Mau Jatuh Dimana, (Stasiun Antariksa) Tiangong-1?

Bagaimana perasaanmu jika tahu sebongkah benda seukuran bus tingkat bersiap jatuh dari langit dalam waktu dekat? Namun itulah yang akan dialami Tiangong-1. Sampah antariksa sepanjang 10,5 meter yang bergaris tengah 3,4 meter itu sedang bersiap-siap mengakhiri perjalanannya dan akan memasuki atmosfer Bumi kita, proses yang dikenal sebagai reentry. Lebih menyesakkan lagi, Tiangong-1 bakal jatuh dalam kondisi uncontrolled reentry atau jatuh ke Bumi secara tak terkendali sehingga dimana ia bakal memasuki atmosfer belum bisa ditentukan pada saat ini.

Tiangong-1 diprediksi akan jatuh pada minggu pertama April 2018 TU (Tarikh Umum). Per 16 Maret 2018 TU, Aerospace Corporation (Amerika Serikat) memprakirakan peristiwa tersebut akan terjadi pada 4 April 2018 TU ± 7 hari. Sedangkan Joseph Remis, peneliti sampah antariksa dari Perancis, menempatkan prediksinya pada 3 April 2018 TU ± 7 hari. Dan Marco Langbroek, astronom amatir Belanda yang berspesialisasi pada pengamatan satelit-satelit buatan, memprakirakan akan terjadi pada 4 April 2018 TU ± 4 hari. Besarnya angka ketidakpastian dari prediksi-prediksi ini adalah imbas dari variasi sifat lapisan atmosfer teratas kita dari satu titik ke titik lain. Juga dari tidak diketahuinya posisi aktual dan kecepatan aktual sampah antariksa tersebut. Padahal inilah yang sangat menentukan kapan Tiangong-1 akan jatuh kembali ke Bumi.

Gambar 1. Tiangong-1 di orbitnya, dalam gambaran artis yang dipublikasikan badan antariksa nasional Cina. Nampak pintu labuh dengan sistem penambat APAS di sisi kiri, tempat taikonot memasuki prototip stasiun antariksa ini. Raksasa seberat 8,5 ton inilah yang akan jatuh kembali ke Bumi secara tak terkendali pada awal April 2018 TU kelak. Sumber: CNSA, 2011.

Nilai ketidakpastian tersebut juga berimbas pada lebarnya prediksi titik jatuh Tiangong-1. Dengan inklinasi orbit 42,8º maka pada dasarnya setiap titik di paras Bumi yang ada di antara garis lintang 42,8 LU hingga 42,8 LS berpotensi menjadi titik jatuh Tiangong-1. Berdasarkan pengalaman selama ini, titik koordinat mana yang tepatnya akan menjadi titik jatuh Tiangong-1 baru akan diketahui sehari sebelum terjadi. Akan tetapi karena bentuk orbitnya pula, daerah-daerah yang terletak di sekitar atau di sepanjang garis lintang 42,8 LU dan di garis lintang 42,8 LS memiliki peluang menjadi titik jatuh yang lebih tinggi (yakni sekitar 3 %) dibandingkan dengan daerah-daerah yang berada di lingkungan garis khatulistiwa (yakni kurang dari 0,5 %).

Dengan prediksi demikian maka Indonesia pun tidak dikecualikan. Sepanjang tiga tahun terakhir, Indonesia telah mengalami dua kejadian benda jatuh antariksa (BJA), dimana sisa-sisa sampah antariksa jatuh di dekat rumah penduduk. Yakni di pulau Madura (propinsi Jawa Timur) pada tahun 2016 TU dan di tepi Danau Maninjau (propinsi Sumatra Barat) pada tahun 2017 TU. BJA di pulau Madura adalah sisa upperstage roket Falcon 9 Full Thrust milik perusahaan SpaceX (Amerika Serikat) sementara BJA di tepi danau Maninjau adalah sisa upperstage roket Long March-3A milik pemerintah Cina.


Gambar 2. Dua kejadian benda jatuh antariksa (BJA) di Indonesia akibat jatuhnya sampah antariksa. Masing-masing sisa upperstage Long March-3A di tepi Danau Maninjau (atas) dan sisa upperstage Falcon 9 Full Thrust di pulau Madura (bawah). Sumber: Piliang, 2017 & Tribunnews, 2016.

Spesifikasi

Sebelum menjadi sampah antariksa, Tiangong-1 adalah stasiun antariksa pertama Cina sebagai bagian dari program Tiangong. Stasiun antariksa Tiangong-1 diluncurkan ke orbit pada 30 September 2011 TU lewat dorongan kuat roket Long March 2F/G. Roket dan muatannya lepas landas dari landasan nomor 4/landasan selatan pada kompleks Pusat Peluncuran Jiuquan di sisi barat laut padang pasir Gobi, propinsi otonom Mongolia Dalam. Long March 2F/G menempatkan Tiangong-1 pada orbit sirkular setinggi 343 kilometer.

Begitu mencapai orbit, stasiun antariksa berbobot 8,5 ton itu segera membuka sepasang sayap panel suryanya. Masing-masing panel surya memiliki panjang 10 meter dan lebar 3,1 meter. Arus listrik dengan daya rata-rata 2.500 watt dan daya puncak 6.000 watt pun mengalir deras darinya. Sebagian mengalir ke batere kering perak-seng, catudaya untuk situasi malam orbital, Interior Tiangong-1 terdiri atas dua ruang, masing-masing ruang hunian/orbital dan ruang layanan/sumberdaya.

Ruang hunian memiliki panjang 5 meter dan lebar 3,4 meter dengan volume total 15 meter3 dan berisi udara bertekanan 1 atmosfer. Didalamnya terdapat dua ranjang tidur dilengkapi dapur dan sistem toilet. Ruang ini dilengkapi dengan sistem pembuang panas ke lingkungan, yang mampu melepaskan panas yang diproduksi di dalam ruangan hingga sebesar 2.000 watt termal. Di ujungnya, yang juga adalah ujung Tiangong-1, terpasang pintu masuk dilengkapi sistem penambat APAS (Androgynous Peripheral Attach System). Sistem penambat ini serupa dengan yang digunakan pada stasiun-stasiun antariksa lainnya.

Sementara ruang layanan memiliki panjang 3,3 meter namun lebarnya hanya 2,5 meter. Di pusat pantat ruang ini, yang juga adalah pantat Tiangong-1, terpasang dua mesin roket utama. Selain guna menempatkan diri ke orbit kedua mesin ini juga digunakan untuk keperluan manuver pemulihan orbit. Di sisi luarnya, melingkari mesin roket utama, terpasang 8 mesin roket vernier. Mereka berguna untuk penyesuaian orbit yang sangat halus. Dan di sisi terluar terdapat empat set mesin roket kendali (reaction control system), masing-masing set terpisah 90º antara satu dengan yang lain. Dalam setiap set terdapat dua mesin roket kecil. Mesin roket kendali ini berguna untuk manuver anjak (pitch) dan belok (yaw). Dan bersama-sama dengan mesin roket vernier juga digunakan untuk manuver putaran (roll).

Gambar 3. Liu Yang, taikonot perempuan pertama Cina, mendemonstrasikan salah satu gerakan tai chi untuk pertama kalinya di antariksa saat berada dalam Tiangong-1 pada misi antariksa Shenzou 9 yang berlangsung antara 16 hingga 23 Juni 2012 TU. Gambar dari stasiun televisi nasional Cina (CNTV). Sumber: CNTV, 2012.

Beragam mesin roket tersebut ditenagai bahan bakar Hidrazin dan pengoksid Nitrogen Tetroksida. Mereka disimpan dalam empat tanki berbeda, masing-masing berkapasitas 230 liter yang sanggup memuat 1 ton bahan bakar atau pengoksid. Ada lagi dua buah tanki lebih kecil sferis dengan dinding didesain menahan tekanan tinggi. Takni kecil dengan kapasitas masing-masing 20 liter ini ditujukan untuk menampung gas (mungkin Helium) bertekanan tinggi guna mendorong bahan bakar dan pengoksid ke mesin roket yang dituju.

Hidup di Tiangong-1

Pembangunan dan pengoperasian Tiangong-1 adalah demonstrasi kedigdayaan Cina dalam pentas program antariksa global. Cina merintis program antariksanya bersamaan dengan Indonesia, yakni mulai dasawarsa 1960-an TU. Dalam periode yang sama negeri tirai bambu itu nyaris tenggelam seiring salah urus dalam eksperimen pertanian dan industri khas komunisme lewat program Lompatan Jauh ke Depan yang disusul huruhara Revolusi Kebudayaan. Bencana kelaparan meletup dimana-mana dan merenggut tak kurang dari 30 juta jiwa.

Hingga satu dasawarsa kemudian Cina layaknya ‘planet mati’, diemohi orang dan nampaknya bakal menjadi negara gagal. Namun kini situasinya telah sangat berbeda. Cina telah pulih dan bahkan melesat cukup jauh dalam berbagai bidang, termasuk program antariksanya. Sebaliknya Indonesia hingga kini masih tetap berkutat di titik nol dalam membangun kendaraan untuk menuju ke langit.

Program Tiangong adalah jawaban Cina kepada dunia setelah tawarannya bergabung dengan program stasiun antariksa internasional (ISS) bertepuk sebelah tangan. Sebagian negara partisipan ISS, dimotori Amerika Serikat, tidak ingin Cina bergabung atas alasan politis. Tiangong pun dibangun dan diparalelkan dengan Program Shenzou, program penerbangan antariksa berawak Cina. Tiangong-1 merupakan prototip stasiun antariksa moduler, tipe stasiun antariksa yang bisa bertumbuh/dikembangkan di orbit lewat menggabung-gabungkan aneka modul secara bertahap. Sebagai prototip, tujuan utama Cina adalah menguji coba kemampuan menambat (rendezvous) dan berlabuh antara Tiangong-1 dengan wantariksa (wahana antariksa) lain. Baik wantariksa berawak maupun tidak.

Ujicoba itu terlaksana beberapa bulan kemudian. Pada 31 Oktober 2011 TU wantariksa Shenzou 8 lepas landas dari Pusat Peluncuran Jiuquang menuju Tiangong-1. Dua hari berikutnya Shenzou 8 berhasil berlabuh di Tiangong-1 secara otomatis. Peristiwa ini terjadi dalam situasi malam orbital Tiangong-1 guna menghindari pengaruh gemerlap sinar Matahari terhadap radas navigasi dan penambat yang sensitif. Shenzou 8 berlabuh hingga 11 hari berikutnya, lantas melepaskan diri. Proses tersebut lantas diulangi kembali, tapi kali ini dalam situasi siang hari Tiangong-1. Tujuannya guna mengecek akurasi dan daya pakai radas-radas terkait di lingkungan terang benderang. Hasilnya memuaskan, Shenzou 8 tetap dapat berlabuh hingga hampir 2 hari kemudian ketika ia kembali melepaskan diri.

Misi berawak pertama ke Tiangong-1 berlangsung mulai 16 Juni 2012 TU dengan penerbangan wantariksa Shenzou 9 yang mengangkut tiga taikonot, istilah Cina untuk antariksawan. Yakni Jin Haipeng, Liu Wang dan Liu Yang. Dua hari kemudian Shenzou 9 berhasil berlabuh di Tiangong-1. Ketiga taikonot menghabiskan waktu hampir 4 hari. Liu Yang menyedot perhatian dunia karena selain menjadi taikonot perempuan pertama juga mendemonstrasikan gerak tai chi untuk pertama kalinya di antariksa.

Gambar 4. Tiangong-1 (kiri) dalam proses menambat dengan wantariksa berawak Shenzou (kanan) dalam gambaran artis yang dipublikasikan badan antariksa nasional Cina. Sebagai prototip stasiun antariksa moduler, dimensi Tiangong-1 tidak lebih panjang ketimbang Shenzou. Karena yang diuatamakan adalah ujicoba kemampuan tambat dan berlabuh, baik secara otomatis ataupun manual. Sumber: CNSA, 2012.

Sementara misi berawak kedua terlaksana setahun berikutnya. Pada 11 Juni 2013 TU wantariksa Shenzou 10 lepas landas dengan mengangkut tiga taikonot masing-masing Nie Haisheng, Zhang Xiaoguang dan Wang Yaping. Dua hari kemudian Shenzou 10 berlabuh aman di Tiangong-1 selama 12 hari berikutnya. Pada hari ketujuh Wang Yaiping, taikonot perempuan kedua, menggelar pengajaran dari langit yang disiarkan langsung ke 60 juta siswa-siswi di Cina. Pada pengajaran itu didemonstrasikan empat percobaan, mulai dari penimbangan berat badan, ayunan pendulum, sifat-sifat giroskop hingga tegangan permukaan air. Shenzou 10 adalah kunjungan wantariksa terakhir bagi Tiangong-1. pengajaran tersebut dapat disaksikan dalam video berikut ini :

Peluruhan Orbit

Setiap wantariksa di orbit rendah, yakni antara ketinggian 300 hingga 2.000 kilometer, pada dasarnya menempati pucuk lapisan teratas atmosfer Bumi kita. Yakni lapisan eksosfer. Di sini kondisinya tidak benar-benar hampa, masih terdapat molekul-molekul udara meski kerapatannya sangat kecil apabila dibandingkan lapisan-lapisan atmosfer yang lebih rendah. Gaya gesek molekul-molekul udara nan renggang ini membuat kecepatan wantariksa berkurang dan implikasinya orbitnya pun menurun. Ini disebut peluruhan orbit. Peluruhan orbit tak penting artinya bila misi antariksa berlangsung singkat, dalam beberapa hari hingga minggu. Namun jika misi antariksanya berjangka panjang, hingga bertahun-tahun lamanya, maka peluruhan orbit akan sangat terasa dan bisa berbahaya bila dibiarkan.

Gambar 5. Dinamika ketinggian orbit Tiangong-1 dari sejak diluncurkan hingga Januari 2018 TU sebagaimana dihimpun Aerospace Corporation berdasarkan data dari Celestrak. Garis putus-putus menandakan saat-saat manuver pemulihan orbit/penyesuaian orbit dilakukan. Manuver terakhir terjadi pada 16 Desember 2015 TU. Setelah itu orbit Tiangong-1 terus meluruh. Sumber: Aerospace Corporation, 2018.

Untuk itulah setiap stasiun antariksa yang pernah diterbangkan ke orbitnya selalu dibekali mesin roket. Dalam periode tertentu ia dinyalakan selama beberapa saat, sehingga stasiun antariksa akan bergerak naik kembali ke posisi orbit semula. Aktivitas ini disebut manuver pemulihan orbit. Dampaknya mudah diamati kasat mata lewat perubahan kecil dalam orbitnya. Terutama oleh pengamat langit berpengalaman.

Demikian halnya Tiangong-1. Sejak mulai menempati orbitnya hingga 4 tahun kemudian, tepatnya hingga Desember 2015 TU, Tiangong-1 telah mengalami 14 kali manuver pemulihan orbit. Ini menunjukkan stasiun antariksa tersebut tetap bisa berkomunikasi dua-arah dengan pengendalinya di Bumi. Meskipun tak pernah lagi dikunjungi pasca Shenzou 10. Manuver ini membuat sikap dan orbit Tiangong-1 tetap bisa dikendalikan sembari Cina menyiapkan rencana penjatuhan terkendali baginya.

Situasi berubah dramatis di 2016 TU. Pada 21 Maret 2016 TU pemerintah Cina secara resmi menyatakan komunikasi dengan Tiangong-1 terputus. Pengamatan independen menunjukkan manuver pemulihan orbit terakhir Tiangong-1 terjadi pada 16 Desember 2015 TU. Selepas itu tak ada apa-apa lagi sehingga orbit Tiangong-1 terus meluruh. Maka Tiangong-1 pun akan jatuh tak terkendali. Awalnya pemerintah Cina menyatakan reentry Tiangong-1 akan terjadi antara Juli hingga Desember 2017 TU. Pada Desember 2017 TU prediksi ini direvisi kembali menjadi antara Maret hingga April 2018 TU, yakni dalam jawaban Cina kepada Perserikatan Bangsa-Bangsa (PBB). Cina juga menyampaikan komunikasi dengan Tiangong-1 tidaklah terputus total meski sangat bermasalah. Mereka masih bisa mengendalikan sikap Tiangong-1.

Di awal 2018 TU, orbit Tiangong-1 telah meluruh demikian rupa sehingga turun ke ketinggian 280 kilometer dari normalnya 300 kilometer. Dan di awal Maret 2018 TU tinggal setinggi 250 kilometer. Berdasarkan prediksi-prediksi yang tertera di awal tulisan ini dan memperhitungkan ketidakpastiannya, bisa dikatakan bahwa Tiangong-1 masih akan tetap ada di antariksa hingga setidaknya 27 Maret 2018 TU. Cukup menarik bahwa pada rentang waktu 18 hingga 24 Maret 2018 TU, Tiangong-1 diprakirakan akan melintas di atas Indonesia terutama pada saat fajar dan senja. Sehingga memungkinkan melihat saat-saat terakhir Tiangong-1 di langit. Tentu saja sepanjang cuaca cerah.

Peluang Kecil

Jatuhnya Tiangong-1 akan seperti sampah-sampah antariksa lainnya yang telah lebih dulu berjatuhan. Begitu tiba di ketinggian 105 kilometer, udara lebih rapat membuat Tiangong-1 akan sangat diperlambat. Sehingga ia mulai turun dan terus menurun memasuki lapisan atmosfer lebih rapat dan lebih rendah. Kecepatannya yang masih sangat tinggi akan menghasilkan tekanan ram pada kolom udara disekelilingnya, memproduksi suhu tinggi. Komponen-komponen Tiangong-1 akan mulai pecah dan terkikis suhu tinggi. Maka ia akan terlihat mirip meteor dalam jumlah banyak. Sebagian besar komponennya akan menguap habis di atmosfer. Hanya bagian yang paling kuat dengan massa total sekitar 100 kilogram yang akan mendarat di paras Bumi.

Gambar 6. Area yang berpotensi menjadi titik jatuh sampah antariksa Tiangong-1 beserta probabilitas (peluang) jatuh berdasarkan garis lintang menurut badan antariksa gabungan negara-negara Eropa (ESA). Nampak peluang jatuh di sekitar garis lintang 42,8 LU dan 42,8 LS lebih besar. Sumber: ESA, 2018.

Apakah sisa-sisa Tiangong-1 bisa menjatuhi manusia di Indonesia? Peluang itu ada, namun sangat kecil. Seperti dipaparkan di atas, peluang Tiangong-1 jatuh di kawasan khatulistiwa lebih kecil dibanding di sekitar garis lintang 42,8 LU dan 42,8 LS. Hingga saat ini secara global hanya ada satu peristiwa dimana sisa-sisa sampah antariksa menimpuk seseorang. Yakni pada 22 Januari 1997 TU saat Lottie Williams ketimpuk sekeping logam bersisi hangus 15 sentimeter kala berada di taman publik di kota Tulsa, negara bagian Oklahoma (Amerika Serikat). Itu adalah sisa-sisa upperstage roket Delta II 7920-10 yang lepas landas pada 24 April 1996 TU mengangkut satelit militer MSX (Midcourse Space Experiment). Lottie Williams tidak menderita luka-luka karenanya.

Tiangong-1 bukanlah sampah antariksa terberat yang pernah jatuh. Jika kita batasi sampah antariksa hanya pada bekas stasiun antariksa dan yang jatuhnya tak terkendali, masih ada Skylab dan Salyut 7. Skylab adalah stasiun antariksa 74 ton milik Amerika Serikat yang mengorbit mulai 14 Mei 1973 TU. Sempat dihuni selama 171 hari, Skylab akhirnya terjun ke Bumi seiring meningkatnya aktivitas Matahari yang membuat lapisan eksosfer cukup mengembang. Bakal jatuhnya Skylab sempat menjadi insiden internasional yang membikin panik banyak orang, terutama di Filipina. Skylab jatuh pada 11 Juli 1979 TU dengan sisa-sisanya terserak di daratan sepanjang Esperance hingga Rawlina, sebelah timur kota Perth (Australia).

Gambar 7. Proyeksi lintasan Tiangong-1 di paras bumi Indonesia dan sekitarnya pada rentang waktu antara 31 Maret 2018 TU pukul 00:00 WIB hingga 6 April 2018 TU pukul 14:00 WIB menurut SatFlare. Pada rentang waktu itulah Tiangong-1 diprediksi akan jatuh. Nampak proyeksi lintasan Tiangong-1 mengenai pulau Irian bagian barat, kepulauan Bali dan Nusatenggara, pulau Sulawesi, pulau Kalimantan dan pulau Sumatra. Sementara pulau Jawa terbebas darinya. Sumber: SatFlare, 2018.

Salyut 7 lebih dramatis lagi. Stasiun antariksa milik eks-Uni Soviet ini diluncurkan pada 19 April 1982 TU dan sempat dihuni selama 816 hari. Mengikuti nasib nasib Skylab, Salyut 7 pun akhirnya jatuh tak terkendali. Sisa-sisanya menyirami kota Capitan Bermudez di propinsi Santa Fe (Argentina) pada 7 Februari 1991 TU. Beruntung dalam dua kejadian tersebut tak ada bangunan yang terkena secara langsung, apalagi manusia.

Ground track dari stasiun antariksa Tiangong-1 dapat disaksikan misalnya pada peta Lizard Tail.

Referensi:

The Aerospace Corporation. 2018. Tiangong-1 Reentry. Diakses pada 15 Maret 2018 TU.

Dickinson. 2017. China’s Tiangong-1 Space Station to Burn Up. Sky and Telescope, 10 November 2017. Diakses pada 15 Maret 2018 TU.

Daniel. 2018. Tiangong-1 Frequently Asked Questions. Space Debris Office, European Space Agency. Diakses pada 15 Maret 2018 TU.

Spaceflight101. t.t. Tiangong-1 Spacecraft Overview. Diakses pada 15 Maret 2018 TU.

SatFlare. 2018. Tiangong-1 NORAD 37820. Diakses pada 15 Maret 2018 TU.

Joseph Remis. 2018. komunikasi pribadi.

Marco Langbroek. 2018. komunikasi pribadi.

Detik-Detik Terakhir Satelit GOCE

Satelit penyelidik medan gravitasi Bumi pada ketelitian yang belum pernah dijumpai sebelumnya yang bertajuk GOCE (Gravity-field and steady-state Ocean Circulation Explorer) akhirnya purna dari tugasnya setelah lebih dari empat tahun mengangkasa. US Strategic Command merilis GOCE memasuki lapisan atmosfer yang lebih padat (atmospheric reentry) di atas Samudera Atlantik selatan di sekitar Kepulauan Falklands (Inggris) pada Senin 11 November 2013 pukul 00:16 UTC +/- 1 menit, atau pukul 07:16 waktu Indonesia (WIB) +/- 1 menit kala ketinggiannya telah menembus batas 80 kilometer dari paras air laut. Kejatuhan satelit GOCE sempat diabadikan Bill Chater di Falklands timur sekitar pukul 09:20 waktu setempat (00:20 UTC) lewat kamera dan videonya.

Gambar 1. Bangkai satelit GOCE melintas, memijar dan terpecah-belah di langit senja Kepulauan Falklands pada saat kejatuhannya, diabadikan oleh Bill Chater. Sumber: Chater, 2013.

Gambar 1. Bangkai satelit GOCE melintas, memijar dan terpecah-belah di langit senja Kepulauan Falklands pada saat kejatuhannya, diabadikan oleh Bill Chater. Sumber: Chater, 2013.

Citra hasil bidikan kamera lantas diunggahnya ke media sosial, namun tidak demikian dengan rekaman videonya seiring terbatasnya akses internet di Falklands. Dalam citra tersebut GOCE terlihat melintas dari selatan ke utara, awalnya sebagai bintik cahaya terang yang melesat cepat dan menghasilkan bentukan mirip ekor di langit senja Falklands. Tak lama berselang GOCE terpecah dalam dua bagian besar dan lalu terpecah-pecah kembali menjadi kepingan-kepingan yang lebih kecil. Bila ada bagian-bagian GOCE yang masih tersisa setelah menembus atmosfer, nampaknya semuanya jatuh tercebur ke Samudera Atlantik.

Ferrari

Jatuhnya GOCE memang kian menambah panjang daftar benda-benda angkasa buatan manusia yang berjatuhan tanpa terkontrol (uncontrolled reentry). Beberapa diantaranya sempat menimbulkan ancaman terhadap kualitas kehidupan manusia. Misalnya jatuhnya bangkai satelit mata-mata Kosmos 954 (Uni Soviet) di Canada pada 21 Januari 1978 yang menghamburkan bahan radioaktif Uranium-235 dari reaktornya dan mencemari lintasan sepanjang sekitar 600 kilometer. Pun jatuhnya bangkai stasiun antariksa Skylab (AS) pada 11 Juli 1979 di sekitar kota Esperance, Balladonia dan Rawlina (Australia). Demikian pula jatuhnya bangkai stasiun antariksa Salyut 7 (Uni Soviet) di kota kecil Capitan Bermudez, 400 kilometer dari Buenos Aires (Argentina) pada 7 Februari 1991. Namun begitu tulisan ini tak bertujuan untuk mengupas dampak sampah antariksa yang berjatuhan ke Bumi, melainkan pada bagaimana proses tersebut terjadi. Dan proses jatuhnya GOCE memberikan kesempatan unik yang menambah pengetahuan kita tentang bagaimana proses jatuhnya sebuah sampah antariksa yang dikendalikan.

Gambar 2. Salah satu frame video rekaman jatuhnya bangkai satelit GOCE, diabadikan oleh Bill Chater. Nampak jejak asap mirip jejak kondensasi (contrail) di sepanjang lintasan GOCE. Sumber: Chater, 2013.

Gambar 2. Salah satu frame video rekaman jatuhnya bangkai satelit GOCE, diabadikan oleh Bill Chater. Nampak jejak asap mirip jejak kondensasi (contrail) di sepanjang lintasan GOCE. Sumber: Chater, 2013.

GOCE adalah satelit unik. Agar bisa memetakan medan gravitasi Bumi dalam resolusi yang dikehendaki (yakni kurang dari 100 kilometer), maka satelit ini harus mengorbit Bumi pada ketinggian kurang dari 270 kilometer terhadap paras air laut rata-rata. Dengan begitu orbit GOCE jauh lebih rendah dibanding satelit-satelit orbit rendah pada umumnya. Di sisi lain, pembatasan tersebut membuat satelit GOCE bakal mengalami gaya hambat lebih besar karena berada di lingkungan yang molekul-molekul udaranya lebih padat dibanding orbit lebih tinggi. Pada saat yang sama ketinggian satelit GOCE bakal berfluktuasi sedikit mengikuti dinamika konsentrasi massa di bagian Bumi yang sedang dilintasinya. Kedua tantangan berbeda itu membuat badan antariksa Eropa (ESA) merancang satelit GOCE dengan struktur yang aerodinamis, sehingga berbentuk panjang, ramping, bersayap (panel surya) dengan tonjolan permukaan yang minimal. Struktur aerodinamis ini membuat gaya gesek molekul-molekul udara yang dialami GOCE pun minim. Sedangkan untuk mengompensasi penurunan ketinggian (akibat penurunan kecepatan oleh gaya gesek molekul-molekul udara) dan fluktuasi ketinggian akibat distribusi konsentrasi massa bagian Bumi yang tak merata, maka satelit GOCE dilengkapi mesin ion dengan Xenon sebagai bahan bakarnya. Untuk itu satelit GOCE membawa hingga 40 kilogram Xenon yang dikenal ramah lingkungan. Desain yang futuristik dengan bahan bakar yang tak kalah futuristiknya membuat satelit GOCE pun dijuluki ‘satelit Ferrari’.

Gambar 3. Gambaran artis tentang dimensi satelit GOCE saat masih bekerja di orbit operasionalnya dan sedang menyalakan salah satu dari sepasang mesin ion-nya. Struktur dan bahan bakar satelit yang futuristis membuat GOCE dijuluki satelit Ferrari. Sumber: ESA, 2013.

Gambar 3. Gambaran artis tentang dimensi satelit GOCE saat masih bekerja di orbit operasionalnya dan sedang menyalakan salah satu dari sepasang mesin ion-nya. Struktur dan bahan bakar satelit yang futuristis membuat GOCE dijuluki satelit Ferrari. Sumber: ESA, 2013.

Setelah mengangkasa semenjak 17 Maret 2009, satelit GOCE kehabisan bahan bakar Xenon-nya pada 18 Oktober 2013 lalu sehingga dalam tiga hari kemudian ESA mendeklarasikan berakhirnya misi GOCE. Praktis setelah itu satelit GOCE pun menyandang status sampah antariksa. Namun satelit GOCE masih tetap aktif hingga saat-saat terakhir kehidupannya, berbeda dengan satelit-satelit lainnya yang pernah berstatus serupa dan telah mati jauh hari sebelumnya. Maka peluang unik pun tercipta dalam memahami lebih lanjut proses jatuhnya sampah antariksa yang tak terkontrol.

Unik

Pada saat diluncurkan, awalnya satelit GOCE berada di orbit setinggi 280 kilometer untuk kemudian berangsur-angsur diturunkan ke orbit operasional di ketinggian 260 kilometer yang bertahan hingga hampir tiga tahun kemudian. Pertengahan 2012, untuk mengantisipasi habisnya bahan bakar, satelit GOCE pun diturunkan lagi secara gradual hingga akhirnya berada di ketinggian 223 kilometer yang terus bertahan hingga 18 Oktober 2013. Meski menderita gaya gesek lebih besar, yakni hingga mendekati 8 mN (miliNewton) ketimbang saat berada di orbit 260 kilometer yang lebih kecil yakni antara 2 hingga 4 mN, namun pada orbit 223 kilometer ini seluruh instrumen GOCE masih tetap bekerja normal.

Begitu satelit GOCE kehabisan bahan bakarnya, ketinggiannya pun menurun drastis meski semua instrumennya tetap bekerja normal. Observasi awal menunjukkan meskipun ketinggiannya mulai menurun, namun dengan bentuknya yang aerodinamis maka GOCE tetap stabil dalam sikapnya. Sehingga komunikasi dan telemetri data tetap berlangsung dengan baik. Situasi berubah semenjak 9 November 2013, saat gaya gesek yang diderita satelit ini telah melampaui 90 mN. Gaya gesek yang kian meninggi membuat akselerometer GOCE tersaturasi yang membuat kinerja Electrostatic Gravity Gradiometer terganggu. Maka instrumen utama GOCE ini pun dimatikan sejak 10 November 2013. Saat itu satelit GOCE telah kian menurun dengan ketinggian tinggal 133 kilometer (pukul 15:30 UTC) dengan orbit telah berubah menjadi 131 x 142 kilometer. GOCE mengalami penurunan ketinggian hingga 1,5 kilometer/jam namun dengan sikap (attitude) yang stabil sehingga instrumen GPS-nya tetap berfungsi dengan baik.

Gambar 4. Satelit GOCE diabadikan dari muka Bumi oleh Ralf Vandebergh (Belanda) dengan teleskop dan kamera khusus pada 22 September 2013, sebulan sebelum misinya dinyatakan berakhir (atas dan bawah), dibandingkan dengan gambaran artis ESA mengenai satelit tersebut (tengah). Garis kuning menunjukkan posisi sayap GOCE.Sumber: Vandebergh, 2013.

Gambar 4. Satelit GOCE diabadikan dari muka Bumi oleh Ralf Vandebergh (Belanda) dengan teleskop dan kamera khusus pada 22 September 2013, sebulan sebelum misinya dinyatakan berakhir (atas dan bawah), dibandingkan dengan gambaran artis ESA mengenai satelit tersebut (tengah). Garis kuning menunjukkan posisi sayap GOCE.Sumber: Vandebergh, 2013.

Pada pukul 17:30 UTC satelit GOCE masih tetap menjalin komunikasi dengan stasiun bumi Kiruna meskipun ketinggiannya kian merosot dan sudah menembus batas 130 kilometer. Imbas dari lapisan udara yang lebih padat mulai dirasakan dengan naiknya suhu komputer dan baterei menjadi 45 derajat Celcius. Pukul 19:50 UTC satelit GOCE kembali menjalin komunikasi, kali ini dengan stasiun bumi Troll (Antartika) dan melaporkan ketinggiannya tinggal 126 kilometer dan kian memanas sehingga suhu baterei dan komputernya melonjak ke 54 derajat Celcius. Komunikasi dengan Troll kembali berulang pada pukul 21:26 UTC, saat satelit GOCE tinggal setinggi 122 kilometer dengan suhu baterei dan komputernya terus meningkat hingga 64 sebesar derajat Celcius. Komunikasi terakhir berlangsung pukul 22:42 UTC saat satelit telah menempati orbit baru 118 x 127 kilometer dengan suhu komputer setinggi 80 derajat Celcius sementara suhu batereinya 84 derajat Celcius.

Pasca komunikasi terakhir ini satelit masih beredar mengelilingi Bumi sekali lagi dengan orbit kian menurun, kini tinggal 109 x 121 kilometer. Lintasan terakhir ini melewati Indonesia dari arah timur-timur laut menuju barat-barat daya, tepatnya melintas di atas Selat Makassar berdekatan dengan garis pantai pulau Kalimantan, Laut Flores dan pulau Lombok. Sempat muncul dugaan ia akan jatuh di wilayah Indonesia, mengingat ESA sempat memprediksi titik kejatuhan satelit ini di selatan pulau Lombok. Namun rupanya satelit GOCE masih tetap melaju tanpa terganggu dan lantas menyusuri Samudera Hindia sebelah barat Australia hingga Antartika. Pantauan radar US Strategic Command menunjukkan akhirnya satelit GOCE benar-benar jatuh pada pukul 00:16 UTC dengan mengambil lokasi di dekat Kepulauan Falklands, ujung selatan benua Amerika. Pada saat itu ketinggiannya telah merosot jauh hingga tinggal 80 kilometer, yang membuatnya tak sanggup bertahan lagi.

Pelajaran

Jatuhnya bangkai satelit buatan yang tak terkontrol telah dikenal semenjak fajar abad antariksa, tepatnya semenjak satelit buatan pertama yakni Sputnik-1 jatuh dalam waktu tiga bulan setelah mengangkasa. Namun sayangnya bagaimana kejadiannya dan faktor-faktor yang mengontrolnya masih belum bisa diketahui dengan pasti. Pada dasarnya kita baru bisa mengetahui dimana lokasi jatuhnya sebuah satelit buatan yang tak terkontrol hanya dalam menit-menit terakhir. Dengan kian meningkatnya aktivitas pengiriman armada satelit-satelit buatan ke orbit Bumi yang berujung pada kian membengkaknya jumlah sampah antariksa yang bertebaran di atas sana, situasinya pun kian mengkhawatirkan mengingat pada umumnya tak seluruh bagian satelit buatan tersebut yang hancur menguap di atmosfer. Bagian-bagian yang tahan panas umumnya akan bertahan dan jatuh mencium paras Bumi dengan kecepatan tertentu. Selain potensi kerusakan bangunan/benda yang dikenai tumbukannya, potensi cemaran lingkungan akibat eksistensi bahan toksik (seperti hidrazin) ataupun bahan radioaktif tertentu pun terbuka. Belum lagi bagaimana interaksi keping-keping satelit buatan yang jatuh dengan penerbangan komersial seperti diperlihatkan kasus Airbus A340 LAN Airlines (Chile) berpenumpang 270 orang yang hampir bertabrakan dengan keping-keping satelit mata-mata Russia di atas Samudera Pasifik pada 27 Maret 2007 saat menerbangi rute Santiago (Chile) – Auckland (Selandia Baru).

Gambar 5. Titik jatuhnya satelit GOCE di dekat Kepulauan Falklands (kiri) dan lintasan terakhirnya di atas Indonesia berdasarkan data TLE (two-line element) GOCE epoch 10 November 2013 23:03 UTC (kanan). Sumber; Sudibyo, 2013 berdasarkan data USSTRATCOM dan ESA, 2013.

Gambar 5. Titik jatuhnya satelit GOCE di dekat Kepulauan Falklands (kiri) dan lintasan terakhirnya di atas Indonesia berdasarkan data TLE (two-line element) GOCE epoch 10 November 2013 23:03 UTC (kanan). Sumber; Sudibyo, 2013 berdasarkan data USSTRATCOM dan ESA, 2013.

Jatuhnya satelit GOCE membuat kita selangkah lebih maju dalam memahami proses tersebut. Kini kita tahu pemanasan akibat gaya gesek satelit dengan udara mulai dirasakan pada ketinggian sekitar 130 kilometer. Kini kita pun tahu bahwa jika satelit memiliki bentuk yang aerodinamik, maka sikapnya akan tetap stabil sehingga telemetri data bisa terus berlangsung. Dan kini kita pun tahu bahwa satelit yang aerodinamik masih tetap bertahan meskipun telah menembus batas ketinggian 122 kilometer, batas yang selama ini diyakini sebagai titik awal proses jatuhnya satelit buatan.

Catatan: juga ditulis di langitselatan.

(Satelit) “Gravity” Bersiap Mencium Bumi

Sudah nonton film “Gravity”? Jika belum, silahkan pergi ke bioskop terdekat dan tontonlah film fiksi ilmiah menarik yang dibintangi aktris senior Sandra Bullock dan George Clooney ini. Singkatnya, “Gravity” adalah film psikologis yang berkisah akan perjuangan hidup mati sepasang astronot kala bertugas memperbaiki teleskop antariksa Hubble namun mendadak menjumpai dirinya harus terkatung-katung di langit seiring rusaknya pesawat ulang alik mereka akibat gempuran sampah antariksa. Kehilangan jalur komunikasi dengan Bumi, mereka melayang ke stasiun antariksa terdekat, yakni stasiun antariksa internasional (ISS), dengan harapan bisa mendapat tumpangan pulang. Apa lacur, ISS ikut rusak oleh gempuran sampah antariksa dan sekoci antariksanya, yakni wahana Soyuz, telah penuh dimuati astronot lain. Sementara sekoci satunya lagi rusak sebagian sehingga tak bisa dipakai mendarat ke Bumi, namun masih berfungsi untuk pergi ke stasiun antariksa Cina: Tiangong. Dan beruntung Tiangong masih menggandeng wahana Shenzou yang bisa digunakan sebagai sekoci. Dengan Shenzou inilah Dr. Stone (diperankan Sandra Bullock) kembali lagi ke Bumi meski harus mendarat di danau terpencil di pedalaman Asia.

Geodesi

Meski baru dirilis awal Oktober 2013, “Gravity” sontak mendunia dan mencatatkan diri dalam box office. Film ini mencatatkan pendapatan hingga sebesar US $ 368,8 juta dalam tempo sebulan saja dan melampaui biaya pembuatannya yang ‘hanya’ US $ 100 juta. Meski lebih merupakan film psikologis yang menekankan perjuangan manusia untuk bertahan hidup dan tetap tabah di tengah kerasnya semesta pasca sebuah bencana, “Gravity” memberikan perspektif baru terkait potensi bahaya yang menghadang manusia kala terbang ke langit, yakni sampah antariksa. Ironisnya, sampah antariksa terjadi akibat ulah manusia pula khususnya dalam setengah abad terakhir yang gemar mengirim beraneka ragam satelit dan wahana antariksa lainnya ke langit, terutama ke lingkungan dekat Bumi, namun enggan memikirkan bagaimana membuang bangkainya saat usia pakainya sudah habis.

Gambar 1. Gambaran artis saat satelit GOCE bertugas di orbitnya dan sedang menyalakan salah satu dari kedua mesin ionnya. Sumber: Spaceflight101.com, 2013.

Gambar 1. Gambaran artis saat satelit GOCE bertugas di orbitnya dan sedang menyalakan salah satu dari kedua mesin ionnya. Sumber: Spaceflight101.com, 2013.

Entah kebetulan atau tidak, bersamaan dengan melambungnya “Gravity”, sebuah satelit yang menyandang namanya telah menjadi sampah antariksa dan sedang bersiap untuk jatuh dari langit. Satelit itu bernama lengkap GOCE, akronim dari Gravity-field and steady-state Ocean Circulation Explorer. Penyelidik medan gravitasi Bumi dengan akurasi yang belum pernah dicapai program antariksa lainnya ini tak bisa lagi dikendalikan manusia setelah kehabisan bahan bakar Xenon-nya semenjak 21 Oktober 2013 lalu. Dan karena mengorbit Bumi pada ketinggian cukup rendah dibanding satelit-satelit orbit rendah lainnya, maka tak butuh waktu lama baginya untuk kembali jatuh ke Bumi. Saat ini diprediksikan bahwa GOCE bakal memasuki bagian atmosfer Bumi yang lebih padat pada 8 November 2013 mendatang dan seperempat bagian GOCE bakal tetap utuh untuk kemudian jatuh mencium permukaan Bumi.

Satelit GOCE dibangun badan antariksa Eropa (ESA) dengan tujuan untuk menyelidiki medan gravitasi Bumi dalam lingkup global pada akurasi yang tak pernah diperoleh sebelumnya. GOCE dilengkapi dengan instrumen gradiometer dan pemantul laser guna memetakan medan gravitasi hingga tingkat akurasi 1 miliGal (0,00001 g, g = percepatan gravitasi Bumi rata-rata) pada resolusi spasial kurang dari 100 km. Selain itu GOCE juga bertujuan untuk membantu menentukan model geoid, yakni model bentuk Bumi yang khas dengan mendasarkan pada permukaan laut rata-rata, dengan tingkat akurasi hingga 1 atau 2 cm, juga pada resolusi spasial kurang dari 100 km. Dengan tujuan seperti itu jelas bahwa GOCE adalah satelit geodesi yang bakal membantu kita memahami dinamika interior Bumi dengan lebih baik khususnya yang terkait lapisan litosfer dan selubung (mantel) Bumi. Misalnya komposisi selubung serta proses subduksi dan pengangkatan (uplift) lempeng-lempeng tektonik. Selain itu GOCE juga bakal membantu kita lebih memahami dinamika arus laut global dan ketebalan lembaran-lembaran es di kutub berikut pergerakannya.

GOCE dirakit oleh perusahaan Thales AleniaSpace dan EADS Astrium dalam bentuk tabung sepanjang 5,3 meter yang dilengkapi sayap-sayap panel surya sehingga lebarnya 2,3 meter. Panel surya tersebut mampu memasok tenaga listrik hingga 1.600 watt. Secara keseluruhan GOCE berbobot 1.077 kilogram dan memuat 40 kilogram Xenon sebagai bahan bakar bagi mesin ion-nya. Untuk kepentingan komunikasi, GOCE memiliki kemampuan untuk mengirim data ke Bumi hingga 1,2 Mbit/detik dengan menggunakan frekuensi 2 GHz. Sebaliknya kemampuannya untuk menerima data dari pengendalinya di Bumi hanya maksimum 4 kbit/detik. Agar misinya berjalan dengan lancar, GOCE harus mengorbit Bumi pada di bawah ketinggian 270 kilometer. Ini jauh lebih rendah ketimbang ketinggian satelit-satelit orbit rendah lainnya yang umumnya antara 300 hingga 600 kilometer. Agar panel suryanya berfungsi maksimal, GOCE pun harus mengorbit Bumi dalam kondisi tersinkron dengan Matahari, sehingga terus mendapat pancaran sinarnya tanpa terputus. Pada ketinggian itu molekul-molekul udaranya masih lebih rapat ketimbang di ketinggian lebih dari 300 km. Akibatnya GOCE mengalami pergesekan dengan molekul-molekul udara lebih intensif dan terus-menerus sehingga kecepatannya terus berkurang, yang berimbas pada turunnya orbitnya. Karena itu GOCE harus menyalakan mesin ionnya secara teratur guna mempertahankan kecepatannya sehingga tetap bertahan di orbitnya. Sebagai konsekuensinya GOCE dirancang hanya bekerja efektif selama 20 bulan saja.

Jatuh

Gambar 2. Bumi mirip kentang, gambaran model geoid terkini berdasarkan data-data medan gravitasi Bumi hasil observasi satelit GOCE. Sumber: Spaceflight101.com, 2013.

Gambar 2. Bumi mirip kentang, gambaran model geoid terkini berdasarkan data-data medan gravitasi Bumi hasil observasi satelit GOCE. Sumber: Spaceflight101.com, 2013.

Pada kenyataannya satelit GOCE akhirnya diterbangkan melalui kosmodrom Plesetsk (Rusia) pada 17 Maret 2009 dengan digendong roket Rockot. GOCE lantas mengorbit Bumi dengan orbit setinggi antara 223 hingga 232 kilometer pada inklinasi (sudut antara bidang orbit GOCE dan bidang ekuator Bumi) sebesar 96,5 derajat sehingga tersinkron dengan Matahari. Dengan orbit tersebut, satelit ini mengelilingi Bumi setiap 89 menit sekali. Dan setiap 61 hari sekali satelit GOCE melintasi titik yang sama di muka Bumi. Dan berbeda dengan perencanaannya, satelit GOCE ternyata mampu bertahan hingga 55 bulan di orbitnya, atau dua kali lipat lebih lama dibanding rencananya. Sepanjang waktu itu GOCE berhasil memproduksi model medan gravitasi Bumi dalam lingkup global dan peta arus laut yang lebih detil. namun pencapaian GOCE yang paling mengesankan adalah keberhasilannya mendeteksi gelombang gempa akbar Jepang 11 Maret 2011 yang merambat ke udara pada kecepatan 300 hingga 1.500 meter/detik. Ini memberikan pemahaman baru tentang gempa sekaligus menjadikan GOCE sebagai seismometer pertama di antariksa.

Pada 18 Oktober 2013 ESA menyatakan bahan bakar Xenon di GOCE telah amat menipis sehingga tekanannya sudah turun di bawah batas 2,5 bar. Akibatnya mesin ion GOCE tak lagi mendapat suplai bahan bakar mencukupi. Maka dalam tiga hari berikutnya ESA pun mendeklarasikan berakhirnya tugas GOCE sehingga satelit itu berubah menjadi bangkai satelit, bagian dari sampah antariksa. Tanpa kerja mesin ion, bangkai GOCE kian melambat sehingga orbitnya terus menurun menuju lapisan-lapisan atmosfer yang lebih rendah dan lebih padat. Akibatnya gesekan yang dideritanya kian membesar sehingga penurunan kecepatannya kian meningkat yang berakibat pada kian intensifnya penurunan ketinggiannya. Jika ketinggian orbit bangkai GOCE telah menyentuh angka 120 km, maka gesekan udara spontan melonjak hebat sehingga ia bakal memasuki lapisan atmosfer yang lebih rendah dengan kecepatan tinggi sehingga berpijar membara layaknya meteor. Sebagian besar struktur bangkai GOCE bakal menguap, namun seperempat bagian diantaranya (dengan massa sekitar 250 kilogram) bakal tetap utuh dan mencium muka Bumi dalam 40 hingga 50 keping. Sehingga berat rata-rata tiap keping sampah antariksa yang diproduksinya antara 5 hingga 6 kilogram.

Sedihnya, karena tergolong peristiwa jatuhnya sampah antariksa yang tak terkendali (uncontrolled re-entry), maka kapan waktu kejatuhan bangkai GOCE dan dimana koordinat titik jatuhnya tak bisa diketahui secara pasti sejak dini, kecuali pada saat-saat terakhir. Kapan sebuah sampah antariksa bakal jatuh kembali ke Bumi memang sangat bergantung pada dinamika lapisan atmosfer, khususnya pada ketinggian lebih dari 120 kilometer. Secara umum dinamika itu bergantung kepada aktivitas Matahari. Sehingga kala aktivitas Matahari memuncak dalam setiap siklusnya maka jatuhnya sampah antariksa akan lebih cepat terjadi seiring mengembangnya lapisan atmosfer. Dan sebaliknya kala aktivitas Matahari minimal, maka sampah antariksa bakal lebih lambat jatuh karena atmosfer mengempis. Namun bagaimana sebenarnya faktor-faktor yang mempengaruhi jatuhnya sampah antariksa sehingga prediksi bisa dilakukan dengan ketelitian tinggi dari detik ke detik belum jelas benar. Sejauh ini prediksi lokasi jatuhnya sebuah sampah antariksa dengan tingkat ketelitian tinggi hanya bisa diperoleh dalam 24 jam sebelum sampah tersebut benar-benar jatuh.

Indonesia

Gambar 3. Sampah antariksa yang terpecah belah dan terbakar saat sedang menembus atmosfer Bumi yang lebih padat. Bangkai satelit GOCE pun bakal bernasib seperti ini. Namun seperempat bagiannya cukup tahan panas sehingga bakal tetap bertahan saat menembus atmosfer dan bakal jatuh mencium muka Bumi di titik kejatuhannya. Sumber: Spaceflight101.com, 2013.

Gambar 3. Sampah antariksa yang terpecah belah dan terbakar saat sedang menembus atmosfer Bumi yang lebih padat. Bangkai satelit GOCE pun bakal bernasib seperti ini. Namun seperempat bagiannya cukup tahan panas sehingga bakal tetap bertahan saat menembus atmosfer dan bakal jatuh mencium muka Bumi di titik kejatuhannya. Sumber: Spaceflight101.com, 2013.

Hal yang sama juga berlaku bagi bangkai GOCE. Kita bisa melihat bagaimana prediksi jatuhnya satelit ini benar-benar bervariasi dari waktu ke waktu. Pada 27 Oktober 2013, simulasi Simone Corbellini melalui elemen posisi satelit (TLE : two-line element) GOCE berdasarkan hasil pengamatan saat itu menunjukkan bangkai GOCE bakal jatuh per 8 November 2013 pukul 06:10 WIB dengan titik jatuh di Australia bagian tengah, namun dengan nilai ketidakpastian hingga 84 jam. Simulasi serupa dengan TLE hasil pengamatan hingga 29 Oktober 2013 menghasilkan prediksi berbeda, dimana bangkai GOCE diperkirakan bakal jatuh pada 10 November 2013 pukul 14:50 WIB di Rusia bagian utara, dengan ketidakpastian sedikit mengecil menjadi 78 jam. Dan prediksi terbaru di 1 November 2013, menggunakan data hasil pengamatan pada tanggal yang sama, menunjukkan bangkai GOCE mungkin bakal jatuh pada 8 November 2013 pukul 13:38 WIB di tengah-tengah Samudera Pasifik, dengan ketidakpastian lebih menyempit lagi menjadi 45 jam.

Jika menggunakan prediksi 1 November 2013 tersebut, maka bangkai GOCE berpotensi jatuh ke Bumi pada waktu kapan saja di antara 6 November 2013 16:38 WIB hingga 10 November 2013 03:38 WIB. Titik jatuhnya bangkai GOCE bisa terjadi dimanapun di muka Bumi yang terletak di antara garis lintang 83,LU (dekat kutub utara) hingga 83,5 LS (dekat kutub selatan), khususnya di titik-titik yang terletak di sepanjang lintasan satelit tersebut.

Bagaimana dengan Indonesia? Sepanjang rentang waktu itu, bangkai GOCE bakal melintas di atas Indonesia sebanyak 14 kali, dimulai pada 6 November 2013 pukul 1:37 WIB dan berakhir pada 9 November 2013 pukul 19:29 WIB. Setiap perlintasan hanya berlangsung dalam waktu 5-6 menit. maka pada hakikatnya hanya di titik-titik yang berada di dalam lintasan inilah bangkai GOCE berpeluang jatuh di Indonesia. Berikut petanya.

Gambar 4. Peta lintasan bangkai GOCE di atas Indonesia pada 7 hingga 9 November 2013 pagi berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis merah. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya "8/11/2013; 5:39" berarti lintasan dimulai pada tanggal 8 November 2013 pukul 05:39 WIB di titik utara (garis lintang 10 LU) dan berakhir di titik selatan (garis lintang 12 LS) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 4. Peta lintasan bangkai GOCE di atas Indonesia pada 7 hingga 9 November 2013 pagi berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis merah. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya “8/11/2013; 5:39” berarti lintasan dimulai pada tanggal 8 November 2013 pukul 05:39 WIB di titik utara (garis lintang 10 LU) dan berakhir di titik selatan (garis lintang 12 LS) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 5. Peta lintasan bangkai GOCE di atas Indonesia pada 6 hingga 9 November 2013 malam berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis biru. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari tenggara ke barat laut. Tiap lintasan memiliki label, misalnya "6/11/2013; 17:37" berarti lintasan dimulai pada tanggal 6 November 2013 pukul 17:37 WIB di titik selatan (garis lintang 12 LS) dan berakhir di titik utara (garis lintang 10 LU) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 5. Peta lintasan bangkai GOCE di atas Indonesia pada 6 hingga 9 November 2013 malam berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis biru. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari tenggara ke barat laut. Tiap lintasan memiliki label, misalnya “6/11/2013; 17:37” berarti lintasan dimulai pada tanggal 6 November 2013 pukul 17:37 WIB di titik selatan (garis lintang 12 LS) dan berakhir di titik utara (garis lintang 10 LU) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Catatan : peta dibuat berdasarkan data TLE (two-line element) bangkai GOCE per 1 November 2013. Seiring waktu, maka prediksi lintasan bangkai satelit GOCE dengan data TLE baru bakal bergeser sedikit di sebelah barat/timur dari prediksi lintasan yang disajikan dalam peta ini.

Referensi :

1. TLE GOCE satellite, per 1 Nov 2013, http://www.tle.info.
2. Corbellini, 2013, http://satflare.com.
3. GOCE Re-entry, http://www.spaceflight101.com.