersebut. Partikel-partikel tanah yang terhambur ke sekelilingnya juga berukuran kecil, seukuran butir pasir. Bongkah-bongkah besar memang ada, namun justru berserakan di dasar “kawah meteor” tanpa bisa keluar darinya. Fenomena ini juga yang meragukan identitas “kawah meteor” Nikaragua.

Gambar 6. Contoh sinyal gelombang infrasonik dan gempa (seismik) produk tumbukan benda langit yang terekam di mikrobarometer dan seismometer. Dalam hal ini adalah Peristiwa Carancas. Rekaman infrasonik berasal dari stasiun yang berjarak 80 km dari titik tumbukan, sementara rekaman gempa dari seismometer yang berjarak lebih jauh yakni 100 km. Sumber: Brown dkk, 2008.

Gambar 6. Contoh sinyal gelombang infrasonik dan gempa (seismik) produk tumbukan benda langit yang terekam di mikrobarometer dan seismometer. Dalam hal ini adalah Peristiwa Carancas. Rekaman infrasonik berasal dari stasiun yang berjarak 80 km dari titik tumbukan, sementara rekaman gempa dari seismometer yang berjarak lebih jauh yakni 100 km. Sumber: Brown dkk, 2008.

Dan yang keempat, tiap kali meteoroid memasuki atmosfer Bumi, ia akan menekan lapisan-lapisan udara yang dilintasinya dengan sangat kuat sekaligus mentransfer sejumlah energi kinetiknya. Sehingga terjadi sebentuk gelombang yang menjalar sebagai gelombang akustik (suara). Salah satu bagiannya adalah gelombang infrasonik, yang sanggup menjalar sangat jauh dari sumbernya. Bila gelombang akustiknya masih sangat kuat saat menyentuh permukaan Bumi, maka terjadi transformasi menjadi gelombang permukaan yang disebut gelombang Rayleigh, bagian dari gelombang gempa (seismik). Gelombang infrasonik dapat diendus oleh detektor mikrobarometer sementara gelombang gempa diindra seismometer. Dewasa ini cukup banyak instrumen seismometer dan barometer yang terpasang simultan di berbagai sudut Bumi, khususnya dalam tiap-tiap IMS (International Monitoring Station) bagian dari CTBTO (The Comprehensive nuclear Test Ban Treaty Organization). CTBTO adalah lembaga di bawah Perserikatan Bangsa-Bangsa yang bertugas menegakkan pengawasan atas larangan ujicoba nuklir global dalam segala matra. Selain oleh ledakan nuklir, secara alamiah gelombang infrasonik dan gelombang gempa bisa disebabkan oleh peristiwa tumbukan benda langit maupun letusan besar/dahsyat sebuah gunung berapi.

Simulasi sederhana menunjukkan jika meteoroidnya berdiameter 10 meter, bermassa sekitar 1.600 ton dan melejit dengan kecepatan setara asteroid 2014 RC saat di titik terdekatnya ke Bumi, yakni 15 km/detik (54.000 km/jam), maka ia mengandung 42 kiloton energi. Energi tersebut setara dengan 2 butir bom nuklir Hiroshima yang diledakkan serempak. Energi sebesar ini akan menghasilkan gelombang infrasonik dan gelombang gempa yang sangat mudah dideteksi oleh mikrobarometer dan seismometer yang berdekatan dengannya. Sebagai gambaran, saat Peristiwa Carancas terjadi, energi kinetik meteoroidnya berkisar antara 0,06 hingga 0,23 kiloton TNT. Namun gelombang infrasoniknya terekam oleh detektor mikrobarometer yang terpasang di titik berjarak hingga 1.600 km dari lokasi tumbukan. Sementara gelombang gempanya terekam seismometer yang berajark 100 km dari titik tumbukan. Sampai sejauh ini belum dijumpai stasiun yang mendeteksi gelombang infrasonik dan gempa terkait pembentukan “kawah meteor” Nikaragua ini, hal yang menguatkan keraguan akan statusnya.

Gambar 7. Peta proyeksi lintasan asteroid 2014 RC di permukaan Bumi mulai 7 September 2014 pukul 10:00 WIB hingga 10 jam kemudian. Nampak asteroid bergerak ke barat. Nampak lokasi kota Managua (Nikaragua) yang terletak jauh di utara proyeksi lintasan asteroid. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Gambar 7. Peta proyeksi lintasan asteroid 2014 RC di permukaan Bumi mulai 7 September 2014 pukul 10:00 WIB hingga 10 jam kemudian. Nampak asteroid bergerak ke barat. Nampak lokasi kota Managua (Nikaragua) yang terletak jauh di utara proyeksi lintasan asteroid. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Jika empat faktor itu saja cukup membuat status “kawah meteor” Nikaragua diragukan, apalagi bila dikait-kaitkan dengan asteroid 2014 RC. Saat ledakan misterius menggelegar di pinggiran bandara internasional Sandino tersebut, asteroid 2014 RC sedang melintas di atas Amerika Selatan dalam jarak lebih dari 280.000 kilometer dari paras Bumi. Dan kala itu ia sedang bergerak ke arah barat. Sementara lokasi kawah meteor” Nikaragua berjarak lebih dari 4.600 kilometer dari titik proyeksi asteroid 2014 RC pada saat itu dengan arah ke utara. Dengan jarak pisah sejauh itu dan apalagi berbeda arah, dapat dikatakan mustahil untuk menghubungkan asteroid 2014 RC dengan “kawah meteor” Nikaragua. Apalagi status “kawah meteor” itu sendiri meragukan.

Referensi :

Cooke. 2014. Did a Meteorite Cause a Crater in Nicaragua? Watch the Skies, Blog NASA.

Vergano. 2014. NASA Raises Doubts About Reports of Nicaraguan Meteorite, Questions Follow Supposed Meteorite Impact. National Geographic News. September 8, 2014.

Wall. 2014. Nicaragua Meteorite Impact Theory May be Meteor-wrong. Space.com, September 8, 2014.

Guido, Howes & Niccolini. 2014. Close Approach of Asteroid 2014 RC, Update. Remanzacco Observatory, Italia.

Brown dkk. 2008. Analysis of a Crater-forming Meteorite Impact on Peru. Journal of Geophysical Research, vol. 113, E09007.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.