Gempa Samudera Indonesia 2 Maret 2016, Gempa Besar di Tengah Lautan (dan Cukup Jauh dari Mentawai)

Dalam rilis awalnya, Badan Meteorologi Klimatologi dan Geofisika (BMKG) melansir ia memiliki magnitud 8,3. Beberapa waktu kemudian angka ini diperbaiki lewat rilis perbaikan, dengan menyatakan magnitudnya 7,9. Baik di angka magnitud 8,3 maupun 7,9 maka gempa bumi tektonik ini tetap tergolong gempa besar. Sumbernya sangat dangkal, yakni hanya 10 kilometer dpl (dari paras laut rata-rata). Episentrumnya terletak di tengah-tengah lautan. Daratan terdekat dengannya adalah Kepulauan Mentawai (propinsi Sumatra Barat). Dengan sebaris informasi awal ini, tak heran banyak yang terperanjat saat mendengar atau menerima kabar singkat bahwa gempa itulah yang meletup pada 2 Maret 2016 Tarikh Umum (TU) pukul 19:50 WIB tadi. Dengan embel-embel ‘gempa Mentawai’, sontak terbayang bahwa pusat gempanya berdekatan dengan kepulauan di sisi barat pulau Sumatra itu. Saya juga sempat beranggapan nampaknya inilah gempa besar yang telah lama diprediksi.

Sudah sejak bertahun silam beragam riset kegempaan masa silam menyajikan kesadaran bahwa Kepulauan Mentawai berdiri di atas monster megathrust. Mulai dari yang memotong-motong karang mikroatol guna menelisik sejarah naik turunnya pulau-pulau di kepulauan tersebut dari waktu ke waktu oleh deformasi akibat gempa besar/akbar dalam kurun milenium terakhir. Hingga dari radas-radas GPS yang ditanam guna mengetahui pergerakan pulau-pulau tersebut relatif terhadap daratan utama pulau Sumatra. Monster megathrust inilah sumber potensial untuk gempa jumbo. Andaikata ia melepaskan seluruh energinya, maka dengan panjang segmen hingga 400 kilometer dapat diprakirakan ia akan melepaskan gempa dengan magnitud sekitar 9. Tak hanya intensitas getarannya yang menakutkan, sebab mekanisme pematahan pada monster megathrust yang menghasilkan gempa ini juga akan menyebabkan dasar laut di atas sumber gempa terdeformasi vertikal. Inilah yang menyebabkan kolom air laut diatasnya bergolak hingga terbitlah tsunami. Tsunami segera berderap ke pesisir barat pulau Sumatra dimana prakiraan tinggi gelombangnya saat tiba di garis pantai sungguh membikin bulu kuduk meremang.

Gambar 1. Posisi sumber Gempa Samudera Indonesia 2 Maret 2016 (ditandai dengan 03-02-2016 M 7.9) terhadap daratan pulau Sumatra beserta koordinat episentrum dari gempa-gempa besar/akbar (magnitudo > 7) dalam radius hingga 1.000 kilometer. daratan terdekat ke sumber gempa ini berjarak tak kurang dari 680 kilometer. Sumber: USGS, 2016.

Gambar 1. Posisi sumber Gempa Samudera Indonesia 2 Maret 2016 (ditandai dengan 03-02-2016 M 7.9) terhadap daratan pulau Sumatra beserta koordinat episentrum dari gempa-gempa besar/akbar (magnitudo > 7) dalam radius hingga 1.000 kilometer. daratan terdekat ke sumber gempa ini berjarak tak kurang dari 680 kilometer. Sumber: USGS, 2016.

Namun saat mengecek koordinat episentrumnya dan mengeplotnya ke peta, keterperanjatan itu langsung surut. Episentrum gempa ini terletak jauh di tengah-tengah Samudera Indonesia (Indian Ocean). Kep. Mentawai memang daratan terdekat dengannya, namun itu pun masih sejarak tak kurang dari 680 km terhadap episentrum. Jarak yang sesungguhnya teramat jauh. Dari sini pula penamaan gempa ini sebagai Gempa Mentawai menjadi rancu, seperti dipaparkan geolog kegempaan pak Irwan Meilano. Penamaan tersebut juga mendatangkan problem psikologis khususnya bagi penduduk setempat. Dengan jarak yang cukup jauh dari episentrum, maka tak heran jika getaran gempanya terasa lamat-lamat hingga pelan di Kep. Mentawai dan daratan Sumatra. Model yang disajikan otoritas United States Geological Survey (USGS) memperlihatkan intensitas getaran yang dialami Kep. Mentawai dan P. Sumatra pada umumnya dalam gempa ini berkisar 3 MMI (Modified Mercalli Intensity). Intensitas sekecil itu bisa dirasakan publik pada umumnya sebagai getaran layaknya getaran yang kita rasakan saat berdiri di tepi jalan kala sebuah truk besar tengah melaju. Jarak terhadap episentrum yang jauh menghasilkan intensitas gempa yang kecil. Maka tak perlu terlalu mengkhawatirkan apakah guncangan gempa ini berdampak terhadap kondisi Kep. Mentawai.

Tsunami kecil

Bagaimana dengan tsunaminya? Hal itu sangat bergantung kepada bagaimana jenis mekanisme pematahan pada gempa ini. Ada tiga mekanisme pematahan, yakni pematahan naik (thrust), pematahan turun (normal) dan pematahan geser (strike). Simpelnya, pematahan naik membuat segmen kerakbumi di sumber gempa terangkat sehingga membukit/membentuk gundukan. Sementara pematahan turun menghasilkan lembah/cekungan. Pada dasarnya mekanisme pematahan naik dan turun inilah yang mampu memproduksi tsunami. Karena ia menghasilkan deformasi vertikal nan besar di dasar laut di sumber gempa, sehingga kolom air laut diatasnya akan bergolak dan menjadi tsunami.

Gambar 2. Model dislokasi kerakbumi di daratan pulau Sumatra sebagai dampak dari Gempa Samudera Indonesia 2 Maret 2016. Diprakirakan pulau Sumatra bergerser 2 cm ke arah timurlaut. Sumber: Meilano, 2016.

Gambar 2. Model dislokasi kerakbumi di daratan pulau Sumatra sebagai dampak dari Gempa Samudera Indonesia 2 Maret 2016. Diprakirakan pulau Sumatra bergerser 2 cm ke arah timurlaut. Sumber: Meilano, 2016.

Dalam rilisnya USGS menyebut Gempa Samudera Indonesia 2 Maret 2016 ini disebabkan oleh mekanisme pematahan geser. Ini adalah jenis pematahan yang tak menyebabkan deformasi vertikal dasar laut di lokasi sumber gempa. Analisis lebih lanjut memperlihatkan gempa besar ini diproduksi oleh patahnya segmen kerakbumi di dasar Samudera Indonesia seluas 80 x 40 km2. Segmen ini lantas melenting sejauh rata-rata 6 meter, dengan pelentingan maksimum 12 meter. Dengan kata lain, jika suatu saat sebelum gempa kita berkesempatan berdiri tepat di batas segmen ini dengan lingkungannya, maka di kesempatan berikutnya (pasca gempa) kita akan melihat batu yang ada di hadapan kita telah bergeser sejauh rata-rata 6 meter. Dengan jenis pematahan geser, maka pada gilirannya kemungkinan terbentuknya tsunami adalah cukup kecil. Model dislokasi yang dikerjakan pak Irwan Meilano dan Endra Gunawan memperlihatkan gempa ini menyebabkan pergeseran ke timur laut sejauh rata-rata 2 cm di pulau Sumatra.

Apabila ada tsunaminya, lagi-lagi jarak yang jauh dari sumber gempa berperan menentukan tingkat kedahsyatan tsunaminya saat tiba di pesisir. Pada dasarnya semakin besar magnitud gempanya maka semakin berenergi tsunaminya dan semakin tinggi gelombang yang terbentuk. Namun semakin jauh dari sumber tsunami, maka tinggi tsunaminya pun turut melorot. Dalam bahasa yang lebih teknis, semakin jauh dari sumber tsunami membuat energi tsunami kian terdissipasi kala ia berjuang melintasi samudera. Sehingga berdampak pada melemahnya sang tsunami dan melorotnya ketinggiannya. Perhitungan sederhana dengan menggunakan persamaan Iida memperlihatkan, dengan jarak 680 km dan memegang anggapan bahwa magnitudo tsunami = magnitudo gempa = 8,3 maka diperoleh prakiraan ketinggian tsunami di Kep. Mentawai pada kisaran 15 cm. Cukup kecil dan sangat sulit berdampak signifikan. Simulasi yang lebih kompleks dengan memanfaatkan program simulasi tsunami (yang berbasis persamaan-persamaan gelombang dangkal) juga menyajikan hasil yang mirip. Misalnya seperti yang dikerjakan mas Aditya Gusman. Dalam simulasinya nampak bahwa prakiraan tinggi gelombang di Kep. Mentawai berada pada kisaran 10 hingga 15 cm saja.

Gambar 3. Simulasi distribusi tinggi maksimum tsunami sebagai akibat Gempa Samudera Indonesia 2 Maret 2016. Nampak tinggi tsunami di Kepulauan mentawai berkisar antara 10 hingga 15 cm. Sumber: Gusman, 2016.

Gambar 3. Simulasi distribusi tinggi maksimum tsunami sebagai akibat Gempa Samudera Indonesia 2 Maret 2016. Nampak tinggi tsunami di Kepulauan mentawai berkisar antara 10 hingga 15 cm. Sumber: Gusman, 2016.

Bagaimana dalam realitasnya? Gempa Samudera Indonesia 2 Maret 2016 memang menghasilkan tsunami. Namun sangat kecil. BMKG mencatat tinggi tsunami yang terekam pada stasiun pasang surut di pelabuhan Padang (propinsi sumatra Barat) hanyalah 5 cm. Rekaman pasang surut di pelabuhan Tanahbala, Kep. Batu (propinsi Sumatra Utara) yang disajikan UNESCO/IOC Sea Level Monitoring juga hanya setinggi 5 cm. Usikan tsunami itu datang tepat sejam pasca gempa, menandakan bahwa kecepatan tsunami berkisar 700 km/jam. Namun dengan tinggi yang amat sangat rendah, tak ada dampak yang ditimbulkannya sejauh ini.

Gambar 4. Rekaman dinamika paras air laut di stasiun pasang surut pelabuhan Tanahbala, Kepulauan Batu (propinsi Sumatra Utara). Skala waktu dalam GMT (WIB - 7).Nampak paras air laut yang sedang berkecenderungan naik (sebagai imbas dari pasang naik harian) mendadak mengalami usikan liar dengan amplitudo sekitar 5 cm sejak pukul 21:00 WIB. Sumber: UNESCO/IOC, 2016.

Gambar 4. Rekaman dinamika paras air laut di stasiun pasang surut pelabuhan Tanahbala, Kepulauan Batu (propinsi Sumatra Utara). Skala waktu dalam GMT (WIB – 7).Nampak paras air laut yang sedang berkecenderungan naik (sebagai imbas dari pasang naik harian) mendadak mengalami usikan liar dengan amplitudo sekitar 5 cm sejak pukul 21:00 WIB. Sumber: UNESCO/IOC, 2016.


Dengan intensitas getaran yang lemah dan tsunami yang tak kalah lemahnya, maka Gempa Samudera Indonesia 2 Maret 2016 ini dapat dikatakan tak berdampak baik bagi Kep. Mentawai maupun daratan pulau Sumatra. Tetapi atas semua itu gempa besar ini tak menutupi fakta bahwa Kep. Mentawai masih menjadi salah satu kawasan rawan gempa dan tsunami di Indonesia. Mari tetap waspada (dan bersiaga pada waktunya), namun janganlah paranoia.

Referensi :

Irwan Meilano. 2016. komunikasi pribadi.

Aditya Gusman. 2016. komunikasi pribadi.

USGS. 2016. M7.8 – Southwest of Sumatra, Indonesia. National Earthquake Information Center United States Geological Survey.

Mitigasi Tsunami Kabupaten Kebumen, Mengelola Ancaman dari balik Pegunungan yang Tenggelam

Bagian kedua dari dua tulisan

Kabupaten Kebumen adalah sebuah wilayah administratif yang terletak di propinsi Jawa Tengah bagian selatan. Uratnadi utama pulau Jawa bagian selatan, baik jalur jalan raya nasional maupun jalan kereta api, melintas di dalam kabupaten yang berbatasan dengan Kabupaten Banyumas dan Cilacap di sisi barat serta Kabupaten Purworejo di sebelah timur ini. Di selatannya membentang luas perairan Samudera Indonesia (Hindia). Dalam perspektif ilmu kebumian Kabupaten Kebumen merupakan ‘surga’. Sebab pada sebuah zona sempit di dalam kawasan Pegunungan Serayu Selatan yang membentang di sisi utara kabupaten inilah, yang melingkupi wilayah kecamatan Karanggayam, Karangsambung dan Sadang, tersingkap bebatuan yang demikian penting artinya dalam ilmu kebumian. Berbagai batuan sedimen (endapan) dengan lapisan-lapisan yang kadang nyaris vertikal berjejeran dengan batuan malihan (metamorf) dan bongkahan-bongkahan batuan beku yang terlampar dalam wilayah tak terlalu luas. Normalnya pemandangan seperti ini hampir mustahil dijumpai.

Keunikan itu telah memukau cendekiawan sekelas Junghunn sejak satu setengah abad silam. Namun barulah mulai setengah abad lalu penyebabnya ditemukan, lewat kerja keras seorang Sukendar Asikin. Bebatuan campur aduk di Kebumen utara ternyata adalah bukti langsung dari teori tektonik lempeng. Inilah teori ‘aneh’ yang dikembangkan dari gagasan seorang Alfred Wegener sejak menjelang Perang Dunia pertama, namun baru menjumpai bukti-bukti penyokongnya berpuluh tahun kemudian. Bebatuan campur aduk itu seharusnya hanya bisa dijumpai di palung laut, salah satu ekspresi permukaan dari subduksi lempeng oseanik yang berberat jenis lebih tinggi dengan lempeng kontinental yang berat jenisnya lebih rendah. Maka jelas, Kebumen utara dulu-dulunya pernah merupakan palung laut purba.

Palung laut purba di Kebumen utara terbentuk setidaknya semenjak 120 juta tahun silam seiring subduksi lempeng Australia yang bergerak ke utara dengan lempeng Eurasia yang stabil. Subduksi purba ini aktif setidaknya hingga 65 juta tahun yang lalu. Sebelum kemudian bergeser tigaratusan kilometer lebih ke selatan, ke lokasi yang sekarang. Semenjak itu lambat laun kawasan ini mulai terangkat. Dari yang semula berada di dasar palung kemudian menjadi bagian dasar samudera nan dalam. Lantas terus terangkat menjadi bagian laut dangkal. Dan akhirnya tersembullah seluruhnya ke atas permukaan samudera bersamaan dengan terdongkraknya pulau Jawa hingga seperti sekarang. Aktivitas inilah yang membentuk bentanglahan Kebumen masakini dengan segala eksotikanya. Inilah yang menjadikan Kebumen sebagai laboratorium alam dan pusat pendidikan calon-calon ahli kebumian se-Indonesia bahkan se-Asia tenggara.

Palung laut lokasi subduksi modern yang aktif pada saat ini merentang sepanjang lepas pantai selatan Pulau Jawa sebagai kelanjutan dari palung laut sejenis di lepas pantai barat Pulau Sumatra. Dari pesisir selatan Kebumen, bentangan palung laut itu berjarak sekitar 250 kilometer. Nyaris tak ada penghalang alamiah apapun antara palung laut dengan daratan Kebumen, baik berupa jajaran pegunungan maupun perbukitan. Faktor inilah yang membuat Kabupaten Kebumen rentan terhadap bencana tsunami. Termasuk ancaman tsunami dahsyat produk gempa akbar (megathrust) yang bisa dibangkitkan zona subduksi Jawa. Dalam catatan BNPB (Badan Nasional Penanggulangan Bencana), Kabupaten Kebumen merupakan wilayah administratif terentan kedua terhadap bencana tsunami di antara 19 kabupaten/kota di seantero pesisir selatan pulau Jawa setelah kota Cilacap. Terdapat 220.800 jiwa penduduk Kebumen khususnya di 8 kecamatan yang beresiko terpapar tsunami. Dari barat ke timur, kedelapan kecamatan tersebut masing-masing adalah kecamatan Ayah, Buayan, Puring, Petanahan, Klirong, Buluspesantren, Ambal dan Mirit. Inilah yang membuat pengenalan akan peta bahaya tsunami dan peta evakuasi tsunami Kabupaten Kebumen serta langkah-langkah evakuasinya menjadi penting.

Pegunungan yang Tenggelam

Mengapa Kabupaten Kebumen demikian beresiko terhadap bencana tsunami?

Saat membuka peta pulau Jawa layangkan jemari anda di sepanjang pesisir selatan. Akan lebih baik jika peta tersebut adalah peta geografis atau peta rupabumi. Akan kita jumpai jajaran pegunungan yang membentang di mayoritas pesisir selatan pulau Jawa mulai dari Pelabuhan Ratu di sebelah barat hingga Semenanjung Blambangan di sebelah timur. Inilah jajaran Pegunungan Selatan, atau yang di Jawa bagian tengah dikenal pula sebagai Pegunungan Sewu. Kaki selatan pegunungan ini langsung menjadi garis pantai selatan pulau Jawa. Namun tidak dengan bentangan antara pantai Pangandaran di sebelah barat hingga pantai Parangtritis di sebelah timur. Di sini Pegunungan Selatan menghilang. Kecuali di Tanjung Karangbolong dan Pegunungan Menoreh (Kulonprogo) segenap bentangan ini merupakan dataran rendah luas yang cukup lebar. Dataran rendah semacam ini sangat jarang dijumpai di pulau Jawa bagian selatan. Inilah dataran rendah tempat berdirinya Kabupaten Kebumen, Cilacap, Purworejo, Kulonprogo, Bantul dan Kota Cilacap. Kenapa bisa demikian?

Gambar 1. Rona keseluruhan pulau Jawa seperti terlihat dalam citra satelit pada kanal cahaya tampak yang disajikan laman GoogleMaps. Garis putus-putus menunjukkan bila pesisir utara maupun selatan Jawa Barat (kecuali area Banten) diproyeksikan hingga Jawa Timur (kecuali area tapal kuda). Terlihat jelas betapa pesisir utara Jawa Tengah menjorok ke selatan dari garis proyeksi. Sebaliknya pesisir selatan Jawa Tengah menjorok ke utara dan Pegunungan Selatan menghilang, berganti dataran rendah Cilacap-Kebumen-Purworejo-Kulonprogo. Sumber: Sudibyo, 2015 dengan basis GoogleMaps.

Gambar 1. Rona keseluruhan pulau Jawa seperti terlihat dalam citra satelit pada kanal cahaya tampak yang disajikan laman GoogleMaps. Garis putus-putus menunjukkan bila pesisir utara maupun selatan Jawa Barat (kecuali area Banten) diproyeksikan hingga Jawa Timur (kecuali area tapal kuda). Terlihat jelas betapa pesisir utara Jawa Tengah menjorok ke selatan dari garis proyeksi. Sebaliknya pesisir selatan Jawa Tengah menjorok ke utara dan Pegunungan Selatan menghilang, berganti dataran rendah Cilacap-Kebumen-Purworejo-Kulonprogo. Sumber: Sudibyo, 2015 dengan basis GoogleMaps.

Di lain kesempatan, layangkan jemari anda menyusuri pesisir selatan pulau Jawa di tempat yang sama. Akan kita jumpai garis pantai yang membentang di antara pantai Pangandaran hingga pantai Parangtritis cukup ‘aneh.’ Sebab mereka melekuk/menjorok lebih ke utara ketimbang garis pantai selatan pulau Jawa sebelah-menyebelahnya. Lalu layangkan lagi jemari anda, kali ini susuri pesisir utara pulau Jawa mulai dari Jakarta hingga Surabaya. Lagi-lagi akan kita jumpai keanehan serupa di antara pantai Cirebon hingga pantai Semarang. Berkebalikan terhadap garis pantai di pesisir selatan kawasan yang sama, garis pantai pesisir utara di sini menjorok jauh ke selatan. Bila semenanjung Muria kita pisahkan dari konteks pembahasan pesisir utara pulau Jawa mengingat kedudukannya sebagai pulau vulkanis tersendiri yang awalnya terpisah dari daratan utama Jawa, maka keanehan itu akan kita jumpai mulai dari pantai Cirebon hingga pantai (purba) Rembang. Dengan mengecualikan kawasan Banten dan tapal kuda Jawa Timur, sepasang keanehan itu membuat bagian tengah pulau Jawa lebih ramping ketimbang tetangga sebelah barat maupun timurnya. Ada apa ini?

Sekarang mari bayangkan kita menyelami Samudera Indonesia di sebelah selatan Jawa Tengah. Bayangkan penyelaman dilakukan hingga ke dasar laut, hingga sejauh 50 km dari garis pantai. Akan kita dapati dasar laut di kawasan ini lebih dalam jika dibandingkan lepas pantai selatan Jawa Barat maupun Jawa Timur untuk jarak yang sama. Namun tidak seluruhnya dalam. Ada bagian yang lebih dangkal yang berbentuk segitiga dengan puncak segitiga tepat ujung Tanjung Karangbolong. Tepat di sisi barat segitiga ini merupakan dasar laut lebih dalam yang dinamakan Dalaman Barat (western deep), yang meliputi lepas pantai Cilacap hingga Pangandaran. Sebaliknya tepat di sisi timur segitiga itu terdapat Dalaman Timur (eastern deep), yang mencakup lepas pantai Kebumen hingga Bantul. Mengapa bisa seperti ini?

Keunikan ini telah menggayuti benak para ahli kebumian sejak lebih dari setengah abad silam, tepatnya sejak era van Bemmelen di tahun 1949 Tarikh Umum (TU). Namun baru di awal abad ke-21 TU ini jawabannya terkuak lewat kerja keras Awang Harun Satyana. Keunikan tersebut ternyata ditatah oleh aktivitas tektonik masa silam. Yakni lewat aktifnya sistem patahan besar Kebumen-Muria-Meratus dan sistem patahan besar Cilacap-Pamanukan-Lematang. Patahan besar Kebumen-Muria-Meratus membentang sepanjang lebih dari 1.000 kilometer. Ia bermula dari Tanjung Karangbolong masakini dan menerus ke arah timur laut melewati Semenanjung Muria dan dasar Laut Jawa hingga akhirnya berujung di Pegunungan Meratus (Kalimantan Selatan). Patahan besar ini bersifat geser kiri (left lateral). Artinya bila kita berdiri tepat di satu sisinya, maka sisi yang berseberangan dengan kita akan terlihat bergerak ke kiri. Seperti halnya semua patahan maupun patahan besar modern, gerakan ini senilai beberapa milimeter saja setahunnya. Namun dalam jangka waktu geologi, yakni jutaan tahun, nilai pergerakan itu akan menghasilkan pergeseran hingga puluhan atau bahkan ratusan kilometer.

Sementara sistem patahan besar Cilacap-Pamanukan-Lematang pun membentang hingga lebih dari 1.000 kilometer. Dimulai pulau Nusakambangan masa kini dan merentang ke arah barat laut melewati Pamanukan (Jawa Barat), dasar Laut Jawa, sisi utara Kepulauan Seribu dan berujung di Lematang (Sumatra Selatan). Berbeda dengan patahan besar Kebumen-Muria-Meratus, sistem patahan besar Cilacap-Pamanukan-Lematang ini bersifat geser kanan (right lateral). Beberapa bagian dari sistem patahan besar ini mungkin masih aktif di masakini, misalnya sesar Kroya (Cilacap) maupun sesar Baribis (Subang). Hal tersebut berbeda dengan sistem patahan besar Kebumen-Muria-Meratus, yang aktif mulai sekitar 65 juta tahun silam sehingga kini sudah sangat tua dan sepenuhnya mati.

Gambar 2. Diagram skematik sederhana yang memperlihatkan keberadaan sistem patahan besar Kebumen-Muria-Meratus dan Cilacap-Pamanukan-Lematang. Berpuluh juta tahun silam saat keduanya itu masih aktif sepenuhnya dengan arah gerak ditunjukkan oleh tanda panah kuning, gabungan aktivitas keduanya membuat sebagian pesisir selatan Jawa Tengah terangkat hingga 2.000 meter lalu terkunci (panah hitam). Sebagian zona pengangkatan kini tersisa sebagai karst Tanjung Karangbolong. Sementara sisi timur dan baratnya terbenam ke dasar laut. Sebaliknya pesisir utara Jawa Tengah juga turut terbenam, sebagai kompensasi isostatik. Sumber: Sudibyo, 2015 diadaptasi dari Satyana & Purwaningsih, 2002.

Gambar 2. Diagram skematik sederhana yang memperlihatkan keberadaan sistem patahan besar Kebumen-Muria-Meratus dan Cilacap-Pamanukan-Lematang. Berpuluh juta tahun silam saat keduanya itu masih aktif sepenuhnya dengan arah gerak ditunjukkan oleh tanda panah kuning, gabungan aktivitas keduanya membuat sebagian pesisir selatan Jawa Tengah terangkat hingga 2.000 meter lalu terkunci (panah hitam). Sebagian zona pengangkatan kini tersisa sebagai karst Tanjung Karangbolong. Sementara sisi timur dan baratnya terbenam ke dasar laut. Sebaliknya pesisir utara Jawa Tengah juga turut terbenam, sebagai kompensasi isostatik. Sumber: Sudibyo, 2015 diadaptasi dari Satyana & Purwaningsih, 2002.

Mari bayangkan kita kembali ke masa berjuta tahun silam, tatkala kedua sistem patahan besar yang berbeda itu masih aktif sepenuhnya. Kedua sistem patahan besar itu seakan membentuk sisi-sisi segitiga raksasa. Segitiga tersebut meliputi mayoritas daratan Jawa Tengah dan sisi timur daratan Jawa Barat. Seluruh segitiga ini didorong oleh kedua sistem patahan besar itu ke arah selatan. Akibatnya puncak segitiga raksasa itu, yang terletak di Tanjung Karangbolong masakini, pun didesak perlahan hingga membumbung naik sampai terkunci. Terjadilah pengangkatan hingga setinggi 2.000 meter dari posisinya semula. Sebagai konsekuensinya maka alas segitiga, yakni bentangan pesisir utara Jawa Tengah, terkena kompensasi isostatik yang membuatnya secara perlahan-lahan terbenam hingga di bawah paras Laut Jawa. Inilah yang menyebabkan garis pantai utara Jawa Tengah menjorok ke selatan.

Erosi selama berjuta tahun lantas memahat dan mengikis kawasan puncak segitiga raksasa ini. Namun saat ini pun kita masih bisa melihat sisa-sisanya sebagai karst Tanjung Karangbolong dengan puncak tertingginya 600 meter dpl (dari paras air laut). Dorongan yang sama juga yang membuat bebatuan campur aduk jejak palung purba terangkat dan tersingkap di Karangsambung-Karanggayam-Sadang. Lebih ke selatan lagi, aktivitas kedua sistem patahan besar itu membuat Pegunungan Selatan di bentangan Pangandaran-Parangtritis pun merosot jauh secara perlahan-lahan hingga akhirnya tenggelam di bawah paras air laut.

Aktivitas tektonik dan erosi terus membentuk rona rupabumi Kebumen. Erosi mengikis gunung dan pegunungan untuk kemudian menghanyutkan tanahnya ke sejumlah sungai. Saat sungai-sungai tersebut menuangkan airnya ke Samudera Indonesia, tanah pun turut terhanyut untuk kemudian mengendap sebagai massa tanah bergeometri menyerupai kipas. Sehingga dinamakan kipas endapan/kipas aluvial. Di ujung utara Tanjung Karangbolong terdapat kipas aluvial Gombong (KAG), hasil pengendapan sungai Jatinegara, Gombong, Kemit dan Kejawang (Karanganyar). Kota Gombong berdiri di atas kipas aluvial ini dengan elevasi 19 meter dpl. Di sebelah timurnya terdapat kipas aluvial Kebumen (KAK) yang membentang luas mulai dari Karanganyar, Buluspesantren utara hingga Kutowinangun. Kipas aluvial ini dibentuk sungai Luk Ulo. Ia tersusun dari batuan sedimen lempung berpasir (lempung pasiran) yang sangat baik untuk bahan baku batubata dan genteng. Maka tak mengherankan industri batubata dan genteng tumbuh dengan baik di sini. Kipas aluvial Kebumen juga menjadi landasan bagi berdirinya kota Kebumen, yang menempati elevasi 21 meter dpl. Dan di sebelah timurnya terdapat kipas aluvial Prembun (KAP), yang membentang hingga ke perbatasan Kebumen-Purworejo. Sungai membentuk kipas aluvial ini diantaranya adalah sungai Bedegolan dan Wawar.

Gambar 3. Rona dataran rendah Kabupaten Kebumen dalam citra satelit pada kanal cahaya tampak yang disajikan GoogleEarth. Terlihat lokasi delta purba yang kini merupakan kipas aluvial Gombong, kipas aluvial Kebumen dan kipas aluvial Prembun. Di sebelah selatan kipas-kipas aluvial ini terlihat kawasan pantai tua dan pantau muda. Kawasan rawan bencana tsunami di Kabupaten Kebumen mencakup kawasan pantai muda dan (sebagian) pantai tua ini. Sumber: Sudibyo, 2015 diadaptasi dari Ansori dkk, 2010.

Gambar 3. Rona dataran rendah Kabupaten Kebumen dalam citra satelit pada kanal cahaya tampak yang disajikan GoogleEarth. Terlihat lokasi delta purba yang kini merupakan kipas aluvial Gombong, kipas aluvial Kebumen dan kipas aluvial Prembun. Di sebelah selatan kipas-kipas aluvial ini terlihat kawasan pantai tua dan pantau muda. Kawasan rawan bencana tsunami di Kabupaten Kebumen mencakup kawasan pantai muda dan (sebagian) pantai tua ini. Sumber: Sudibyo, 2015 diadaptasi dari Ansori dkk, 2010.

Pada waktu yang sama aktivitas tektonik secara perlahan-lahan mengangkat sisi selatan pulau Jawa hingga menyembul ke atas paras air laut. Pertumbuhan kipas-kipas aluvial itu pun terhenti. Muara sungai-sungai pun bergeser lebih jauh ke selatan. Rawa-rawa sempat terbentuk di sana-sini. Namun lama kelamaan semuanya mengering dan tertimbun tanah yang terus dipasok sungai-sungai. Terbentuklah dataran rendah. Hembusan angin laut secara terus-menerus membentuk sejumlah pematang pantai, yakni bukit-bukit pasir yang merentang cukup panjang sejajar pantai. Di sela-sela pematang pantai terdapat lembah-lembah kecil. Dari garis pantai hingga 4 kilometer ke daratan merupakan kawasan pantai muda. Di sini terdapat 3 hingga 4 pematang pantai yang tingginya bervariasi antara 1 hingga 3 meter dari lembah disampingnya. Lembah-lembah tersebut umumnya menjadi kebun/sawah atau pemukiman. Namun ada pula yang dialiri sungai-sungai kecil. Seperti sungai Kejawan dan Rama di Puring yang mengalir ke kanal/sungai Telomoyo di barat. Juga sungai Aren dan Kating di Klirong yang mengalir ke timur menuju sungai Luk Ulo. Serta sungai Pucang dan Gede di Ambal dan Mirit, yang juga mengalir ke timur hingga bermuara ke sungai Wawar. Sementara antara 4 hingga 7 kilometer dari garis pantai ke daratan merupakan kawasan pantai tua. Terdapat sejumlah pematang pantai pula di sini, namun lebih landai. Di banyak tempat bahkan pematang-pematang pantainya sudah diratakan/didatarkan untuk pemukiman.

Pantai berdataran rendah inilah wajah dominan pesisir selatan Kabupaten Kebumen. Dari 58 kilometer garis pantai di kabupaten ini, 45 kilometer diantaranya merupakan pantai berdataran rendah. Inilah garis pantai yang menjadikan Kabupaten Kebumen demikian rentan akan tsunami.

Peta Bahaya dan Evakuasi

Pasca bencana tsunami 2006 yang menewaskan puluhan penduduk Kabupaten Kebumen serta menimbulkan kerugian material cukup besar, kebutuhan akan mitigasi bencana tsunami mulai mengemuka. Termasuk kebutuhan akan peta bahaya tsunami, yang hingga 2006 TU itu belum dimiliki Kabupaten Kebumen. Sebagai tindak lanjut kerjasama pemerintah Jerman (melalui Departemen Pendidikan dan Penelitian) dan Indonesia (melalui Kantor Menteri Negara Riset dan Teknologi) dalam payung GITEWS (German-Indonesia Tsunami Early Warning System), maka dibentuklah Kelompok Kerja Kebumen untuk Pemetaan Bahaya Tsunami. Kelompok kerja tersebut bertugas pada 2009 hingga 2010 TU dengan tujuan untuk menghasilkan dua peta. Peta pertama adalah peta bahaya tsunami (PBT) multiskenario bagi Kabupaten Kebumen hingga skala 1:25.000. Sementara peta kedua adalah peta evakuasi tsunami (PET) bagi Kabupaten Kebumen.

Kedua peta tersebut disusun sebagai bagian dari kerangka sistem peringatan dini tsunami Indonesia atau InaTEWS (Indonesia tsunami early warning system) di bawah BMKG (Badan Meteorologi Klimatologi dan Geofisika). Sistem peringatan dini ini mengenal tiga status. Status pertama adalah “Waspada” yang hanya berlaku untuk garis pantai dan tepi sungai. Status kedua adalah “Siaga” yang berlaku untuk kawasan zona merah. Dan status ketiga adalah “Awas” yang berlaku untuk kawasan zona kuning. Baik dalam peta bahaya tsunami maupun peta evakuasi tsunami Kabupaten Kebumen terdapat dua zona, yang dibentuk mengikuti tingkat peringatan BMKG. Zona pertama adalah zona merah, yang berlaku untuk status “Siaga.” Sementara zona kedua adalah zona kuning, berlaku bila BMKG mengeluarkan status “Awas.” Kedua peta tersebut disusun dengan memperhitungkan sejumlah aspek (geomorfologi, elevasi dan jarak dari pantai) tanpa mempertimbangkan hasil pemodelan genangan akibat invasi tsunami ke daratan.

Gambar 4. Tingkatan status tsunami beserta kode warnanya seperti disajikan sistem peringatan dini tsunami Indonesia (InaTEWS) yang berada di bawah Badan Meteorologi Klimatologi dan Geofisika. Sumber: BMKG, 2015.

Gambar 4. Tingkatan status tsunami beserta kode warnanya seperti disajikan sistem peringatan dini tsunami Indonesia (InaTEWS) yang berada di bawah Badan Meteorologi Klimatologi dan Geofisika. Sumber: BMKG, 2015.

Peta bahaya dan evakuasi tsunami Kabupaten Kebumen merupakan peta multiskenario. Gempa akbar (megathrust) menjadi salah satunya lewat tiga skenario gempa besar/akbar. Masing-masing adalah gempa hipotetik berkekuatan 7,5 skala magnitudo (SM), 8 SM dan 8,5 SM. Skenario lainnya yang dimasukkan adalah potensi tsunami dari longsoran besar bawah laut, baik yang menyertai kejadian gempa besar (seperti kasus Gempa Pangandaran 2006) maupun yang tidak. Faktor lainnya yang dipertimbangkan adalah invasinya ke daratan hingga menghasilkan genangan (inundation). Melambatnya kecepatan sisi muka tsunami, sementara sisi belakangnya masih melaju lebih cepat, membuat tinggi gelombang saat tiba di garis pantai mengalami run-up hingga belasan atau bahkan puluhan kali lipat lebih tinggi dibanding semula. Tsunami yang sudah meninggi inilah yang bakal menginvasi daratan yang tepat berhadapan dengan garis pantai.

Seberapa jauh invasi ke daratan terjadi sangat dipengaruhi oleh tinggi gelombang di garis pantai, bentuk pantai, topografi daratan di belakang pantai dan rapat tidaknya vegetasi (tumbuhan) di pantai. Makin tinggi tsunami saat tiba di garis pantai, maka makin jauh invasinya ke daratan. Pantai yang berlekuk-lekuk (berteluk) akan mengalami invasi tsunami lebih besar dibanding pantai datar, karena tsunami menjadi terakumulasi (terkumpul) dalam lekuk-lekuk tersebut. Demikian halnya pantai bermuara sungai akan mengalami invasi tsunami lebih besar, apalagi sungai menjadi jalan bebas hambatan bagi tsunami untuk merangsek ke darat. Dan dua pantai dengan bentuk sama persis akan bernasib berbeda kala tsunami melanda jika terdapat perbedaan dalam kerapatan tumbuhan di pantai. Semakin rapat tumbuhannya, maka peranannya mereduksi energi tsunami kian besar sehingga invasinya kian berkurang.

Zonasi

Peta bahaya tsunami dan peta evakuasi Kabupaten Kebumen telah memasukkan faktor-faktor tersebut. Saat diterapkan ke segenap garis pantai Kabupaten Kebumen, dijumpai tiga kawasan. Kawasan pertama adalah Tanjung Karangbolong. Di sini zona merah dan zona kuning hanya mencakup area sempit selebar garis pantai. Bila terjadi tsunami dengan status “Siaga” maupun “Awas”, maka siapa saja yang sedang berada di pantai-pantai Pedalen, Menganti, Karangbata, Pecaron (Srati) dan Pasir bisa langsung mengevakuasi diri ke bukit-bukit yang ada di belakang setiap pantai tersebut. Jarak yang harus ditempuh pun tak jauh.

Gambar 5. Pantai Petanahan (Karanggadung), contoh pantai datar di Kabupaten Kebumen. Di sebelah kiri nampak bukit-bukit pasir yang membentuk pematang pantai, sementara di sebelah kanan terlihat perairan Samudera Indonesia. Tanda panah menunjukkan invasi maksimum/genangan terjauh akibat bencana tsunami 2006, yang mencapai 60 meter dari garis pantai. Sumber: Sudibyo, 2006.

Gambar 5. Pantai Petanahan (Karanggadung), contoh pantai datar di Kabupaten Kebumen. Di sebelah kiri nampak bukit-bukit pasir yang membentuk pematang pantai, sementara di sebelah kanan terlihat perairan Samudera Indonesia. Tanda panah menunjukkan invasi maksimum/genangan terjauh akibat bencana tsunami 2006, yang mencapai 60 meter dari garis pantai. Sumber: Sudibyo, 2006.

Sementara kawasan kedua adalah kawasan pantai datar yang ada di dua tempat. Tempat pertama ada di antara muara sungai Telomoyo dan Luk Ulo. Di sini zona merah mencakup area selebar hingga 300 meter dari garis pantai. Sementara zona kuning mencakup area hingga selebar 1.000 meter dari garis pantai. Maka baik zona merah ataupun zona kuning berada di kawasan pantai muda. Zona merah dan kuning di sini meliputi kecamatan Puring, Petanahan dan Klirong. Desa-desa yang tercakup adalah Surorejan, Puring, Sidoharjo, Karangrejo, Karanggadung dan Tegalretno. Obyek wisata yang tercakup meliputi pantai Petanahan (Karanggadung). Tidak ada bukit di kawasan ini. Sehingga kala BMKG menyatakan terjadi tsunami dengan status “Siaga”, evakuasi hanya bisa dilakukan ke arah utara hingga sejauh minimal 200 meter. Sementara saat statusnya “Awas”, evakuasi pun ke arah utara namun hingga sejauh minimal 1.000 meter.

Sementara pantai datar yang kedua ada di antara muara sungai Luk Ulo dan Wawar. Berbeda dengan pantai datar di antara muara sungai Telomoyo dan Luk Ulo, di sini situasinya lebih kompleks seiring adanya sungai Pucang dan Gede yang cukup panjang dan mengalir ke timur hingga bermuara di sungai Wawar. Zona merah memang tetap mencakup area selebar hingga 300 meter dari garis pantai. Namun zona kuning-nya jauh lebih lebar, yakni mencakup area hingga selebar 4.000 meter dari garis pantai. Meski demikian harus dicatat bahwa zona kuning selebar 4.000 meter ini hanya berlaku dalam skenario terburuk, yakni bila terjadi gempa akbar yang setara gempa-akbar Sumatra-Andaman 26 Desember 2004 (berkekuatan 9,3 SM). Di luar skenario terburuk, zona kuning tetap selebar 1.000 meter dari garis pantai.

Zona merah maupun zona kuning (baik dalam skenario terburuk maupun bukan) merupakan kawasan pantai muda yang meliputi kecamatan Buluspesantren, Ambal dan Mirit. Desa-desa yang tercakup diantaranya Setrojenar, Brecong, Entak, Ambalresmi, Petangkuran, Miritpetikusan dan Tlogodepok. Obyek wisata yang tercakup meliputi pantai Bocor (Setrojenar). Di kawasan ini pun tidak ada bukit. Sehingga bila BMKG menyatakan terjadi tsunami dengan status “Siaga”, evakuasi hanya bisa dilakukan ke arah utara hingga sejauh minimal 200 meter. Sementara saat statusnya “Awas”, evakuasi pun ke arah utara namun hingga sejauh minimal 1.000 meter.

Dan kawasan yang ketiga atau yang terakhir adalah pantai bermuara sungai. Terdapat empat lokasi demikian, masing-masing adalah muara sungai Bodo, Telomoyo, Luk Ulo dan Wawar. Muara sungai Bodo terletak di kecamatan Ayah sekaligus menjadi tapalbatas antara Kabupaten Kebumen dan Cilacap. Di sini terdapat pantai Logending atau pantai Ayah yang demikian populer. Zona merah di sini merentang hingga sejauh 1.700 meter dari muara, atau hingga 2.600 meter dari muara untuk di tepi sungai. Sementara zona kuning merentang hingga sejauh 6.000 meter dari muara. Desa-desa yang tercakup adalah Ayah dan Candirenggo. Prinsip utama evakuasi di kawasan muara sungai adalah sebisa mungkin menghindar dari tepi sungai hingga sejarak minimal 500 meter dan tidak boleh melewati jembatan yang melintas di sungai tersebut. Karena muara sungai Bodo terletak tepat di sisi barat Tanjung Karangbolong, maka bila BMKG menyatakan terjadi tsunami baik dengan status “Siaga” maupun “Awas”, maka penduduk atau pengunjung harus mengevakuasi diri ke arah timur menuju bukit-bukit gamping Tanjung Karangbolong. Karena cukup dekat, maka jarak evakuasinya relatif pendek.

Situasi yang mirip juga dijumpai di lokasi kedua, yakni muara sungai Telomoyo. Sisi barat muara sungai ini merupakan bagian dari kecamatan Buayan sekaligus sisi timur Tanjung Karangbolong. Zona merah di sini merentang hingga 900 meter dari muara. Sementara zona kuning menjulur hingga 5.000 meter dari muara. Desa-desa yang tercakup adalah Karangbolong, Jladri dan Adiwarno. Saat terjadi tsunami baik dalam status “Siaga” atau “Awas”, maka evakuasi ke bukit-bukit Tanjung Karangbolong adalah pilihan terbaik dengan jarak evakuasi yang relatif pendek.

Namun tidak demikian dengan sisi timurnya. Bentang lahan di sini tergolong dataran rendah, sementara guna menuju bukit-bukit di Tanjung Karangbolong mau tak mau harus melewati jembatan (yang terlarang dalam evakuasi tsunami). Zona merah dan kuning di sini masing-masing merentang 900 dan 5.000 meter dari muara. Desa-desa yang tercakup adalah Tambakmulyo dan Weton Kulon, yang menjadi bagian kecamatan Puring. Sebuah obyek wisata yang baru tumbuh dan populer ada pula di sini, yakni pantai Suwuk. Prinsip evakuasi tsunami di sini tetap adalah menjauhi pantai dan tepi sungai. Maka bila BMKG menyatakan terjadi tsunami dengan status “Siaga” penduduk dan pengunjung harus mengevakuasi diri ke arah timur untuk kemudian ke utara menuju perbatasan desa Tambakmulyo dan Weton Kulon. Sedangkan jika tsunami berstatus “Awas”, maka evakuasi harus dilakukan hingga mencapai desa Kedaleman Wetan.

Hal serupa juga berlaku di lokasi ketiga, yakni muara sungai Luk Ulo. Sisi barat muara sungai ini merupakan bagian kecamatan Klirong sementara sisi timurnya masuk kecamatan Buluspesantren. Desa-desa yang tercakup adalah Tanggulangin, Pandan Lor dan Ayamputih. Karena sungai Luk Ulo berbelok ke barat sebelum bermuara, maka patokan jarak untuk zona merah dan kuning adalah garis pantai yang lurus dengan tepi sungai. Zona merahnya merentang hingga sejauh 1.000 meter dari garis pantai. Sementara zona kuning menjulur hingga 4.200 meter dari garis pantai, atau hingga ke sekitar titik pertemuan sungai Luk Ulo dengan sungai Kedungbener.

Prinsip evakuasi tsunaminya tetap sama, yakni menjauhi pantai dan tepi sungai. Saat BMKG menyatakan terjadi tsunami dengan status “Siaga”, penduduk Tanggulangin harus mengevakuasi diri ke arah utara menuju desa Tambakprogaten. Sementara bila tsunami berstatus “Awas”, evakuasi penduduk Tanggulangin dan Pandan Lor diarahkan menuju ke desa Tambakprogaten atau ke sebelah baratnya lagi. Di sisi timur muara sungai Luk Ulo, penduduk Ayamputih diarahkan mengevakuasi diri ke utara kemudian ke timur menuju desa Setrojenar bagian utara baik pada saat status “Siaga” maupun “Awas.”

Gambar 6. Pantai Suwuk, contoh pantai bermuara di Kabupaten Kebumen. Di latar belakang nampak bukit-bukit yang menjadi bagian pantai Karangbolong. Sementara di latar depan aliran sungai Telomoyo sedang mengalir menuju Samudera Indonesia. Dalam bencana tsunami 2006, invasi maksimumnya mencapai 300 meter terhitung dari muara sungai. Sumber: Sudibyo, 2006.

Gambar 6. Pantai Suwuk, contoh pantai bermuara di Kabupaten Kebumen. Di latar belakang nampak bukit-bukit yang menjadi bagian pantai Karangbolong. Sementara di latar depan aliran sungai Telomoyo sedang mengalir menuju Samudera Indonesia. Dalam bencana tsunami 2006, invasi maksimumnya mencapai 300 meter terhitung dari muara sungai. Sumber: Sudibyo, 2006.

Dan hal yang sama pun diterapkan di lokasi keempat. Yakni muara sungai Wawar, yang juga tapalbatas Kabupaten Kebumen dengan Purworejo. Seperti halnya sungai Luk Ulo, sungai Wawar pun berbelok ke barats ebelum bermuara. Dan bahkan di dekat muaranya terdapat laguna, yang kini menjadi bagian dari tempat wisata baru bernama pantai Lembupurwo. Maka patokan jarak untuk zona merah dan kuning adalah garis pantai yang lurus dengan tepi sungai. Zona merahnya menjulur hingga 1.500 meter dari garis pantai. Sementara zona kuningnya hingga 4.500 meter dari garis pantai. Seluruhnya merupakan bagian dari kecamatan Mirit, yang mencakup desa-desa Mirit, Tlogopragoto, Lembupurwo, Wiromartan dan Rowo.

Bila BMKG menyatakan terjadi tsunami dengan status “Siaga”, maka penduduk desa Tlogopragoto, Lembupurwo dan Wiromartan serta pengunjung pantai Lembupurwo harus mengevakuasi diri ke utara lalu ke barat hingga desa Wergonayan. Langkah serupa juga berlaku pada saat statusnya “Awas”, hanya saja kini melibatkan pula desa Mirit dan Rowo.

Penutup

Peta bahaya dan peta evakuasi tsunami Kabupaten Kebumen sejatinya telah cukup lengkap. Selain membagi kawasan pesisir Kabupaten Kebumen ke dalam dua zona sesuai dengan tingkatan status yang bisa disajikan sistem peringatan dini tsunami Indonesia di bawah BMKG, jalur-jalur evakuasi dan titik-titik penerimaan pengungsi (titik kumpul) juga sudah ditetapkan.

Masalah utama tinggal bagaimana penerapannya? Khususnya bagi 220.800 penduduk yang tinggal di kawasan pesisir Kebumen. Bagaimana agar penduduk yang berpotensi terdampak bisa memahami dan mengimplementasikan apa yang telah disusun dalam kedua peta tersebut? Hanya ada tiga jalan, yakni sosialisasi, latihan dan pendidikan. Peta bahaya dan peta evakuasi tsunami Kabupaten Kebumen takkan bermanfaat bila tak disosialisasikan ke masyarakat. Langkah sosialisasi memang sudah dilakukan, misalnya oleh BPBD Kabupaten Kebumen dan PMI Cabang Kebumen. Sosialisasi akan lebih bagus lagi tatkala menyertakan media, khususnya media sosial yang penetrasinya lebih jauh ke publik. Sementara jalan kedua adalah latihan. Sosialisasi akan lebih bagus lagi tatkala masyarakat di kawasan pesisir juga diajak berlatih simulasi tsunami. Sehingga jalur-jalur evakuasi dan titik-titik penerimaan pengungsi bisa lebih melekat dalam benak setiap insan. Sementara jalan yang ketiga adalah lewat pendidikan, khususnya bagi generasi muda. Pendidikan tentang bencana alam khususnya tsunami sekaligus pengenalan peta bahaya dan peta evakuasi serta simulasinya seyogyanya bisa dilakukan pada siswa-siswi di sekolah-sekolah yang ada di kawasan pesisir Kebumen. Sebab mitigasi terbaik dalam menghadapi tsunami adalah apa yang telah tertanam dalam benak tiap insan.

Akhir kata, tak satupun insan yang berharap bahwa zona subduksi di Samudera Indonesia lepas pantai selatan Jawa Tengah akan melepaskan energinya. Prinsip utama mitigasi adalah selalu berharap yang terbaik. Namun di saat yang sama, bersiaplah untuk hal-hal yang terburuk. Andaikata pelepasan itu kelak terjadi dalam wujud gempa besar/akbar beserta tsunaminya, Kabupaten Kebumen seyogyanya bisa mengantisipasi efek terburuk yang datang sebagai gelora tsunami.

Seperti apa peta bahaya tsunami dan peta evakuasi tsunami Kabupaten Kebumen dalam format yang lengkap? Silahkan lihat di sini.

Referensi :

Ansori dkk. 2010. Evaluasi Potensi dan Konservasi Kawasan Tambang Pasir Besi pada Jalur Pantai Selatan Di Kabupaten Purworejo-Kebumen, Jawa Tengah. UPT Balai Informasi dan Konservasi Kebumian Karangsambung LIPI.

Satyana & Purwaningsih. 2002. Lekukan Struktur Jawa Tengah, Suatu Segmentasi Sesar Mendatar. Makalah Pertemuan Ilmiah Tahunan Ikatan Ahli Geologi Indonesia (IAGI), Yogyakarta-Central Java Section, Basement Tectonics of Central Java, Maret 2002.

Raditya dkk. 2010. Catatan Proses Pemetaan Bahaya Tsunami Kabupaten Purworejo. Kerjasama Pemkab Purworejo dan GITEWS (German-Indonesia Tsunami Early Warning System).

Menuju Kebumen Siaga Tsunami

Bagian pertama dari dua tulisan

Peristiwanya sudah berlalu satu dasawarsa. Bekas-bekasnya pun sebagian besar sudah tak ada. Kota-kota yang dulu begitu merana dibuatnya, kini menggeliat kembali dalam rutinitas sehari-hari layaknya sedia kala. Bencana dahsyat itu seperti telah lenyap ditelan masa. Hanya di sejumlah lokasi saja jejak-jejak kedahsyatannya masih tersisa. Namun tidak demikian di sanubari dan benak sebagian besar insan Indonesia. Bencana itu masih demikian membekas, seakan baru terjadi kemarin sore saja.

Minggu 26 Desember 2004 Tarikh Umum (TU) awalnya mungkin dianggap bakal menjadi sebuah hari Minggu biasa saja bagi Indonesia. Di benak banyak orang mungkin bakal ada sedikit kemeriahan. Tahun 2014 TU bakal segera tutup buku. Tahun dimana Indonesia menjalani pemilu yang menentukan, namun terlaksana tanpa huru-hara seperti ramalan sejumlah orang. Terkecuali bagi ujung utara pulau Sumatra. Keributan masih terjadi di sini, sering masih berlakunya status darurat militer. Aparat militer masih terus mencoba menekan dan menghimpit anasir-anasir separatis hingga ke tubir kemampuannya. Baku tembak kerap terjadi diberbagai tempat. Namun secara umum Indonesia relatif tenang, aman dan bersiap menyongsong masa depan.

Semua berubah drastis semenjak pukul 07:59 WIB. Pada jam itu, ujung utara pulau Sumatra bergetar. Gempa bumi tektonik melanda. Sejatinya gempa tektonik bukanlah hal yang aneh bagi kawasan ini. Di dasar samudera lepas pantai barat pulau ini terdapat zona subduksi dimana lempeng India dan Australia melekuk ke bawah lempeng Eurasia. Palung laut yang panjang membentang dari barat laut ke tenggara merupakan wujud fisiknya. Sementara di darat, sebuah sistem patahan besar membentang dari Banda Aceh di utara hingga Selat Sunda di selatan, yang menampakkan dirinya sebagai lembah-lembah lurus panjang di sela-sela Pegunungan Bukit Barisan. Itulah sistem patahan besar Sumatra yang legendaris. Baik zona subduksi maupun sistem patahan besar Sumatra adalah generator tektonik yang produktif.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Gambar 1. Air laut bercampur lumpur pekat dan segala macam reruntuhan dari segala macam benda yang dihempas tsunami besar produk Gempa akbar Sumatra-Andaman 26 Desember 2004, tepat sepuluh tahun silam. Sumber: Yulianto dkk, 2010.

Tapi gempa ini bukanlah gempa biasa. Di ujung utara pulau Sumatra itu, tanah bergetar keras dan berayun-ayun laksana lautan yang sedang bergelora. Orang-orang yang merasakannya tak kuasa berdiri tegak. Banyak benda berjatuhan. Beberapa bangunan di kota-kota seperti Banda Aceh, Calang dan Meulaboh runtuh. Getaran bahkan masih sanggup meretakkan kaca-kaca bangunan di Medan, kota yang di pantai timur Sumatra. Getaran itu berlangsung cukup lama. Orang-orang merasakannya lebih dari 10 menit. Sementara instrumen pencatat gempa (seismometer) mencatatnya dengan riuh selama 15 menit lebih, menjadikannya durasi gempa terlama yang pernah tercatat sepanjang sejarah ilmu kegempaan (seismologi) modern. Magnitud (kekuatan)-nya juga luar biasa. Dengan getaran yang luar biasa keras, satuan pengukuran standar gempa bumi yang kita kenal sebagai skala Richter (SR) pun tersaturasi dan tak dapat digunakan dengan baik. Sehingga satuan pengukuran yang lebih spesifik pun digunakan, yakni skala Magnitudo (SM). Gempa bumi 26 Desember 2014 TU di ujung utara pulau Sumatra itu ternyata memiliki magnitud 9,3 SM. Inilah gempa terbesar nomor dua yang pernah tercatat sepanjang sejarah seismologi modern setelah Gempa Chile 1960.

Dengan magnitud-nya yang demikian besar, ilmu kegempaan modern menggolongkan getaran tak biasa di ujung utara pulau Sumatra sebagai gempa akbar (megathrust). Ini jenis gempa yang langka karena melibatkan pematahan kerak bumi dalam luasan yang sangat besar hingga puluhan ribu kilometer persegi. Pematahan ini disertai pergeseran (pelentingan) massa batuan yang terpatahkan dengan jarak yang fantastis, hingga puluhan meter. Gempa jenis ini selalu terjadi di zona subduksi. Semenjak seismologi modern bersemi di dekade 1930-an TU, umat manusia baru menyaksikan enam peristiwa gempa akbar. Dan getaran tak biasa di ujung utara pulau Sumatra itu adalah gempa akbar ketujuh, yang kemudian dikenal sebagai Gempa akbar Sumatra-Andaman 26 Desember 2004 atau disebut juga gempa akbar Sumatra-Andaman 2004.

Begitu menyadari sebuah gempa akbar telah terjadi di Samudera Indonesia di Minggu pagi 26 Desember 2014 TU itu, Pacific Tsunami Warning Center (PTWC) yang berkedudukan di Hawaii (Amerika Serikat) segera melakukan simulasi dan hasilnya segera disebar. Sebab pasca sebuah gempa akbar, akan ada bencana lain yang menyusul dengan skala yang tak kalah dahsyatnya. Namun tiadanya infrastruktur sistem peringatan dini di sekujur pesisir Samudera Indonesia membuat peringatan itu tak dapat disalurkan hingga ke masyarakat akar rumput yang berpotensi terdampak.

Bencana pun terjadilah tanpa bisa dihindari. Dalam waktu sejam pasca gempa, kota Banda Aceh dilimbur gelora dari arah samudera. Itulah tsunami. Tingginya tak kepalang tanggung, hingga 20 meter dan bahkan lebih. Air bah menginvasi daratan hingga sejauh 4 kilometer dari garis pantai. Tak hanya Banda Aceh. Kota-kota lain di pesisir barat propinsi Aceh pun tak luput dari terjangan seperti Meulaboh dan Calang. Di Lhoknga, tsunami bahkan menggempur sebagai gelora setinggi bukit. Tinggi gelombangnya mencapai 50 meter! Begitu memasuki kota, air bah tsunami melanda dan menggerus apa saja yang dilaluinya, kecuali bangunan berkualitas baik. Jaringan jalan raya berkualitas baik di Banda Aceh justru menjadi jalan bebas hambatan bagi tsunami untuk menginvasi daratan lebih jauh lagi. Jika kecepatan tsunami saat tiba di pesisir umumnya berkisar 20 hingga 30 kilometer/jam, saat menggempur daratan melalui jalan raya Banda Aceh justru ia melejit hingga secepat 60 kilometer/jam !

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Gambar 2. Imam Abu Abdul Rhaffar dari Lhoknga memegang sebuah jam manual yang berhenti pada pukul 09:20. Jam inilah salah satu saksi bisu kedahsyatan tsunami yang menggempur Lhoknga, dengan ketinggian gelombang hingga 50 meter dan menyerbu hanya dalam 20 menit pasca gempa dimulai. Sumber: Yulianto dkk, 2010.

Tsunami dahsyat tak hanya menyerbu Indonesia. Segenap negara yang pesisirnya berhadapan dengan Samudera Indonesia turut merasakannya seperti Thailand, Malaysia, Myanmar, Sri Lanka, India, Bangladesh, Maladewa, Yaman dan bahkan hingga ke benua Afrika meliputi Somalia, Tanzania, Afrika Selatan, Kenya dan Madagaskar. Lebih dari seperempat juta jiwa, tepatnya 280.000 orang, terbunuh oleh terjangan tsunami ini. Ini menjadikannya bencana tsunami paling mematikan semenjak awal peradaban manusia, melampaui rekor yang semula dipegang tsunami produk Gempa Messina 1908 (Italia) yang menewaskan 123.000 orang. Dari 280.000 korban, sekitar 200.000 diantaranya adalah orang Indonesia khususnya penduduk yang bermukim di sepanjang pesisir barat dan utara propinsi Aceh. Bersama dengannya 1,74 juta orang dipaksa mengungsi dengan lebih dari setengah juta diantaranya berasal dari Indonesia. Massifnya skala bencana tsunami ini membuat tsunami produk Letusan Krakatau 1883 yang merenggut nyawa 36.417 jiwa (angka resmi) atau 120.000 jiwa (angka perkiraan) terasa kecil. Bencana ini pun membuat tsunami paling mematikan di Indonesia dalam abad ke-20, yakni tsunami produk Gempa Flores 1992 yang menelan korban 2.500 jiwa, menjadi terasa demikian kerdil.

Raksasa Pembangkit Gelora

Dahsyatnya bencana tsunami dalam Gempa akbar Sumatra-Andaman 2004 sontak mengejutkan dunia. Berbagai anggapan yang aneh-aneh tentang penyebab bencana pun diapungkan. Satu yang sempat menarik perhatian adalah anggapan bencana itu bagian dari konspirasi. Gempa akbar tersebut dan tsunami yang menyertainya dianggap terjadi akibat diledakkannya bom termonuklir di dasar Samudera Indonesia yang kemudian memicu rentetan bencana. Anggapan serupa masih tetap muncul tujuh tahun kemudian, tatkala gempa akbar berikutnya yakni Gempa akbar Tohoku (Jepang) 2011 datang mengguncang. Gempa akbar Tohoku 2011 juga menerbitkan tsunami, yang menjalar hingga sekujur pesisir Samudera Pasifik dengan korban jiwa pun cukup besar. Kali ini yang dituding bukan lagi bom termonuklir, melainkan fasilitas riset pemantauan ionosfer di bawah tajuk HAARP (High-frequency Active Auroral Research Program).

Tanpa harus menelaah jauh-jauh, tak sulit untuk mementahkan anggapan konspirasi ini. Jika bom termonuklir memicu rentetan bencana di ujung utara pulau Sumatra, kemana semua sampah radioaktif yang khas produk ledakan nuklirnya? Padahal salah satu ciri khas tsunami adalah ia mengaduk-aduk dasar samudera demikian rupa sehingga sedimen/endapan yang semula teronggok di dasar laut pun akan diangkutnya dan diendapkan di daratan yang diserbunya. Selain itu bagaimana peristiwa serupa pernah terjadi di sini dalam 600 hingga 700, 1.200 hingga 1.400 dan 1.800 hingga 2.100 tahun silam seperti ditemukan para ahli kegempaan belakangan? Di atas semua itu, anggapan konspirasi hanyalah mencoba mencari kambing hitam atas suatu bencana sehingga tak bermanfaat untuk mengantisipasi bencana sejenis di kelak kemudian hari.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Gambar 3. Diagram sederhana yang memperlihatkan interaksi konvergen antara lempeng India yang oseanik dengan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental dan menjadi alas bagi berdirinya ujung utara pulau Sumatra. Terbentuk subduksi yang salah satunya ditandai oleh palung laut. Di zona subduksi inilah sumber gempa akbar Sumatra-Andaman 2004 berada. Sumber: Sudibyo, 2014 berbasis peta Google Earth.

Dalam pandangan seismologi modern, peristiwa gempa akbar dan tsunami yang menyertainya lebih merupakan akibat dari interaksi konvergen (saling bertemu) antara dua lempeng tektonik di zona subduksinya. Dalam kasus Gempa akbar Sumatra-Andaman 2004 itu dua lempeng tektonik yang saling bertemu adalah lempeng India yang oseanik (lempeng samudera) dan mikrolempeng Burma (bagian dari lempeng Eurasia) yang kontinental (lempeng benua). Karena berat jenisnya lebih tinggi, maka saat lempeng India bertemu dengan mikrolempeng Burma, ia melekuk dan selanjutnya menyelusup kebawahnya dengan sudut tertentu hingga akhirnya memasuki lapisan selubung atas (asthenosfer).

Mulai dari titik pelekukan, bagian atas lempeng India bersentuhan dengan bagian bawah mikrolempeng Burma, membentuk zona subduksi. Jalur dimana lempeng India melekuk secara kasat mata terlihat sebagai palung laut. Sementara mikrolempeng Burma mengelembung dan menyembul ke atas paras laut sebagai bagian dari daratan Aceh sebelah barat. Lempeng India bergerak relatif ke utara-timur laut dengan kecepatan 53 mm/tahun, sementara mikrolempeng Burma relatif tak bergerak. Posisi pulau Sumatra yang melintang membuat palung lautnya pun turut melintang, sehingga pergerakan lempeng India relatif terhadap zona subduksinya bersifat miring (oblique). Di lepas pantai barat ujung utara pulau Sumatra, kecepatan pergerakan itu 30 mm/tahun relatif terhadap zona subduksi. Sementara di sebelah utaranya, yakni di Kepulauan Andaman dan Nicobar, kecepatan relatifnya bahkan mendekati nol.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Gambar 4. Diagram sederhana yang memperlihatkan bagaimana tsunami dahsyat terbentuk pada gempa akbar Sumatra-Andaman 2004. Atas: terbentuknya zona kuncian antara bagian atas lempeng India dengan bagian bawah mikrolempeng Burma. Tengah: terdesaknya zona kuncian akibat gerakan menerus lempeng India. Dan bawah: patahnya zona kuncian disusul melentingnya mikrolempeng Burma sehingga menghasilkan usikan di permukaan laut yang lantas berkembang menjadi tsunami dahsyat. Sumber: Sudibyo, 2014.

Idealnya pergerakan lempeng India dalam zona subduksinya dengan mikrolempeng Burma tidak terganggu. Namun dalam realitanya tidak demikian. Karena gaya gesek antar batuan dalam dua lempeng yang berbeda tersebut, pergerakan lempeng India terhalangi oleh gesekannya dengan mikrolempeng Burma. Mikrolempeng tersebut bahkan dapat terkunci ke lempeng India. Sehingga selagi lempeng India terus bergerak ke utara-barat laut, zona subduksinya (beserta palung laut dan pulau-pulau kecil didekatnya) pun turut bergeser ke arah yang sama, lebih mendekat ke pulau Sumatra. Ibarat pegas raksasa, mikrolempeng Burma jadi terdesak dan mulai memendek. Namun pemendekan ini memiliki batas maksimum. Saat tegangan batuan telah melampaui daya ikat antar batuan di zona kuncian, maka kunciannya itu pun terpatahkan. Mikrolempeng Burma spontan melenting kembali sehingga palung laut pun kembali menjauhi pulau Sumatra. Pematahan diikuti pelentingan inilah yang menghasilkan gempa bumi tektonik dan kemudian tsunami. Dalam gempa akbar, pematahan yang terjadi melibatkan luasan sangat besar dengan pelentingan yang tak kalah fantastisnya.

Gempa akbar Sumatra-Andaman 2004 melibatkan pematahan sepanjang 1.600 kilometer di zona subduksi lepas pantai barat Sumatra dan kepulauan Andaman-Nicobar, mulai dari pulau Simeulue di selatan hingga pulau Preparis di utara. Lebar pematahannya 150 kilometer. Sehingga area yang terpatahkan mencapai 1.600 x 150 kilometer persegi atau setara dengan separuh luas pulau Sumatra! Pelentingan yang terjadi bervariasi antara 10 meter hingga 30 meter. Akibat pelentingan ini maka palung laut di sepanjang pulau Simeulue hingga ke pulau Preparis mengalami pengangkatan vertikal yang bervariasi antara 1 hingga 5 meter. Dengan kata lain, dasar samudera di atas sumber gempa terdongkrak naik. Inilah yang membuat massa air laut diatasnya turut terangkat hingga ke permukaan samudera. Usikan dahsyat inilah yang menerbitkan tsunami dahsyat yang amat mematikan.

Tsunami bukanlah gelombang laut biasa. Ia memiliki periode yang cukup lama, yakni antara beberapa menit hingga 30 menit. Sementara periode ombak akibat hembusan angin hanya berkisar beberapa detik hingga 20 detik saja. Panjang gelombangnya pun sangat besar, puluhan hingga hingga 200 kilometer. Sementara panjang ombak produk hembusan angin hanyalah antara 60 hingga 150 meter. Dengan panjang gelombang yang jauh melebihi kedalaman samudera dimanapun, tsunami memiliki karakteristik mengaduk-aduk lautan yang dilewatinya hingga ke dasar. Sementara ombak produk hembusan angin hanya berefek di paras/permukaan laut saja. Kecepatannya pun berbeda jauh. Di tengah samudera, sebuah tsunami bisa melaju secepat 700 kilometer/jam atau sama cepatnya dengan pesawat jumbo jet komersial! Bandingkan dengan ombak produk hembusan angin yang hanya melaju pada kecepatan antara 30 hingga 60 kilometer/jam saja.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Gambar 5. Koordinat episentrum-episentrum gempa di sekujur pulau Sumatra sebelum 26 Desember 2004 TU. Nampak ada tiga lokasi dengan geometri tertentu yang episentrum gempanya lebih jarang dibanding sekitarnya, pertanda zona subduksinya terkunci. Lokasi jarang gempa yang paling utara kemudian menjadi sumber gempa akbar Sumatra-Andaman 2004 (9,3 SM) pada 26 Desember 2014 TU. Sementara lokasi tengah menjadi sumber gempa akbar Simeulue-Nias 2005 (8,7 SM) pada 28 Maret 2005 TU. Dan lokasi paling selatan adalah sumber gempa akbar Mentawai, yang saat ini belum terjadi. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Kala tiba di pesisir, baik tsunami maupun ombak akan sedikit berubah perilakunya. Namun perbedaannya dramatis. Bagi ombak, ia akan melambat dan terpecah saat mendekati pesisir sehingga hanya mengguyur garis pantai. Tsunami pun melambat pula jelang tiba di pesisir, dengan kecepatan merosot drastis hingga hanya antara 20 sampai 30 kilometer/jam. Tapi karena panjang gelombangnya amat sangat besar bila dibandingkan dengan ombak, maka tsunami tak terpecah. Sebaliknya ketinggiannya justru kian meningkat akibat efek akumulasi tatkala bagian tsunami yang lebih cepat mendesak bagian tsunami yang sudah melambat. Karena itu bila di tengah-tengah samudera ketinggian tsunami hanyalah berkisar setengah meter atau kurang, jelang tiba di pesisir ia bisa berlipat kali lebih besar hingga beberapa meter atau bahkan belasan/puluhan meter. Fenomena ini disebut run-up. Karena itu saat menerjang garis pantai, tsunami lebih mirip dengan gelombang pasang sehingga ia melanda/menginvasi daratan hingga jarak cukup jauh, bergantung pada run-up-nya. Bedanya, jika penjalaran gelombang pasang biasa berlangsung cukup lambat (dalam hitungan jam), tsunami menyerbu cukup cepat (hanya dalam hitungan menit pasca tiba di garis pantai). Karena itu daya rusaknya jauh lebih besar.

Tsunami di Pesisir Selatan Jawa

Di Indonesia, zona subduksi tak hanya dijumpai di lepas pantai ujung utara pulau Sumatra saja. Namun juga di tempat-tempat lain di sekujur tanah Nusantara ini. Dapat dikatakan separuh dari garis pantai kepulauan ini berhadapan dengan zona subduksi. Termasuk segenap pesisir selatan pulau Jawa.

Sebelum 2004 TU, para ahli kegempaan bersilang pendapat mengenai potensi zona-zona subduksi di Indonesia dalam menghasilkan gempa akbar. Pada umumnya mereka sepakat bahwa potensi gempa akbar jauh lebih tinggi bagi kawasan pesisir Samudera Pasifik, dimanapun berada. Sebab di sini zona subduksinya berumur relatif muda secara geologis, yakni 20 juta tahun di selatan (Chile) dan 40 juta tahun di utara (Alaska). Zona subduksi yang muda ini dianggap kurang padat sehingga lebih mudah terpatahkan. Sebaliknya zona subduksi di Samudera Indonesia, khususnya di sepanjang kepulauan Indonesia, relatif lebih tua. Di sekitar pulau Simeulue umurnya 55 juta tahun. Sementara di Kepulauan Andaman-Nicobar umurnya jauh lebih tua yakni hampir 90 juta tahun. Terdapat hubungan antara umur zona subduksi dan kecepatan lempeng samudera relatif terhadap zona subduksi dengan magnitud maksimum gempa tektonik yang bisa dibangkitkannya. Untuk zona subduksi lempeng India dengan mikrolempeng Burma, magnitud maksimum itu berkisar antara 8 hingga 8,2 skala Magnitudo. Anggapan ini berantakan setelah Gempa akbar Sumatra-Andaman 2004 meletup, yang berkekuatan hingga 9,3 skala Magnitudo.

Pasca 2004 TU, kini para ahli kegempaan menyepakati seluruh zona subduksi yang ada dimanapun harus dipandang memiliki potensi serupa Sumatra-Andaman. Termasuk zona subduksi di lepas pantai pesisir selatan Pulau Jawa. Di zona subduksi ini lempeng Australia yang oseanik bersubduksi dengan lempeng Eurasia yang kontinental. Lempeng Australia bergerak ke utara-timur laut pada kecepatan 67 mm/tahun sementara lempeng Eurasia (yang menjadi landasan pulau Jawa) relatif stabil. Subduksi telah berumur 130 juta tahun dan menghasilkan zona subduksi yang hampir tepat tegaklurus terhadap arah gerak lempeng Australia (head-on). Sebelum 2004 TU, magnitud maksimum gempa tektonik yang bisa dibangkitkan zona subduksi ini diperkirakan hanya sekitar 7,7 skala Magnitudo. Namun pasca 2004 TU, perkiraannya berubah dramatis. Sejumlah ahli kegempaan bahkan berpendapat gempa akbar dengan magnitud hingga 9 skala Magnitudo berpotensi terjadi di sini. Sumber gempanya bisa di sisi selatan Selat Sunda, atau di lepas pantai selatan Jawa Tengah. Jika gempa akbar sebesar ini terjadi, tsunami dahsyat bakal menggempur pesisir selatan pulau Jawa dengan ketinggian bisa mencapai 10 meter atau bahkan lebih.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Gambar 6. Kiri: lapisan endapan takbiasa dari tsunami dari gempa besar/akbar di zona subduksi segmen Simeulue-Andaman-Nicobar yang dijumpai di bekas rawa 500 meter dari garis pantai di pulau Phra Thong (Thailand). Kanan: Karang mikroatol (karang cincin kecil) yang terangkat dari dasar laut pasca gempa akbar Sumatra-Andaman 2004 di pulau Simeulue (Indonesia). Kelak karang ini akan terendam kembali tatkala zona subduksi dibawahnya mulai terkunci kembali. Dari endapan tsunami dan naik turunnya karang inilah diketahui gempa akbar di ujung utara pulau Sumatra berulang setiap 600 hingga 700 tahun sekali. Sumber: Yulianto dkk, 2010 & Natawidjaja, 2007.

Salah satu kesulitan dalam mengidentifikasi apakah sebuah gempa akbar bisa terjadi di zona subduksi terletak pada minimnya data. Pada umumnya gempa tektonik, termasuk gempa akbar, selalu berulang di sumber yang sama. Namun periode ulangnya sangat lama, hingga beberapa ratus tahun untuk gempa akbar. Sementara seismologi modern dengan instrumen seismometernya baru berjalan kurang dari seabad ini. Apalagi pencatatan pergerakan lempeng tektonik di suatu daerah, itu baru berlangsung semenjak dekade 1980-an saja. Maka untuk mengetahui potensi gempa akbar di suatu tempat, para ahli kegempaan memanfaatkan pendekatan tak langsung. Baik dengan jalan menyelidiki naik-turunnya daratan melalui naik-turunnya karang di pulau-pulau kecil tepat di sebelah sebuah palung laut (seperti dilakukan di pulau Sumatra) maupun dengan menyelidiki lapisan-lapisan endapan takbiasa yang diproduksi sebuah tsunami di sepanjang pesisir.

Lewat analisis karang, kita mengetahui salah satu sumber gempa akbar di pulau Sumatra ada di segmen Kepulauan Mentawai. Gempa akbar di sini terjadi pada sekitar tahun 1370, 1600 serta yang terakhir pada 1797 dan 1833 TU. Dengan demikian gempa akbar dan tsunami besarnya di segmen Kepulauan Mentawai terjadi setiap 200 hingga 230 tahun sekali. Sementara sedimen pesisir di Thailand dan Simeule memperlihatkan gempa akbar dan tsunami besar di segmen Simeulue-Andaman-Nicobar berulang jauh lebih lama, yakni setiap 600 hingga 700 tahun sekali.

Bagaimana dengan pesisir selatan Pulau Jawa?

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Gambar 7. Jejak kedahsyatan tsunami produk gempa besar Pangandaran 2006 di pesisir Kabupaten Kebumen. Atas: tebing pasir curam setinggi 1 meter yang terbentuk oleh terjangan tsunami di pantai Sidoharjo (Kec. Puring). Di sini tsunami menginvasi hingga 60 meter ke daratan dari garis pantai. Bawah: jejak tsunami di dinding pos Lanal Ayah di pantai Logending (Kec. Ayah). Di sini riak tsunami mencipratkan air hingga setinggi 2 meter dari paras tanah (A). Hempasan tsunami beserta reruntuhan material yang diangkutnya mampu melubangi dinding (B). Sumber: Sudibyo, 2006.

Pesisir selatan Jawa Timur dilimbur tsunami produk gempa besar Banyuwangi 3 Juni 1994 (7,8 skala Magnitudo). Tinggi maksimum tsunaminya mencapai 15 meter dan menginvasi daratan hingga sejauh 400 meter. Korban jiwa yang direnggutnya tercatat 238 orang. Sementara pesisir selatan Jawa Barat dan sebagian Jawa Tengah dihantam tsunami dari gempa besar Pangandaran 17 Juli 2006 (7,7 skala Magnitudo). Tsunaminya menghantam pesisir mulai dari pantai Pangandaran (Jawa Barat) hingga pantai Parangtritis (DI Yogyakarta) dengan tinggi maksimum 21 meter di pulau Nusakambangan. Tsunami ini menelan korban jiwa hingga lebih dari 700 orang. Baik gempa besar Banyuwangi 1994 maupun Pangandaran 2006 merupakan gempa pembangkit tsunami yang takbiasa. Mereka terjadi tepat di sisi utara palung laut dengan getaran yang cukup lama, sehingga disebut sebagai gempa-lambat atau gempa-ayun (slow earthquake) yang getarannya tak begitu dirasakan di daratan pulau Jawa. Di lokasi sumber gempanya, getaran gempa menyebabkan tebing-tebing curam di sisi utara palung runtuh, menciptakan longsoran bawah laut yang massif. Kombinasi pengangkatan dasar laut di lokasi sumber gempa dan longsoran massif ini membangkitkan tsunami yang tak biasa. Meski bersifat lokal, namun ketinggiannya di pesisir dan invasinya ke daratan amat sangat besar dibanding tsunami yang hanya disebabkan oleh gempa saja.

Sebelum kedua peristiwa tersebut, pesisir selatan Pulau Jawa antara pantai Pangandaran hingga Parangtritis juga pernah diterpa tsunami pada 1921 TU. Tsunami ini produk gempa besar (7,5 skala Richter) di seberang zona subduksi, namun tinggi gelombangnya kecil sehingga tidak menghasilkan kerusakan dan korban jiwa berarti. Sebelum itu tsunami lokal tercatat juga terjadi pada 1840 dan 1859 TU. Keduanya menerpa pesisir selatan pulau Jawa di antara Kebumen (Jawa Tengah) hingga Pacitan (Jawa Timur).

Tsunami yang lebih besar namun tak begitu tercatat dalam sejarah nampaknya terjadi empat abad silam, atau di abad ke-16 TU. Jejaknya ditemukan sebagai lapisan endapan takbiasa khas tsunami di dekat muara sungai Cikembulan, Pangandaran (Jawa Barat) oleh tim LIPI (Lembaga Ilmu Pengetahuan Indonesia). Endapan ini lebih tebal ketimbang endapan tsunami 2006 sehingga mungkin berasal dari gempa besar berskala 8 skala Magnitudo atau lebih. Peristiwa tersebut nampaknya dicatat oleh pujangga kerajaan Mataram Islam di zaman pemerintahan Sultan Agung pada Babad ing Sangkala. Peristiwa tersebut nampaknya terjadi pada tahun 1618 atau 1619 TU, sepuluh tahun jelang agresi Mataram ke kedudukan VOC Belanda di Batavia (kini Jakarta). Tsunami tersebut nampaknya berdampak signifikan dan mungkin melahirkan legenda Nyi Roro Kidul (Ratu Kidul). Legenda sejenis, meski kalah populer, juga dijumpai di tempat-tempat lain mulai dari masyarakat Mentawai di sebelah barat hingga ke masyarakat Flores di sebelah timur.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Gambar 8. Koordinat episentrum-episentrum gempa di sekujur pulau Jawa hingga 2007 TU. Nampak dua lokasi di zona subduksi yang telah melepaskan gempa besar dan tsunaminya. Masing-masing di sebelah timur (sumber gempa besar Banyuwangi 1994) dan sebelah barat (sumber gempa Pangandaran 2006). Nampak pula dua lokasi jarang gempa (ditandai garis putus-putus), masing-masing di selatan Jawa Barat dan selatan Jawa Tengah (ditandai sebagai seismic gap). Dua lokasi tersebut diprediksi bakal menjadi sumber gempa besar dan tsunami mendatang. Sumber: Natawidjaja, 2007.

Berapa tahun sekali periode ulang gempa besar/akbar dan tsunami yang menyertainya di lepas pantai pesisir selatan pulau Jawa memang belum diketahui hingga kini. Namun jelas bahwa di masa silam hal itu pernah terjadi. Dan kelak juga pasti akan terjadi lagi. Ini hanya soal kapan waktunya dan seberapa besar magnitudonya. Maka suka tak suka, pesisir selatan pulau Jawa memang harus berbenah dan bersiap untuk menghadapinya. Termasuk Kabupaten Kebumen di propinsi Jawa Tengah, yang memiliki garis pantai unik sepanjang 58 kilometer. Ada lebih dari 220 ribu jiwa yang hidup di sepanjang pesisir Kabupaten Kebumen yang berpotensi terdampak jika bencana tsunami tersebut benar-benar terjadi, apalagi jika sekelas tsunami produk gempa akbar Sumatra-Andaman 2004.

Bagaimana Kabupaten Kebumen menyiagakan diri mengantisipasi ancaman tsunami ini? Simak di bagian kedua dari tulisan ini.

Referensi :

Yulianto dkk. 2010. Where the First Wave Arrives in Minutes, Indonesian Lessons on Surviving Tsunamis Near Their Sources. Intergovernmental Oceanographic Commission, United Nations Educational Scientific and Cultural Organisation, IOC-Brochure 2010-4.

BNPB. 2012. Masterplan Pengurangan Risiko Bencana Tsunami. Badan Nasional Penanggulangan Bencana, Juni 2012.

Natawidjaja. 2007. Tectonic Setting Indonesia dan Pemodelan Gempa dan Tsunami. Pelatihan Pemodelan Tsunami Run-up, Kementerian Negara Riset dan Teknologi RI, 20 Agustus 2007.

Indonesia ‘Menaklukkan’ Australia (Menyaksikan Letusan Sangeang Api dari Langit)

Sekilas judul tulisan ini kelewat bombastis. Indonesia menaklukkan Australia? Kedua negara tidak sedang dalam keadaan berperang, meski hubungan kita dengan negeri kanguru kerap diterpa gelombang pasang-surut sepanjang sejarah. Pada saat tertentu pasang-surut itu bahkan mencapai titik ekstrimnya. Misalnya kala aksi penyadapan intel Australia terhadap pejabat-pejabat Indonesia terungkap. Jakarta lantas membalasnya dengan memanggil pulang duta besar Indonesia untuk Australia, sebuah tamparan terkeras dalam etika hubungan internasional. Meski demikian belum ada ceritanya militer Indonesia saling berhadap-hadapan dengan Australia dalam teater konfrontasi.

Gambar 1. Laksana ledakan bom nuklir Hiroshima, saat puncak kolom letusan Sangeang Api telah demikian melebar dan membentuk payung/jamur raksasa yang terlihat jelas dari jarak 40 km. Diabadikan oleh M. Taufiqurrahman (twitter @tofifoto) dari pusat kota Bima, Kabupaten Bima (Nusa Tenggara Barat) pada Jumat 30 Mei 2014 sore. Sumber: Taufiqurrahman, 2014.

Gambar 1. Laksana ledakan bom nuklir Hiroshima, saat puncak kolom letusan Sangeang Api telah demikian melebar dan membentuk payung/jamur raksasa yang terlihat jelas dari jarak 40 km. Diabadikan oleh M. Taufiqurrahman (twitter @tofifoto) dari pusat kota Bima, Kabupaten Bima (Nusa Tenggara Barat) pada Jumat 30 Mei 2014 sore. Sumber: Taufiqurrahman, 2014.

Namun penaklukan itu benar adanya, meski dalam bentuk lain yang sungguh tak pernah diduga. Adalah letusan besar Gunung Sangeang Api pada 30 Mei 2014 yang menjadi penyebabnya. Apalagi aktivitas letusan Sangeang Api terus berlanjut hingga dua hari kemudian. Letusan-letusan itu secara akumulatif menyemburkan jutaan meter kubik debu vulkanik ke udara, dalam letusan pertama bahkan mencapai ketinggian sekitar 20.000 meter dpl (dari paras air laut rata-rata), lantas terbawa angin regional ke arah tenggara. Maka debu vulkanik Sangeang Api pun terbawa cukup jauh sampai sejauh sekitar 3.000 km hingga menyerbu udara Australia bagian utara.

Hujan debu yang dialami daratan Australia bagian utara memang tak separah guyuran debu dan pasir yang merejam sebagian propinsi Nusa Tenggara Barat dan Nusa Tenggara Timur di Indonesia. Namun konsentrasi debu vulkanik Sangeang Api di atas Australia utara tergolong cukup besar dan berpotensi membahayakan lalu lintas penerbangan, baik sipil maupun militer. Di waktu lalu, Australia menyaksikan sendiri bagaimana dampak debu vulkanik terhadap kinerja mesin jet seperti dialami pesawat Boeing-747 British Airways penerbangan 009 (nomor pesawat G-BDXH, kode panggil Speedbird 9, rute London-Auckland) pada 24 Juni 1983. Saat terbang di atas pulau Jawa, pesawat sempat terperangkap dalam kolom debu vulkanik salah satu letusan Gunung Galunggung sehingga terjadi gangguan berat yang sempat mematikan keempat mesinnya. Sehingga pesawat pun terjun bebas dari ketinggian 11.500 meter dpl menuju permukaan Samudera Indonesia (Samudera Hindia) dibawahnya. Beruntung, pada ketinggian lebih rendah satu-persatu mesin jetnya berhasil dinyalakan ulang sehingga pilot berhasil menghindari lautan dan memutuskan untuk mendarat darurat di bandara Halim Perdanakusuma (Jakarta).

Gambar 2. Kiri: pulau Sangeang (puncak Gunung Sangeang Api) yang impresif di tengah-tengah Laut Flores yang permai, diabadikan oleh astronot pesawat ulang-alik Atlantis saat menjalani misi antariksa STS 112 pada 7 hingga 18 Oktober 2001. Kanan: wajah kawah aktif Doro Api dan lingkungan sekitarnya, diabadikan oleh satelit Quickbird dengan warna nyata pada 2 Oktober 2005 dan kemudian diproses oleh LAPAN. Terlihat kubahlava 1985, yang kini telah jebol/hilang dalam letusan 30 Mei 2014 lalu. Sumber: NASA, 2002; LAPAN, 2014.

Gambar 2. Kiri: pulau Sangeang (puncak Gunung Sangeang Api) yang impresif di tengah-tengah Laut Flores yang permai, diabadikan oleh astronot pesawat ulang-alik Atlantis saat menjalani misi antariksa STS 112 pada 7 hingga 18 Oktober 2001. Kanan: wajah kawah aktif Doro Api dan lingkungan sekitarnya, diabadikan oleh satelit Quickbird dengan warna nyata pada 2 Oktober 2005 dan kemudian diproses oleh LAPAN. Terlihat kubahlava 1985, yang kini telah jebol/hilang dalam letusan 30 Mei 2014 lalu. Sumber: NASA, 2002; LAPAN, 2014.

Guna menghindari petaka serupa, maka VAAC (Volcanic Ash Advisory Committee) Darwin pun menerbitkan kode merah bagi ruang udara Australia bagian utara, yang melarang lalu lintas pesawat berawak apapun di sini khususnya untuk penerbangan sipil. Sebagai imbasnya, ratusan penerbangan dari dan ke bandara Darwin pun dibatalkan. Belakangan sejumlah penerbangan lainnya khususnya yang menuju ke Denpasar (Bali), misalnya dari Melbourne, pun turut dibatalkan. Kerugian pun tercetak dan ditaksir mencapai milyaran rupiah. Namun apa boleh buat, hal itu dianggap masih lebih baik ketimbang menjerumuskan lalu lintas udara ke dalam bencana yang bakal menyedot kerugian material jauh lebih besar. Cukup menarik bahwa keputusan ini berdasar atas kerja keras dari langit dalam memantau apa yang terjadi dengan Gunung Sangeang Api dan lingkungannya.

MTSAT-2 dan Landsat-8

Sebelum meletus kemarin, Gunung Sangeang Api telah berulangkali menjadi target menarik untuk dibidik dari langit, baik oleh satelit-satelit penginderaan dan sumberdaya Bumi maupun oleh sejumlah astronot dalam beberapa misi penerbangan antariksa berawak. Ketertarikan itu didasari impresifnya bentuk gunung berapi ini saat dilihat dari langit, yakni sebagai pulau yang membulat yang khas pulau vulkanik. Sejatinya pulau ini memang merupakan puncak sebuah gunung berapi aktif yang menyembul di atas paras air laut.

Gambar 3. Letusan Sangeang Api dalam empat jam pertamanya, diabadikan satelit MTSAT-2 dalam kanal inframerah pada resolusi rendah. Pukul 17:00 WITA nampak titik putih mendekati sferis muncul di atas lokasi Sangeang Api (panah kuning), pertanda puncak kolom letusan membumbung tinggi dan mulai melebar membentuk awan payung/jamur raksasa. Dalam tiga jam berikutnya, awan debu vulkanik tersebut terus melebar dan melonjong sembari beringsut ke arah timur-tenggara. Sumber: JMA, 2014.

Gambar 3. Letusan Sangeang Api dalam empat jam pertamanya, diabadikan satelit MTSAT-2 dalam kanal inframerah pada resolusi rendah. Pukul 17:00 WITA nampak titik putih mendekati sferis muncul di atas lokasi Sangeang Api (panah kuning), pertanda puncak kolom letusan membumbung tinggi dan mulai melebar membentuk awan payung/jamur raksasa. Dalam tiga jam berikutnya, awan debu vulkanik tersebut terus melebar dan melonjong sembari beringsut ke arah timur-tenggara. Sumber: JMA, 2014.

Letusan Sangeang Api pertama kali terdeteksi oleh satelit Himawari-7 atau dikenal juga sebagai satelit MTSAT-2 (Multifunction Transport Satellite-2). MTSAT-2 adalah satelit cuaca dan komunikasi milik Badan Meteorologi Jepang yang ditempatkan di orbit geostasioner, sehingga memiliki periode revolusi yang sama dengan periode rotasi Bumi yang menjadikannya selalu berada di atas permukaan Bumi yang sama. Dengan berkedudukan di atas Samudera Pasifik, maka satelit ini mampu mengamati kawasan Pasifik, Asia Timur, Asia tenggara dan Australia secara terus-menerus.

Pada resolusi rendah, letusan Sangeang Api pertama kali terlihat di citra MTSAT-2 pada pukul 17:00 WITA kanal inframerah sebagai titik putih yang nyaris membulat di atas pulau Sumbawa bagian timur. Titik putih ini cukup kontras bila dibandingkan dengan lingkungan sekitarnya yang nyaris tak berawan, khususnya di hampir seluruh kepulauan Sunda Kecil dan sebagian pulau Jawa. Dalam jam-jam berikutnya titik putih ini terus melebar dan melonjong untuk kemudian bergerak ke arah tenggara mengikuti angin regional. Dalam resolusi yang lebih tinggi, letusan Sangeang Api pertama kali terlihat di citra MTSAT-2 pada pukul 16:32 WITA, juga sebagai obyek putih mirip awan namun lebih padat. Pemandangan ini mengingatkan pada citra Letusan Kelud 2014 kemarin, hanya saja dimensi awan letusan Sangeang Api nampak lebih kecil. Selain itu juga tak terlihat pola bow shock-wave, yakni pola bergelombang yang disebabkan oleh interaksi tekanan gas vulkanik yang sangat tinggi dengan hembusan angin regional yang mencoba menggeser seluruh debu vulkanik menjauh, seperti halnya yang terjadi pada Letusan kelud 2014. Karena itu untuk sementara dapat dikatakan bahwa skala dan muntahan material vulkanik dalam Letusan Sangeang Api 2014 mungkin lebih kecil dibanding Letusan Kelud 2014, setidaknya menurut citra satelit MTSAT-2.

Gambar 4. Perkembangan letusan Sangeang Api pada 30 Mei 2014 pukul 19:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik masih terus membumbung dari Gunung Sangeang Api meski letusan telah berlangsung selama 4 jam lebih. Di atas pulau Sumba, debu vulkanik Sangeang Api bahkan membumbung hingga mendekati ketinggian 14.000 meter dpl. Sumber: CIMSS, 2014.

Gambar 4. Perkembangan letusan Sangeang Api pada 30 Mei 2014 pukul 19:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik masih terus membumbung dari Gunung Sangeang Api meski letusan telah berlangsung selama 4 jam lebih. Di atas pulau Sumba, debu vulkanik Sangeang Api bahkan membumbung hingga mendekati ketinggian 14.000 meter dpl. Sumber: CIMSS, 2014.

Puncak kolom letusan Sangeang Api jauh menembus ke dalam lapisan atmosfer yang lebih tinggi membuat suhunya merosot dramatis hingga di bawah minus 70 derajat Celcius seperti diperlihatkan oleh pengukuran radiometer. Dengan demikian ia telah memasuki lapisan stratosfer. Berbekal fakta tersebut maka NOAA/CIMSS Volcanic Ash Height memperkirakan debu vulkanik Sangeang Api membumbung hingga mencapai ketinggian setidaknya 14.000 meter dpl. Satelit MTSAT-2 juga memperlihatkan letusan Sangeang Api berlangsung berulang-ulang sepanjang 30 Mei 2014 tersebut. Berselang 10 jam setelah letusan pertama yang cukup besar, tepatnya pada 31 Mei 2014 pukul 02:00 WITA, terpantau debu vulkanik dari letusan berikutnya yang lebih kecil. Letusan kedua ini nampaknya telah terjadi setengah jam sebelumnya, seperti dilaporkan PVMBG (Pusat Vulkanologi dan Mitigasi Bencana Geologi). Dan berselang empat jam kemudian, yakni pada pukul 06:00 WITA, terjadi letusan ketiga yang tergolong cukup besar sehingga kembali melontarkan debu vulkaniknya sampai setinggi 14.000 meter dpl.

Gambar 5. Perkembangan letusan Sangeang Api pada 31 Mei 2014 pukul 07:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik kembali membumbung dari Gunung Sangeang hingga mendekati ketinggian 14.000 meter dpl tepat di atas gunung. Debu vulkanik ini merupakan bagian dari letusan ketiga. Sumber: CIMSS, 2014.

Gambar 5. Perkembangan letusan Sangeang Api pada 31 Mei 2014 pukul 07:32 WITA, diabadikan satelit MTSAT-2 dalam kanal komposit cahaya tampak/inframerah pada resolusi tinggi, dipadukan dengan analisis NOAA/CIMSS Volcanic Ash Height. Nampak debu vulkanik kembali membumbung dari Gunung Sangeang hingga mendekati ketinggian 14.000 meter dpl tepat di atas gunung. Debu vulkanik ini merupakan bagian dari letusan ketiga. Sumber: CIMSS, 2014.

Selain MTSAT-2, letusan Sangeang Api juga dipantau melalui satelit Terra, sebuah satelit penginderaan Bumi yang dimiliki Badan Antariksa AS (NASA), khususnya lewat instrumen MODIS dalam kanal cahaya tampak. Lembaga Penerbangan dan Antariksa Nasional (LAPAN) memanfaatkan sinyal satelit ini untuk merekonstruksi sejauh mana dampak letusan Sangeang Api. Pada 31 Mei 2014 pukul 10:27 WITA, debu vulkanik Sangeang Api terlihat telah menyelimuti sebagian pulau Sumbawa, seluruh pulau Sumba, Flores dan Rote serta ujung barat daya pulau Timor. Sangeang Api sendiri terlihat masih menyemburkan debu vulkanik ke arah tenggara. Tiga jam kemudian Sangeang Api terlihat sudah tak menyemburkan debu vulkanik lagi, namun kawasan yang terselimuti debu vulkanik justru meluas.

Gambar 6. Panorama sebagian kepulauan Nusa tenggara dalam dua kesempatan berbeda, diabadikan oleh instrumen MODIS pada satelit Terra dan kemudian diproses oleh LAPAN, masing-masing pada 31 Mei 2014 pukul 10:27 WITA dan 13:22 WITA. Pada pukul 10:27 WITA, nampak Gunung Sangeang Api menyemburkan debu vulkanik pekat ke arah tenggara, dengan sebaran debu vulkanik menyelimuti sebagian pulau Sumbawa, hampir seluruh pulau Flores, seluruh pulau Sumba dan Rote serta ujung barat daya pulau Timor. Pada pukul 13:22 WITA, semburan debu vulkanik yang sama sudah tak terpantau, namun luas kawasan yang terselimuti debu vulkanik justru makin membesar. Sumber: LAPAN, 2014.

Gambar 6. Panorama sebagian kepulauan Nusa tenggara dalam dua kesempatan berbeda, diabadikan oleh instrumen MODIS pada satelit Terra dan kemudian diproses oleh LAPAN, masing-masing pada 31 Mei 2014 pukul 10:27 WITA dan 13:22 WITA. Pada pukul 10:27 WITA, nampak Gunung Sangeang Api menyemburkan debu vulkanik pekat ke arah tenggara, dengan sebaran debu vulkanik menyelimuti sebagian pulau Sumbawa, hampir seluruh pulau Flores, seluruh pulau Sumba dan Rote serta ujung barat daya pulau Timor. Pada pukul 13:22 WITA, semburan debu vulkanik yang sama sudah tak terpantau, namun luas kawasan yang terselimuti debu vulkanik justru makin membesar. Sumber: LAPAN, 2014.

Sehari berikutnya (1 Juni 2014), LAPAN kembali memantau Gunung Sangeang Api dengan memanfaatkan sinyal satelit penginderaan Bumi lainnya, yakni Landsat-8 yang dioperasikan oleh Badan Survei Geologi AS (USGS). Pada kanal cahaya tampak, berhasil diperoleh citra Gunung Sangeang Api dalam warna nyata. Gunung itu terlihat masih menyemburkan asap tebal namun kini berwarna keputihan ke arah barat-barat daya, atau berkebalikan arah dibanding saat letusan pertamanya. Jejak hempasan awan panas letusan pun terlihat di sisi selatan dan tenggara. Luncuran awan panas ke arah tenggara bahkan sampai ke bibir pantai dan nampaknya terus masuk ke dalam Laut Flores. Meski demikian volumenya mungkin cukup kecil sehingga tak mampu membangkitkan usikan air laut dalam bentuk tsunami.

Gambar 7. Pulau Sangeang (puncak Gunung Sangeang Api), diabadikan oleh satelit Landsat 8 pada 1 Juni 2014 dan kemudian diproses oleh LAPAN. Nampak debu vulkanik bercampur gas vulkanik masih menyembur dari kawah Doro Api, memastikan bahwa pusat Letusan Sangeang Api 2014 memang bersumber dari kawah tersebut. Debu dan gas vulkanik berhembus ke barat, atau berlawanan arah dibanding letusan pertama dua hari sebelumnya. Nampak sisi tenggara gunung berwarna abu-abu, pertanda telah terendapkannya material letusan di sana sebagai awan panas yang meluncur jauh hingga menyentuh bibir pantai. Sumber: LAPAN, 2014.

Gambar 7. Pulau Sangeang (puncak Gunung Sangeang Api), diabadikan oleh satelit Landsat 8 pada 1 Juni 2014 dan kemudian diproses oleh LAPAN. Nampak debu vulkanik bercampur gas vulkanik masih menyembur dari kawah Doro Api, memastikan bahwa pusat Letusan Sangeang Api 2014 memang bersumber dari kawah tersebut. Debu dan gas vulkanik berhembus ke barat, atau berlawanan arah dibanding letusan pertama dua hari sebelumnya. Nampak sisi tenggara gunung berwarna abu-abu, pertanda telah terendapkannya material letusan di sana sebagai awan panas yang meluncur jauh hingga menyentuh bibir pantai. Sumber: LAPAN, 2014.

Sementara Biro Meteorologi Australia khususnya VAAC Darwin memantau letusan Sangeang Api secara menerus dengan memanfaatkan satelit MetOp-A dan MetOp-B, sepasang satelit cuaca milik organisasi Eropa untuk satelit-satelit meteorologi (Eumetsat). Instrumen yang digunakan pada satelit tersebut terutama adalah GOME, yang aslinya digunakan untuk memantau distribusi lapisan Ozon di stratosfer secara kontinu. Namun dalam kasus letusan gunung berapi, GOME juga bisa dimanfaatkan untuk merekam pergerakan aerosol sulfat, yakni gas sulfurdioksida yang lantas bereaksi dengan uap air di atmosfer membentuk butir-butir asam sulfat yang bersifat koloid. Dengan kata lain instrumen GOME pun berkemampuan mendeteksi pergerakan debu vulkanik letusan sebuah gunung berapi dengan lebih baik dibanding instrumen/kamera yang bekerja kanal cahaya tampak.

Hingga 1 Juni 2014, instrumen GOME satelit MetOp-A dan MetOp-B secara berkesinambungan memperlihatkan bahwa aerosol sulfat letusan Sangeang Api masih terbentuk. Aerosol tersebut memang menyebar jauh ke arah timur dan tenggara hingga mencapai daratan Australia. Namun Konsentrasi aerosol sulfat terbesar ada di atas pulau Timor. Sekilas kuantitas aerosol sulfat letusan Sangeang Api memang jauh lebih lemah ketimbang letusan Kelud. Sehingga menguatkan dugaan yang telah terbentuk melalui observasi satelit MTSAT-2, bahwa Letusan Sangeang Api 2014 memang menyemburkan material vulkanik dalam jumlah lebih kecil ketimbang Letusan Kelud 2014.

Gambar 8. Sebaran aerosol sulfat letusan Sangeang Api, diabadikan oleh instrumen GOME pada satelit MetOp-A dan MetOp-B pada 1 Juni 2014. Nampak aerosol tersebar jauh hingga mencapai daratan Australia bagian utara, yang memaksa ditutupnya bandara Darwin untuk sementara. Panah merah dan kurva lonjong dengan garis merah putus-putus menunjukkan estimasi bilamana arah angin regional pada saat letusan terjadi menuju ke barat-barat laut, yang bakal membuat pulau Jawa terselimuti debu vulkanik. Sumber: Eumetsat, 2014.

Gambar 8. Sebaran aerosol sulfat letusan Sangeang Api, diabadikan oleh instrumen GOME pada satelit MetOp-A dan MetOp-B pada 1 Juni 2014. Nampak aerosol tersebar jauh hingga mencapai daratan Australia bagian utara, yang memaksa ditutupnya bandara Darwin untuk sementara. Panah merah dan kurva lonjong dengan garis merah putus-putus menunjukkan estimasi bilamana arah angin regional pada saat letusan terjadi menuju ke barat-barat laut, yang bakal membuat pulau Jawa terselimuti debu vulkanik. Sumber: Eumetsat, 2014.

Dampak

Berselang 3 hari pasca letusan pertamanya, Gunung Sangeang Api berangsur-angsur mereda. Semburan asap dan debu vulkanik memang masih terjadi berkali-kali, namun kini dengan tekanan jauh lebih lemah. Sehingga asap dan debu hanya menyembur hingga beberapa ratus meter saja di atas kawah Doro Api. Hujan debu juga sudah tidak terjadi lagi, baik di Kabupaten Bima maupun kabupaten-kabupaten di Nusa Tenggara yang tepat ada di sebelah tenggara Gunung Sangeang Api seperti Kabupaten Manggarai, Manggarai Barat dan Sumba Timur.

Meski mengejutkan dan tergolong besar, namun letusan Sangeang Api ternyata tidak diikuti dengan pengungsian penduduk khususnya yang bertempat-tinggal di Kecamatan Wera (Kabupaten Bima) yang menjadi lokasi terdekat ke gunung. Sebab selain sebagai gunung berapi laut, kawah aktif Gunung Sangeang Api juga berjarak cukup besar terhadap kampung Sangeang Darat sebagai pemukiman terdekat, yakni hampir 20 km. Sementara dalam status Siaga (Level III), PVMBG menetapkan daerah terlarang bagi Gunung Sangeang adalah hingga radius 5 km saja dari kawah aktif. Pada Sabtu 31 Mei 2014, sekitar 3.000 orang memang mengungsi secara mandiri ke perbukitan setelah letusan kedua dan ketiga terjadi, namun lebih didasari kehawatiran akan timbulnya tsunami. Kekhawatiran ini memang beralasan mengingat citra Landsat-8 memperlihatkan sebagian material vulkanik Letusan Sangeang Api 2014 meluncur sebagai awan panas letusan ke arah tenggara hingga menjangkau bibir pantai. Namun dengan material awan panas yang kecil, tsunami yang dikhawatirkan seperti diperlihatkan Letusan Krakatau 1883 maupun Letusan Tambora 1815 tidak terjadi. Pengungsian mandiri ini sekaligus memperlihatkan bahwa penduduk telah cukup memahami potensi bencana Gunung Sangeang Api.

Setelah dievaluasi lebih lanjut, Badan Nasional Penanggulangan Bencana (BNPB) menyatakan meskipun cukup besar namun letusan ini tidak menimbulkan korban jiwa. Penduduk yang sempat disangka hilang saat berladang di pulau Sangeang akhirnya berhasil ditemukan dalam kondisi selamat. Namun meski tiada pengungsi, dampak letusan Sangeang Api di Kabupaten Bima cukup telak. Selain membuat bandara Bima sempat ditutup (meski akhirnya dibuka kembali pada 1 Juni 2014), ribuan penduduk pun terpapar debu vulkanik yang lumayan pekat. Selain menyebabkan gangguan pernafasan ringan, paparan debu vulkanik juga mencemari sumber air setempat.

Bagaimanapun, patut disyukuri bahwa letusan Sangeang Api 2014 ini tidak menghamburkan debunya ke arah yang berlawanan. Andaikata angin regional pada Jumat sore 30 Mei 2014 itu mengarah ke barat-barat daya, maka niscaya debu vulkanik Sangeang Api akan menyelimuti hingga ke pulau Jawa. Meski tak sedahsyat horor akibat Letusan Kelud 2014, namun paparan debu vulkanik Sangeang Api tersebut jelas bakal bisa melumpuhkan bandara-bandara sibuk di pulau Jawa. Jika hal itu terjadi, lalu lintas udara dari dan ke pulau Jawa akan lumpuh untuk sementara dan berakibat pada kerugian yang luar biasa besar.

Referensi :

CIMSS. 2014. Eruption of the Sangeang Api volcano in Indonesia.

NASA. 2002. The Gateway to Astronaut Photography of Earth. NASA Earth Observatory Laboratory.

Volcano Planet. 2014. Sangeang Api Latest, 1 June 2014.

Pusdatin BNPB. 2014. Ribuan Warga Terdampak Abu Gunung Sangeang Api Membutuhkan Masker. Badan Nasional Penanggulangan Bencana.

LAPAN. 2014. Letusan Gunungapi Sangeang Api. Respon Tanggap Darurat Bencana Berbasis Satelit, Kedeputian Penginderaan Jauh, Lembaga Penerbangan dan Antariksa Nasional.

Sudibyo. 2014. Mengamati Letusan Kelud dari Angkasa. Majalah Geomagz, vol. 4 no. 1, Maret 2014, hal. 33-35.

Tsunami Iquique (Cile), Status Waspada dan Pelajaran dari Jayapura

Pada Kamis 3 April 2014 pukul 08:30 WIB sistem peringatan dini tsunami Indonesia (Indonesia Tsunami Early Warning System/Ina-TEWS) di bawah Badan Meteorologi Klimatologi dan Geofisika (BMKG) secara resmi mencabut peringatan dini tsunami bagi seluruh Indonesia. Sebelumnya peringatan dini mulai diberlakukan sejak Rabu 2 April 2014 pukul 09:30 WIB sebagai respon atas gempa besar yang mengguncang Iquique (Cile). Gempa besar tersebut berkekuatan Mw (moment-magnitude) 8,2 dan berkualifikasi gempa megathrust yang bersumber di dasar Samudera Pasifik lepas pantai kawasan Iquique. Selain gelombang sesimik yang dirambatkan ke segenap penjuru, gempa megathrust ini juga disertai dengan pengangkatan dasar laut setempat yang signifikan. Pengangkatan inilah yang menghasilkan salah satu bencana geologi yang menjadi momok Indonesia: tsunami.

Gambar 1. Peta distribusi tinggi tsunami di laut lepas (bukan di pantai) sebagai hasil simulasi tsunami Iquique 1 April 2014 yang dipublikasikan NOAA. R = stasiun pasang surut Rikitea, Polinesia, S = pelampung (buoy) tsunami di dekat Saipan dan M = pelampung tsunami Manus utara. Sumber: NOAA, 2014 dengan penambahan seperlunya oleh Sudibyo, 2014.

Gambar 1. Peta distribusi tinggi tsunami di laut lepas (bukan di pantai) sebagai hasil simulasi tsunami Iquique 1 April 2014 yang dipublikasikan NOAA. R = stasiun pasang surut Rikitea, Polinesia, S = pelampung (buoy) tsunami di dekat Saipan dan M = pelampung tsunami Manus utara. Sumber: NOAA, 2014 dengan penambahan seperlunya oleh Sudibyo, 2014.

Setelah menganalisis potensi terbentuknya tsunami berdasarkan parameter kegempaan yang telah diketahui saat itu dan implikasinya bagi Indonesia lewat program komputer TOAST (Tsunami Observation and Simulation Terminal), maka Ina-TEWS pun menetapkan 115 kabupaten/kota di Indonesia berada dalam status WASPADA tsunami. Kabupaten/kota tersebut terletak di hampir seluruh propinsi di Indonesia, kecuali ujung utara pulau Sumatra, sisi barat dan selatan pulau Kalimantan, sisi barat pulau Sulawesi dan sisi barat pulau Irian. Hasil pemrograman TOAST memprakirakan tsunami Iquique bakal tiba di perairan Indonesia dalam waktu 20 hingga 37 jam pasca gempa dengan tinggi bervariasi antara 0 hingga 50 cm.

Status WASPADA tsunami kontan membikin sebagian kabupaten/kota itu berubah jadi hiruk-pikuk khususnya di daerah pesisirnya. Di sejumlah tempat penduduk memilih mengungsi. Misalnya seperti di Pancer (Banyuwangi) dan Logending (Kebumen) yang masih menyimpan trauma akan bencana tsunami masa lalu. Pengungsian juga terjadi di pesisir Sumatra Barat, kawasan yang telah lama digadang-gadang bakal menjadi arena hempasan tsunami dengan ketinggian cukup besar bilamana segmen megtahrust Mentawai meletup dalam sebuah gempa besar atau bahkan malah gempa akbar. Di tengah hiruk pikuk tersebut, pemantauan perubahan paras air laut melalui pelampung (buoy) tsunami yang terpasang di beberapa titik di tengah samudera sekeliling Indonesia di bawah IDBC BPPT (Indonesian Buoy Center Badan Pengkajian dan Penerapan Teknologi) maupun lewat stasiun-stasiun pasang-surut di berbagai pelabuhan yang berada di bawah payung BIG (Badan Informasi Geospasial, dulu Bakosurtanal) menunjukkan tak ada tanda-tanda tsunami Iquique memasuki perairan Indonesia.

Gambar 2. Paras air Samudera Pasifik yang terekam di lokasi pelampung tsunami Manus utara. Tsunami nampak sebagai usikan (osilasi) cepat pada paras air laut yang dimulai semenjak 3 April 2014 pukul 02:03 WIB (ditandai dengan garis merah). Sumber: Sudibyo, 2014 dengan data dari NOAA, 2014.

Gambar 2. Paras air Samudera Pasifik yang terekam di lokasi pelampung tsunami Manus utara. Tsunami nampak sebagai usikan (osilasi) cepat pada paras air laut yang dimulai semenjak 3 April 2014 pukul 02:03 WIB (ditandai dengan garis merah). Sumber: Sudibyo, 2014 dengan data dari NOAA, 2014.

Bagi sebagian kita, tidak terdeteksinya tsunami Iquique di perairan Indonesia menunjukkan berlebihannya pemberlakuan status WASPADA itu. Peringatan dini yang berlebihan dianggap hanya membikin panik dan membuat terjadinya pengungsian yang tak perlu. Pemberlakuan status WASPADA ini juga dianggap menggerus kredibilitas peringatan dini tsunami Indonesia. betapa tidak? Jika kali ini status WASPADA ternyata tak diikuti hempasan tsunami yang sesungguhnya, bagaimana kita mampu menaruh rasa percaya pada situasi sejenis kelak?

Megathrust

Gempa Iquique tergolong gempa megathrust, karena meletup di di zona subduksi lempeng Nazca yang oseanik (lempeng samudera) dan lempeng Amerika Selatan yang kontinental (lempeng benua). Zona subduksi tersebut membentang di sepanjang lepas pantai barat Amerika Selatan. Secara kasat mata zona subduksi ini terlihat sebagai palung laut yang memanjang dan melekuk menyerupai huruf S. Sejarah mencatat zona subduksi Amerika Selatan merupakan produsen gempa-gempa besar dan akbar yang selalu diiringi peristiwa tsunami merusak. Gempa terbesar sepanjang sejarah umat manusia modern pun terjadi di sini, tepatnya di lepas pantai Cile selatan. Inilah Gempa Valdivia 22 Mei 1960 (Mw 9,5) yang legendaris. Tsunami yang diproduksinya mengandung energi demikian besar yang membuatnya tak banyak mengalami susut energi kala menyeberangi Samudera Pasifik dengan kecepatan beberapa ratus kilometer per jam. Akibatnya kala tiba di pesisir Pasifik yang berseberangan seperti misalnya di Kepulauan Jepang, energinya masih cukup besar. Sehingga tingginya masih lebih dari 10 meter meski telah menjalar sejauh lebih dari 10.000 km dari sumbernya dan membutuhkan waktu 22 jam untuk mencapai pesisir Jepang. Tak ayal, landaan tsunami tak terduga ini membuat 142 orang tewas disertai aneka kerusakan lainnya. Terjangan tsunami lintas samudera inilah yang mendasari dibangunnya sistem peringatan dini tsunami di sekujur pesisir Samudera Pasifik. Di kemudian hari sistem peringatan dini yang sama pun menular ke kawasan pesisir Samudera Atlantik dan kemudian Samudera Hindia.

Gempa Iquique memang tak sebesar Gempa Valdivia. Ia bersumber dari rekahan sepanjang sekitar 200 km dengan lebar sekitar 70 km yang mendadak melenting sejauh sekitar 6 meter. Proses pematahan berlangsung selama 100 detik, sehingga selama itu pula batuan disekelilingnya tergetar. Untuk ukuran manusia, energi yang dilepaskan gempa ini cukup besar yakni mencapai 30 megaton TNT atau 1.500 kali lipat lebih dahsyat ketimbang bom nuklir Hiroshima. Karena merupakan gempa anjak/naik (thrust), yang menyudut 18 derajat, maka pelentingan tersebut berimbas pada terangkatnya dasar laut seluas 200 x 70 kilometer persegi hingga setinggi 2 meter (maksimum). Pengangkatan dasar laut tiba-tiba inilah yang membuat kolom air diatasnya bergolak dan menjadi tsunami. Di atas kertas tsunami produk gempa Iquique mengandung energi sekitar 20 kiloton TNT atau setara dengan kedahsyatan bom nuklir Hiroshima.

Gambar 3. Paras air laut di pelabuhan Benoa (Bali) yang terekam oleh stasiun pasang-surut Benoa di bawah BIG. Garis merah menunjukkan prakiraan waktu kedatangan tsunami di Benoa, yakni 3 April 2014 pukul 09:28 WITA. Namun selain dinamika akibat pasang-surut air laut yang nampak sebagai bertambah tingginya paras air laut secara perlahan-lahan, tak ada tanda-tanda usikan tsunami yang khas di sini. Sangat berbeda bila dibandingkan dengan situasi di Manus Utara. Sehingga disimpulkan tsunami Iquique tidak mencapai Benoa. Sumber: Sudibyo, 2014 dengan data dari IOC, 2014.

Gambar 3. Paras air laut di pelabuhan Benoa (Bali) yang terekam oleh stasiun pasang-surut Benoa di bawah BIG. Garis merah menunjukkan prakiraan waktu kedatangan tsunami di Benoa, yakni 3 April 2014 pukul 09:28 WITA. Namun selain dinamika akibat pasang-surut air laut yang nampak sebagai bertambah tingginya paras air laut secara perlahan-lahan, tak ada tanda-tanda usikan tsunami yang khas di sini. Sangat berbeda bila dibandingkan dengan situasi di Manus Utara. Sehingga disimpulkan tsunami Iquique tidak mencapai Benoa. Sumber: Sudibyo, 2014 dengan data dari IOC, 2014.

NOAA (National Oceanic and Atmospheric Administration), yakni badan kelautan Amerika Serikat, segera merespon situasi gempa Iquique dengan berdasarkan parameter-parameter kegempaan yang disodorkan USGS (United States Geological Survey), yakni badan geologi-nya Amerika Serikat. Segera simulasi tsunami dikerjakan dengan keluaran (output) meliputi prakiraan waktu kedatangan secara umum dan prakiraan distribusi energi yang tercermin dalam bentuk distribusi tinggi tsunami di segenap penjuru Samudera Pasifik. Simulasi menunjukkan bahwa tsunami produk gempa Iquique berpotensi menjadi tsunami lintas samudera meski dengan energi kecil sehingga tinggi gelombangnya hanya bervariasi antara 100 cm hingga 10 cm jika berada di laut lepas (bukan pantai). Maka lonceng peringatan dini melalui Pacific Tsunami Warning Center (PTWC) pun segera dibunyikan, meminta negara-negara di sekujur pesisir Samudera Pasifik untuk bersiap entah dalam status terendah (status advisory) maupun yang setingkat lebih tinggi (status waspada).

Tsunami memang sungguh-sungguh terjadi dan melintasi Samudera Pasifik. Namun energinya terus melemah kala ia kian menjauh dari sumbernya. Pesisir Cile bagian utara diterjang tsunami setinggi hingga 2 meter dan menyebabkan aneka kerusakan. 6 orang tewas dalam peristiwa ini, sementara 970.000 orang lainnya mengungsi dari tempat tinggalnya masing-masing. Sementara di Kepulauan Hawaii (AS) tinggi tsunaminya hanya sebesar 60 cm, sehingga status advisory yang telah diberlakukan selama 13 jam dicabut. Pada perairan Iwate (Jepang), stasiun pasang-surut setempat mendeteksi terjadinya kenaikan paras air laut maksimum hingga 60 cm yang ditimbulkan tsunami. Sementara pesisir Jepang lainnya pada umumnya diterpa tsunami setinggi 20 hingga 30 cm. terpaan ini tak menghasilkan kerusakan apapun di pesisir Jepang. Dan di dekat Indonesia, tsunami sempat terdeteksi di dua pelampung tsunami yang diletakkan di Samudera Pasifik lepas pantai tenggara pulau Irian, yakni pelampung Manus Utara dan Saipan. Namun ketinggiannya sangat rendah, yakni hanya 1 hingga 10 cm. Dengan energi tsunami yang tergolong kecil untuk ukuran tsunami lintas samudera, nampaknya tsunami Iquique memang telah punah dalam perjalanannya menyeberangi Samudera Pasifik sebelum mencapai pesisir Indonesia khususnya bagian timur.

Jadi bagaimana kita memandang status WASPADA di tengah fakta bahwa tsunami yang ditunggu ternyata telah demikian lemah saat tiba di tanah air?

Jayapura

Gambar 4. Kiri: rumah rusak dan tercebur ke laut dalam peristiwa Jayapura sebagai imbas dari tsunami lintas-samudera yang diproduksi gempa akbar Tohoku 11 Maret 2011. Kanan: rekaman dinamika paras air laut di lokasi pelabuhan Jayapura pada 11 Maret 2011. Nampak tsunami lintas-samudera dari Jepang mulai terdeteksi pada sekitar pukul 12:00 UTC (21:00 WIT). Namun gelombang terbesar baru terjadi dua jam kemudian, kala peringatan dini telah dicabut. Sumber: Diposaptono, 2013.

Gambar 4. Kiri: rumah rusak dan tercebur ke laut dalam peristiwa Jayapura sebagai imbas dari tsunami lintas-samudera yang diproduksi gempa akbar Tohoku 11 Maret 2011. Kanan: rekaman dinamika paras air laut di lokasi pelabuhan Jayapura pada 11 Maret 2011. Nampak tsunami lintas-samudera dari Jepang mulai terdeteksi pada sekitar pukul 12:00 UTC (21:00 WIT). Namun gelombang terbesar baru terjadi dua jam kemudian, kala peringatan dini telah dicabut. Sumber: Diposaptono, 2013.

Apa yang terjadi di sudut tenggara Jayapura (propinsi Papua) lebih dari tiga tahun silam mungkin bisa menjadi pelajaran untuk memahami situasi di sekitar status WASPADA tsunami ini. Pada 11 Maret 2011 Jepang diguncang oleh gempa akbar yang meletup di pesisir timurnya yakni di zona subduksi lepas pantai Tohoku. Gempa megathrust yang berkualifikasi gempa akbar ini magnitudo Mw 9,0) melepaskan tsunami berenergi tinggi yang menjalar ke segenap penjuru Samudera Pasifik. Indonesia bagian timur khususnya pesisir utara pulau Irian, pulau Halmahera, pesisir utara pulau Sulawesi dan pulau-pulau kecil disekitarnya menjadi bagian Indonesia yang memiliki resiko tertinggi akan paparan tsunami dari Jepang ini karena berhadapan langsung dengan Samudera Pasifik. Peringatan dini tsunami pun segera diudarakan BMKG mulai pukul 16:34 WIT. Pada pukul 21:05 WIT dilaporkan terjadi kenaikan paras air laut sebesar 10 cm di pulau Halmahera. Berselang 45 menit kemudian tsunami dengan ketinggian yang sama juga terdeteksi di Manado (propinsi Sulawesi Utara). Dengan tinggi tsunami yang sangat rendah, maka peringatan dini pun dicabut pada pukul 21:55 WIT.

Siapa sangka, kala di dua tempat tersebut tinggi tsunaminya hanya berkisar 10 cm dan tak berdampak apapun, petaka justru terjadi di sudut tenggara kota Jayapura. Stasiun pasang-surut di pelabuhan Jayapura mencatat tinggi tsunami maksimum 80 cm. Namun tsunami yang lebih tinggi dalam serangkaian gelombang (hingga 5 gelombang) menerpa sudut tenggaranyan yakni kawasan Teluk Yos Sudarso dan Teluk Yautefa. Seorang tewas, sementara sedikitnya 17 buah rumah, 1 jembatan dan sepenggal jalan raya beraspal rusak berat. Analisis lebih lanjut memperlihatkan geometri pesisir tenggara Jayapura yang berteluk rumit membuat massa air laut yang bergerak bersama tsunami lintas-samudera itu berjejal-jejal demikian rupa memasuki teluk. Sehingga tinggi nparas air laut pun melonjak hingga 2,5 meter. Tsunami menerjang dengan kecepatan mendekati 13 km/jam dan melanda hingga sejauh 250 meter ke daratan dari garis pantai. Lebih menyesakkan lagi, tsunami menerjang kala peringatan dini tsunami untuk seluruh Indonesia secara resmi telah dicabut. Sehingga penduduk yang semula sempat mengevakuasi diri ke daratan lebih tinggi diijinkan untuk mulai kembali ke rumahnya masing-masing. Siapa sangka tatkala mereka sempat merasa lega dan sedang bersiap-siap untuk pulang, mendadak tsunami datang menerjang ?

Seperti halnya peningkatan status aktivitas sebuah gunung berapi di Indonesia yang tak pernah mudah dan tak pernah berdasarkan pada alasan rasional serupa dari waktu ke waktu mengingat perilaku sang gunung pun turut berubah, dapat diduga
bahwa penetapan status WASPADA tsunami di Indonesia pun demikian. Di sisi teknis, parameter kegempaan memang bisa segera diperoleh lewat institusi terkait dan simulasi tsunami juga sudah bisa dilakukan. BPPT bahkan telah mengembangkan aplikasi TURMINA (Tsunami Run-up Model Interface Indonesia) untuk keperluan itu. Namun tak ada jaminan bahwa hasil simulasi tersebut akan sama persis dengan kejadian sesungguhnya di lapangan. Meski simulasi didasarkan pada peta batimetri dasar laut dan peta rupabumi yang sama-sama berketelitian tinggi, namun hasil simulasinya masih banyak mengandung idealisasi yang belum tentu selaras dengan keadaan sesungguhnya di lokasi. Seperti kasus Jayapura di atas, hasil simulasi menunjukkan tinggi tsunami dari Jepang di pesisir utara pulau Irian hanyalah berkisar 20 cm. Faktanya tinggi tsunami yang direkam di pelabuhan Jayapura justru 4 kali lebih besar dan bahkan di sudut kota mencapai 2,5 meter dan menyebabkan aneka kerusakan. Pesisir dengan geometri nan rumit tak hanya dijumpai di pulau Irian saja, namun di berbagai penjuru pulau-pulau besar di Indonesia pun bisa ditemukan. Belum lagi bila sisi sosial turut diperhitungkan.

Gambar 5. Hasil simulasi terkait peristiwa Jayapura. Dengan geometri pesisir yang rumit, maka tsunami yang memasuki teluk Yos Sudarso mengalami penguatan sehingga tingginya membengkak sampai 2,5 meter meskipun di pinggir teluk (yakni di Jayapura) ketinggiannya hanya 80 cm. Sebagai tsunami pun memasuki Teluk Yautefa untuk kemudian melanda kawasan pesisir hingga sejauh 250 meter dari garis pantai. Sumber: Diposaptono, 2013.

Gambar 5. Hasil simulasi terkait peristiwa Jayapura. Dengan geometri pesisir yang rumit, maka tsunami yang memasuki teluk Yos Sudarso mengalami penguatan sehingga tingginya membengkak sampai 2,5 meter meskipun di pinggir teluk (yakni di Jayapura) ketinggiannya hanya 80 cm. Sebagai tsunami pun memasuki Teluk Yautefa untuk kemudian melanda kawasan pesisir hingga sejauh 250 meter dari garis pantai. Sumber: Diposaptono, 2013.

Selain pemahaman akan situasi yang melingkupi penetapan status WASPADA tsunami di Indonesia, akan lebih baik jika dibarengi dengan penguatan kapasitas publik terhadap pengetahuan tsunami dan mitigasinya. Diakui atau tidak, situasinya memang menyebalkan. Media massa elektronik seperti televisi, yang punya daya jangkau terbesar bagi publik Indonesia, justru kerap menggambarkan peristiwa tsunami dari sisi bombastis, malapetaka atau bahkan mistis. Dunia internet pun kerap tak mau kalah. Padahal pengetahuan akan peta bahaya tsunami di suatu lokasi, jalur-jalur evakuasi, titik-titik pengungsian dan hal-hal penting yang harus mendapat perhatian kala evakuasi tsunami sedang berlangsung adalah jauh lebih penting. Pengetahuan tersebut jauh lebih bermanfaat ketimbang menjejali otak kita dengan aneka kisah bombastis dan mistis seputar tsunami yang menyayat-nyayat namun kering manfaat. Sehingga kala peringatan dini tsunami bergaung, evakuasi bisa dilakukan tanpa ditingkahi aneka kepanikan.

Referensi :

1. Diposaptono dkk. 2013. Impacts of the 2011 East Japan Tsunami in the Papua region, Indonesia: Field Observation Data and Numerical Analyses. Geophysical Journal International (2013).

2. Modelling the Tsunami of 1 April 2014 in Chile. Tsunami Engineering Laboratory, Tohoku University.

Surut Laut di Karangantu (Serang) Bukan Tsunami

Selama seminggu terakhir terjadi fenomena aneh di pesisir Karangantu, Kabupaten Serang (Banten). Fenomena aneh itu adalah surutnya permukaan air Laut Jawa yang cukup ekstrim hingga garis batas air-daratan pun bergeser hingga sejauh sekitar 1 km dari semula. Sebagai akibatnya nelayan setempat pun kesulitan untuk melaut karena kapal-kapal mereka terdampar di Pelabuhan Perikanan Pantai (PPP) Karangantu. Hanya di malam hari saja, yakni kala air laut kembali naik, kapal-kapal tersebut bisa mengangkat sauh menuju laut. Selain itu fenomena tersebut juga memunculkan daratan tambahan yang menjadi jalan berliku penghubung pantai dengan pulau-pulau kecil di perairan itu. Surutnya laut pun membuat banyak ikan bermatian, menggelepar di dasar yang kini tak berair.

Gambar 1. Pesisir Karangantu yang mengalami surut laut di siang hari dan menjadi tontotan masyarakat setempat. Sumber: Banten News, 2014.

Gambar 1. Pesisir Karangantu yang mengalami surut laut di siang hari dan menjadi tontotan masyarakat setempat. Sumber: Banten News, 2014.

Peristiwa yang tak biasa itu membuat banyak orang berspekulasi. Banyak yang menduga hal itu terkait aktivitas Gunung Krakatau di Selat Sunda. Beberapa juga menyebutnya sebagai pertanda awal tsunami, merujuk pada kejadian tsunami 2004 di ujung utara pulau Sumatra yang juga diawali dengan surut laut yang sangat ekstrim. Tsunami menjadi kosakata yang selalu disebut-sebut setelah sebagian besar pulau Jawa bergetar dalam Gempa Kebumen 25 Januari 2014. Di Jawa Tengah bagian selatan khususnya di Kabupaten Cilacap dan Kebumen, isu tsunami yang tak berkeruncingan terus saja merebak, khususnya melalui pesan (SMS) berantai. Isu-isu tersebut selalu menyebut sedang terjadinya peristiwa surut laut di Samudera Hindia.

Maka, sesungguhnya fenomena apa yang sedang terjadi di pesisir Karangantu dan sekitarnya?

Bukan Tsunami

Kata kunci untuk menelaah apa kemungkinan penyebab peristiwa surut laut di pesisir Karangantu dan sekitarnya ada pada durasinya. Jika dicermati lebih lanjut, surut laut itu terjadi selama seminggu terakhir. Surut laut juga hanya terjadi di waktu siang sehingga kapal-kapal nelayan tak bisa menjangkau laut. Begitu malam hari, surut laut ini menghilang karena kapal-kapal nelayan kembali bisa berlayar. Sehingga peristiwa surut lautnya mengandung pola berulang-ulang (siklik). Ciri seperti ini jelas bukan ciri-ciri tsunami.

Gambar 2. Lokasi pesisir Karangantu, Kabupaten Serang (Banten) dalam citra Google Maps. Nampak pesisir berada dalam sebuah teluk dangkal dengan pulau Panjang dan tebaran pulau-pulau kecil dihadapannya. Sumber: Sudibyo, 2014 dengan peta dari Google Maps.

Gambar 2. Lokasi pesisir Karangantu, Kabupaten Serang (Banten) dalam citra Google Maps. Nampak pesisir berada dalam sebuah teluk dangkal dengan pulau Panjang dan tebaran pulau-pulau kecil dihadapannya. Sumber: Sudibyo, 2014 dengan peta dari Google Maps.

Tsunami adalah gelombang transversal yang menjalar di laut/samudera sebagai gelombang dangkal, yakni gelombang yang panjang gelombangnya jauh lebih besar dibanding kedalaman perairan yang dilintasinya. Sementara kecepatannya berbanding lurus dengan kedalaman lokasi terbentuknya. Makin dalam laut/samudera di tempat tsunami terbentuk, makin tinggi kecepatannya. Sebagai konsekuensi dari panjang gelombang yang besar dan kecepatan yang tinggi, maka tsunami memiliki periode yang cukup besar. Jika gelombang laut biasa pada umumnya memiliki periode 10 hingga 20 detik, maka tsunami memiliki periode jauh lebih besar yakni antara 5 menit hingga 20 menit. Saat tsunami mulai mendekati garis pantai, kecepatannya memang menurun drastis sebagai akibat dari kian mendangkalnya dasar laut. Penurunan kecepatan berimbas pada pemendekan panjang gelombang sekaligus bertambahnya amplitudo gelombang seiring penumpukan massa air laut. Sehingga tinggi tsunami kala mendekati garis pantai jauh berkali-kali lipat lebih besar dibanding saat masih di tengah-tengah laut/samudera. Namun meski kecepatannya menurun, mengecilnya panjang gelombang membuat periode tsunami relatif tak berubah banyak dibanding semula.

Sebagai gelombang transversal, tsunami terdiri dari bukit gelombang dan lembah gelombang. Periode tsunami adalah selang waktu yang diperlukan untuk menempuh satu panjang gelombang yang mencakup gabungan sebuah bukit gelombang dan sebuah lembah gelombang. Di Indonesia, hampir seluruh tsunami yang pernah terjadi bersumber dari gempa tektonik berkekuatan besar dengan sumber di dasar laut. Karakteristik sumber gempa membuat tsunami yang menjalar menuju pantai terdekat di Indonesia selalu didului oleh lembah gelombang, baru kemudian diikuti bukit gelombang. Karena itu tatkala tsunami bersiap tiba di pantai selalu didului peristiwa laut surut karena lembah gelombang yang lebih dulu datang. Sehingga surut laut yang mendului sebuah peristiwa tsunami secara umum terjadi dalam waktu setengah periode sebelum gelombang yang tinggi datang. Dengan periode tsunami antara 5 hingga 20 menit, peristiwa surut laut yang mendahului tsunami secara teoritis hanya terjadi dalam waktu 2,5 hingga 10 menit sebelum tsunami datang menerjang. Sifat ini tidak cocok dengan karakteristik peristiwa surut laut di pesisir Karangantu.

Gambar 3: Gelombang transversal seperti halnya gelombang tsunami, dalam bentuk idealnya. Waktu untuk menempuh satu panjang gelombang disebut periode. Jika tsunami datang ke pesisir sebagai lembah gelombangnya terlebih dahulu, maka dibutuhkan waktu setengah periode saja sebelum bukit gelombang menerjang. Dengan periode tsunami berkisar 5 hingga 20 menit, maka terjangan bukit gelombang akan datang dalam tempo 2,5 hingga 10 menit pasca surutnya permukaan air laut. Sumber: Sudibyo, 2014.

Gambar 3: Gelombang transversal seperti halnya gelombang tsunami, dalam bentuk idealnya. Waktu untuk menempuh satu panjang gelombang disebut periode. Jika tsunami datang ke pesisir sebagai lembah gelombangnya terlebih dahulu, maka dibutuhkan waktu setengah periode saja sebelum bukit gelombang menerjang. Dengan periode tsunami berkisar 5 hingga 20 menit, maka terjangan bukit gelombang akan datang dalam tempo 2,5 hingga 10 menit pasca surutnya permukaan air laut. Sumber: Sudibyo, 2014.

Pasang Surut

Lantas apa penyebabnya?

Karena pola surut lautnya bersifat berulang-ulang, maka peristiwa ini jelas dipicu oleh penyebab konstan (selalu ada). Dan salah satu kemungkinannya adalah peristiwa pasang surut air laut. Pasang surut merupakan peristiwa naik dan turunnya permukaan air laut/samudera yang disebabkan oleh dinamika benda-benda langit dalam rupa tarikan gravitasi Bulan dan Matahari serta rotasi Bumi. Meski berhadapan dengan Bulan dan Matahari yang sama, namun setiap titik di pesisir laut/samudera di Bumi memiliki pola pasang surutnya masing-masing yang dipengaruhi oleh kekhasan samudera dihadapannya maupun oleh bentuk garis pantai dan kedalaman dasar laut di dekat garis pantai. Maka pola pasang surut di sebuah pantai adalah khas, ada yang mengikuti siklus diurnal dimana dalam sehari semalam (24 jam) hanya ada satu kali kejadian pasang dan juga satu kali kejadian surut. Namun ada juga yang mengikuti siklus semi-diurnal, dimana dalam sehari semalam masing-masding terjadi dua kali pasang dan sua kali surut. Selisih antara satu peristiwa pasang dengan pasang berikutnya yang berurutan adalah lebih dari 12 jam, tepatnya 12 jam 25 menit, yang disebabkan oleh selisih waktu suatu peristiwa terbitnya Bulan dengan peristiwa terbit Bulan berikutnya yang berurutan.

Sebagai kawasan pesisir, Karangantu dan sekitarnya pun mengalami fenomena pasang surut. Dan karena secara geografis ia berada di dalam sebuah teluk berukuran cukup besar yang dangkal yang di mukanya terdapat sebuah pulau cukup besar (yakni pulau Panjang) dan tebaran pulau-pulau kecil lainnya, maka pola pasang surut di Karangantu tentu berbeda dengan pola pasang surut di Teluk Jakarta, misalnya di Tanjung Priok. Meskipun kedua lokasi tersebut sama-sama berada di pesisir Laut Jawa dan relatif berdekatan.

Gambar 4. Grafik prediksi selisih elevasi air laut di Karangantu antara pasang tertinggi dan surut terendah sepanjang 22 Januari 2014 hingga 4 Februari 2014 berdasarkan data prediksi dari P3SDLP. Sumber: Sudibyo, 2014 dengan data P3SDLP.

Gambar 4. Grafik prediksi selisih elevasi air laut di Karangantu antara pasang tertinggi dan surut terendah sepanjang 22 Januari 2014 hingga 4 Februari 2014 berdasarkan data prediksi dari P3SDLP. Sumber: Sudibyo, 2014 dengan data P3SDLP.

Pesisir Karangantu memiliki Pelabuhan Perikanan Pantai yang tergolong ramai. Maka tempat ini menjadi salah satu titik yang diprediksikan sifat pasang surutnya dari hari ke hari oleh Pusat Penelitian dan Pengembangan Sumberdaya Laut dan Pesisir (P3SDLP) di bawah Badan Penelitian dan Pengembangan Kelautan dan Perikanan, Kementerian Kelautan dan Perikanan RI. Prediksi ini tentu tidak sama persis dengan situasi sesungguhnya, karena harus dikoreksi dengan faktor koreksi pasut (pasang surut) yang bisa diperoleh dari hasil pengamatan PPP Karangantu khususnya dengan menggunakan instrumen pengukur pasang surut (tide gauge). Namun selisih antara prediksi pasang surut dengan kenyataan umumnya tidak besar, sehingga prediksinya bisa dijadikan pegangan.

Pasang surut air Laut Jawa di pesisir Karangantu ternyata mengikuti siklus semi-diurnal. Sehingga dalam sehari terjadi dua kali peristiwa pasang dan dua kali peristiwa surut. Dalam setiap harinya pun terdapat pasang tertinggi dan surut terendah. Selisih elevasi permukaan laut di antara pasang tertinggi dan surut terendah bervariasi dari hari ke hari. Namun berdasarkan data prediksi P3SDLP semenjak 22 Januari 2014 hingga 4 Februari 2014, selisih elevasi yang tergolong tinggi (yakni melebihi 60 cm) terjadi secara berturut-turut pada 1, 2, 3 dan 4 Februari 2014. Pada hari-hari tersebut pasang tertinggi terjadi pagi hari yakni pada jam 09:00-10:00 WIB sementara surut terendah terjadi 6 jam kemudian di sore hari. Pada saat yang sama perairan ini juga memiliki surut terendah yang terhitung besar ( lebih besar dari 35 cm di bawah muka air laut rata-rata) terhitung semenjak 2 Februari 2014. Selisih elevasi yang cukup tinggi dan surut terendah yang besar inilah nampaknya menjadi penyebab pada peristiwa surut laut yang berulang-ulang di siang hari pada pesisir Karangantu dan sebaliknya di malam hari situasi kembali ‘normal’. Dengan dasar teluk yang relatif dangkal, maka saat surut terendah terjadi permukaan air laut akan berkesan turun cukup drastis

Gambar 5. Grafik prediksi elevasi air laut saat surut terendah di Karangantu sepanjang 22 Januari 2014 hingga 4 Februari 2014 berdasarkan data prediksi dari P3SDLP. Sumber: Sudibyo, 2014 dengan data P3SDLP.

Gambar 5. Grafik prediksi elevasi air laut saat surut terendah di Karangantu sepanjang 22 Januari 2014 hingga 4 Februari 2014 berdasarkan data prediksi dari P3SDLP. Sumber: Sudibyo, 2014 dengan data P3SDLP.

Apakah prediksi pasang surut laut di pesisir Karangantu dari P3SDLP itu sesuai dengan kenyataan? Hal itu sesungguhnya bisa dicek dengan tide gauge yang ada di PPP Karangantu (jika ada) maupun pelabuhan-pelabuhan didekatnya, misalnya pelabuhan PLTU Suralaya ataupun pelabuhan penyeberangan Merak yang berada di tepi Selat Sunda. Namun sulit untuk mendapatkan data-datanya karena tide gauge-nya belum realtime. Pemantauan dinamika permukaan air laut yang terdekat dengan Karangantu dan realtime hanya dijumpai pada pelampung (buoy) nomor 56001 yang terletak di tengah-tengah Samudera Hindia sejauh sekitar 200 km di selatan pesisir Jawa Tengah. Berdasarkan grafik dinamika permukaan air laut yang direkam pelampung ini seperti diperoleh dari Pusat Data Buoy Indonesia (PDBI), maka selisih elevasi pasang tertinggi dan surut terendah di sini mencapai 2 meter, melebihi apa yang terjadi Karangantu. Sifat pasang-surut di samudera terbuka yang dalam (kedalaman di lokasi buoy ini adalah 5,6 km) jelas berbeda dibanding perairan dangkal berteluk seperti pesisir Karangantu. Namun begitu pola kenaikan dan penurunan permukaan lautnya relatif serupa.

Gambar 6. Perbandingan antara nilai prediksi elevasi air laut Karangantu (bintik hitam) dengan rekaman dinamika elevasi air laut di Samudera Hindia oleh pelampung 56001 (kurva biru-merah). Perhatikan bahwa meskipun puncak-puncak pasang di Karangantu terjadi beberapa jam lebih awal dibanding Samudera Hindia, namun pola naik-turunnya elevasi permukaan laut di kedua tempat cenderung sama. Sumber: Sudibyo, 2014 dengan data dari PDBI BPPT dan P3SDLP.

Gambar 6. Perbandingan antara nilai prediksi elevasi air laut Karangantu (bintik hitam) dengan rekaman dinamika elevasi air laut di Samudera Hindia oleh pelampung 56001 (kurva biru-merah). Perhatikan bahwa meskipun puncak-puncak pasang di Karangantu terjadi beberapa jam lebih awal dibanding Samudera Hindia, namun pola naik-turunnya elevasi permukaan laut di kedua tempat cenderung sama. Sumber: Sudibyo, 2014 dengan data dari PDBI BPPT dan P3SDLP.

Dengan demikian, di atas kertas penyebab peristiwa surut laut di pesisir Karangantu dan sekitarnya lebih merupakan pasang surut biasa saja. Hanya memang kombinasi posisi Bulan, Matahari dan rotasi Bumi serta karakteristik garis pantai dan kedalaman dasar teluk di pesisir Karangantu-lah yang membuat kejadian surut terendah di awal Februari 2014 ini lebih besar ketimbang sebelumnya. Sebagai tambahan, tim BMKG (Badan Meteorologi Klimatologi dan Geofisika) Serang pun berpendapat bahwa penyebabnya juga pasang surut, meski ada faktor-faktor lain yang belum sepenuhnya dipahami.

Referensi:

Banten News, 5 Februari 2014.

Metro TV, 5 Februari 2014.

P3SDLP. 2014. Prediksi Elevasi Air Laut, PPP Karangantu. Puslitbang Sumberdaya Laut dan pesisir, Kementerian kelautan dan Perikanan.

The Burning Ash of Katimbang, Kisah Panas dalam Letusan Dahsyat Krakatau 130 Tahun Silam

Agustus selalu menjadi bulan kalender yang penuh arti bagi Indonesia. Setiap tanggal 17 Agustus, negeri ini memperingati saat-saat kelahirannya yang membahana dan pada tahun 2013 ini telah diperingati untuk ke-68 kalinya. Dan berselang sepuluh hari kemudian, negeri ini kembali “memperingati” salah satu momen tergelap sepanjang sejarahnya. Ya. Pada 27 Agustus 2013 tepat 130 tahun silam Gunung Krakatau di selat Sunda yang kini menjadi bagian administratif propinsi Lampung, mencapai puncak letusannya dalam sebuah drama letusan gunung berapi dengan kedahsyatan yang tak tertanggungkan lagi bahkan untuk ukuran manusia modern.

Gambar 1. Awal letusan pulau Krakatau yang bersumber dari puncak Perbuwatan pada Mei 1883, diabadikan dalam foto hitam putih. Sumber : Simkin & Fiske, 1983.

Gambar 1. Awal letusan pulau Krakatau yang bersumber dari puncak Perbuwatan pada Mei 1883, diabadikan dalam foto hitam putih. Sumber : Simkin & Fiske, 1983.

Ada suasana penyambutan nan jauh berbeda bagi kedua hari istimewa itu. Bila 17 Agustus menjadi momen yang senantiasa dinanti dan dirayakan dengan penuh kegembiraan baik lewat rangkaian pesta rakyat di berbagai tempat maupun upacara formal dengan petatah-petitih para pejabat, sebaliknya 27 Agustus hanya terdengar sayup-sayup dikenang segelintir kalangan. Mungkin inilah imbas gayahidup manusia modern khususnya di Indonesia yang enggan mengingat apalagi mengenang bencana menyakitkan dan peristiwa kematian. Padahal di balik bencana selalu tersembunyi sejumlah pelajaran penting yang sangat berharga bagi kualitas kehidupan manusia masa depan masa depan, khususnya tatkala berhadapan kembali dengan petaka sejenis.

Gunung Krakatau menjadi gunung berapi terpopuler bagi manusia Indonesia khususnya lewat kedahsyatan letusannya pada 1883. Dalam persepsi umum, inilah amukan gunung berapi terdahsyat dalam era sejarah, meski sejatinya tidak demikian. Hanya 68 tahun sebelum Krakatau melepaskan amarahnya, Gunung Tambora di pulau Sumbawa (kini bagian propinsi Nusa Tenggara Barat) meletus demikian dahsyatnya dengan puncaknya pada 11 April 1815. Ia memuntahkan magma panas membara dalam jumlah delapan kali lipat lebih banyak ketimbang Krakatau 1883. Energi letusannya pun demikian besar. Kumpulkan seluruh hululedak nuklir di dua negara adidaya pada puncak Perang Dingin (yakni AS dan Uni Soviet) lalu ledakkan di satu secara bersama-sama, maka energi ledakan itu masih belum melampaui kedahsyatan Letusan Tambora 1815.

Namun, mari abaikan Tambora untuk sementara dan kita fokuskan perhatian ke Krakatau. Sebelum Agustus 1883, gunung berapi ini hanyalah sebentuk pulau kecil biasa saja yang berjajar dengan sejumlah pulau-pulau lainnya di Selat Sunda seperti pulau Sertung (Verlaten), Rakata Kecil (Lang), Sebesi dan Sebuku. Pulau Krakatau berbentuk lonjong sepanjang sekitar 7 kilometer dan berhias tiga gundukan mirip bukit. Berderet dari tenggara ke baratlaut, ketiganya adalah puncak Rakata (798 meter dpl), Danan (500 meter dpl) dan Perbuwatan (130 meter dpl). Ketiga gundukan ini sejatinya merupakan gunung berapi bawah laut, yang tumbuh pasca letusan dahsyat 1200 (tahun pastinya belum diketahui) di kawasan ini. Dalam perkembangannya ketiga gunung berapi bawah laut itu kian membesar sehingga akhirnya menyembul di atas Selat Sunda dan lama-kelamaan tubuh ketiganya pun menyatu menjadi pulau Krakatau. Pulau kecil ini sempat dihuni manusia dengan kehidupan agrarisnya, lengkap dengan persawahan dan perkebunan. Angkatan Laut kolonial Hindia Belanda bahkan sempat membangun galangan kapal di sini. Namun di awal abad ke-19 saat Indonesia beralih ke penjajahan Inggris yang singkat, pulau Krakatau ditinggalkan tanpa alasan yang jelas. Sehingga lambat laun semuanya berubah menjadi hutan belantara yang indah dan permai laksana surga. Namun pada Agustus 1883, surga nan indah itu sontak berubah menjadi neraka panas membara saat ketiga puncak di pulau Krakatau meletus dengan dahsyatnya.

Gambar 2. Topografi pulau Krakatau hanya dua minggu sebelum lenyap dalam puncak letusan dahsyatnya, berdasarkan data-data pengukuran Kapten Firzenaar pada 11 Agustus 1883. Sumber: Carayannis, 2010.

Gambar 2. Topografi pulau Krakatau hanya dua minggu sebelum lenyap dalam puncak letusan dahsyatnya, berdasarkan data-data pengukuran Kapten Firzenaar pada 11 Agustus 1883. Sumber: Carayannis, 2010.

Letusan Krakatau 1883 amat populer sebagai bencana alam terdahsyat bagi Indonesia pasca Letusan Tambora 1815 dan bertahan hingga lebih dari seabad kemudian. Rekornya baru ditumbangkan pada akhir 2004 saat bencana gempa akbar Sumatra-Andaman 26 Desember 2004 meletup. Korban jiwa yang direnggut letusan dahsyat ini mencapai 36.417 orang, berdasarkan catatan resmi pemerintah kolonial Hindia Belanda. Namun para ilmuwan terkini memperkirakan korban sesungguhnya jauh lebih besar, mungkin bahkan mencapai angka 120.000 orang. Hampir seluruhnya meregang nyawa oleh terjangan tsunami luar biasa yang terbentuk sebagai akibat ambruknya pulau Krakatau diiringi pembentukan kaldera besar dan injeksi material vulkanik dalam jumlah sangat besar ke dasar Selat Sunda. Tetapi di antara korban-korban itu, ada sekitar 1.000 jiwa yang tewas terpapar material vulkanik muntahan Krakatau. Seluruhnya berasal dari Katimbang yang kini dikenal sebagai Katibung, berdekatan dengan Kalianda dan menjadi bagian dari propinsi Lampung. Inilah kisah panas yang memilukan, yang betul-betul panas karena melibatkan suhu yang demikian tinggi dan membakar.

Katimbang

Katimbang adalah satu kawasan pesisir Selat Sunda di kaki barat Gunung Rajabasa yang dikenal subur sehingga menjadi kawasan perkebunan produktif. Ia berjarak sekitar 37 kilometer di sebelah utara pulau Krakatau. Katimbang bukanlah pemukiman terdekat ke gunung berapi kolosal tersebut, sebab masih ada pulau Sebuku yang berpenduduk sekitar 3.000 orang dan hanya sejauh 20 kilometer dari pulau Krakatau. Perkebunan Katimbang berada di bawah kendali kontrolir Willem Beijerinck, seorang Belanda muda belia yang dibebani menangani administrasi daerah kolonial nan liar dengan gaji kecil. Meski kurang berpengalaman dan kerap dipandang sebelah mata oleh sesama kontrolir lainnya, Willem Beijerinck dan istrinya Johanna Beijerinck dikenal rajin menulis. Catatan-catatan merekalah yang menjadi saksi bisu berharga tentang apa yang terjadi di Katimbang, baik sebelum maupun selama letusan dahsyat Krakatau 1883.

Pada Februari 1883 telah terjadi getaran demi getaran yang terasa di Katimbang. Getaran itu berintensitas kecil dan tak menyebabkan kerusakan maupun kepanikan, namun berlangsung secara kontinu dalam jangka waktu tertentu untuk kemudian berhenti. Kini ilmu kegunungapian modern mengetahui bahwa pada saat itu magma segar dalam jumlah sangat besar dan sangat kental sedang mulai mengalir dari dapur magma Krakatau nun jauh di kedalaman puluhan kilometer menuju ke kantung magma yang lokasinya tepat di bawah gunung.

Gambar 3. Posisi pulau Krakatau di tengah Selat Sunda terhadap daratan Sumatra dan Jawa serta titik-titik yang melaporkan dampak letusan Krakatau di lokasi masing-masing, yakni Katimbang serta tiga kapal uap (Charles Baal, Loudon dan WH Besse). Nampak jejak-jejak aliran 'awan panas bawah air' (submarine pyroclastic flow deposit) dan bagian awan panas yang menjalar di atas permukaan air Selat Sunda (pyroclastic current travelling over the sea). Dengan posisinya yang paling dekat ke Krakatau, Katimbang menerima bagian awan panas yang masih pekat dan bersuhu tinggi. Sumber: Pratomo, 2006.

Gambar 3. Posisi pulau Krakatau di tengah Selat Sunda terhadap daratan Sumatra dan Jawa serta titik-titik yang melaporkan dampak letusan Krakatau di lokasi masing-masing, yakni Katimbang serta tiga kapal uap (Charles Baal, Loudon dan WH Besse). Nampak jejak-jejak aliran ‘awan panas bawah air’ (submarine pyroclastic flow deposit) dan bagian awan panas yang menjalar di atas permukaan air Selat Sunda (pyroclastic current travelling over the sea). Dengan posisinya yang paling dekat ke Krakatau, Katimbang menerima bagian awan panas yang masih pekat dan bersuhu tinggi. Sumber: Pratomo, 2006.

Berselang tiga bulan kemudian, tepatnya 9 Mei 1883, Beijerinck kembali mencatat terjadinya getaran demi getaran di Katimbang, namun kali ini terasa cukup keras dan mulai menakutkan. Tak ada yang tahu apa penyebabnya. Tapi kini kita tahu, saat itu magma segar telah mencapai kantung magma dan sedang berjuang keras meretakkan lapisan-lapisan bebatuan yang menghalangi jalannya menuju ke puncak. Getaran demi getaran itu berpuncak pada terjadinya letusan pertama, yang menyembur dari puncak Perbuwatan pada 20 Mei 1883. Kepulan debu vulkanik pekat dan gas menyembur hingga setinggi 11 kilometer. Para nelayan di Selat Sunda, juga para penebang kayu untuk bahan pembuatan kapal di Katimbang menjadi saksinya, pun kapten Lindeman bersama awak kapal uap Loudon. Dan hanya berselang beberapa saat kemudian hempasan tekanan udara yang kuat menerjang Katimbang, tanpa dampak apapun. Hempasan serupa pun dirasakan instrumen barometer stasiun cuaca Dr. Vanderstock di Batavia, 160 kilometer dari Krakatau. Namun tak ada dampak berarti yang diderita Katimbang pasca letusan pertama ini. Pulau Krakatau kemudian terus aktif menyemburkan gas dan debu vulkaniknya selama empat bulan kemudian.

Katimbang baru benar-benar merasakan kedahsyatan letusan Krakatau pada Minggu sore 26 Agustus 1883. Pada pukul 17:07 setempat, pulau Krakatau memasuki babak sangat mematikan dimulai dengan gelegar dentuman sangat keras dari arah puncak Perbuwatan yang terdengar ke segala arah, bahkan hingga sejauh 5.000 kilometer dari gunung. Suara ini tercatat sebagai suara terkeras yang pernah terjadi di Bumi sampai sekarang. Debu vulkanik pekat dan gas disemburkan hingga setinggi 27 kilometer. Sebagian pulau Krakatau khususnya di sekitar puncak Perbuwatan hancur hingga hanya tersisa kawah raksasa bergaris tengah sekitar 1 kilometer. Gelombang tekanan udara (gelombang kejut) yang dilepaskannya yang dikombinasikan dengan rangkaian letusan demi letusan bawah laut berikutnya menghasilkan gelombang tinggi yang berderap sebagai tsunami. Maka hanya dalam sejam kemudian, kala Matahari beranjak terbenam, Katimbang menerima terjangan tsunaminya. Akibatnya rumah-rumah penduduk dan fasilitas apa saja di dekat garis pantai hancur. Mujur bahwa sebagian besar penduduk Katimbang telah mengungsi lebih dulu menuju hutan lebat di lereng bawah Gunung Rajabasa yang lokasinya lebih tinggi atas perintah Willem Beijerinck sebelum terlalap tsunami. Namun tak satupun yang tahu bahwa hanya dalam beberapa belas jam kemudian mereka bakal berhadapan dengan situasi yang paling menggidikkan dalam letusan Krakatau.

Setelah melewati malam yang riuh dan membara oleh rentetan letusan demi letusan Krakatau yang saling susul-menyusul setiap 10 menit sekali layaknya tembakan mitraliur, pada Senin 27 Agustus 1883 gunung ini mencapai puncak letusannya. Letusan teramat dahsyat, yang menghamburkan lebih dari 15 kilometer kubik rempah vulkanik yang mencakup lebih dari 75 % total magma yang dimuntahkan Letusan Krakatau 1883, terjadi pada pukul 10:02 setempat. Tsunami dahsyat pun terbentuk, dengan tinggi gelombang hingga seratusan meter di awal mulanya dan segera berderap ke segenap sisi Selat Sunda dengan kecepatan kurang dari 100 km/jam. Sembari menjalar, ia juga mengaduk-aduk isi perairan laut sempit itu hingga bongkah-bongkah karang tercabut dari akarnya. Baik pesisir Jawa maupun Sumatera segera direndam terjangan tsunami dengan ketinggian antara 15 hingga 33 meter.

Tsunami tidak berdampak bagi penduduk Katimbang yang telah mengungsi ke hutan. Air laut tak sanggup menjangkau mereka. Namun petaka dalam bentuk lain segera datang menerpa. Mendadak angin kencang menerjang diikuti hempasan debu-debu sehalus bedak yang teramat panas yang segera melumat tempat pengungsian di lereng gunung itu. Dampaknya cukup mematikan. Dari 3.000 warga Katimbang yang turut mengungsi di hutan belantara itu, sekitar 1.000 orang diantaranya langsung tewas meregang nyawa dengan tubuh terpanggang bara atau menghilang di bawah timbunan debu. Sementara sisanya tak luput dari lara, penuh dengan luka-luka bakar di sekujur tubuh dalam berbagai tingkatan. Termasuk Willem dan Johanna Beijerinck, yang beruntung sedang berada di dalam salah satu rumah pengungsian sehingga terpaan debu panas yang mengenainya relatif sedikit. Namun keduanya kehilangan salah satu bayi mereka dalam petaka tersebut.

Letusan Mendatar

Gambar 4. Detik-detik letusan lateral Gunung St Helena pada 18 Mei 1980 hanya dalam tempo 31 detik semenjak pukul 08:32:47,0 hingga pukul 08:33:18,8 setempat. Nampak hanya sedikit kepulan gas dan debu vulkanik yang membumbung vertikal, sebagian besar diletuskan mendatar ke arah kanan dari bidang foto ini. Sumber: USGS, 1980.

Gambar 4. Detik-detik letusan lateral Gunung St Helena pada 18 Mei 1980 hanya dalam tempo 31 detik semenjak pukul 08:32:47,0 hingga pukul 08:33:18,8 setempat. Nampak hanya sedikit kepulan gas dan debu vulkanik yang membumbung vertikal, sebagian besar diletuskan mendatar ke arah kanan dari bidang foto ini. Sumber: USGS, 1980.

Catatan-catatan dari Willem dan Johanna Beijerinck segera diterbitkan selepas tahun 1883. Hempasan debu panas membara yang menyelimuti Katimbang pun sontak mendunia dan populer sebagai peristiwa the Burning Ash of Katimbang. Peristiwa ini sempat membikin pening para ahli kebumian dan kegunungapian masa itu. Betapa tidak. Tak ada keraguan bahwa debu-debu superpanas sehalus bedak yang menerpa Katimbang merupakan bagian dari awan panas, yakni material vulkanik produk letusan dalam bentuk pasir dan debu bercampur gas vulkanik yang semuanya bersuhu tinggi. Seluruh materi tersebut meluncur bergulung-gulung hingga berbentuk mirip awan dan dari sinilah kata ‘awan panas’ itu bermula. Penyelidikan geolog RDM Verbeek dan dilanjutkan oleh geolog-geolog lainnya memperlihatkan awan panas Krakatau tak hanya menghantam Katimbang, namun bahkan meluncur hingga 10 kilometer lebih dari garis pantai. Jangkauan awan panas mencapai 48 kilometer dan sepenuhnya terpusat ke arah utara.

Apakah peristiwa ini adalah salah satu ciri khas letusan gunung berapi yang sangat dahsyat? Nampaknya tidak juga. Dalam Letusan Pinatubo 1991 (Filipina) yang memuntahkan magma hingga lebih dari separuh Letusan Krakatau 1883, awan panasnya tak sempat melampaui jarak 16 kilometer dari kawah. Jelas ada penyebab lain yang membuat awan panas Krakatau melejit demikian jauh.

Pencerahan pertama datang hampir seabad kemudian, yakni kala Gunung St Helena di negara bagian Washington (AS) meletus dahsyat di 18 Mei 1980 meski skala kedahsyatannya masih 20 kali lebih lemah dibanding Krakatau 1883. Yang istimewa Letusan St Helena 1980 diawali dengan runtuhnya lereng utara gunung sehingga magma yang telah tersimpan di tubuh gunung tak tersembur secara vertikal melainkan horizontal (mendatar) dan menuju ke satu sisi saja, yakni ke arah utara. Inilah fenomena letusan mendatar (lateral) yang telah diteorikan semenjak berpuluh-puluh tahun sebelumnya namun baru pada saat itulah menjumpai bukti langsungnya.

Gambar 5. Kiri : bagaimana awan panas letusan Soufriere Hills mulai mengalir menuju ke Laut Karibia dalam letusannya di tahun 1995 dan kemudian terus menjalar menyeberangi laut hingga sejauh 1 kilometer lebih. Kanan: delta vulkanik seluas sekitar 100 hektar yang terbentuk pasca hempasan awan panas. Sumber: USGS, 1995.

Gambar 5. Kiri : bagaimana awan panas letusan Soufriere Hills mulai mengalir menuju ke Laut Karibia dalam letusannya di tahun 1995 dan kemudian terus menjalar menyeberangi laut hingga sejauh 1 kilometer lebih. Kanan: delta vulkanik seluas sekitar 100 hektar yang terbentuk pasca hempasan awan panas. Sumber: USGS, 1995.

Sementara pencerahan kedua datang pada saat Gunung Soufriere Hills di pulau Montserrat (teritori Inggris seberang lautan) di perairan Karibia meletus pada 18 Juli 1995. Letusan besar tersebut cukup fenomenal karena mengubur ibukota Plymouth hingga bermeter-meter di bawah timbunan batu dan pasir vulkanik. Pulau Montserrat merupakan pulau gunung berapi dan Soufriere Hills adalah salah satu puncaknya. Sehingga tatkala meletus, Soufriere Hills pun mengalirkan awan panasnya hingga melampaui batas garis pantai. Dan tatkala hempasan awan panas Soufriere Hills memasuki Laut Karibia, terjadilah peristiwa yang tak biasa. Awan panas itu ternyata terus menjalar seakan-akan berjalan di atas permukaan air laut dan baru berhenti setelah melampaui jarak lebih dari 1 kilometer terhadap garis pantai. Pasca peristiwa ini terbentuk daratan baru yang mirip delta (sehingga disebut delta vulkanik) seluas sekitar 100 hektar.

Bagaimana awan panas bisa menjalar di permukaan air laut? Jawabannya ditemukan dalam eksperimen Armin Freundt (2001) di Geomar Research Center for Marine Geosciences di kota Kiel (Jerman). Saat awan panas yang semula menjalar di darat mulai memasuki laut, terjadilah letupan uap yang diikuti terpisahnya butir-butir pasir dan batuan (yang massa jenisnya lebih besar dibanding air) dengan butir-butir debu halus (yang massa jenisnya lebih kecil dari air). Bagian awan panas dengan massa jenis lebih besar terbenam ke dasar laut namun tetap melaju sebagai ‘awan panas bawah air’ yang kemudian berubah menjadi arus turbidit. Pergerakan ini menciptakan olakan besar pada kolom air laut di atasnya, yang kemudian menjalar sebagai tsunami. Sementara bagian awan panas yang massa jenisnya lebih kecil tetap melaju di atas permukaan air laut sampai jarak tertentu sebelum kehilangan seluruh kecepatannya dan kemudian membumbung tinggi ke udara sebagai abu vulkanik.

Pelajaran Ke Depan

Gambar 6. Skema perilaku awan panas bila memasuki air/laut, berdasarkan eksperimen Freundt (2001). Saat awan panas yang menjalar dari lereng gunung mulai memasuki laut, terjadi letusan uap di pesisir (littoral explosion) dan awan panas terbagi menjadi dua bagian. Bagian yang lebih berat menjadi awan panas bawah air (pyroclastic flow underwater) sementara yang lebih ringan tetap mengapung di permukaan sembari menjalar dengan kecepatan tinggi (pyroclastic flow over water). Sumber: Freundt, 2003.

Gambar 6. Skema perilaku awan panas bila memasuki air/laut, berdasarkan eksperimen Freundt (2001). Saat awan panas yang menjalar dari lereng gunung mulai memasuki laut, terjadi letusan uap di pesisir (littoral explosion) dan awan panas terbagi menjadi dua bagian. Bagian yang lebih berat menjadi awan panas bawah air (pyroclastic flow underwater) sementara yang lebih ringan tetap mengapung di permukaan sembari menjalar dengan kecepatan tinggi (pyroclastic flow over water). Sumber: Freundt, 2003.

Berdasarkan pencerahan-pencerahan tersebut, kini kita bisa menyibak lebih jauh ke dalam misteri yang selama ini menyelubungi peristiwa the Burning Ash of Katimbang. Rupanya kejadian tersebut merupakan hasil kombinasi letusan lateral Krakatau dengan penjalaran awan panas di permukaan Selat Sunda. Saat pulau Krakatau mulai memasuki fase penghancuran seiring letusan demi letusan teramat dahsyatnya, struktur lereng gunung kian lama kian melemah.

Pada satu titik, lereng gunung telah demikian lemahnya sehingga magma segar yang sedang mencari jalan keluar didalamnya mendadak berjumpa dengan udara segar. Terjadilah letusan lateral yang mengarah ke utara. Di awal mula kecepatan kolom gas dan material vulkanik yang dihempaskan itu mungkin melampaui kecepatan suara, namun lama kelamaan kian melambat. Setelah meluncur sejauh 15 hingga 20 kilometer dari gunung, kolom material vulkanik yang telah melambat lalu bertransformasi menjadi awan panas. Sebagian awan panas tenggelam ke dasar Selat Sunda (yang kedalamannya antara 20 hingga 60 meter) dan berubah menjadi ‘awan panas bawah air’ yang melaju sejauh beberapa kilometer kemudian. Sementara sebagian lainnya tetap mengapung di atas permukaan Selat Sunda, masih bersuhu tinggi (hingga sekitar 500 derajat Celcius) dan tetap menderu dengan kecepatan yang tergolong tinggi untuk ukuran manusia (mungkin sekitar 100 km/jam). Inilah yang melejit hingga sekitar 28 kilometer kemudian dan menciptakan neraka di Katimbang.

Satu pelajaran berharga yang bisa diambil dari peristiwa the Burning Ash of Katimbang adalah, jangan mengabaikan gunung berapi laut meskipun jaraknya tergolong ‘jauh’ untuk ukuran kita. Sebab tatkala meletus, apalagi jika letusannya berjenis letusan katastrofik yang menghancurkan tubuh gunung, potensi terbentuknya tsunami mematikan dan peristiwa mirip the Burning Ash of Katimbang adalah sangat besar. Inilah pelajaran berharga yang diambil dunia ilmu kegunungapian moder dari Letusan Krakatau 1883.

Sumber :

Johanna Beijerinck, 1884 dalam Discovery Channel. 2010. Krakatoa, Survivor Diary: Johanna Beijerinck,

Pratomo. 2006. Klasifikasi Gunung Api Indonesia, Studi Kasus dari Beberapa Letusan Gunung Api dalam Sejarah. Jurnal Geologi Indonesia vol. 1 no. 4 Desember 2006 halaman 209-227.

Freundt. 2003. Entrance of Hot Pyroclastic Flows into the Sea, Experimental Observations. Bulletin of Vocanology no. 65 (2003) pp 144-164.

Sutawidjaja. 2006. Pertumbuhan Gunung Api Anak Krakatau Setelah Letusan Katastrofik 1883. Jurnal Geologi Indonesia vol. 1 no. 3 September 2006 halaman 143-153.