Bila Jupiter Dihantam Komet dan Asteroid

Gerrit Kernbauer mengira ia akan menjalani Rabu 16 Maret 2016 Tarikh Umum (TU) malam seperti halnya malam-malam sebelumnya. Kala itu ia telah menyiapkan kembali senjata utamanya, teleskop reflektor (pemantul) becermin obyektif 20 sentimeter dan telah dirangkai kamera CCD (charged couple device). Sasarannya mengamati langit malam kala kondisi memungkinkan. Rutinitas semacam ini sudah dijalani teknisi CAD (computer aided design) di industri logam Austria dengan penuh semangat dalam 17 tahun terakhir. Di sisi bayang-bayang Pegunungan Alpin di kota kecil Modling, pinggiran metropolitan Wina, Kernbauer menggelar teleskopnya di halaman belakang kediamannya. Sepanjang malam itu teleskopnya mengarah ke beragam sudut langit. Terutama ke Jupiter, salah satu permata di langit malam yang juga planet terbesar se-tata surya kita. Teleskopnya bekerja secara otomatis. Sementara kameranya langsung terhubung dengan komputer jinjing (laptop), memungkinkan merekam dan menyimpan hasilnya dalam format video secara otomatis pula.

Gambar 1. Jupiter, diabadikan pada 27 Oktober 2014 TU dinihari. Nampak dua garis kehitaman di cakram planet ini, yang adalah pita ekuatorial sisi utara (kiri bawah) dan pita ekuatorial sisi selatan (kanan atas).Lewat teleskop dan wantariksa, umat manusia telah mengungkap sedikitnya tujuh peristiwa tumbukan komet / asteroid di Jupiter, hingga 2016 TU ini. Sumber: Sudibyo, 2014.

Gambar 1. Jupiter, diabadikan pada 27 Oktober 2014 TU dinihari. Nampak dua garis kehitaman di cakram planet ini, yang adalah pita ekuatorial sisi utara (kiri bawah) dan pita ekuatorial sisi selatan (kanan atas).Lewat teleskop dan wantariksa, umat manusia telah mengungkap sedikitnya tujuh peristiwa tumbukan komet / asteroid di Jupiter, hingga 2016 TU ini. Sumber: Sudibyo, 2014.

Kernbauer sama sekali tak pernah menduga bahwa malam itu berbeda. Malam yang akan membuatnya dikenal seantero dunia. Semula ia sedikit kecewa kala mengecek hasil rekamannya dan mendapati kualitasnya tidaklah sebagus harapannya. Hari-hari pun berlalu sebelum Kernbauer memutuskan mulai menganalisis, lebih dari seminggu kemudian. Didapati bahwa pada 17 Maret 2016 TU pukul 07:18:33 WIB teleskopnya merekam hal yang nampaknya tak biasa di Jupiter. Ada kelipan cahaya sangat singkat yang menyeruak di pinggir timur cakram planet itu. Singkat, hanya 2 hingga 3 detik saja, namun sudah cukup membuatnya terhenyak. Sontak ingatannya terbayang pada peristiwa menggemparkan di pertengahan 1994 TU, yakni saat Jupiter dihantam oleh keping-keping komet Shoemaker-Levy 9.

Namun sebelumnya Kernbauer harus memastikan lebih dahulu bahwa kelipan cahaya yang direkamnya benar-benar berasal dari Jupiter. Bukan akibat fenomena di udara di atas Modling, ataupun gangguan pada teleskop/kamera Kernbauer sendiri. Segera ia memublikasikan video rekamannya ke media sosial. Gayung bersambut. Tak butuh waktu lama sebelum rekaman sejenis mengapung ke jagat maya. Adalah John McKeon, astronom amatir dari Swords di pinggiran metropolitan Dublin (Irlandia) yang juga mengamati Jupiter pada saat yang sama, yang mendukung Kernbauer. Lewat teleskop 28 sentimeter-nya, McKeon merekam kelipan yang sama pula. Dengan dua pengamat berbeda, yang terpisahkan oleh jarak lebih dari 1.600 kilometer satu dengan yang lain, maka jelas sudah kelipan tersebut adalah fenomena yang benar-benar terjadi di Jupiter. Mengacu pada enam fenomena sejenis yang pernah terjadi (dan dianalisis) sebelumnya, dapat dipastikan pula bahwa kelipan cahaya tersebut diakibatkan oleh kepingan asteroid/komet yang jatuh menghantam Jupiter!

Gambar 2. Kelipan cahaya dari tumbukan 17 Maret 2016 di Jupiter dalam citra yang diekstrak dari rekaman observasi Gerrit Kernbauer (Austria) dan John McKeon (Irlandia) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra yang cukup hati-hati untuk meningkatkan kualitasnya. Sumber: Sky & Telescope, 2016.

Gambar 2. Kelipan cahaya dari tumbukan 17 Maret 2016 di Jupiter dalam citra yang diekstrak dari rekaman observasi Gerrit Kernbauer (Austria) dan John McKeon (Irlandia) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra yang cukup hati-hati untuk meningkatkan kualitasnya. Sumber: Sky & Telescope, 2016.

Shoemaker-Levy 9

Sebagai planet terbesar dan termassif se-tata surya kita, Jupiter memiliki wajah ganda dalam hal perilakunya terhadap benda-benda langit mini anggota tata surya yang dikenal sebagai komet dan asteroid. Di satu sisi ia berperan menjadi penggembala kawanan asteroid atau komet, yang membuat mereka stabil di kawasannya masing-masing. Inilah yang membentuk Sabuk Asteroid Utama di antara orbit Mars-Jupiter dan Kelompok Asteroid Trojan Jupiter yang berbagi orbit dengan planet raksasa tersebut. Namun di sisi lain, Jupiter juga kerap iseng mengganggu orbit-orbit komet dan asteroid. Astronomi telah lama mengenal kelompok komet keluarga Jupiter, yakni komet-komet periodik dengan periode pendek (kurang dari 20 tahun). Ciri khasnya adalah senantiasa berada di bawah telapak kaki penjajahan gravitasi Jupiter sepanjang hayatnya. Terhadap komet-komet ini, Jupiter akan mengubah orbitnya secara perlahan-lahan hingga mereka mati akibat kehabisan substansi mudah menguap di parasnya, atau lenyap keluar dari tata surya kita atau bahkan lenyap dari tata surya akibat bertumbukan dengan Jupiter maupun planet lain. Hal yang sama juga berlaku untuk asteroid yang diganggu Jupiter, minus kehilangan substansi mudah menguapnya (yang tak dimiliki asteroid).

Peristiwa tumbukan yang paling terkenal sekaligus melegenda di masa astronomi modern adalah tumbukan komet Shoemaker-Levy 9 (D/1993 F2) dengan Jupiter. Peristiwa tersebut berlangsung pada 16 hingga 22 Juli 1994 TU. Komet ini ditemukan pada 23 Maret 1993 TU malam oleh pasangan suami-istri Eugene Shoemaker dan Carolyn Shoemaker serta koleganya David Levy di Observatorium Gunung Palomar, sehingga mendapatkan namanya sebagai komet Shoemaker-Levy 9. Sedari awal komet ini telah memperlihatkan pemandangan, berbentuk untaian mirip mutiara.

Gambar 3. Jupiter dan keping-keping inti komet Shoemaker-Levy 9, dua bulan sebelum tumbukan terjadi berdasarkan bidikan teleskop antariksa Hubble. Jupiter diabadikan pada 18 Mei 1994 TU sementara komet Shoemaker-Levy 9 sehari sebelumnya. Hasil kedua bidikan yang berbeda lantas digabung menjadi satu untuk keperluan ilustrasi. Sumber; NASA, 1994.

Gambar 3. Jupiter dan keping-keping inti komet Shoemaker-Levy 9, dua bulan sebelum tumbukan terjadi berdasarkan bidikan teleskop antariksa Hubble. Jupiter diabadikan pada 18 Mei 1994 TU sementara komet Shoemaker-Levy 9 sehari sebelumnya. Hasil kedua bidikan yang berbeda lantas digabung menjadi satu untuk keperluan ilustrasi. Sumber; NASA, 1994.

Observasi lebih lanjut dan analisisnya menghasilkan kesimpulan mengejutkan. Komet Shoemaker-Levy 9 menampakkan bentuk mirip mutiaranya karena inti kometnya telah terpecah-belah menjadi sedikitnya 21 kepingan besar. Lebih mengejutkan lagi, komet Shoemaker-Levy 9 tidaklah mengedari Matahari layaknya komet-komet lainnya, melainkan mengelilingi Jupiter hingga berperan sebagai satelit alaminya. Ia beredar mengelilingi Jupiter dengan periode 2 tahun dalam orbit sangat lonjong. Titik apojove-nya, yakni titik terjauh dari pusat Jupiter, adalah 49 juta kilometer atau masih lebih jauh ketimbang satelit alamiah terjauh Jupiter yakni S/2000 J2 yang memiliki apojove 37 juta kilometer. Sebaliknya titik perijove-nya, yakni titik terdekat dari pusat Jupiter, hanya sebesar 45.000 kilometer saja atau jauh lebih kecil ketimbang jari-jari Jupiter (yakni 70.000 kilometer). Dengan orbit seperti ini kesimpulan mengejutkan berikutnya pun muncul: komet Shoemaker-Levy 9 akan menumbuk Jupiter kala hendak menjangkau titik perijove orbitnya.

Analisis memperlihatkan bahwa 21 kepingan inti komet Shoemaker-Levy 9, yang dimensinya bervariasi antara sekecil 45 meter hingga sebesar 1.270 meter, sebelumnya telah melintas di titik perijove-nya yang sejarak hanya 110.000 kilometer dari pusat Jupiter atau hanya 40.000 kilometer dari parasnya. Momen itu terjadi pada 7 Juli 1992 TU. Dengan jarak sedekat itu, gaya tidal Jupiter berdampak menghancurkan sehingga inti komet pun terpecah-belah ke dalam 21 keping besar. Analisis lebih lanjut juga memperlihatkan komet Shoemaker-Levy 9 mungkin telah mengedari Jupiter sejak 1970 TU. Yakni tatkala ia terperangkap gravitasi Jupiter akibat melintas terlalu dekat hingga dipaksa untuk berubah total menjadi mengedari Jupiter. Semula komet ini mengelilingi Matahari sebagai komet keluarga Jupiter. Sejak 1970 TU itu komet Shoemaker-Levy 9 telah menyelesaikan 9 putaran mengelilingi Jupiter dalam orbit yang ganjil, yakni sangat lonjong, berinklinasi sangat besar dan sangat takstabil. Sebelum terpecah-belah, inti komet Shoemaker-Levy 9 mungkin berdiameter 1,4 kilometer.

Gambar 4. Saat-saat salah satu keping inti komet Shoemaker-Levy 9 menumbuk Jupiter, menghasilkan bola api tumbukan yang sangat terang dalam spektrum cahaya inframerah (kiri). Titik terang di di sisi kanan cakram Jupiter adalah Io, salah satu satelit alamiahnya. Sumber; Max Planck Instutite for Astronomy, 1994.

Gambar 4. Saat-saat salah satu keping inti komet Shoemaker-Levy 9 menumbuk Jupiter, menghasilkan bola api tumbukan yang sangat terang dalam spektrum cahaya inframerah (kiri). Titik terang di di sisi kanan cakram Jupiter adalah Io, salah satu satelit alamiahnya. Sumber; Max Planck Instutite for Astronomy, 1994.

Tumbukan akhirnya terjadi pula sesuai dengan yang diprakirakan sebelumnya, yakni pada 16 hingga 22 Juli 1994 TU. Peristiwa ini menyedot perhatian yang teramat besar. Inilah untuk pertama kalinya umat manusia menyaksikan langsung kedahsyatan tubrukan kosmik kala benda langit mini (dalam hal ini komet) menumbuk sebuah planet dengan kedahsyatan yang tak pernah terbayangkan sebelumnya. Bumi mengalami kejadian serupa 65 juta tahun silam, yang melumat habis kehidupan kawanan dinosaurus hingga punah beserta 75 % kelimpahan makhluk hidup lainnya dalam momen yang dikenal sebagai Peristiwa Kapur-Tersier. Keping-keping komet Shoemaker-Levy 9 berjatuhan ke Jupiter dengan kecepatan 60 km/detik (216.000 km/jam). Total energi kinetik yang dilepaskannya mencapai 300 ribu megaton TNT, atau setara dengan kedahsyatan Letusan Toba Muda 74.000 tahun silam. Tumbukan menghasilkan bercak-bercak hitam mirip mata bengkak, terbesar selebar 12.000 kilometer atau seukuran Bumi kita! Bercak-bercak ini bertahan hingga berbulan-bulan kemudian. Sementara efek dari tumbukan itu sendiri bahkan masih bisa diamati dari Bumi hingga 15 tahun kemudian dalam bentuk melimpahnya kadar air di atmosfer belahan Jupiter bagian selatan.

Gambar 5. Jejak tumbukan komet Shoemaker-Levy 9 di Jupiter. Kiri: bercak-bercak hitam jejak tumbukan sejumlah kepingan inti komet (dilabeli dengan huruf-huruf tertentu) di hemisfer selatan Jupiter. Diabadikan teleskop antariksa Hubble dalam spektrum sinar ultraungu (panjang gelombang 2.550 Angstrom) pada 21 Juli 1994 TU. Kanan: distribusi kerapatan molekul air (per sentimeter persegi) di Jupiter pada 2009 TU, diabadikan dengan teleskop antariksa Herschel. Nampak konsentrasi molekul air di hemisfer selatan Jupiter, jejak yang masih tersisa dari peristiwa tumbukan dahsyat 15 tahun sebelumnya. Sumber: NASA, 1994 & ESA, 2009.

Gambar 5. Jejak tumbukan komet Shoemaker-Levy 9 di Jupiter. Kiri: bercak-bercak hitam jejak tumbukan sejumlah kepingan inti komet (dilabeli dengan huruf-huruf tertentu) di hemisfer selatan Jupiter. Diabadikan teleskop antariksa Hubble dalam spektrum sinar ultraungu (panjang gelombang 2.550 Angstrom) pada 21 Juli 1994 TU. Kanan: distribusi kerapatan molekul air (per sentimeter persegi) di Jupiter pada 2009 TU, diabadikan dengan teleskop antariksa Herschel. Nampak konsentrasi molekul air di hemisfer selatan Jupiter, jejak yang masih tersisa dari peristiwa tumbukan dahsyat 15 tahun sebelumnya. Sumber: NASA, 1994 & ESA, 2009.

Asteroid

Selain tumbukan komet Shoemaker-Levy 9 pada 1994 TU, Jupiter sesungguhnya telah teramati mengalami peristiwa tumbukan dengan benda langit mini hingga sedikitnya enam kali (terhitung sebelum 2016 TU). Peristiwa tumbukan pertama terjadi pada 5 Maret 1981 TU. Peristiwa itu sempat diindra wantariksa (wahana antariksa) Voyager 2 pasca melintas dekat Jupiter dalam perjalanannya mengarungi tata surya kita. Voyager 2 merekam kelipan redup, yang kemudian diidentifikasi sebagai meteor di Jupiter. Analisis memperlihatkan meteor tersebut semula adalah meteoroid yang mungkin berasal dari kepingan asteroid ataupun komet mati. Meteoroid ini kecil saja, diameternya hanya 44 sentimeter (apabila dari komet mati) dengan massa hanya 11 kilogram. Saat memasuki atmosfer Jupiter, ia melepaskan energi kinetik 5.000 kilogram TNT atau setara bom konvensional di Bumi.

Gambar 6. Dinamisnya bercak hitam jejak Tumbukan Wesley dalam 10 hari pertama, diabadikan teleskop IRTF NASA di Hawaii (Amerika Serikat) dan teleskop Carlos Sanchez di Canary (Spanyol) secara terpisah pada spektrum sinar inframerah dekat. Nampak perubahan bentuk bercak dari hari ke hari yang disebabkan oleh sirkulasi dalam atmosfer Jupiter. Sumber: Sanchez-Lavega dkk, 2011.

Gambar 6. Dinamisnya bercak hitam jejak Tumbukan Wesley dalam 10 hari pertama, diabadikan teleskop IRTF NASA di Hawaii (Amerika Serikat) dan teleskop Carlos Sanchez di Canary (Spanyol) secara terpisah pada spektrum sinar inframerah dekat. Nampak perubahan bentuk bercak dari hari ke hari yang disebabkan oleh sirkulasi dalam atmosfer Jupiter. Sumber: Sanchez-Lavega dkk, 2011.

Peristiwa kedua adalah tumbukan komet Shoemaker-Levy 9. Sementara peristiwa ketiga adalah kejadian 19 Juli 2009 TU, yang tak kalah menyita perhatian. Ia dikenal sebagai Tumbukan Wesley karena pertama kali dilaporkan Anthony Wesley, pemrogram komputer yang juga astronom amatir dari Murrumbateman (Australia). Selagi mengamati Jupiter dengan teleskop refraktor (pembias) berlensa obyektif 38 sentimeter yang terhubung kamera, Wesley menyadari hadirnya bercak hitam di hemisfer selatan Jupiter pada pukul 20:30 WIB. Observasi lebih lanjut melalui Teleskop Keck dan IRTF (infra red telescope facility) NASA, keduanya bertempat di puncak Gunung Manua Kea di Kepulauan Hawaii (Amerika Serikat), memastikan eksistensi bercak hitam yang dilaporkan Wesley. Bercak tersebut mengandung tanda-tanda yang serupa dengan bercak-bercak produk tumbukan komet Shoemaker-Levy 9 tepat 15 tahun sebelumnya. Sehingga jelas berasal dari peristiwa tumbukan.

Observasi lebih lanjut dan analisisnya memperlihatkan Tumbukan Wesley disebabkan oleh sekeping asteroid, terlihat dari jejak kaya silikat, silika dan hidrokarbon yang tertinggal dalam bercak serta minimnya karbon monoksida. Asteroid tersebut berukuran 500 meter dengan massa 65 juta ton. Ia jatuh menumbuk sisi jauh Jupiter, yakni hemisfer Jupiter yang sedang mengalami malam hari. Kejadian itu berlangsung dalam rentang waktu antara pukul 16:00 hingga 18:00 WIB. Wesley menjadi sosok pertama yang beruntung menyaksikan jejak tumbukannya. Tumbukan melepaskan energi luar biasa besar, yakni 28.000 megaton TNT atau hampir menyamai energi Letusan Tambora 1815. Tumbukan menciptakan bercak hitam seluas 190 juta kilometer persegi, atau seukuran Samudera Pasifik di Bumi. Area tersebut terpanaskan hingga 3° sampai 4° Celcius di atas suhu normalnya. Tumbukan Wesley sekaligus menjungkirbalikkan anggapan semula yang telah berakar kuat, dimana peluang guna mendeteksi peristiwa tumbukan di Jupiter berbasis teleskop kecil hingga medium (yang banyak digunakan kalangan astronom amatir) dianggap mustahil.

Wesley jugalah yang pertama kali mendeteksi adanya peristiwa tumbukan keempat. Yakni kala ia merekam kelipan cahaya singkat di dekat pinggir barat cakram Jupiter pada 4 Juni 2010 TU pukul 03:31 WIB. Wesley menggunakan radas (instrumen) yang sama persis dengan saat ia mendeteksi peristiwa tumbukan setahun sebelumnya. Namun berbeda dengan peristiwa Tumbukan Wesley, kali ini kelipan cahaya singkat itu tak diikuti munculnya fenomena bercak hitam atau sejenisnya. Mujurnya tak hanya Wesley yang merekam peristiwa ini. Seorang Christopher Go, astronom amatir dari Cebu (Filipina), pun mengamati Jupiter pada saat yang sama. Go bersenjatakan teleskop 28 sentimeter yang dilengkapi kamera. Rekamannya juga memperlihatkan kelipan cahaya singkat, pada waktu yang persis sama dengan hasil rekaman Wesley.

Gambar 7. Kelipan cahaya dari tumbukan 4 Juni 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Anthony Wesley (Australia) dan Christopher Go (Filipina) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Gambar 7. Kelipan cahaya dari tumbukan 4 Juni 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Anthony Wesley (Australia) dan Christopher Go (Filipina) pada saat yang sama. Kedua citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Berbekal dua rekaman video yang berbeda ini, maka kejadian tumbukan di Jupiter dapat dipastikan. Kelipan cahaya singkat tersebut adalah meteor-terang (fireball) di Jupiter. Semula ia merupakan meteoroid yang berasal dari kepingan asteroid ataupun komet mati. Diameter meteoroidnya adalah 18,2 meter (apabila dari komet mati), atau setara dengan meteoroid penyebab Peristiwa Chelyabinsk 2013. Dengan massa 790 ton, meteoroid ini melepaskan energi 340 kiloton TNT saat memasuki atmosfer Jupiter sebagai meteor-terang. Sukses Wesley dan Go memperlihatkan bahwa kini manusia memiliki peluang untuk mendeteksi tumbukan benda langit di Jupiter meski meteoroidnya relatif kecil.

Peristiwa tumbukan kelima juga terjadi pada 2010 TU, tepatnya pada 21 Agustus 2010 TU pukul 01:21 WIB. Kali ini giliran para astronom amatir Jepang yang tampil ke panggung. Awalnya Masayuki Takichawa dari Kumamoto yang melaporkan terdeteksinya kelipan cahaya singkat, pada posisi hampir di tengah cakram Jupiter, saat merekam planet itu dengan bersenjatakan teleskop refraktor berlensa obyektifnya 15 sentimeter dan terhubung kamera. Berjam-jam kemudian, konfirmasi datang dari dua astronom amatir berbeda, yakni dari Kazuo Aoki dari Tokyo dan Masayuki Ichimaru dari Toyama. Aoki dan Ichimaru masing-masing menggunakan teleskop refraktor berlensa obyektif berdiameter 23,5 sentimeter dan 12,5 sentimeter (!). Konfirmasi keempat datang dari Takanori Wakamatsu dari Arita. Dengan rekaman yang melimpah, kini dipahami bahwa peristiwa tersebut disebabkan oleh tumbukan meteoroid yang berasal dari kepingan asteroid ataupun komet mati. Diameternya sebesar 16,7 meter (apabila dari komet mati) dengan massa 608 ton. Saat masuk ke atmosfer Jupiter sebagai meteor-terang, ia melepaskan energi hingga 260 kiloton TNT atau 13 kali lebih dahsyat ketimbang letusan bom nuklir Hiroshima.

Gambar 8. Kelipan cahaya dari tumbukan 21 Agustus 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Masayuki Takichawa, Kazuo Aoki dan Masayuki Ichimaru (ketiganya dari Jepang). Ketiga citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Benda langit kecil di sisi kanan bawah citra Takichawa dan Aoki adalah Ganymede, satelit alamiah terbesar Jupiter. Sumber: Hueso dkk, 2013.

Gambar 8. Kelipan cahaya dari tumbukan 21 Agustus 2010 di Jupiter dalam citra yang diekstrak dari rekaman observasi Masayuki Takichawa, Kazuo Aoki dan Masayuki Ichimaru (ketiganya dari Jepang). Ketiga citra telah menjalani pemrosesan citra untuk meningkatkan kualitasnya. Benda langit kecil di sisi kanan bawah citra Takichawa dan Aoki adalah Ganymede, satelit alamiah terbesar Jupiter. Sumber: Hueso dkk, 2013.

Dan peristiwa yang terakhir, yakni peristiwa tumbukan keenam, terjadi pada 2012 TU. Tepatnya pada 10 September 2012 pukul 18:35 WIB. Kali ini astronom-astronom amatir Amerika Serikat yang kebagian peranan. Dan berbeda dengan lima peristiwa sebelumnya, peristiwa keenam ini menjadi momen teramatinya tumbukan di Jupiter secara langsung (lewat mata) tanpa rekaman video. Adalah Dan Peterson dari kota kecil Racine (negara bagian Wisconsin) yang berkesempatan menyaksikannya melalui teleskop reflektor becermin obyektif 25 sentimeter. Kelipan cahaya singkat itu berdurasi 2 detik dan terjadi di tepi timur cakram Jupiter. Kelipan tersebut memiliki magnitudo semu sekitar +6, hampir setara magnitudo semu Europa (salah satu satelit alamiah Jupiter) yang ada didekatnya. Berjam-jam kemudian, rekaman videonya diunggah seorang George Hall dari kota Dallas (negara bagian Texas). Dengan rekaman ini maka kejadian tersebut dapat dianalisis lebih lanjut. Peristiwa tumbukan keenam tersebut disebabkan oleh meteoroid berdiameter 19,3 meter (apabila dari komet mati) dengan massa 940 ton yang masuk ke atmosfer Jupiter. Ia melepaskan energi hingga 405 kiloton TNT atau 20 kali lebih dahsyat ketimbang letusan bom nuklir Hiroshima.

Gambar 9. Kelipan cahaya dari tumbukan 10 September 2012 di Jupiter dalam citra yang diekstrak dari rekaman observasi George Hall (Amerika Serikat). Citra ini telah menjalani pemrosesan untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Gambar 9. Kelipan cahaya dari tumbukan 10 September 2012 di Jupiter dalam citra yang diekstrak dari rekaman observasi George Hall (Amerika Serikat). Citra ini telah menjalani pemrosesan untuk meningkatkan kualitasnya. Sumber: Hueso dkk, 2013.

Kekerapan

Rekaman hasil observasi Kernbauer dan McKeon memang belum masuk ke meja analisis. Tetapi karena mengandung ciri-ciri yang mirip dengan sedikitnya tiga peristiwa tumbukan terakhir di Jupiter, maka diduga kuat apa yang terekam dalam observasi Kernbauer dan McKeon adalah sebuah peristiwa tumbukan. Jika benar demikian, maka inilah peristiwa tumbukan ketujuh yang pernah teramati umat manusia di Jupiter.

Bagaimana nasib meteoroid, baik yang berasal dari komet maupun asteroid, kala menumbuk Jupiter? Meski dimensinya jauh lebih besar ketimbang Bumi dan demikian halnya massanya, Jupiter bukanlah planet seperti Bumi. Ia tidak memiliki paras (permukaan) keras layaknya Bumi. Struktur Jupiter berlapis-lapis, terbentuk oleh gas yang sifatnya bergantung pada tekanannya. Apa yang selama ini disebut paras Jupiter sejatinya adalah titik-titik yang memiliki tekanan gas 1 bar (setara tekanan atmosfer di paras Bumi). Dari paras ini hingga ke kedalaman tertentu Jupiter masih tetap merupakan lapisan gas. Tekanan gas dalam lapisan gas ini kian membesar sering bertambahnya kedalaman. Saat tekanannya cukup besar, di bawah lapisan gas ini mulailah eksis lapisan Hidrogen cair. Lapisan ini terbentuk tatkala besarnya tekanan gas menyebabkan molekul-molekul gas dipaksa saling mendekat sangat rapat. Di bawah lapisan Hidrogen cair ini terdapat lapisan Hidrogen metalik cair. Pada lapisan ini tekanan gasnya telah demikian besar, yakni minimal 250.000 atmosfer. Tekanan sebesar itu membuat Hidrogen cair mulai menampakkan sifat-sifat ikatan logam, karena inti-inti atom Hidrogennya telah kehilangan ikatan terhadap elektron-elektronnya. Lapisan ini bersifat penghantar listrik. Barulah di bawah lapisan ini, tepatnya di pusat Jupiter, kita akan bersua dengan satu-satunya bagian Jupiter yang padat. Yakni inti Jupiter.

Gambar 10. Bagaimana nasib sebuah meteoroid kecil yang menerobos masuk ke dalam atmosfer Jupiter dalam simulasi Hueso dkk (2013). 0,1 detik setelah memasuki atmosfer, meteoroid berubah menjadi meteor-terang dengan bentuk yang masih utuh di elevasi sekitar 204 kilometer dpj sembari mulai menghamburkan sebagian massanya dan hempasan gelombang kejut ke atmosfer. 0,5 detik setelah memasuki atmosfer, meteor-terang mulai memipih di elevasi sekitar 175 kilometer dpj. Kuantitas hamburan massa dan gelombang kejutnya kian meningkat. 0,75 detik setelah memasuki atmosfer, meteor-terang telah terfragmentasi demikian brutal di elevasi sekitar 160 kilometer dpj. 1,25 detik setelah memasuki atmosfer, meteor-terang telah teruapkan tak bersisa di elevasi sekitar 130 kilometer dpj. Hanya gelombang kejutnya yang masih menjalar. 1,6 detik setelah memasuki atmosfer, baik meteor-terang maupun gelombang kejutnya telah benar-benar menghilang di dalam atmosfer Jupiter. Sumber: Hueso dkk, 2013.

Gambar 10. Bagaimana nasib sebuah meteoroid kecil yang menerobos masuk ke dalam atmosfer Jupiter dalam simulasi Hueso dkk (2013). 0,1 detik setelah memasuki atmosfer, meteoroid berubah menjadi meteor-terang dengan bentuk yang masih utuh di elevasi sekitar 204 kilometer dpj sembari mulai menghamburkan sebagian massanya dan hempasan gelombang kejut ke atmosfer. 0,5 detik setelah memasuki atmosfer, meteor-terang mulai memipih di elevasi sekitar 175 kilometer dpj. Kuantitas hamburan massa dan gelombang kejutnya kian meningkat. 0,75 detik setelah memasuki atmosfer, meteor-terang telah terfragmentasi demikian brutal di elevasi sekitar 160 kilometer dpj. 1,25 detik setelah memasuki atmosfer, meteor-terang telah teruapkan tak bersisa di elevasi sekitar 130 kilometer dpj. Hanya gelombang kejutnya yang masih menjalar. 1,6 detik setelah memasuki atmosfer, baik meteor-terang maupun gelombang kejutnya telah benar-benar menghilang di dalam atmosfer Jupiter. Sumber: Hueso dkk, 2013.

Dengan dominasi gas di parasnya, bagaimana nasib sebuah meteoroid yang jatuh menumbuk Jupiter?

Pada dasarnya mirip dengan apa yang terjadi di Bumi. Saat sebuah meteoroid kecil, yakni yang diameternya kurang dari 20 meter, menerobos masuk atmosfer Jupiter maka simulasi Hueso dkk (2013) memperlihatkan ia akan mulai terpecah-belah (terfragmentasi) sejak elevasi sekitar 160 kilometer dpj (dari paras Jupiter). Fragmentasi itu kian brutal hingga mencapai puncaknya pada elevasi sekitar 120 kilometer dpj. Setiap pecahan lantas akan teruapkan oleh tekanan ram yang terbentuk. Pecahan terakhir akan sepenuhnya menghilang dalam rentang elevasi antara 100 hingga 80 kilometer dpj. Seluruh material meteoroid kecil lantas tercampur-baur dengan gas-gas dalam Jupiter. Pada meteoroid lebih besar atau bahkan raksasa, misalnya seperti dalam tumbukan komet Shoemaker-Levy 9, meteoroid menembus jauh lebih dalam lagi. Dan bahkan bisa mencapai paras Jupiter ataupun menembus lebih dalam lagi ke dalam lapisan gas. Namun tiadanya permukaan padat membuat hantaman meteroid raksasa pun tak meninggalkan jejak kawah. Hanya material meteoroidnya yang terdispersi ke dalam atmosfer atau lapisan gas untuk kemudian tersebar seiring dinamika atmosfer Jupiter.

Seberapa sering Jupiter menghadapi tumbukan meteoroid kecil? Menurut simulasi Hueso dkk, jika ukuran meteoroidnya ada di antara 5 hingga 20 meter dan bila menggunakan radas observasi astronomi amatir seperti saat ini, maka kekerapan tumbukan di Jupiter yang berpotensi untuk diamati adalah antara 12 hingga 60 kali per tahun. Sebanyak inilah jumlah kejadian tumbukan di Jupiter yang bisa disaksikan manusia, tentunya dalam kondisi ideal. Yakni kala langit benar-benar cerah dan gangguan polusi cahaya minimal.

Referensi :

Beatty. 2016. Another Impact on Jupiter? Sky & Telescope 29 March 2016, Observing News & Celestial Events.

Hueso dkk. 2013. Impact Flux on Jupiter, from Superbolides to Large Scale Collisions. Astronomy & Astrophysics vol. 560, no. A55 (2013), 14 pp.

Crawford. 1997. Comet Shoemaker-Levy 9 Fragment Size and Mass Estimates from Light Flux Observations. 28th Lunar and Planetary Science Conference, conference paper, p.267.

Cavalie dkk. 2013. Spatial Distribution of Water in the Stratosphere of Jupiter from Herschel HIFI and PACS Observations. Astronomy & Astrophysics vol. 553, no. A21 (2013), 16 pp.

Sanchez-Lavega dkk. 2011. Longterm Evolution of the Aerosol Debris Cloud Produced by the 2009 Impact of Jupiter. Icarus, vol. 214 no. 2 (August 2011), p 462-476.

Kupas-Hoax: Asteroid Besar Pemicu Kiamat Jatuh Sebentar Lagi?

Bangkok, Senin 7 September 2015 Tarikh Umum (TU) pagi. Denyut jantung kota metropolitan yang juga adalah ibukota Thailand itu mulai meninggi, layaknya hari-hari kerja biasanya di sebuah kota besar. Arus lalu lintas memadat dan kadang macet di jalan-jalan raya yang menjadi urat nadinya. Semua seakan berjalan seperti biasa. Terkecuali saat jarum jam tepat menunjuk pukul 08:40 setempat. Saat mendadak seberkas cahaya terang melesat dari timur ke barat, tepat di atas kota. Dengan langit kebiruan nan bersih nyaris tanpa tutupan awan, cahaya terang berwarna keputih-putihan itu amat jelas terlihat. Banyak orang menyaksikannya. Sejumlah mobil yang kebetulan dilengkapi kamera dasbor pun merekamnya. Hanya sejurus cahaya benderang itu nampak, berdetik kemudian ia kembali lenyap.

Peristiwa Senin pagi itu sontak menggegerkan Bangkok. Dan dalam beberapa jam kemudian peristiwa tersebut, yang lantas lebih dikenal sebagai Peristiwa Bangkok 2015, pun mendunia. Rekaman-rekaman kamera dasbor tentangnya segera menjadi viral. Spekulasi pun merebak. Apa yang sesungguhnya terjadi baru dipahami dalam berbelas jam kemudian. Diawali saat jejaring pengawasan penegakan larangan ujicoba nuklir global dalam segala matra yang bertajuk CTBTO (the Comprehensive nuclear Test Ban Treaty Organization) melansir temuannya. Peristiwa Bangkok 2015 terekam dalam jejaring mereka khususnya melalui radas (instrumen) mikrobarometer pada sedikitnya lima stasiun pemantau.

Gambar 1. Meteor-sangat terang pada Peristiwa Bangkok 2015, seperti terekam dalam kamera dasbor salah satu mobil yang sedang melaju ke utara di pinggiran kota Bangkok. Meteor-sangat terang ini kemungkinan besar berasal dari sebutir asteroid-tak-dikenal seukuran 3,7 meter yang memasuki atmosfer Bumi di atas Bangkok (Thailand) pada 7 September 2015 TU. Sumber Anonim, 2015.

Gambar 1. Meteor-sangat terang pada Peristiwa Bangkok 2015, seperti terekam dalam kamera dasbor salah satu mobil yang sedang melaju ke utara di pinggiran kota Bangkok. Meteor-sangat terang ini kemungkinan besar berasal dari sebutir asteroid-tak-dikenal seukuran 3,7 meter yang memasuki atmosfer Bumi di atas Bangkok (Thailand) pada 7 September 2015 TU. Sumber Anonim, 2015.

Radas mikrobarometer dalam CTBTO sejatinya ditujukan untuk mendeteksi aksi pelepasan energi tinggi yang menjadi salah satu ciri khas ledakan nuklir khususnya di matra atmosfer dengan cara mendeteksi gelombang infrasonik sebagai hasil transformasi dari gelombang kejut ledakan. Namun radas yang sama juga berkemampuan mendeteksi pelepasan energi tinggi dari sumber lain, misalnya dalam kejadian meteor-sangat terang (fireball) atau bahkan boloid (bolide). Dan lima stasiun CTBTO merekam penjalaran gelombang infrasonik yang konsisten dengan boloid dalam Peristiwa Bangkok 2015. Radas mikrobarometer terdekat yang mendeteksinya terletak di Pulau Cocos (Australia) di tengah-tengah Samudera Indonesia yang berjarak 2.900 kilometer dari Bangkok. Sedangkan mikrobarometer terjauh yang masih sanggup mengendusnya berada di Alaska (Amerika Serikat), yang berjarak 10.000 kilometer. Analisis terhadap gelombang-gelombang infrasonik ini memperlihatkan Peristiwa Bangkok 2015 melepaskan energi dalam perkiraan kasar antara 5 hingga 30 kiloton TNT.

Pasca CTBTO giliran badan antariksa Amerika Serikat (NASA) melansir temuannya melalui NASA Near Earth Object Program. Berbekal rekaman sensor optis satelit mata-mata rahasia milik Departemen Pertahanan Amerika Serikat, yang berbagi data astronomi untuk kepentingan sipil melalui NASA secara rutin pasca Peristiwa Chelyabinsk 2013, Peristiwa Bangkok dipastikan merupakan kejadian boloid. Sensor satelit mata-mata merekam pelepasan energi dalam spektrum cahaya tampak (visual) dengan pola menerus (‘zoo event‘) yang khas untuk kejadian meteor-sangat terang maupun boloid. Jadi berbeda dengan detonasi senjata nuklir atmosferik yang spektrumnya berpola diskret (dengan dua puncak). Boloid dalam Peristiwa Bangkok 2015 mengemisikan energi 1.798 Giga Joule dalam spektrum cahaya tampak. Pada saat itu obyek yang melepaskan energi tersebut terdeteksi melaju secepat 16 km/detik (57.600 km/jam).

Gambar 2. Posisi titik pelepasan energi meteor-sangat terang dalam Peristiwa Bangkok 2015 (lingkaran) berdasarkan rekaman gelombang infrasonik dari lima stasiun mikrobarometer yang berbeda dalam jejaring CTBTO. Analisis kasar terhadap data CTBTO memperlihatkan Peristiwa Bangkok 2015 melepaskan energi berkisar 5 hingga 30 kiloton TNT. Sumber: CTBTO, 2015.

Gambar 2. Posisi titik pelepasan energi meteor-sangat terang dalam Peristiwa Bangkok 2015 (lingkaran) berdasarkan rekaman gelombang infrasonik dari lima stasiun mikrobarometer yang berbeda dalam jejaring CTBTO. Analisis kasar terhadap data CTBTO memperlihatkan Peristiwa Bangkok 2015 melepaskan energi berkisar 5 hingga 30 kiloton TNT. Sumber: CTBTO, 2015.

Menggunakan rumus empiris dari Brown dkk (2002) maka diketahui Peristiwa Bangkok 2015 melepaskan energi 3,9 kiloton TNT. Pada dasarnya rekaman sensor satelit mata-mata menghasilkan akurasi jauh lebih tinggi ketimbang pembacaan radas mikrobarometer. Sehingga dapat dikatakan bahwa Peristiwa Bangkok 2015 melepaskan energi 3,9 kiloton TNT. Sejauh ini Peristiwa Bangkok 2015 adalah kejadian boloid paling energetik sepanjang tahun 2015 TU. Meski ia masih belum seberapa bila dibandingkan dengan Peristiwa Bone 2009 yang terjadi pada 8 Oktober 2009 TU di atas Kabupaten Bone, Sulawesi Selatan (Indonesia) dengan pelepasan energi 60 kiloton TNT. Apalagi bila dibandingkan dengan Peristiwa Chelyabinsk 2013 di sisi barat Pegunungan Ural (Russia) pada 13 Februari 2013 TU yang melepaskan energi 590 kiloton TNT. Sebagai pembanding, letusan bom nuklir Hiroshima di akhir Perang Dunia 2 melepaskan energi 20 kiloton TNT.

Gambar 3. Karakteristik rekaman satelit mata-mata akan pelepasan energi dalam peristiwa meteor-terang/sangat terang (zoo event) dibandingkan dengan ledakan nuklir dengan titik ledak di ketinggian atmosfer. Sumber: Weiss, 2012.

Gambar 3. Karakteristik rekaman satelit mata-mata akan pelepasan energi dalam peristiwa meteor-terang/sangat terang (zoo event) dibandingkan dengan ledakan nuklir dengan titik ledak di ketinggian atmosfer. Sumber: Weiss, 2012.

Berbekal data-data tersebut, simulasi sederhana menggunakan persamaan-persamaan matematis yang diakumulasikan Collins dkk (2005) memperlihatkan boloid itu semula adalah meteoroid yang berupa asteroid kecil. Dengan pelepasan energi maksimum di ketinggian 29 kilometer dpl, meteoroid itu tergolong padat dengan massa jenis sekitar 5 g/cc. Pada kecepatan 16 km/detik, maka massa minimum meteoroid adalah 130 ton. Jika ia berbentuk bola sempurna maka diameternya minimal 3,7 meter. Dianggap sudut antara lintasan meteoroid dengan paras bumi Bangkok adalah 45°, maka kala meteoroid itu memasuki atmosfer Bumi ia berubah menjadi boloid yang akan mencapai puncak kecerlangannya pada ketinggian sekitar 35 kilometer dpl. Selanjutnya ia bakal melepaskan hampir seluruh energi kinetiknya lewat mekanisme airburst (ledakan di udara) pada ketinggian 29 kilometer dpl. Meski nilai energi ini terkesan besar bagi manusia, karena setara kekuatan bom nuklir taktis atau setara seperlima bom nuklir Hiroshima, namun efek panas dan mekaniknya terlalu kecil untuk bisa menghasilkan kerusakan langsung di daratan Bangkok yang persis ada dibawahnya

Berselang setengah bulan kemudian, sebuah kejutan kecil kembali datang dari langit. Sebuah asteroid-tanpa-nama yang belum pernah diketahui sebelumnya melenggang begitu dekat dengan Bumi kita dalam perjalanannya mengelilingi sang Surya. Asteroid tersebut, yang diberi kode asteroid 2015 SK7, dua kali lipat lebih besar ketimbang asteroid-tanpa-nama yang menjadi penyebab Peristiwa Bangkok 2015. Yang mengejutkan, asteroid ini sempat melintas begitu dekat hingga hanya setinggi 20.260 kilometer dpl saja. Hal itu terjadi pada Rabu 23 September 2015 TU pukul 04:44 WIB di atas Samudera Indonesia di dekat Antartika. Sebagai pembanding, ketinggian orbit geostasioner/geosinkron bagi satelit-satelit komunikasi dan cuaca pada umumnya adalah 35.792 kilometer dpl. Yang lebih membuat kita terhenyak, umat manusia baru menyadari kehadiran asteroid 2015 SK7 ini dalam dua hari kemudian. Tepatnya kala sistem penyigi langit semi-otomatis Catalina Sky Survey merekamnya sebagai benda langit sangat redup dengan magnitudo semu +19,8.

Andaikata asteroid 2015 SK7 ini menerobos masuk ke dalam atmosfer Bumi seperti halnya asteroid-tanpa-nama penyebab Peristiwa Bangkok 2015, pemandangan menakjubkan bakal tercipta. Boloid bakal terbentuk dan pada puncaknya jauh lebih terang ketimbang boloid Peristiwa Bangkok 2015. Dengan diameter sekitar 7 meter maka massa asteroid 2015 SK7 berkisar antara 360 hingga 720 ton (dengan asumsi massa jenisnya 2 hingga 4 g/cc). Dan karena melaju secepat 16,8 km/detik (60.500 km/jam) maka energi kinetik yang bisa dilepaskannya berkisar antara 12 hingga 24 kiloton TNT. Atau tiga hingga enam kali lebih besar ketimbang Peristiwa Bangkok 2015. Namun seperti halnya kejadian di Bangkok, asteroid 2015 SK7 bakal keburu pecah berkeping-keping dan melepaskan seluruh energinya di ketinggian atmosfer. Titik pelepasan energi tersebut bakal berlokasi pada ketinggian antara 39 hingga 29 kilometer dpl. Sehingga efek panas dan mekaniknya pun terlalu kecil untuk bisa memproduksi kerusakan pada daratan dibawahnya.

Gambar 4. Peta proyeksi lintasan asteroid 2015 SK7 di paras Bumi, sejak 22 September 2015 TU 20:00 WIB hingga 23 September 2015 TU pukul 14:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Sedangkan lintasan dengan garis putus-putus menghubungkan proyeksi kedudukan asteroid per 10 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni hanya 20.260 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Gambar 4. Peta proyeksi lintasan asteroid 2015 SK7 di paras Bumi, sejak 22 September 2015 TU 20:00 WIB hingga 23 September 2015 TU pukul 14:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Sedangkan lintasan dengan garis putus-putus menghubungkan proyeksi kedudukan asteroid per 10 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni hanya 20.260 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Penyigi Langit

Di sisi lain, Peristiwa Bangkok 2015 dan melintas-sangat dekatnya asteroid 2015 SK7 menghadirkan sebersit tanya bagi sebagian kita. Ada apa dengan Bumi? Apalagi sejak awal tahun hingga puncaknya pada September 2015 TU kemarin, isu kiamat (lagi-lagi!) bergemuruh. Isu ini memang tak sederas isu Kiamat 2012 tempo hari, yang sempat demikian mengharu-biru dan bahkan dipercaya oleh tak kurang dari 20 % penduduk Indonesia menurut sebuah survey. Namun isu Kiamat September 2015 tetap menggamit perhatian sebagian kita. Isu tersebut memuncak terutama pada paruh kedua bulan September 2015 TU. Salah satunya pada tanggal 28 September 2015 TU, dimana terjadi peristiwa Gerhana Bulan Total yang diviralkan sebagai peristiwa saat Bulan menjadi memerah darah. Salah satu bagian dari isu Kiamat September 2015 itu adalah bakal ada asteroid raksasa yang jatuh menumbuk Bumi. Asteroid itu diklaim demikian besarnya hingga sama besarnya dengan Puerto Rico (Amerika Serikat). Atau hampir menyamai luas Pulau Bangka (Indonesia). Kalimat ‘sebesar Puerto Rico’ itu tak pelak menggamit kembali ingatan kita pada salah satu penggalan adegan film fiksi “Armageddon” besutan Hollywood tentang ‘asteroid sebesar Texas’ yang sedang menuju ke Bumi.

Bulan September 2015 TU telah berlalu. Dan tak ada asteroid raksasa yang jatuh ke Bumi. Tak ada pula bencana kosmik dalam skala luar biasa yang menerpa. Sebuah bencana alam dalam wujud gempa besar Illapel 2015 memang mendominasi paruh kedua September 2015. Gempa besar (magnitudo 8,3 SM) yang meletup di lepas pantai Chile pada 16 September 2015 TU itu lantas diikuti limburan tsunami yang menerpa sebagian pesisir Chile. Namun luar biasanya jumlah korban jiwa yang direnggutnya terhitung sangat kecil untuk ukuran bencana yang menghantam negara berkembang. Hanya 13 orang yang dinyatakan tewas dengan 6 orang lainnya masih dinyatakan hilang. Korban yang minimal dan di sisi lain sejuta penduduk kawasan pesisir sempat diungsikan, membuat banyak pihak mengacungkan jempol pada Chile. Negeri yang berhadapan langsung dengan salah satu zona megathrust (zona pembangkit gempa besar/akbar potensial) teraktif di Bumi itu dianggap sukses dalam memitigasi resiko gempa dan tsunami untuk saat ini.

Gambar 5. Peta proyeksi lintasan asteroid 2015 TC25 di paras Bumi pada 13 Oktober 2015 TU sejak pukul 06:00 hingga 24:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni 104.700 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Gambar 5. Peta proyeksi lintasan asteroid 2015 TC25 di paras Bumi pada 13 Oktober 2015 TU sejak pukul 06:00 hingga 24:00 WIB. Lintasan dengan garis takterputus menghubungkan titik-titik proyeksi kedudukan asteroid per 60 menit. Tanda (*) menunjukkan titik proyeksi kedudukan asteroid yang terdekat ke Bumi, yakni 104.700 kilometer dpl. Sumber Sudibyo, 2015 berbasis Starry Night Backyard 3.0 dengan data NASA Solar System Dynamics

Di atas itu semua alunan nada utama pertanyaannya masih bergaung: adakah asteroid berukuran besar (atau bahkan asteroid raksasa) yang siap menjatuhi Bumi dalam waktu dekat? Jawabannya adalah tidak. Sejauh ini tak ada asteroid besar/raksasa yang sedang menuju ke Bumi. Lebih spesifik lagi, sejauh ini tiada sebutir pun asteroid besar/raksasa yang orbitnya bersinggungan atau bahkan berpotongan dengan orbit Bumi.

Darimana jawaban tersebut diperoleh?

Uraiannya panjang. Pada masa sekarang ini astronomi telah mengembangkan sistem penyigi langit semi-otomatis yang bertujuan melacak benda-benda langit yang baru, dalam artian belum pernah terdeteksi sebelumnya sehingga belum terdapat dalam basisdata. Sistem semi-otomatik ini pada khususnya difokuskan guna melacak benda-benda langit seperti komet dan asteroid yang mungkin berada di dekat Bumi. Dalam sistem semacam ini, teleskop ‘menyapu’ (menyigi) langit secara rutin dari waktu ke waktu. Citra yang dihasilkannya lantas dianalisis secara semi-otomatis dengan sistem kecerdasan buatan, yang membandingkannya terhadap segenap asteroid/komet yang telah tercatat dalam basisdata. Apabila terdeteksi asteroid/komet baru, maka campurtangan manusia pun dperlukan untuk menganalisis dan memasukkan data asteroid/komet baru tersebut ke dalam basisdata. Dengan cara seperti ini maka asteroid/komet yang berpotensi melintas-dekat Bumi atau bahkan menuju ke Bumi dapat dideteksi lebih dini. Sistem penyigi langit semi-otomatik inilah yang kemudian menjadi sistem peringatan dini (early warning) bagi potensi bencana alam yang datang dari antariksa dalam rupa potensi peristiwa tumbukan benda langit.

Saat ini terdapat 14 sistem penyigi langit yang dioperasikan sejumlah negara. Selain program CSS (Catalina Sky Survey), Amerika Serikat juga mengoperasikan program LINEAR (Lincoln Near Earth Asteroids Research), Spacewatch, Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) dan WISE (Wide-field Infrared Survey Explorer). Negara-negara Eropa juga berpartisipasi. Baik atas nama Uni Eropa dengan EUNASO (European NEA Search Observatories) dan EURONEAR (European Near Earth Asteroid Research), maupun atas nama negara-negara tertentu. Misalnya Spanyol yang menggelar program TOTAS (Teide Observatory Tenerife Asteroid Survey) dan LSSS (La Sagra Sky Survey), Italia lewat CINEOS (Campo Imperatore Near Earth Object Survey) dan kolaborasi Italia-Jerman dalam program ADAS (Asiago DLR Asteroid Survey). Di Asia terdapat Cina yang mengoperasikan CNEOS/NEOST (China NEO Survey/NEO Survey Telescope) dan Jepang dengan JSGA (Japanese Space Guard Association). Dan di Amerika Selatan ada Brazil dengan IMPACTON. Kecuali WISE yang berpangkalan pada satelit, sisanya berbasiskan pada teleskop robotik di paras Bumi yang dilengkapi instrumen CCD sensitif, seperangkat pengolah citra, kecerdasan buatan dan seperangkat basis data yang memungkinkan mereka mendeteksi asteroid dekat Bumi yang baru secara semi-otomatis. Seluruh data pengamatan yang dihasilkan program-program tersebut ditabulasikan di institusi Minor Planet Center. Datanya bersifat terbuka sehingga bisa diakses oleh semua orang, lewat internet.

Selain mengakuisisi data-data asteroid/komet baru yang berkemungkinan melintas-dekat Bumi, astronomi juga telah mengklasifikasikan potensi bahayanya. Telah dikembangkan skala Torino, yakni pemeringkatan seriusnya resiko bahaya tumbukan benda langit (yang berhubungan dengan komet ataupun asteroid) tunggal yang mengombinasikan probabilitas statistik dan energi kinetik benda langit tersebut. Terdapat 11 peringkat dalam skala Torino, dengan peringkat terendah adalah skala 0 (nol) dan tertinggi 10 (sepuluh). Pada skala 0 Torino, asteroid/komet tersebut memiliki probabilitas sangat kecil untuk dapat menumbuk Bumi, atau berpeluang kecil untuk bisa memasuki atmosfer Bumi. Sebaliknya pada skala 10 Torino, asteroid/komet pasti akan menumbuk Bumi (probabilitas 100 %) dengan energi tumbukan begitu luar biasa besar sehingga bakal berdampak serius dalam skala global. Contoh kejadian dengan skala 0 Torino adalah Peristiwa Chelyabinsk 2013 silam. Dan peristiwa dengan skala 10 Torino adalah tumbukan asteroid 65 juta tahun silam yang membentuk Kawah raksasa Chicxulub dan memusnahkan 75 % kelimpahan makhluk hidup saat itu.

Gambar 6. Citra ikonik Peristiwa Chelyabinsk 2013, kala asteroid-tak-dikenal memulai tahap menuju Bumi dengan menembus atmosfer demikian jauh hingga menghasilkan kilatan cahaya yang lebih benderang ketimbang Matahari untuk sesaat. Peristiwa itu terjadi pada ketinggian 29,7 kilometer dpl. Garis putih lurus adalah awan debu lurus (train) produk khas boloid. Sumber: NASA APOD, 2013.

Tabel Resiko

Hingga 8 Oktober 2015 TU, kerja keras segenap sistem penyigi langit semi-otomatik di atas telah menemukan tak kurang dari 1.616 asteroid berpotensi bahaya atau PHA (Potentially Hazardous Asteroids). Asteroid berpotensi bahaya adalah kelompok asteroid dengan diameter minimal 100 meter dan memiliki konfigurasi orbit demikian rupa sehingga bisa melintas dalam jarak kurang dari 7,48 juta kilometer (19,5 kali lipat jarak rata-rata Bumi-Bulan). Dari 1.616 butir asteroid berpotensi bahaya itu, 154 butir diantaranya memiliki diameter lebih dari 1 kilometer. Yang terbesar adalah asteroid 4179 Toutatis, yang berbentuk lonjong dengan dimensi 4,75 x 2,4 kilometer. Namun dari seluruh asteroid berpotensi bahaya itu, tak satupun yang memiliki nilai skala Torino melebihi 0 Torino hingga 100 tahun ke depan.

Dan dari jumlah sebanyak itu, 576 asteroid diantaranya ditabulasikan tersendiri oleh NASA Near Earth Object Program dalam Sentry Risk Table. Inilah tabel dinamik yang secara otomatis memuat daftar asteroid-asteroid berpotensi bahaya yang memiliki nilai probabilitas menumbuk Bumi di atas nol untuk jangka waktu 100 tahun ke depan. Disebut tabel dinamik, karena asteroid yang terdaftar didalamnya bisa saja (di)-keluar-(kan) dari Sentry Risk Table khususnya saat terdapat data observasi tambahan yang secara akumulatif memperlihatkan probabilitas asteroid tersebut menumbuk Bumi turun menjadi nol.

Menariknya, dalam periode antara 2002 hingga 2015 TU, ternyata secara akumulatif tercatat ada 36 asteroid berpotensi bahaya yang menempati skala Torino bukan nol. Namun setelah observasi demi observasi dilakukan terhadap ke-36 asteroid tersebut, secara terpisah, analisis terhadap tambahan data tersebut menghasilkan perbaikan terhadap perkiraan masing-masing asteroid dengan akurasi lebih lagi. Dan dari orbit yang lebih akurat itu diketahui tak satupun yang bisa mempertahankan kedudukannya karena peluang untuk menumbuk Bumi sangat kecil. Sehingga seluruhnya kemudian diturunkan setingkat menjadi skala 0 Torino. Salah satu dari ke-36 asteroid tersebut adalah asteroid 99942 Apophis (2004 MN4). Ditemukan pada 19 Juni 2004 TU sebagai asteroid berdiameter 325 meter, ia sempat menghebohkan jagat pada penghujung tahun tersebut. Yakni tatkala NASA melansir asteroid ini memiliki probabilitas 1 banding 300 untuk menumbuk Bumi pada 13 April 2029 TU kelak. Maka asteroid Apophis pun ditempatkan ke dalam skala 2 Torino. Hanya beberapa jam kemudian, tambahan data observasi menghasilkan prediksi lebih mencemaskan, karena probabilitas tumbukan meningkat menjadi 1 banding 62. Apophis pun dinaikkan ke dalam skala 4 Torino. Segera Apophis menyedot perhatian besar dalam dunia astronomi. Observasi demi observasi pun dilakukan, termasuk dengan teleskop radar raksasa Arecibo yang demikian teliti. Sehingga diperoleh timbunan data yang menghasilkan probabilitas baru. Peluang tumbukan pada 2029 TU dieliminir.

Gambar 7. Tampilan Sentry Risk Table, tabel dinamik otomatik dari NASA Near Earth Object Program yang memuat daftar asteroid-asteroid berpotensi bahaya dengan nilai probabilitas menumbuk Bumi di atas nol untuk jangka waktu 100 tahun ke depan. Tabel tersebut dapat dilihat dengan meng-klik gambar ini. Sumber: NASA, 2015.

Gambar 7. Tampilan Sentry Risk Table, tabel dinamik otomatik dari NASA Near Earth Object Program yang memuat daftar asteroid-asteroid berpotensi bahaya dengan nilai probabilitas menumbuk Bumi di atas nol untuk jangka waktu 100 tahun ke depan. Tabel tersebut dapat dilihat dengan meng-klik gambar ini. Sumber: NASA, 2015.

Namun karena asteroid Apophis bakal berpotensi melintasi lubang-kunci gravitasi, yakni titik kritis dimana orbit asteroid bakal berubah dan menghasilkan berpotensi tumbukan ke depan, muncul peluang terjadinya tumbukan pada 13 April 2036 TU. Namun data-data yang terkumpul hingga Februari 2005 TU memperlihatkan probabilitas tumbukan 2036 sebesar 1 banding 13.000. Sehingga Apophis tetap menempati skala 1 Torino. Observasi yang terus berlangsung hingga 2013 TU pada akhirnya membuat asteroid Apophis diturunkan setingkat ke skala 0 Torino. sebab probabilitas terbaru tentang tumbukan 2036 telah menyusut demikian drastis hingga tinggal 7,07 banding 1.000.000.000. Pada saat itu Apophis bakal melintas-dekat Bumi dalam jarak terdekat 22,4 juta kilometer. Atau masih 58 kali lebih jauh ketimbang Bulan.

Tentu, sebagaimana bentuk teknologi lainnya sebagai produk inovasi insani, sistem penyigi langit semi-otomatik pun tidaklah sempurna. Sampai saat ini ia hanya berkemampuan menyigi bagian kecil langit saja. Ia juga tak sanggup mendeteksi asteroid yang elongasinya terhadap Matahari terlalu kecil, sehingga nampak terlalu dekat dengan Matahari. Maka jangan heran, meskipun sistem semacam ini sejatinya cukup sensitif untuk mendeteksi asteroid-asteroid kecil yang melintas-dekat Bumi dengan diameter kurang dari 10 meter, bahkan hingga 1 meter sekalipun dalam kasus deteksi asteroid 2011 CQ1 (melintas hanya setinggi 5.500 kilometer di atas Samudera Pasifik pada 4 Februari 2011 TU), namun ia tak sanggup mendeteksi asteroid-tak-dikenal yang menjadi penyebab Peristiwa Chelyabinsk 2013. Pun demikian halnya dengan asteroid-kecil-tak-dikenal yang bertanggung jawab pada Peristiwa Bangkok 2015. Tetapi di tengah keterbatasan itu, sistem penyigi langit juga telah mencetak sukses dalam mendeteksi sekurangnya dua buah asteroid sebelum mereka benar-benar jatuh ke Bumi. Yakni asteroid 2008 TC3 (diameter 4 meter) yang terdeteksi pada 6 Oktober 2008 TU dan jatuh menumbuk Bumi 19 jam kemudian. Serta asteroid 2014 AA (diameter 3 meter) yang ditemukan pada 1 Januari 2014 TU dan jatuh 21 jam kemudian.

Terlepas dari keterbatasan tersebut, sistem-sistem penyigi langit yang telah beroperasi telah memberikan gambaran besar terkait lingkungan sekitar Bumi kita. Dengan data yang ada hingga sejauh ini, dapat dikatakan bahwa meski banyak asteroid berukuran besar yang siap melintas-dekat Bumi kita telah ditemukan, namun tak satupun yang memiliki probabilitas untuk menubruk Bumi setidaknya hingga 100 tahun ke depan. Di sisi lain, dengan kemampuan sistem penyigi langit yang ada pada saat ini, maka andaikata terdapat sebuah asteroid besar (diameter lebih dari 100 meter) yang sedang melaju ke Bumi, ia bakal terdeteksi dalam kurun waktu cukup lama sebelum tanggal kejatuhannya. Dengan antariksa yang tak hanya dipelototi oleh satu negara dan bahkan juga menjadi bahan pelototan sehari-hari individu astronom amatir serta tumbukan benda langit dikategorikan sebagai bencana, informasi seperti ini takkan bisa disembunyikan.

Tidak Ada Asteroid Besar yang Sedang Menuju Bumi

Bahwa tumbukan benda langit berukuran besar bisa berujung pada bencana, hal itu tak diragukan lagi. Contoh terpopuler adalah musnahnya kawanan dinosaurus (khususnya dinosaurus non-burung) dan 75 % kelimpahan makhluk hidup sezaman akibat tumbukan asteroid raksasa yang membentuk kawah Chicxulub, 65 juta tahun silam. Namun pada saat ini dalam pandangan ilmu pengetahuan terkait dengan tingkat kepercayaan yang tinggi dapat dikatakan bahwa hingga kurun 100 tahun ke depan tidak ada asteroid dengan diameter melebihi 100 meter yang sedang mengarah ke Bumi.

Gambar 8. Kawah raksasa Chicxulub, terlihat sangat jelas dalam peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara. Inilah kawah yang dibentuk oleh tumbukan asteroid raksasa 65 juta tahun silam, peristiwa yang memusnahkan dinosaurus. Sumber Hildebrand dkk, 1990.

Dengan demikian dapat dikatakan bahwa “informasi” mengenai asteroid besar, apalagi sekelas asteroid-pemusnah-dinosaurus, yang siap menghantam Bumi dalam waktu dekat bisa dikategorikan sebagai kabar-bohong (hoax). Inilah salah satu jenis kabar-bohong yang kerap bermutasi alias digoreng ulang. Kabar-bohong dengan nada mirip telah muncul berkali-kali dalam dua dasawarsa terakhir. Misalnya pada 2003 TU tersiar kabar bahwa asteroid/komet raksasa bakal menjatuhi Bumi. Namun tahun itu pun terlewat tanpa bencana kosmik apapun. Lantas pada 2006 TU kembali tersiar isu asteroid/komet raksasa bakal menjatuhi Bumi. Tepatnya di akhir Mei 2006 TU dengan titik tumbukan disebut-sebut di Samudera Pasifik. Namun Mei 2006 TU pun berlalu tanpa peristiwa langit yang dimaksud. Bencana alam memang terjadi, tetapi dalam rupa Gempa Yogya 2006 (6,4 skala magnitudo) di Indonesia yang merenggut lebih dari 5.000 nyawa.

Bertahun kemudian, isu sejenis dalam bentuk lain kembali menghampiri dalam tajuk Kiamat 2012. Isu tentang benda langit seukuran planet yang sangat gelap, yang disebut Nibiru, bakal menghantam Bumi begitu mengharu-biru. Pun variannya dalam bentuk benda langit sejenis komet yang disebut komet Elenin, yang juga diisukan bakal menghantam Bumi. Dalam realitanya Nibiru itu sendiri tidak pernah ditemukan (karena memang tidak ada). Sebaliknya komet Elenin nyata adanya, namun faktanya jauh panggang dari api. Titik terdekat orbit komet ini terhadap Bumi masih berjarak 34,98 juta kilometer atau hampir 91 kali lipat lebih jauh ketimbang Bulan. Komet Elenin seharusnya akan lewat di titik ini pada 16 Oktober 2011 TU. Namun dua bulan sebelumnya, yakni pada Agustus 2011 TU, komet tersebut dihantam oleh partikel-partikel badai Matahari dengan sangat telak. Sehingga praktis remuk berkeping-keping menjadi bubuk dan praktis kehilangan identitasnya sebagai komet. Menghilangnya komet Elenin ditambah dengan fakta bahwa orbitnya tak berdekatan/memotong orbit Bumi membuat ramalan Kiamat 2012 pun terjungkirbalik.

Sebagai kabar-bohong yang cukup populer, kabar-bohong tentang asteroid/komet raksasa yang bakal menjatuhi Bumi dalam waktu sebentar lagi tentu akan terus berulang di masa depan. Bakal ada kalangan yang menggorengnya kembali, baik dalam versi utuh maupun yang bermutasi. Sepanjang tidak ada konfirmasi dari individu maupun institusi yang berkompeten penuh didalamnya, kabar-bohong seperti ini tak perlu dihiraukan.

Referensi :

Brown dkk. 2002. The Flux of Small Near-Earth Objects Colliding with the Earth. Nature, vol. 420, 21 Nov 2002, 294-296.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Weiss. 2012. The Vela Event of 1979. Conference of the Historical Dimensions of South Africa’s Nuclear Weapons Program, 10 Desember 2012.

Menemukan Chicxulub, di Balik Perburuan Kawah Pembunuh Dinosaurus

Tiap kali berbincang akan benda langit anggota tata surya yang berjuluk asteroid dan komet, di benak saya langsung terbayang sosok-sosok dinosaurus. Ya, pada kawanan hewan-hewan purba yang selama ini dipersepsikan berbadan besar dan tambun, meski sesungguhnya tidak seluruhnya demikian. Dinosaurus merajai seluruh benua selama ratusan juta tahun semenjak zaman Trias, tepatnya semenjak 231 juta tahun silam. Namun fosil-fosil mereka mendadak tak lagi dijumpai di lapisan-lapisan batuan yang berasal dari zaman Tersier awal, tepatnya mulai 65 juta tahun silam (atau dalam penelitian termutakhir, mulai 66 juta tahun silam). Dinosaurus tak menghilang sendirian. Dalam kurva kelimpahan genera makhluk hidup dari masa ke masa sepanjang 250 juta tahun terakhir yang disusun palentolog Jack Sepkoski dan David Raup yang dipublikasikan pada 1982 Tarikh Umum (TU) silam, jelas terlihat dinosaurus adalah bagian dari 76 % makhluk hidup sezaman yang mendadak menghilang. Selain dinosaurus, sejumlah anggota genera nanoplankton, tumbuhan darat, binatang laut dan darat tak bertulang belakang dan amfibi pun turut punah. Bedanya, mereka masih menyisakan sejumlah genera lainnya khususnya yang bertubuh kecil untuk bertahan hidup, sehingga tetap muncul dan bahkan berkembang pesat pada zaman geologi sesudahnya. Sementara sisanya beserta segenap dinosaurus, khususnya dinosaurus non burung, tak lagi dijumpai dalam kala dan zaman geologi sesudahnya.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Dinosaurus dan 76 % makhluk hidup sezaman itu menjadi korban dari peristiwa pemusnahan massal dalam skala global yang amat mencekik. Mulai dasawarsa 1980-an pencarian akan penyebab peristiwa dramatis tersebut mewarnai dunia ilmu pengetahuan yang terus berlanjut hingga ke abad ke-21 TU. Pencarian pun mengerucut pada dua kandidat. Yang pertama adalah dugaan peristiwa tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub (baca : chic-sa-lube) di sebagian Semenanjung Yucatan dan Teluk Meksiko (kini bagian dari Meksiko). Sementara kandidat kedua adalah dugaan letusan mahadahsyat gunung berapi areal yang memuntahkan magma basaltik dalam volume gigantis yang memproduksi Dataran Tinggi Dekan (kini bagian dari India). Keduanya terjadi pada rentang waktu hampir bersamaan dalam skala waktu geologi, yakni di perbatasan zaman Kapur dan Tersier sekitar 65 juta tahun silam. Sifat kedua kandidat itu sangat berbeda. Tumbukan pembentuk kawah Chicxulub berlangsung sangat singkat, hanya dalam waktu beberapa detik hingga beberapa jam saja. Sementara letusan gigantis Dataran Tinggi Dekan berlangsung dalam waktu hingga sejuta tahun

Setiap kandidat memiliki pendukungnya masing-masing. Namun hampir tiga dasawarsa kemudian, tepatnya pada tahun 2010 TU, terbentuk konsensus yang menyimpulkan tumbukan asteroid sebagai pembunuh dinosaurus dan pemusnah 76 % kelimpahan makhluk hidup sezaman. Setelah menganalisis seluruh literatur ilmiah terkait beserta segenap buktinya yang telah dihasilkan dalam dua dasawarsa terakhir, 41 ilmuwan prestisius dari berbagai disiplin ilmu seperti astronomi, kebumian dan geofisika menyepakati kesimpulan tersebut. Sebagai konsekuensinya, letusan gigantis Dataran Tinggi Dekan tak lagi dianggap sebagai penyebab peristiwa kepunahan massal 65 juta tahun silam. Meski mungkin berkontribusi dalam memperparah dampak lingkungan global akibat tumbukan asteroid raksasa tersebut.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Kawah raksasa Chicxulub adalah jejak paling jelas dari peristiwa tumbukan asteroid raksasa itu. Kawah tumbukan ini demikian akbar, berbentuk membulat dengan garis tengah tak kurang dari 170 kilometer. Namun ukuran sesungguhnya mungkin lebih besar lagi karena ada juga yang berpendapat terdapat tanda-tanda bahwa diameter kawah ini mencapai 300 kilometer. Kawah raksasa Chicxulub lahir kala asteroid raksasa bergaris tengah antara 5 hingga 15 kilometer jatuh menumbuk Bumi 65 juta tahun silam dalam peristiwa tumbukan benda langit. Tumbukan ini melepaskan energi kinetik yang sungguh luar biasa besar. Paling tidak 100 juta megaton energi dilepaskan, yang setara dengan peletusan 5 milyar bom nuklir Hiroshima secara serempak. Jika dibandingkan dengan energi letusan Gunung Toba 74.000 tahun silam, maka letusan gunung berapi terdahsyat di Bumi dalam 27 juta tahun terakhir itu hanyalah seper duaratus energi tumbukan asteroid raksasa ini. Apalagi jika dibandingkan dengan Peristiwa Chelyabinsk 2013 kemarin. Jelas sudah, inilah bencana alam terdahsyat dengan skala yang luar biasa !

Asteroid raksasa itu jatuh di perairan Teluk Meksiko purba yang adalah laut dangkal dengan kedalaman sekitar 150 meter. Maka megatsunami pun tercipta dan segera berderap mengarungi samudera. Gelombang setinggi ratusan meter menderu membanjiri pesisir-pesisir Amerika purba yang berhadapan. Bahkan di Eropa dan Afrika purba yang sudah cukup jauh dari lokasi tumbukan, tinggi megatsunami itu masih sekitar 100 meter kala tiba di pesisir.Namun bukan megatsunaminya yang menjadi masalah global yang sangat serius. Pembentukan kawah raksasa Chicxulub dibarengi semburan milyaran ton debu hingga jauh tinggi ke atmosfer. Pada saat yang sama, bongkah-bongkah batuan produk tumbukan yang terlontar ke angkasa sebagian berjatuhan lagi ke Bumi menjadi meteor dalam jumlah luar biasa besar. Udara pun terpanaskan hebat hingga kebakaran hutan spontan pun terjadilah dimana-mana bersamaan dengan badai api. Sebagai hasilnya milyaran ton jelaga pun terhembus ke udara. Selain debu dan jelaga, milyaran ton aerosol sulfat pun terlepas. Sulfat ini berasal dari gas belerang (sulfur dioksida), yang terbebaskan saat asteroid raksasa menumbuk dasar Teluk Meksiko yang dipenuhi endapan gipsum. Gas Belerang yang terproduksi segera bertemu uap air di atmosfer menjadi aerosol sulfat.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Ketiganya membumbung tinggi hingga memasuki lapisan stratosfer dan terdistribusikan ke segala arah. Karena berada di lapisan stratosfer, mereka tak bisa terlarut dan turun bersama air hujan. Hanya gravitasi yang mampu menurunkannya kembali ke permukaan Bumi. Namun dengan ukuran butir-butir debu, jelaga dan aerosol sulfat yang kecil, butuh waktu bertahun-tahun bagi gravitasi untuk bekerja mengendapkannya. Sepanjang waktu itu milyaran ton debu halus, jelaga dan aerosol sulfat terus melayang-layang dalam lapisan stratosfer. Tak sekedar melayang, mereka berkoalisi membentuk lapisan tabir surya alamiah khas produk tumbukan. Aerosol sulfat merupakan penyerap sinar Matahari yang efektif. Sementara debu dan jelaga menjadi pemantul sinar Matahari yang tak kalah efektifnya. Kehadiran ketiganya dalam jumlah luar biasa besar sebagai tabir surya alamiah di lapisan stratosfer menghalangi pancaran sinar Matahari yang seharusnya tiba di paras Bumi. Selain diserap, tabir surya tersebut juga memantulkan kembali sejumlah sinar Matahari ke angkasa, yang membuat albedo Bumi meningkat. Kombinasi kedua efek tersebut membuat intensitas sinar Matahari yang diterima di daratan dan lautan merosot demikian dramatis. Sehingga Bumi menjadi remang-remang gulita. Simulasi menunjukkan bahkan di siang bolong sekalipun situasinya masih lebih gelap ketimbang malam berhias Bulan purnama di hari yang normal.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Akibatnya sungguh buruk. Selain membuat suhu rata-rata paras Bumi anjlok dramatis dan jumlah penguapan pun berkurang dramatis dengan segala implikasinya ke sistem iklim dan cuaca Bumi, minimnya sinar Matahari juga memaksa tumbuh-tumbuhan darat dan fitoplankton di lautan berhenti berfotosintesis. Pelan namun pasti produsen makanan itu pun mati. Imbasnya segera merambat ke rantai makanan dan jaring-jaring makanan di segenap penjuru. Hewan-hewan yang menjadi konsumen, baik konsumen tingkat 1, 2 maupun 3 segera menyusul bergelimpangan akibat kelaparan. Dapat dikatakan segenap makhluk hidup yang bobotnya lebih dari 20 kilogram tewas bertumbangan. Hanya hewan-hewan kecil dan tumbuh-tumbuhan perintis saja yang sanggup bertahan.

Gravitasi dan Magnetik

Tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub mendorong kehidupan di Bumi memasuki saat-saat terpedihnya. Di era kontemporer, khususnya semenjak dasawarsa 1990-an, kengerian akan peristiwa ini mulai mengetuk pintu kesadaran umat manusia akan Bumi yang tidaklah steril dari hantaman komet dan asteroid, sebagaimana yang juga dialami planet-planet lainnya. Wajah Bumi pun pernah diwarnai kawah-kawah raksasa produk tumbukan, meski perjalanan waktu membuatnya dipahat erosi intensif atau bahkan terkubur di bawah ketebalan sedimen. Mata dunia semakin terbuka setelah menyaksikan untuk pertama kalinya bagaimana tumbukan benda langit bekerja, di planet lain. Selama tujuh hari berturut-turut semenjak 16 hingga 22 Juli 1994 TU, dunia menyaksikan bagaimana 21 fragmen komet Shoemaker-Levy 9 berjatuhan ke planet Jupiter. Secara akumulatif energi yang dilepaskannya pun mencapai ratusan juta megaton TNT, sebanding dengan peristiwa tumbukan asteroid raksasa 65 juta tahun silam. Kini asteroid dan komet pun dipandang dalam perspektif baru. Komet misalnya, tak lagi hanya dilihat sebagai benda langit eksotik yang mempunyai ‘ekor’ mempesona, namun juga menjadi salah satu potensi bahaya bagi Bumi meski dalam perspektif yang sangat berbeda dibanding ungkapan Aristoteles 2.000 tahun silam.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Namun jarang diketahui bahwa upaya pencarian, penemuan dan hubungan antara kawah raksasa Chicxulub dengan peristiwa pemusnahan massal 65 juta tahun silam berjalan dalam rangkaian yang mirip kisah-kisah detektif. Di dalamnya ada luapan energi dan semangat para pencarinya, yang ditingkahi pula dengan penolakan demi penolakan hingga hampir tiga dasawarsa seiring benturan asimetrik antara ‘kubu’ amatir vs profesional, sebelum kemudian bukti-bukti yang meyakinkan datang.

Ilmu tumbukan benda langit merupakan salah satu cabang ilmu pengetahuan yang usianya masih sangat muda. Secara formal cabang ilmu ini lahir pada 1963 TU seiring kerja keras Eugene M. Shoemaker, Nicholas M. Short, Edward Chao, B.M. French dan W. von Engelhardt dalam menganalisis dampak ledakan nuklir di medan percobaan nuklir Nevada (Amerika Serikat). Kala sebuah bom nuklir yang berjuluk Sedan (kekuatan 104 kiloton TNT) diledakkan di kedalaman 192 meter dari paras Bumi pada 5 Juli 1962 TU dan membentuk lubang kawah yang besar, Shoemaker sangat tertarik dengan morfologi kawahnya. Kawah produk ledakan Sedan memiliki diameter 426 meter dengan kedalaman 107 meter. Ia pun segera membandingkan kawah Sedan dengan kawah Barringer (Meteor) di Arizona (juga di Amerika Serikat) yang telah lama mengundang kontroversi akan asal-usulnya.

Perbandingan itu menunjukkan kawah Barringer nampaknya terbentuk oleh pelepasan energi 3,5 megaton TNT. Sementara analisis petrologi oleh M. Short menyimpulkan mineral-mineral kuarsa di dasar kawah Sedan telah mengalami metamorfosis dinamik tingkat tinggi akibat hadirnya tekanan sangat tinggi, minimal 200 ribu ton per meter persegi. Sementara di Arizona, analisis petrologi serupa yang dilakukan trio Chao, French dan Engelhardt di dasar kawah Barringer pun menemukan pola metamorfosis kuarsa yang sama. Ini memperlihatkan kawah Barringer juga dibentuk oleh aksi pelepasan energi yang melibatkan tekanan sangat tinggi. Secara alamiah hal semacam itu hanya bisa dihasilkan oleh tumbukan komet atau asteroid ke Bumi. Inilah tonggak berdirinya cabang ilmu tumbukan benda langit, sebagai hasil perkawinan silang antara ilmu kebumian dengan astronomi. Mulai saat itu para geolog harus lebih berhati-hati dalam mendeskripsikan morfologi cekungan bulat (bowl-shaped) di paras Bumi, tidak lagi sekedar mengidentifikasinya sebagai kawah maar, dolina, kaldera mud volcano ataupun erosi kubah garam.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Pada tahun 1966 TU pemuda belia Robert Baltosser yang juga geofisikawan yunior di Seismographic Service Corp, Tulsa (Amerika Serikat) berangkat ke Meksiko. Ia bertugas menganalisis data gravitasi PEMEX (perusahaan perminyakan nasional Meksiko) di kawasan Semenanjung Yucatan bagian utara, seiring terpilihnya tempat kerjanya sebagai salah satu kontraktor PEMEX. Sudah hampir dua dasawarsa PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan. Selama lima tahun sejak 1947 TU, PEMEX telah melakukan survei gravitasi di kawasan ini dengan harapan menemukan cekungan-cekungan potensial kaya minyak bumi. Mereka berhasil mengidentifikasi pola aneh setengah-melingkar di Semenanjung Yucatan bagian utara. Pola seperti itu biasanya menunjukkan ada sesuatu yang terpendam di dalam tanah. Berharap menjumpai cadangan minyak baru, PEMEX mengebor bagian utara kawasan berpola aneh tersebut di dua titik berbeda, yakni di Chicxulub Puerto dan Sacapuc. Sayangnya pengeboran yang menembus kedalaman hampir 1.000 meter itu tidak menghasilkan setetes minyak pun. Namun geolog yang mengawasi pengeboran itu mencatat satu hal yang aneh. Jika pada 800 meter pertama pemboran hanya menembus sedimen karbonat dan gipsum yang cerah, sejak kedalaman 800 meter pengeboran mulai menembus batuan beku kegelapan. Geolog itu menginterpretasikannya sebagai andesit, batuan beku khas di gunung berapi. Maka PEMEX pun berkesimpulan sumurnya telah menembus gunung berapi purba yang telah lama mati. Sumur pun ditutup dan pemburu minyak beralih ke lokasi lain.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Dua dasawarsa kemudian, pola setengah-melingkar itu tetap mengusik benak geofisikawan PEMEX. Apalagi harga minyak sedang meningkat sehingga penemuan cekungan-cekungan baru menjadi kebutuhan mendesak. Maka dipanggillah perusahaan yang mempekerjakan Baltosser. Kebetulan pemuda ini baru saja usai memetakan struktur Wells Creek di Tennesse (Amerika Serikat) secara gravitasi. Wells Creek adalah sebuah struktur bergaris tengah 13 kilometer yang sudah dipastikan sebagai produk tumbukan asteroid/komet, seiring telah teridentifikasinya kuarsa termetamorfosis dinamik tingkat tinggi didasarnya. Survei gravitasi Baltosser mengukuhkan hal itu, khususnya melalui peta anomali gravitasinya. Tatkala geofisikawan PEMEX menyodorkannya peta gravitasi Semenanjung Yucatan, Baltosser segera menyadari pola aneh setengah-melingkar itu memiliki banyak kemiripan dengan Wells Creek, hanya saja ukurannya 10 kali lebih besar. Maka spontan Baltosser pun berargumen pola setengah-melingkar di Semenanjung Yucatan itu jejak kawah tumbukan.

Namun sebuah perubahan dramatis tak terduga datang menerpa. Manajemen PEMEX sedang melaksanakan reorganisasi disertai perampingan pada semua lini. Geofisikawan PEMEX yang menjadi partner Baltosser turut diberhentikan. PEMEX juga menerapkan peraturan baru yang lebih ketat. Sehingga semua data hasil survei, termasuk peta yang dilihat Baltosser, tidak diperbolehkan keluar dari lingkungan PEMEX apalagi digandakan dan disebarluaskan. Baltosser pun pulang ke Tulsa sembari memendam rasa penasaran akan apa yang dilihatnya. Namun tanpa data di tangan untuk dianalisis, ia tak bisa berbuat apa-apa.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Bonanza minyak pasca berkecamuknya Perang Arab-Israel 1973 membuat permintaan minyak dunia kian melonjak. Seperti perusahaan minyak lainnya, PEMEX pun kian agresif mencari cekungan-cekungan minyak yang baru untuk mempertahankan dan bahkan meningkatkan produksinya. Segera PEMEX kembali mendiskusikan pola setengah-melingkar yang unik di Semenanjung Yucatan. Meski satu dasawarsa sebelumnya Baltosser menganggapnya sebagai kawah tumbukan, tak satupun geolog dan geofisikawan PEMEX yang sepaham. Mereka tetap memperkukuhi argumen gunung berapi purba dan menyebut kawasan Semenanjung Yucatan itu sebagai Central Yucatan Igneous Zone. Atas nama profesionalitas, mereka mengabaikan pendapat Baltosser dan menganggapnya sebagai sekedar imajinasi anak muda amatiran yang penuh energi menggelegak, masih idealis dan belum tahu apa-apa tentang realitas dunia. Namun PEMEX tetap membutuhkan survei baru sebagai pembanding guna mengetahui lebih lanjut apa yang tersembunyi di bawah Semenanjung Yucatan dan kawasan lepas pantainya. Syukur-syukur ada prospek minyak yang bisa dibor.

Maka pada 1978 TU datanglah perusahaan survei Western Geophysical (juga dari Amerika Serikat) sebagai pemain baru. Dalam rombongan ini terdapat pula Glenn Penfield, seorang geofisikawan ingusan namun sudah berpengalaman dengan pengukuran dan pembuatan peta magnetik kawasan. Selama tiga bulan di tahun 1976 TU Penfield menghabiskan waktunya di Alaska untuk melaksanakan survei aeromagnetik menggunakan radas magnetometer yang diterbangkan pesawat. Lebih dari 25.000 kilometer lintasan penerbangan ditempuhnya, beberapa melalui gunung-gemunung berapi besar di Alaska. Sehingga bagaimana anomali magnetis khas gunung berapi telah menjadi pengetahuannya, baik gunung berapi aktif yang tersingkap di paras Bumi maupun gunung berapi purba yang terpendam jauh di dalam tanah.

Divisi Aerosurvey perusahaan Western Geophysics mulai melaksanakan survei aeromagnetik di Semenanjung Yucatan sejak April 1978 TU. Selama berbulan-bulan kemudian Penfield dan rekan-rekannya menghabiskan waktu untuk terbang di atas kawasan pada altitud 5.000 meter dpl dengan lintasan barat-timur sejauh 400 kilometer. Lintasan terbang selanjutnya hanya bergeser 4 kilometer di sebelah lintasan terbang sebelumnya. Setelah usai, rute pesawat diubah menjadi berarah utara-selatan juga sejauh 400 kilometer, Namun selisih antar lintasan kali ini lebih lebar, yakni 20 kilometer. Dengan cara ini maka dihasilkan peta magnetik Teluk Meksiko dengan resolusi hingga 30 meter. Secara akumulatif panjang lintasan penerbangan survei tersebut mencapai kurang lebih 25.000 kilometer.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Sejak hari pertama survei aeromagnetik, Penfield sudah mendeteksi anomali medan magnetik di titik tertentu. Anomalinya memang kecil, antara 1 hingga 5 nanoTesla di atas rata-rata. Namun cakupan areanya cukup besar. Titik-titik anomali tersebut dijumpai di hampir setiap lintasan penerbangan survei, sepanjang April hingga Agustus 1978 TU. Setelah penerbangan usai, mulailah analisis dilakukan dalam periode September 1978 hingga Maret 1979 TU. Titik-titik anomali tiap lintasan penerbangan survei dimasukkan dalam perangkat lunak pengolah data Western Geophysics. Perangkat lunak itu juga memadukannya dengan peta topografi daratan Semenanjung Yucatan dan batimetri Teluk Meksiko. Hasilnya, ditemukanlah sebuah kawasan anomali magnetik yang sangat besar. Kawasan tersebut terkonsentrasi dalam sebuah struktur sirkular mengesankan berdiameter lebih dari 90 kilometer dan berimpit dengan Central Yucatan Igneous Zone.

Selain memanfaatkan perangkat lunak, Penfield juga menggunakan cara konvensional. Mereka mengeplot titik-titik anomali tersebut ke dalam peta kawasan. Keduanya merasa takjub saat melihat sejumlah titik di peta ternyata membentuk pola setengah-melingkar. Penfield pun berbagi cerita dengan rekan geofisikawannya di PEMEX. Si rekan, yang sama takjubnya, segera menggali timbunan arsip dan menyodorkan peta gravitasi Semenanjung Yucatan yang dilihat Baltosser satu dasawarsa sebelumnya. Kala dua peta ini digabungkan, jelas terlihat terlihat bagaimana pola setengah-melingkar peta gravitasi dan pola setengah-melingkar peta aeromagnetik membentuk satu kesatuan struktur sirkular bergaris tengah lebih dari 100 kilometer. Sama persis dengan hasil olahan perangkat lunak. Mengacu pengalamannya selama di Alaska, pola anomali magnetik berskala besar di Semenanjung Yucatan sangat berbeda dengan yang umumnya dijumpai di gunung berapi, baik aktif maupun purba. Penfield pun sependapat dengan Baltosser, bahwa Central Yucatan Igneous Zone lebih mungkin merupakan kawah tumbukan raksasa yang terpendam. Maka, sejak Agustus 1978 TU nama Struktur Chicxulub pun mulai bergaung.

Tapi senasib dengan Baltosser, PEMEX pun mengabaikan pendapat Penfield dan melemparkan laporannya ke kolong arsip di gudang data. Sesuai kebijakannya, PEMEX juga melarang Penfield memublikasikan apapun yang berbasis data PEMEX. Pada 1979 TU, PEMEX kembali mengebor daratan Yucatan di Yaxcopoil. Pengeboran sedalam 1.800 meter itu lagi-lagi tidak menemukan minyak, sehingga sumur pun ditutup dan ditinggalkan. Namun geolog yang menyupervisi pengeboran, yakni Burkhard Dressler dan David Kring, menjumpai keanehan yang mirip dengan temuan di sumur Chicxulub Puerto dan Sacapuc tiga dasawarsa sebelumnya. Pada kedalaman 800 meter tidak lagi dijumpai sedimen karbonat dan gipsum, namun justru ditemukan bebatuan mirip breksi, sejenis batuan sedimen yang tersusun dari bongkahan-bongkahan batu bersudut tajam. Breksi juga biasa dijumpai di kawasan gunung berapi, sehingga PEMEX tanpa ragu mengatakan sumur Yaxcopoil pun menembus gunung berapi purba di Central Yucatan Igneous Zone.

Menemukan Chicxulub

Selagi PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan namun sibuk memperkukuhi argumen gunung berapi purba, satu kuartet ilmuwan menggoncangkan dunia ilmu geologi, astronomi, biologi dan fisika lewat publikasi menggemparkan. Dalam bulan Juni 1980 TU kuartet ilmuwan Luis W. Alvarez, Walter Alvarez, Frank Asaro dan Helen Michel dari University of California (Berkeley) mengumumkan temuan tentang hubungan peristiwa pemusnahan massal 65 juta tahun silam dengan sumber ekstraterestrial berupa tumbukan komet/asteroid. Lewat analisis terhadap lapisan lempung hitam tipis yang terjepit di antara sedimen zaman Kapur dan Tersier dari sejumlah singkapan seperti di Gubbio (Italia), Stevns Klint (Denmark) dan Woodside Creek (Selandia Baru), mereka menemukan konsentrasi Iridium cukup pekat. Yakni antara 30 hingga 160 kali di atas normal. Iridium adalah salah satu logam yang ditemukan berlimpah dalam meteorit namun tidak di paras Bumi. Sehingga jika di daratan atau lautan terdapat temuan konsentrasi Iridium nan pekat, jelas sumbernya adalah debu-debu meteor dari langit. Jika Iridium di lempung hitam tipis tersebut dianggap berasal dari pengendapan debu-debu antariksa, maka butuh waktu setidaknya 500 ribu tahun untuk mencapai konsentrasi sepekat itu. Namun berselang setahun kemudian lewat analisis singkapan Caravaca (Spanyol), Jan Smit menyimpulkan deposisi lempung hitam berlangsung jauh lebih cepat yakni hanya dalam waktu sekitar 50 tahun.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Karena lapisan lempung hitam sejenis tersingkap pula di berbagai penjuru (dalam catatan terkini, ditemukan di lebih dari 350 singkapan di lima benua) Alvarez dkk meyakini skala peristiwa yang menyebabkannya bersifat global. Perhitungan Alvarez dkk menyimpulkan bahwa lempung hitam tipis tersebut hanya bisa dibentuk oleh tumbukan komet/asteroid berdiameter 10 +/- 4 km. Tumbukan komet/asteroid sebesar itu bakal menimbulkan kawah tumbukan raksasa bergaris tengah tak kurang dari 200-an kilometer. Tumbukan seukuran ini memproduksi debu sangat banyak yang terhambur ke atmosfer dan berperan sebagai tabir surya sehingga intensitas sinar Matahari di di paras Bumi turun drastis. Perhitungan menunjukkan pada puncaknya intensitas sinar Matahari yang diterima paras Bumi tinggal sepersepuluh juta dari normalnya. Maka fotosintesis akan terhenti, yang segera membunuh fitoplankton dan flora berdaun hijau. Selanjutnya giliran kawanan fauna yang tumbang berkalang tanah. Sayangnya Alvarez dkk tidak bisa menyodorkan bukti dimana lokasi kawah raksasa tersebut. Belakangan pada tahun 1984 TU Bruce Bohor dkk dari United States Geological Survey memperkuat argumen Alvares dkk. Bohor dkk menemukan butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi dalam lempung hitam di tepi Madrid Road, Colorado (Amerika Serikat). Setahun kemudian giliran Wendy Wolbach yang menemukan bahwa lapisan lempung hitam itu sangat kaya dengan butir-butir karbon mikro hasil kebakaran hutan konifer dalam skala global.

Penfield menyimak publikasi menggemparkan tersebut dan segera menyadari Struktur Chicxulub mungkin adalah kawah raksasa yang dibicarakan Alvarez dkk. Berdasar ketebalan sedimen di atas batuan mirip andesit/breksi di sumur Chicxulub Puerto dan Yaxcopoil, Penfield mengetahui umur struktur itu sekitar 80 juta tahun. Namun jika betul kawah tumbukan, umurnya bisa lebih muda karena faktor deposisi sedimen dasar kawah. Sehingga umur 65 juta tahun adalah masuk akal. Dengan rasa gembira meluap Penfield menghubungi Antonio Camargo, koleganya di Meksiko, menceritakan apa yang diketahuinya. Mereka akhirnya bersepakat untuk melaporkan Struktur Chicxulub serta kemungkinannya sebagai kawah raksasa penyebab pemusnahan massal 65 juta tahun silam dalam pertemuan ilmiah. Yang dituju adalah temu ilmiah geofisikawan dibawah tajuk Society of Exploration Geophysicist di Los Angeles (Amerika Serikat) pada bulan Oktober 1981. Di forum ini Penfield dan camargo memaparkan apa yang selama ini dikenal sebagai Central Yucatan Igneous Zone merupakan Struktur Chicxulub yang adalah kawah raksasa produk tumbukan komet/asteroid dan berkaitan dengan pemusnahan massal 65 juta tahun silam.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber:  Wilson, 2010.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber: Wilson, 2010.

Namun pertemuan Society of Exploration Geophysicist berlangsung bersamaan dengan pertemuan lain yang lebih presitisius, yakni Snowbird Conference di Utah (juga di Amerika Serikat). Berbeda dengan Society of Exploration Geophysicist, Snowbird conference dihadiri oleh para ilmuwan keplanetan, palentolog dan geolog yang secara khusus membahas peristiwa pemusnahan massal dan tumbukan komet/asteroid. Maka kala presentasi Penfield dan Camargo di Los Angeles ditanggapi dengan biasa-biasa saja dan bahkan cenderung dingin, konferensi di Utah justru begitu bersemangat menunggu pemaparan penyelidikan kandidat-kandidat kawah raksasa produk tumbukan yang memicu pemusnahan massal. Utah tak mengetahui sedikitpun bahwa Struktur Chicxulub sedang dipaparkan di Los Angeles. Nestapa Penfield bertambah setelah pejabat PEMEX mengecamnya secara terbuka. PEMEX kecewa data anomali magnetik milik mereka ternyata menjadi basis pemaparan di di Los Angeles.

Tapi Los Angeles jugalah yang mempertemukan Penfield dengan Carlos Byars, wartawan Houston Chronicle dan satu-satunya orang yang tertarik dengan presentasinya. Tanpa membuang waktu, Houston Chronicle edisi 13 Desember 1980 TU memajang artikel Penfield dan Camargo di halaman pertama dengan judul provokatif, lengkap dengan peta Struktur Chicxulub. Byars juga mempublikasikan tulisannya di majalah astronomi prestisius Sky and Telescope edisi Maret 1982 TU. Belakangan editor Sky and Telescope memangkas habis-habisan tulisannya sehingga hanya ditempatkan pada kolom singkat di halaman 249 dan 250. Byars pun khawatir tidak semua orang membacanya. Penfield sendiri terbang ke Houston (juga di Amerika Serikat) dan bertemu dengan pakar-pakar keplanetan di NASA Johnston Spaceflight Center. Salah satunya William Phinney. Phinney menekankan bahwa gagasan Struktur Chicxulub tidak akan dianggap remeh jika Penfield sanggup memperlihatkan bukti batuan metamorf dinamik tingkat tinggi dari struktur tersebut.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Saran Phinney membakar obsesi Penfield. Segera ia terbang ke Meksiko dan mencari sampel batuan khususnya di sekitar sumur-sumur yang pernah dibor PEMEX, atas biaya sendiri. Setelah tahu batuan dari sumur yang dibor di dasawarsa 1970-an dikirim ke Quetzalcoalcos, ia pun menyewa taksi dan pergi ke sana, hanya untuk mendapati gudang penyimpanan batuan sudah dibongkar dan diratakan dengan tanah. Tanpa patah semangat, Penfield menyigi jengkal demi jengkal puing-puing gudang guna mencari sisa-sisa batuan, namun tanpa hasil. Pencarian ke seluruh penjuru hingga 600 kilometer dari Merrida, dengan meneliti setiap cenote (telaga dolina) yang ada pun tidak mendapati batuan andesit/basalt yang dicarinya. Dari Merrida, ia pergi ke Sacapuc. Lokasi sumur Sacapuc ternyata sudah berubah jadi kandang babi dan berada di bawah timbunan kotoran. Mengabaikan bau kotoran dan rasa jijik, ia menggali hingga posisi sumur ketemu dan mencari batuan yang diinginkannya, lagi-lagi tanpa hasil. Lantas pergilah ia ke sumur di Chicxulub Puerto. Ketika sumur digali, disinilah bongkahan-bongkahan batuan yang dicarinya dijumpai sebagai penutup sumur. Penfield mengambil sampel seberat 9 kilogram, membersihkannya dari sisa-sisa semen penutup sumur dan segera dikirim ke Houston.

Lidah memang tak bertulang. Kerja keras Penfield tidak diapresiasi Phinney. Rupanya argumen gunung api purba di Semenanjung Yucatan juga telah merasuki benak ilmuwan-ilmuwan keplanetan NASA. Lebih dari itu, ilmuwan-ilmuwan itu pun terhinggapi penyakit profesionalitas layaknya geolog dan geofisikawan PEMEX. Mereka menganggap, sebagai profesional, merekalah yang lebih paham akan sifat dan dinamika kawah tumbukan. Apalagi dengan gencarnya misi antariksa antarplanet sejak dasawarsa 1960-an. Sementara Penfield yang hanya anak bawang. Sehingga meski Penfield datang membawa gagasan Stuktur Chicxulub dan segerobak sampel, ia hanyalah sosok amatir yang dianggap tidak memahami persoalan dan apa yang diungkapkannya sendiri, apalagi mengaitkannya dengan pemusnahan massal. So, genta perang amatir vs profesional kembali ditabuh. Sampel kiriman Penfield dicueki di Houston dan ilmuwan-ilmuwan NASA menganggap teka-teki Yucatan sudah usai dengan penjelasan tentang gunung api purba (Central Yucatan Igneous Zone).

Perang serupa juga dialami Byars. Setiap tahun, sebagai jurnalis, ia menghadiri pertemuan demi pertemuan di bawah Lunar and Planetary Science Conference (LPSC) di Houston. Dalam setiap sesi ia selalu berupaya meyakinkan ilmuwan yang dijumpainya mengenai Struktur Chicxulub, namun selalu ditolak. Byars dianggap sebagai jurnalis ilmiah yang baik, namun pembahasan kawah tumbukan dianggap bukan kompetensinya. Dalam salah satu pertemuan bahkan tulisan tentang Struktur Chicxulub yang disiapkannya langsung diserahkan seorang ilmuwan kepada mahasiswa S-1 binaannya. Belakangan sang mahasiswa malah menghilangkan tulisan tersebut. Situasi tak berubah memasuki tahun 1988 TU kala Snowbird Conference kedua diselenggarakan, juga mengambil tempat di Utah. Kelak Penfield menyebut periode sulit sepanjang Maret 1979 hingga Februari 1990 TU sebagai tahun-tahun yang penuh kebisuan.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Pada bulan Maret 1990 TU, kegigihan Byars menemukan hasilnya, Ia bersua Alan Hildebrand, pemuda tanggung lulusan University of Arizona yang sedang bersemangat mencari kawah tumbukan penyebab pemusnahan massal 65 juta tahun silam tanpa sponsor siapapun. Hildebrand sudah mendengar dari Jan Smit bahwa lapisan lempung hitam di Karibia lebih tebal dibanding tempat lain dimanapun, sehingga kawah tumbukan yang dicari tentu berada di dekat Kini. Hildebrand sebelumnya meneliti lapisan serupa di Beloc (Haiti) yang tebalnya mencapai 1 meter. Dari koleganya William Boynton, Hildebrand juga tahu lempung hitam tebal juga dijumpai di Texas, namun tidak setebal di Beloc. Esktrapolasi ketebalan lempung Texas, Beloc dan Karibia membuat Hildebrand dan Boynton berpendapat kawah raksasa itu mungkin saja ada di Colombia. Mereka segera menulis makalah ilmiah tentangnya yang akan dikirim ke jurnal Science. Menjelang pengiriman, Byars mempertemukannya dengan Penfield dan segera keduanya terlibat diskusi intensif akan Struktur Chicxulub. Hildebrand terpukau dengan teori Penfield dan mencantumkannya dalam tulisannya di Science.

Saat mengikuti wawancara kerja di Geological Survey of Canada, Hildebrand menyadari institusi ini menyimpan peta-peta gravitasi seluruh benua Amerika, termasuk Colombia dan Semenanjung Yucatan. Hildebrand agak kecewa ketika menemukan Colombia ternyata tidak memiliki anomali gravitasi yang diharapkannya. Sebaliknya justru di Semenanjung Yucatan-lah anomali gravitasi tersebut berada. Segera benaknya berbinar dengan satu nama : Penfield. Tanpa membuang waktu, Hildebrand terbang kembali ke Amerika Serikat untuk berdiskusi panjang lebar dengan Boynton, Penfield dan Camargo dengan disaksikan Byars. Akhirnya disusunlah makalah tentang Struktur Chicxulub. Pada April 1990 TU ia dikirim ke Nature, hanya untuk menerima penolakan langsung dari juri. Hildebrand menyadari salah satu alasan penolakan adalah tiadanya bukti langsung tentang Struktur Chicxulub sebagai kawah tumbukan.

Hildebrand segera bertanya-tanya pada semua orang yang dianggapnya tahu tentang nasib batuan hasil pengeboran PEMEX di dasawarsa 1970-an. Akhirnya didapat informasi akurat bahwa sebagian sampel batuan itu dikirim PEMEX ke Al Weidie di University New Orleans. Rupanya sampel-sampel itu dijadikan bahan untuk mempelajari sistem air bawah tanah di Semenanjung Yucatan. Begitu dikabarkan ke Penfield, segera ia terbang ke New Orleans dan berhasil memperoleh 600 kotak sampel yang dimaksud. Tanpa membuang waktu ia mengirimkan beberapa kotak ke Hildebrand. Hildebrand segera mengirimnya lagi ke Arizona dimana David Kring, mantan supervisor sumur Yaxcopoil yang kemudian bekerja di University of Arizona, telah menunggu bersama partnernya Jacobsen dan Pilkington. Segera terkuak bahwa sampel itu memang mengandung butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi. Inilah bukti yang dicari-cari itu. Struktur Chicxulub memang dibentuk oleh tumbukan komet/asteroid raksasa.

Kini teori Struktur Chicxulub telah menemukan bukti penyokong terkuatnya. Namun masih ada satu halangan menghadang: perang amatir vs profesional. Hildebrand segera menulis makalah ilmiah tentang bukti Struktur Chicxulub sebagai kawah tumbukan dengan menyertakan Penfield, Camargo, Boynton, Kring, Jacobsen dan Pilkington sebagai penulis tambahan. Makalah segera dikirimkan ke Nature, namun kembali juri menolaknya kali ini tanpa alasan yang jelas. Tapi alasannya diduga sangat personal, terkait status Hildebrand dkk yang dianggap amatiran. Tak menyerah dengan penolakan Nature, Hildebrand mengirimkan makalahnya ke jurnal lain, Geology, yang akhirnya memuatnya di edisi September 1991 TU. Dengan cepat publikasi ini memukau dunia. Ibarat bak air yang lepas sumbatnya, publikasi ini segera memantik perhatian besar akan Struktur Chicxulub.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Satu demi satu dukungan pun berdatangan. Carl C. Swisher dari Berkeley datang menyodorkan hasil pertanggalan radioaktif berbasis Kalium-Argon dengan kesimpulan umur struktur itu memang 65 juta tahun. Di tahun yang sama, 1991, Kevin Pope bersama Adriana Ocampo dan Charles Duller menuturkan pola sebaran cenote di Semenanjung Yucatan ternyata sangat dipengaruhi Stuktur Chicxulub. Konsentrasi terbesar cenote terletak di atas tepi kawah (cincin kawah) dan sebagian lagi di luar tepi kawah dimana produk tumbukan sebagian besar diendapkan. Hanya sebagian kecil saja yang dijumpai di dalam kawah, yakni di dalam area yang disebut puncak pusat (central peak). Jika Struktur Chicxulub tidak ada, cenote-cenote tersebut pun tak terbentuk. Implikasinya bakal membuat umat manusia mulai dari masa peradaban Maya di masa silam hingga sekarang sulit berkembang.

Referensi :

Penfield. 2009. Finding Chicxulub.

Verschuur. 1996. Impact! The Threat of Comets and Asteroids. Oxford University Press, New York, USA.

French. 1998. Traces of Catastrophe, A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar Planetary Institute, Arizona, USA.

Schulte dkk. 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 327, 5 March 2010, pp 1214-1218 + Supporting Materials .

Brien. 2006. Raton Basin Field Trip, Southern Colorado / Northern New Mexico, September 28 – October 1, 2006. Lunar Planetary Institute, Arizona, USA.

Wilson. 2010. The Best Cretaceous-Paleogene Boundary Yet. Wooster Geologist Blog.

Hildebrand dkk. 1990. Chicxulub Crater Size and Structure as Revealed by Horizontal Bouguer Gravity Gradients and Cenote Distribution. Lunar & Planetary Science XXVI, 603-604.

Dua Tahun Peristiwa Tumbukan Asteroid di Russia, Apa yang Telah Kita Ketahui?

Dua tahun sudah terlewat dari sebuah masa pada Jumat 15 Februari 2013 Tarikh Umum (TU). Dua tahun yang lalu, jagat astronomi dibikin terhenyak oleh sebuah peristiwa luar biasa yang mengambil lokasi di sisi barat Pegunungan Ural (Russia). Tepatnya di Chelyabinsk dan sekitarnya, kawasan yang di masa Perang Dunia 2 hingga puncak Perang Dingin menjadi tempat Uni Soviet (pendahulu Russia) mengencangkan otot-ototnya lewat industri militer berkelas raksasa. Di Jumat pagi tersebut, tepatnya pada pukul 09:20 waktu setempat (10:20 WIB), rutinitas harian kota Chelyabinsk sontak terhenti oleh sebuah peristiwa aneh. Langit pagi yang cerah meski dingin, saat itu musim dingin belum usai di Russia, mendadak sontak berganti dengan munculnya cahaya terang-benderang dalam sekejap. Demikian terangnya sehingga melebihi benderangnya Matahari. Sejurus kemudian tanah mulai bergetar. Udara seperti ditekan, hingga kabel-kabel yang bergelantungan pun mulai berayun-ayun. Kaca-kaca jendela mulai pecah berkeping-keping. Menghujani siapapun yang ada didekatnya tanpa ampun. Alarm mobil-mobil yang diparkir pun mulai meraung-raung. Kekacauan merajalela dimana-mana.

Gambar 1. Salah satu gambar ikonik Peristiwa Chelyabinsk 2013, yakni kala asteroid-tanpa-nama telah memasuki atmosfer Bumi dan mengalami kilatan cahaya pertama hingga lebih terang ketimbang Matahari. Kilatan cahaya ini terjadi saat asteroid, yang telah berubah menjadi boloid, sampai di ketinggian 29,7 kilometer dpl. Garis putih tebal lurus dibelakangnya adalah awan debu lurus (train) yang dibentuk boloid mulai dari ketinggian 97 kilometer dpl. Sumber: NASA APOD, 2013.

Gambar 1. Salah satu gambar ikonik Peristiwa Chelyabinsk 2013, yakni kala asteroid-tanpa-nama telah memasuki atmosfer Bumi dan mengalami kilatan cahaya pertama hingga lebih terang ketimbang Matahari. Kilatan cahaya ini terjadi saat asteroid, yang telah berubah menjadi boloid, sampai di ketinggian 29,7 kilometer dpl. Garis putih tebal lurus dibelakangnya adalah awan debu lurus (train) yang dibentuk boloid mulai dari ketinggian 97 kilometer dpl. Sumber: NASA APOD, 2013.

Dalam beberapa jam kemudian kekacauan di Chelyabinsk dan sekitarnya mendunia. Kekacauan ini merupakan akibat dari peristiwa tumbukan benda langit. Yakni melesat jatuhnya benda langit mini anggota tata surya (asteroid atau komet) ke permukaan Bumi dengan segala imbasnya. Kejadian di Chelyabinsk dan sekitarnya secara formal kemudian disebut sebagai Peristiwa Tumbukan benda langit Chelyabinsk 2013, atau disingkat sebagai Peristiwa Chelyabinsk 2013 saja. Secara kronologis Peristiwa Chelyabinsk 2013 merupakan peristiwa tumbukan benda langit paling energetik yang pernah disaksikan umat manusia modern dalam kurun 80 tahun terakhir, setelah Peristiwa Curuca (Brazil) 1930. Dan sepanjang abad ke-21 TU ini, Peristiwa Chelyabinsk 2013 hingga saat ini merupakan peristiwa tumbukan benda langit terenergetik, menumbangkan rekor yang semula dipegang Peristiwa Bone (Indonesia) 2008.

Besar dan kompleksnya Peristiwa Chelyabinsk 2013 menggamit minat ilmuwan dari beragam disiplin ilmu. Semangat mereka demikian besarnya, hal yang tak pernah dialami bagi peristiwa sejenis sebelumnya. Mereka datang dari kalangan astronomi, astrofisika, geofisika, geologi dan bahkan kedokteran. Tak hanya dari Russia, para ilmuwan itu berduyun-duyun datang dari Eropa, Amerika dan bahkan Asia. Sebagian diantaranya lantas menyatukan diri dalam sebuah konsorsium yang menamakan dirinya sebagai The Chelyabinsk Airburst Consortium. Kini, dua tahun setelah semua kehebohan itu, kerja keras para ilmuwan konsorsium itu telah membuahkan hasil. Tulisan ini pun didasarkan atas hasil kerja keras mereka, 59 ilmuwan The Chelyabinsk Airburst Consortium dengan penulis pertama Olga P. Popova, yang dimuat dalam jurnal ilmu pengetahuan Science setahun silam.

Peristiwa Chelyabinsk 2013 menjadi peristiwa tumbukan benda langit yang sarat data, hal yang juga belum pernah terjadi sebelumnya. Puluhan, bahkan mungkin ratusan, rekaman video mengabadikannya. Baik melalui radas (instrumen) semi-otomatis seperti kamera dasbor mobil dan kamera keamanan sirkuit tertutup (CCTV) maupun manual yang harus mendapat sentuhan langsung tangan manusia seperti kamera digital, kamera ponsel pintar dan yang lainnya. Peristiwa ini juga membuat ribuan bangunan rusak, sehingga memungkinkan dilakukannya analisis mendetail akan posisi dan dinamika penyebab kerusakannya. Rekaman tak kasat mata lainnya, dalam bentuk rekaman seismik dan rekaman infrasonik pun melimpah. Getaran di kerak bumi seiring peristiwa tersebut direkam oleh seismometer-seismometer yang berlokasi hingga ratusan kilometer jauhnya dari kawasan Chelyabinsk. Sementara rekaman infrasoniknya bahkan lebih spektakuler. Salah satu dari 11 stasiun infrasonik dalam jejaring CTBTO (the Comprehensive nuclear Test Ban Treaty Organization) bahkan berada di kawasan Antartika, ribuan kilometer dari Chelyabinsk.

Apa yang sesungguhnya terjadi di ketinggian udara Pegunungan Ural hingga berdampak ke daratan kawasan Chelyabinsk dan sekitarnya mulai bisa kita pahami. Informasi ini tak hanya sekedar memuaskan rasa keingintahuan umat manusia semata. Namun lebih jauh dari itu, juga sangat bermanfaat untuk mengantisipasi bilamana kelak benda langit sejenis ‘menyerang’ kita lagi. Dan harapan berikutnya, semoga saja informasi tersebut juga turut membantu umat manusia berinovasi mengembangkan ‘payung’ (sistem pertahanan) untuk mengeliminasi ‘serangan’ benda langit sejenis kelak. Bukan hanya sekedar duduk diam dan menunggu nasib.

Asteroid

Peristiwa Chelyabinsk 2013 merupakan tumbukan sebuah asteroid-tanpa-nama. Berdasarkan meteorit yang tersisa, asteroid-tanpa-nama itu memiliki kerapatan 3,3 gram dalam setiap sentimeter kubiknya. Ini lebih padat dibandingkan batuan beku yang kita kenal di Bumi, misalnya andesit (2,5 hingga 2,8 gram dalam tiap sentimeter kubik). Jika berbentuk bulat seperti bola, maka asteroid itu merupakan bongkahan batuan padat dengan garis tengah 19,8 meter. Massanya 13.000 ton. Sebelum jatuh menumbuk Bumi, asteroid beredar mengelilingi Matahari dalam sebentuk orbit lonjong di antara orbit Venus dan orbit Jupiter. Perihelionnya (yakni titik terdekat ke Matahari) berdekatan dengan orbit Venus, yakni hanya sejarak 110,5 juta kilometer. Sebaliknya titik aphelionnya (yakni titik terjauh dari Matahari) berjarak 417 juta kilometer atau tepat di tengah-tengah kawasan Sabuk Asteroid. Orbit asteroid memiliki kemiringan (inklinasi) 4,9 derajat terhadap ekliptika (bidang edar Bumi mengelilingi Matahari). Asteroid-tanpa-nama ini butuh waktu 2,34 tahun untuk menyusuri orbitnya beredar mengelilingi Matahari sekali putaran. Sebelum jatuh menumbuk Bumi sebagai Peristiwa Chelyabinsk 2013, ia tiba di titik perihelionnya tepat pada detik-detik pergantian tahun 2012 ke 2013 TU.

Gambar 2. Orbit asteroid-tanpa-nama penyebab Peristiwa Chelyabinsk 2013, dibandingkan dengan orbit planet-planet terestrial saat dilihat dari jarak 3 satuan astronomis di atas kutub utara Matahari. Dibandingkan orbit planet-planet, orbit asteroid tersebut jauh lebih lonjong, yang merentang di antara orbit Venus hingga kawasan Sabuk Asteroid. Sumber: Sudibyo, 2015 dengan basis Starry Night Backyard 3.0 dan data dari Popova dkk, 2013.

Gambar 2. Orbit asteroid-tanpa-nama penyebab Peristiwa Chelyabinsk 2013, dibandingkan dengan orbit planet-planet terestrial saat dilihat dari jarak 3 satuan astronomis di atas kutub utara Matahari. Dibandingkan orbit planet-planet, orbit asteroid tersebut jauh lebih lonjong, yang merentang di antara orbit Venus hingga kawasan Sabuk Asteroid. Sumber: Sudibyo, 2015 dengan basis Starry Night Backyard 3.0 dan data dari Popova dkk, 2013.

Dengan demikian asteroid ini merupakan asteroid dekat Bumi kelas Apollo, karena perihelionnya lebih kecil ketimbang orbit Bumi sebaliknya aphelionnya lebih besar. Perbandingan dengan basisdata jumbo yang memuat ratusan ribu data asteroid yang telah kita temukan menunjukkan asteroid-tanpa-nama ini masih berkerabat dengan asteroid 86039 (1999 NC43). Asteroid 86039 (1999 NC43) adalah asteroid besar (garis tengah 2,2 kilometer) yang ditemukan pada 4 Juli 1999 TU silam lewat sistem penyigi langit semi-otomatis LINEAR (Lincoln Near-Earth Asteroid Research). Penyusuran lebih lanjut memperlihatkan baik asteroid 86039 (1999 NC43) maupun asteroid-tanpa-nama tersebut kemungkinan berasal dari satu induk yang sama dalam keluarga asteroid Flora yang bermukim di sisi dalam kawasan Sabuk Asteroid. Keduanya terlempar dari kawasan setelah mengalami resonansi sekular akibat gangguan gravitasi Jupiter. Setelah keduanya terdorong memasuki kawasan tata surya bagian dalam, giliran gangguan gravitasi Mars dan Bumi yang lambat laun mengubah orbit kedua asteroid sedikit demi sedikit. Perubahan gradual ini membuat keduanya menjadi asteroid dekat Bumi. Bedanya orbit asteroid-tanpa-nama kemudian berpotongan dengan orbit Bumi, sementara orbit asteroid 86039 (1999 NC43) tidak.

Asteroid-tanpa-nama ini juga diduga adalah bagian keluarga asteroid Baptistina. Alasannya kadar mineral piroksen dan olivinnya setara dengan kadar rata-rata piroksen dan olivin keluarga asteroid Baptistina. Yakni 23 % dan 28 %. Keluarga asteroid Baptistina berasal dari sebuah asteroid raksasa (garis tengah 170 kilometer) penghuni bagian tengah yang berkeping-keping dalam kurun antara 90 hingga 160 juta tahun silam. Salah satu anggota keluarga asteroid Baptistina yang terkenal adalah asteroid-tanpa-nama berdiameter 10 kilometer yang jatuh menumbuk Bumi 65 juta tahun silam. Tumbukannya melepaskan energi teramat besar dan dampak teramat merusak ke segenap penjuru hingga melenyapkan 75 % kelimpahan spesies makhluk hidup saat itu. Termasuk kawanan dinosaurus. Maka, apabila dugaan itu benar, asteroid-tanpa-nama penyebab Peristiwa Chelyabinsk 2013 masih berkerabat dengan asteroid raksasa pemusnah dinosaurus.

Gambar 3. Kawah raksasa Chicxulub (diameter 170 kilometer) di batas Semenanjung Yucatan dan Teluk Meksiko, berdasarkan peta gradien gravitasi Bouguer. Kawah raksasa ini terbentuk 65 juta tahun silam akibat hantaman asteroid raksasa bergaris tengah 10 kilometer. Terbentuknya kawah raksasa ini menandai bencana ekologis mahadahsyat di Bumi akibat tumbukan benda langit. Bencana tersebut turut melenyapkan populasi dinosaurus. Berdasarkam komposisi mineral piroksen dan olivinnya, ada dugaan bahwa asteroid-tanpa-nama yang menjadi penyebab Peristiwa Chelyabinsk 2013 masih berkerabat dengan asteroid pembentuk kawah raksasa Chicxulub. Sumber: Hildebrand dkk, 1990.

Gambar 3. Kawah raksasa Chicxulub (diameter 170 kilometer) di batas Semenanjung Yucatan dan Teluk Meksiko, berdasarkan peta gradien gravitasi Bouguer. Kawah raksasa ini terbentuk 65 juta tahun silam akibat hantaman asteroid raksasa bergaris tengah 10 kilometer. Terbentuknya kawah raksasa ini menandai bencana ekologis mahadahsyat di Bumi akibat tumbukan benda langit. Bencana tersebut turut melenyapkan populasi dinosaurus. Berdasarkam komposisi mineral piroksen dan olivinnya, ada dugaan bahwa asteroid-tanpa-nama yang menjadi penyebab Peristiwa Chelyabinsk 2013 masih berkerabat dengan asteroid pembentuk kawah raksasa Chicxulub. Sumber: Hildebrand dkk, 1990.

Airburst

Pada Jumat pagi 15 Februari 2013 TU, asteroid-tanpa-nama ini berada di salah satu titik nodalnya, yakni titik potong orbitnya dengan orbit Bumi. Pada saat yang sama Bumi-pun sedang berada di titik nodal tersebut. Maka tak terelakkan lagi, asteroid pun menumbuk Bumi. Asteroid memasuki atmosfer Bumi pada kecepatan 19,16 km/detik (~69.000 km/jam) dengan lintasan membentuk sudut 18,3° terhadap paras Bumi. Segera ia bergesekan dengan molekul-molekul udara, serupa dengan yang diderita setiap benda apapun (baik alamiah maupun buatan) yang mencoba menerobos atmosfer. Gesekan kuat menghasilkan tekanan ram yang cukup tinggi dibarengi dengan suhu tinggi pula, yang segera menggerus permukaan asteroid. Maka asteroid pun berubah menjadi meteor. Karena besarnya ukurannya, meteor yang dihasilkannya pun demikian terang hingga bisa dikategorikan sebagai boloid.

Sejumlah kamera mulai merekam boloid ini sebagai titik cahaya mulai dari ketinggian 97 kilometer dpl (dari paras air laut rata-rata). Semakin jauh boloid menembus atmosfer maka lapisan-lapisan udara yang dihadapinya kian menebal. Dorongan kuat seiring penetrasi boloid menyebabkan gelombang tekanan udara atau gelombang kejut mulai terbentuk. Gelombang kejut terbentuk sejak boloid berada di ketinggian 90 kilometer dpl. Semakin jauh boloid menembus atmosfer, tekanan ram-nya kian membesar. Maka permukaan boloid mulai tergerus (menguap) membentuk partikel-partikel debu. Akumulasi partikel-partikel tersebut membentuk awan debu di sepanjang lintasan yang telah dilaluinya, sehingga nampak sebagai awan lurus (train) yang khas. Selain teramati dengan jelas dari darat, awan lurus tersebut juga berhasil dipantau oleh sejumlah satelit.

Gambar 4. Dinamika boloid dalam Peristiwa Chelyabinsk 2013 dari detik ke detik, seperti direkam oleh A. Ivanov di Kamensk-Uralskiy. A: tepat saat kilatan cahaya pertamanya (yang lebih terang dari Matahari). B: pasca pemecah-belahan brutal di ketinggian 27 kilometer dpl. C: jelang kilatan cahaya yang kedua. D: pasca kilatan cahaya yang kedua. E: dua bongkahan besar tersisa, terjadi kilatan cahaya yang ketiga. F: bongkahan kedua lenyap, tinggal bongkahan pertama yang masih bercahaya. G: bongkahan kedua mulai meredup, namun masih melaju. H: bongkahan kedua kian redup meski masih melaju. Sumber: Popova dkk, 2013.

Gambar 4. Dinamika boloid dalam Peristiwa Chelyabinsk 2013 dari detik ke detik, seperti direkam oleh A. Ivanov di Kamensk-Uralskiy. A: tepat saat kilatan cahaya pertamanya (yang lebih terang dari Matahari). B: pasca pemecah-belahan brutal di ketinggian 27 kilometer dpl. C: jelang kilatan cahaya yang kedua. D: pasca kilatan cahaya yang kedua. E: dua bongkahan besar tersisa, terjadi kilatan cahaya yang ketiga. F: bongkahan kedua lenyap, tinggal bongkahan pertama yang masih bercahaya. G: bongkahan kedua mulai meredup, namun masih melaju. H: bongkahan kedua kian redup meski masih melaju. Sumber: Popova dkk, 2013.

Produksi debu berlangsung kontinu, untuk kemudian mendadak melonjak hebat sejak di ketinggian 54 kilometer dpl. Boloid juga kian benderang. Dari yang semula hanya seterang Venus, kecemerlangannya terus meningkat menjadi seterang dan bahkan ratusan kali lipat lebih terang dari Bulan purnama. Kini cahayanya bahkan telah sanggup menciptakan bayang-bayang pada benda-benda di paras Bumi yang tersinarinya. Pada ketinggian 29,7 kilometer dpl terjadi kilatan cahaya (flare) yang menghasilkan cahaya lebih benderang dari Matahari (!) meski hanya sesaat. Dari kota Chelyabinsk, saat kilatan itu terjadi boloid terlihat memiliki magnitudo visual -28,8 atau 13 kali lebih terang dari Matahari. Bahkan di kota kecil Korkino, yang tepat berada di bawah lintasan boloid, ia hampir 30 kali lebih benderang ketimbang Matahari!

Pasca terjadinya kilatan pertama, boloid mengalami pemecah-belahan brutal pada ketinggian 27 kilometer dpl. Pasca pemecah-belahan brutal ini, terjadilah kilatan cahaya kedua pada ketinggian 23,9 kilometer dpl. Magnitudo semu kilatan kedua ini adalah -20,5 sehingga 1.300 kali lebih terang ketimbang Bulan purnama. Pada pemecah-belahan brutal di ketinggian 27 kilometer dpl, dua bongkahan besar melejit dalam lintasannya masing-masing, kumplit dengan awan debu lurusnya sendiri. Kedua bongkahan kemudian melanjutkan perjalanannya hingga bongkahan kedua tiba di ketinggian 18,5 kilometer dpl. Di sinilah terjadi kembali sebuah kilatan cahaya yang ketiga. Kilatan ketiga ini memiliki magnitudo semu -16,5 sehingga 30 kali lebih terang dari Bulan purnama. Bongkahan kedua kemudian lenyap dari pandangan mata pasca kilatan ketiga. Sementara bongkahan pertama, yang melaju sedikit lebih cepat tak mengalami kilatan semenjak dari ketinggian 23,9 kilometer dpl, terus melanjutkan perjalanannya hingga mencapai ketinggian 13,6 kilometer dpl untuk kemudian tak nampak lagi. Dengan tiga kilatan cahaya terjadi tinggi di udara tanpa disertai terbentuknya kawah tumbukan di Bumi, jelas Peristiwa Chelyabinsk 2013 tergolong sebagai peristiwa airburst (ledakan di udara).

Gambar 5. Bagaimana Peristiwa Chelyabinsk 2013 menghasilkan bayang-bayang yang sangat tegas pada benda-benda yang tersinarinya kala terjadi kilatan cahaya pertama, seperti direkam oleh sejumlah kamera keamanan. A: bayang-bayang tiang lampu (tanda panah) di Lapangan Revolusi Chelyabinsk. Lintasan boloid berada di arah pandang kamera. B: bayang-bayang pohon, patung dan tiang lampu (tanda panah) bangunan administratif Cherbakul. Lintasan boloid berada di belakang arah pandang kamera. Disajikan oleh Eduard Kalinin. Sumber: Popova dkk, 2013.

Gambar 5. Bagaimana Peristiwa Chelyabinsk 2013 menghasilkan bayang-bayang yang sangat tegas pada benda-benda yang tersinarinya kala terjadi kilatan cahaya pertama, seperti direkam oleh sejumlah kamera keamanan. A: bayang-bayang tiang lampu (tanda panah) di Lapangan Revolusi Chelyabinsk. Lintasan boloid berada di arah pandang kamera. B: bayang-bayang pohon, patung dan tiang lampu (tanda panah) bangunan administratif Cherbakul. Lintasan boloid berada di belakang arah pandang kamera. Disajikan oleh Eduard Kalinin. Sumber: Popova dkk, 2013.

Pantauan satelit memperlihatkan energi kinetik boloid yang berubah menjadi cahaya dalam segenap lintasannya, termasuk ketiga kilatan tersebut, adalah 90 kiloton TNT (trinitrotoluena). Secara keseluruhan hingga ketinggian tersebut boloid telah melepaskan 590 kiloton TNT energi kinetik. Itu setara dengan 29 butir bom nuklir Hiroshima yang diledakkan serempak. Tekanan ram yang kian membesar saat boloid menembus atmosfer yang lebih rendah membuat boloid tak sekedar tergerus, namun juga membuatnya terpecah-belah. Terutama saat besarnya tekanan telah melampaui daya tahan mineral-mineral penyusun tubuh asteroid-tanpa-nama yang menjadi boloid tersebut. Pemecah-belahan mulai berlangsung di sekitar ketinggian 40 kilometer dpl. Namun pemecah-belahan yang sangat intensif terjadi di antara ketinggian 32 hingga 29 kilometer dpl, atau tepat sebelum boloid mengalami kilatan pertamanya. Pemecah-belahan intensif tersebut menghasilkan ribuan keping meteor. Masing-masing keping terus melaju namun dengan kecepatan jauh lebih lambat. Pemecah-belahan yang sangat intensif dibarengi dengan boloid yang mencapai puncak kecemerlangannya segera menimbulkan implikasi lanjutan yang lebih serius.

Saat tiba di ketinggian 29,7 kilometer dpl kecepatan boloid masih sebesar 18,6 km/detik ( ~67.000 km/jam). Jelas terlihat ia mengalami perlambatan (deselerasi) meski kecil. Namun setelah terpecah-belah demikian massif dan kecemerlangannya mencapai puncaknya, boloid masih terus terfragmentasi hingga tiba di ketinggian 27 kilometer dpl. Produksi debunya berhenti di ketinggian 26,2 kilometer dpl. Hingga ketinggian tersebut, sebanyak 76 % massa awal boloid berubah menjadi awan debu lurus yang khas dan pekat. Sementara 24 % sisanya, yang setara dengan 3.120 ton, menjadi ribuan keping meteor yang mayoritas berukuran kecil. Keping-keping tersebut melesat pada lintasannya masing-masing. Namun pada ketinggian 27 hingga 23 kilometer dpl, keping-keping itu kembali mengalami perlambatan hebat dan tergerus. Partikel-partikel debu pun kembali terbentuk. Dalam beberapa kasus, keping-keping meteor yang terlalu kecil bahkan tergerus hingga habis. Maka keping-keping meteor yang tersisa tinggal bermassa antara 4 hingga 6 ton.

Gambar 6. Awan debu lurus (train) yang khas dalam Peristiwa Chelyabinsk 2013 dari waktu ke waktu. Angka-angka menunjukkan perkiraan ketinggian dalam kilometer dpl. A: 5 detik setelah terbentuk, awan masih sempit dan pekat dengan emisi warna merah dan merah jingga. B: 35 detik setelah terbentuk, masih tersisa warna jingga yang kemungkinan adalah emisi cahaya dari molekul-molekul NO. C: 46 hingga 73 detik setelah terbentuk, warna merah jingga masih tersisa. D: 1,5 menit pasca terbentuk, awan debu lurus mulai melebar dan menipis. Berdasarkan pada pemotretan yang dilakukan Marat Ahmetvaleev dan Evgueny Tvogorov. Sumber: Popova dkk, 2013.

Gambar 6. Awan debu lurus (train) yang khas dalam Peristiwa Chelyabinsk 2013 dari waktu ke waktu. Angka-angka menunjukkan perkiraan ketinggian dalam kilometer dpl. A: 5 detik setelah terbentuk, awan masih sempit dan pekat dengan emisi warna merah dan merah jingga. B: 35 detik setelah terbentuk, masih tersisa warna jingga yang kemungkinan adalah emisi cahaya dari molekul-molekul NO. C: 46 hingga 73 detik setelah terbentuk, warna merah jingga masih tersisa. D: 1,5 menit pasca terbentuk, awan debu lurus mulai melebar dan menipis. Berdasarkan pada pemotretan yang dilakukan Marat Ahmetvaleev dan Evgueny Tvogorov. Sumber: Popova dkk, 2013.

Dalam peristiwa ini separuh energi kinetik boloid, yakni sebesar 295 kiloton TNT, terlepas di sepanjang lintasannya hingga ke titik terjadinya kilatan pertama. Sementara kilatan pertama melepaskan 30 % energi kinetik boloid, setara dengan 177 kiloton TNT. Kilatan kedua melepaskan 15 % energi kinetik, setara 88,5 kiloton TNT. Dan kilatan ketiga melepaskan hanya 5 % energi kinetik boloid, setara dengan 29,5 kiloton TNT. Pelepasan energi kinetik boloid secara bertahap disusul dengan tiga kilatan berturut-turut melipatgandakan intensitas gelombang kejutnya. Selagi menjalar di udara, gelombang tekanan udara ini memproduksi juga gelombang akustik dengan gelombang infrasonik sebagai salah stau komponennya. Gelombang infrasonik berkemampuan menjalar jauh. Bahkan hingga mencapai Antartika, seperti yang direkam radar mikrobarometer stasiun CTBTO disana. Saat gelombang akustik menyentuh daratan tepat di bawah lintasan boloid, terjadi konversi menjadi gelombang seismik dalam rupa gelombang Rayleigh (gelombang permukaan).

Sinar Panas

Tumbukan benda langit memang bukanlah peristiwa ledakan senjata nuklir. Tumbukan benda langit tak pernah memandarkan sinar radioaktif ataupun memproduksi sampah radioaktif layaknya ledakan senjata nuklir. Namun keduanya memiliki beberapa ciri khas yang sama, misalnya dalam hal pelepasan energi sangat besar pada tempo sangat singkat. Karena itu dampak peristiwa tumbukan terhadap Bumi kerap dianalisis dengan pendekatan dampak ledakan nuklir, khususnya jika energi kinetik asteroid/komet itu cukup besar. Termasuk dalam peristiwa airburst. Dampak sebuah airburst dapat dianalisis berdasarkan pendekatan dampak ledakan nuklir atmosferik (titik ledaknya berada di udara), khususnya pada ketinggian cukup besar (eksoatmosferik). Energi sangat besar yang dilepaskan dalam peledakan senjata nuklir strategis secara eksoatmosferik akan menghasilkan dua dampak utama, yakni sinar panas dan gelombang kejut. Dua dampak utama tersebut pun teramati dalam airburst Peristiwa Chelyabinsk 2013.

Gambar 7. Peta area yang terkena dampak sinar panas Peristiwa Chelyabinsk 2013. Lingkaran ungu mewakili lokasi para korban yang merasakan sensasi terbakar di kulit (sunburn). Lingkaran merah mewakili lokasi para korban yang mengalami sensasi terbakar di retina. Lingkaran kuning mewakili lokasi para korban yang merasa terbutakan untuk sementara waktu. Dan lingkaran jingga mewakili lokasi para korban yang matanya teriritasi. Garis hitam berujung panah merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Gambar 7. Peta area yang terkena dampak sinar panas Peristiwa Chelyabinsk 2013. Lingkaran ungu mewakili lokasi para korban yang merasakan sensasi terbakar di kulit (sunburn). Lingkaran merah mewakili lokasi para korban yang mengalami sensasi terbakar di retina. Lingkaran kuning mewakili lokasi para korban yang merasa terbutakan untuk sementara waktu. Dan lingkaran jingga mewakili lokasi para korban yang matanya teriritasi. Garis hitam berujung panah merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Dampak sinar panas dalam Peristiwa Chelyabinsk 2013 mewujud pada mata pedih (disamping silau) dari orang-orang yang menatap boloid ini secara langsung. Sebagai hasilnya, ada 180 orang yang matanya teriritasi, 70 orang merasa terbutakan untuk sesaat dan 11 orang merasakan sensasi retina yang terbakar. Namun tidak ada kasus kerusakan mata permanen bagi orang-orang tersebut, baik di lensa mata maupun kornea. Di luar dari dampak pada mata, terdapat 20 orang yang melaporkan sensasi terbakar pada kulit (sunburn). Beberapa mereka merasakan sensasi tersebut di leher bagian belakang kala membelakangi boloid. Juga terdapat 315 orang yang merasa mendadak panas dan 415 orang yang merasa mendadak hangat. Jika dibandingkan dengan proyeksi lintasan boloid di paras Bumi, maka area yang terdampak sinar panas dalam Peristiwa Chelyabinsk 2013 adalah hingga garis paralel 200 kilometer di sebelah utara dan hingga garis paralel 120 kilometer di selatan. Korban terparah dampak sinar panas terdapat di Korkino, 30 kilometer dari proyeksi titik kilatan pertama. Di sini seseorang mengalami luka-luka menengah akibat sunburn di wajahnya yang disusul mengelupasnya sebagian kulit wajah.

Sinar panas merupakan imbas langsung dari terjadinya airburst dalam Peristiwa Chelyabinsk 2013. Sinar panas merupakan gelombang elektromagnetik dalam rentang frekuensi tertentu, yang didominasi sinar ultraungu, yang dipancarkan dari sebuah sumber dan memiliki intensitas sangat tinggi. Tingginya intensitas membuatnya mampu menimbulkan aneka efek fisis saat mengenai manusia/benda. Jika melampaui ambang batas tertentu, sinar panas mampu menimbulkan luka-luka bakar dalam aneka tingkat, mulai dari tingkat satu (paling ringan) hingga tingkat tiga (paling parah dan berpotensi fatal). Ia juga mampu membuat benda-benda terbakar spontan, mulai dari kertas koran (paling ringan) hingga kain (paling parah), bergantung pada intensitasnya.

Dalam Peristiwa Chelyabinsk 2013, sinar panas dipancarkan kala boloid mengalami kilatan pertama sekaligus meraih puncak kecemerlangannya sehingga boloid sempat lebih benderang dari Matahari. Intensitas tertinggi dari sinar panas produk airburst Peristiwa Chelyabinsk 2013 adalah 200 Joule per meter persegi, yang terjadi di Korkino. Intensitas tersebut masih jauh dari ambang intensitas untuk menyebabkan luka bakar tingkat satu (127,94 kiloJoule per meter persegi) maupun terbakarnya kertas koran (258,74 kiloJoule per meter persegi). Sehingga nyaris tak ada efek fisis yang ditimbulkannya, kecuali sensasi rasa terbakar. Korban terparah di Korkino merupakan kasus khusus, karena ia tak hanya menerima paparan sinar panas langsung dari boloid yang sedang dalam tahap kilatan pertamanya namun juga dari hasil pemantulan sinar panas oleh lapisan-lapisan salju yang mengitarinya. Sebagai akibatnya ia menerima paparan total sinar panas hingga sekitar 1.000 Joule per meter persegi, sehingga terjadi kasus eritema (sebagian kulit wajah mengelupas).

Gelombang Kejut

Dampak paling kasat mata Peristiwa Chelyabinsk 2013 adalah gelombang kejutnya. Kaca-kaca jendela dari total 7.320 buah bangunan pecah akibat hempasan gelombang kejut. Bangunan-bangunan tersebut meliputi 740 buah gedung sekolah dan universitas, 296 buah gedung fasilitas kesehatan, 110 buah gedung organisasi kebudayaan, 48 gedung olahraga serta 6.097 buah gedung apartemen dan rumah. Serpihan kaca-kaca jendela yang melesat beterbangan melukai ribuan orang dalam bentuk luka iris. Selain itu hempasan gelombang kejut juga mampu menjatuhkan orang yang berdiri tegak, khususnya di dekat proyeksi lintasan boloid. Sehingga luka-luka memar pun terjadi. Tercatat 1.613 orang mendatangi fasilitas medis untuk perawatan luka-lukanya. 112 orang diantaranya harus menjalani rawat inap dengan 2 diantaranya menderita luka berat.

Gambar 8. Kerusakan akibat dampak gelombang kejut Peristiwa Chelyabinsk 2013 di Yemanzhelinsk. A: kaca jendela yang pecah. B dan D: pembersihan dan perbaikan sementara. C: kerangka jendela yang terdorong masuk. E, F dan H: jendela yang hilang di gedung sekolah. G: eternit yang jebol. Foto-foto dari Victor I. Gubar. Sumber: Popova dkk, 2013.

Gambar 8. Kerusakan akibat dampak gelombang kejut Peristiwa Chelyabinsk 2013 di Yemanzhelinsk. A: kaca jendela yang pecah. B dan D: pembersihan dan perbaikan sementara. C: kerangka jendela yang terdorong masuk. E, F dan H: jendela yang hilang di gedung sekolah. G: eternit yang jebol. Foto-foto dari Victor I. Gubar. Sumber: Popova dkk, 2013.

Selain menyebabkan ribuan orang luka-luka, hempasan gelombang kejut Peristiwa Chelyabinsk 2013 juga menyebabkan sejumlah kerusakan fisik dan masalah lainnya. Atap sebuah pabrik seng di Chelyabinsk ambruk. Kerangka jendela sejumlah bangunan yang tepat berada di bawah lintasan boloid melesak ke dalam. Bahkan ada eternit yang jebol, meski atapnya sendiri tidak mengalami masalah serius. Disamping itu ribuan alarm mobil dibuat meraung-raung, menambah suasana menjadi hiruk pikuk. Getaran yang ditimbulkan papasan gelombang kejut juga membuat aliran listrik di berbagai tempat sempat terputus. Juga sambungan telepon seluler. Getaran juga membuat katup pemutus otomatis pada sistem pipa gas kota terpicu. Sehingga aliran gas sempat terputus.

Gambar 9. Peta area yang terkena dampak gelombang kejut Peristiwa Chelyabinsk 2013. Lingkaran merah mewakili lokasi bangunan yang mengalami kerusakan berdasarkan temuan Popova dkk. Sementara lingkaran ungu mewakili bangunan yang rusak berdasarkan data badan layanan darurat setempat. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Gambar 9. Peta area yang terkena dampak gelombang kejut Peristiwa Chelyabinsk 2013. Lingkaran merah mewakili lokasi bangunan yang mengalami kerusakan berdasarkan temuan Popova dkk. Sementara lingkaran ungu mewakili bangunan yang rusak berdasarkan data badan layanan darurat setempat. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Sumber: Popova dkk, 2013.

Seperti halnya dampak sinar panas, dampak gelombang kejut pun menjalar cukup jauh. Pemetaan menunjukkan, jika dibandingkan dengan proyeksi lintasan boloid di paras Bumi maka area yang terdampak gelombang kejut dalam Peristiwa Chelyabinsk 2013 adalah hingga garis paralel 120 kilometer di sebelah utara dan selatan. Pecahnya kaca-kaca jendela diakibatkan oleh tekanan lebih (overpressure) lebih besar dari 500 Pascal. Perhitungan menunjukkan dampak gelombang kejut yang diperlihatkan dalam Peristiwa Chelyabinsk 2013 konsisten dengan ledakan nuklir berkekuatan 520 kiloton TNT dengan titik ledak dinamis yang berpindah-pindah antara ketinggian 34 hingga 27 kilometer dpl dan antara ketinggian 24 hingga 19 kilometer dpl menyusuri lintasan boloid. Dengan demikian 88 % dari energi kinetik boloid diubah menjadi gelombang kejut sementara sisanya menjadi cahaya (termasuk sinar panas).

Ada sedikit perbedaan antara gelombang kejut produk ledakan nuklir atmosferik dengan boloid. Gelombang kejut produk ledakan nuklir eksoatmosferik umumnya menjalar sebagai bentuk sferis (mirip bola) karena berasal dari sumber ledakan titik. Ini karena titik ledaknya relatif tidak bergerak atau terpatok pada ketinggian tertentu. Sebaliknya gelombang kejut boloid pada awalnya berbentuk kerucut, sebagai imbas dari tekanan ram yang diproduksinya semenjak mulai memasuki lapisan atmosfer yang lebih padat. Yakni mulai dari ketinggian 90 atau 100 kilometer dpl. Seiring penjalaran gelombang kejut, maka bentuk kerucut ini pun melebar mengikuti waktu. Namun bila terjadi peristiwa airburst, ujung kerucut ini segera menumpul akibat penjalaran gelombang kejut baru dari titik-titik pelepasan energi (titik-titik kilatan cahaya).

Gambar 10. Model gelombang kejut dalam Peristiwa Chelyabinsk 2013 sebagai distribusi nilai P/Po (Po = tekanan udara di paras Bumi) dengan energi 520 kiloton TNT dan gelombang kejut dilepaskan di sepanjang lintasan boloid, bukan hanya di satu titik. Sumbu vertikal mewakili ketinggian (dalam kilometer dpl). Sementara sumbu horizontal mewakili jarak relatif dari proyeksi titik kilatan cahaya pertama di paras Bumi. Atas: distribusi gelombang kejut saat boloid tepat telah lenyap di ketinggian 13,6 kilometer dpl. Nampak gelombang kejut masih berbentuk kerucut sangat ramping. Tengah: 25 detik kemudian, gelombang kejut sudah melebar dengan ujung lebih tumpul sebagai imbas terjadinya tiga peristiwa kilatan cahaya (sekaligus pelepasan energi). Bawah: 90 detik kemudian, sebagian gelombang kejut sudah tiba di daratan. Sumber: Popova dkk, 2013.

Gambar 10. Model gelombang kejut dalam Peristiwa Chelyabinsk 2013 sebagai distribusi nilai P/Po (Po = tekanan udara di paras Bumi) dengan energi 520 kiloton TNT dan gelombang kejut dilepaskan di sepanjang lintasan boloid, bukan hanya di satu titik. Sumbu vertikal mewakili ketinggian (dalam kilometer dpl). Sementara sumbu horizontal mewakili jarak relatif dari proyeksi titik kilatan cahaya pertama di paras Bumi. Atas: distribusi gelombang kejut saat boloid tepat telah lenyap di ketinggian 13,6 kilometer dpl. Nampak gelombang kejut masih berbentuk kerucut sangat ramping. Tengah: 25 detik kemudian, gelombang kejut sudah melebar dengan ujung lebih tumpul sebagai imbas terjadinya tiga peristiwa kilatan cahaya (sekaligus pelepasan energi). Bawah: 90 detik kemudian, sebagian gelombang kejut sudah tiba di daratan. Sumber: Popova dkk, 2013.

Meteorit

Selain sinar panas dan gelombang kejutnya, Peristiwa Chelyabinsk 2013 juga menghasilkan guyuran meteorit ke daratan dibawahnya. Ukuran dan bobot meteoritnya beragam. Namun dibandingkan sinar panas dan gelombang kejut, guyuran meteorit nyaris tak berdampak pada bangunan, apalagi manusia. Hanya ada satu bangunan, milik keluarga Biryukovy di Emazhelinska, yang atapnya berlubang kecil akibat hantaman meteorit kecil. Meteor tersebut ditemukan di dekat lantai. Tak ada yang terluka olehnya.

Gambar 11. Satu-satunya bangunan yang mengalami kerusakan akibat hantaman meteorit dalam Peristiwa Chelyabinsk 2013. Sebutir meteorit kecil, nampak dipegang Popova dengan tangan kiri, menghantam pinggir atap bangunan ini. Akibatnya pinggiran atap itu pun berlubang (tanda panah). Sumber: Popova dkk, 2013.

Gambar 11. Satu-satunya bangunan yang mengalami kerusakan akibat hantaman meteorit dalam Peristiwa Chelyabinsk 2013. Sebutir meteorit kecil, nampak dipegang Popova dengan tangan kiri, menghantam pinggir atap bangunan ini. Akibatnya pinggiran atap itu pun berlubang (tanda panah). Sumber: Popova dkk, 2013.

Meteorit-meteorit yang dijumpai dalam Peristiwa Chelyabinsk 2013 terserak di sekitar proyeksi lintasan boloid di paras Bumi. Meteorit yang lebih ringan mengalami hambatan udara lebih besar dan lebih mudah tertiup angin. Sehingga ia butuh waktu lebih lama untuk mendarat dan mendarat dengan kecepatan kecil. Sebaliknya meteorit-meteorit yang lebih berat tidak demikian, sehingga mereka lebih cepat mendarat dan dengan kecepatan lebih besar. Meteorit-meteorit yang lebih ringan mendarat pada jarak yang lebih dekat terhadap proyeksi titik kilatan cahaya pertama di paras Bumi dibandingkan dengan meteorit yang lebih jauh. Maka meteorit dengan massa 10 gram sudah ditemukan pada jarak 18 kilometer dari proyeksi titik kilatan cahaya pertama, sementara meteorit 100 gram pada jarak 33 kilometer dan meteorit 1 kilogram pada jarak 43 kilometer. Perhitungan menunjukkan masing-masing meteorit tersebut jatuh pada kecepatan 37 meter/detik (133 km/jam), 55 meter/detik (198 km/jam) dan 82 meter/detik (295 km/jam). Perhitungan juga menunjukkan meteorit-meteorit tersebut jatuh dalam waktu 347 detik, 235 detik dan 158 detik pasca kilatan cahaya pertama.

Gambar 12. Peta area temuan meteorit dalam Peristiwa Chelyabinsk 2013, yang ditandai dengan lingkaran kuning. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Angka 14, 18, 24 dan seterusnya di sisi garis hitam menunjukkan ketinggian boloid pada saat melintas. Sumber: Popova dkk, 2013.

Gambar 12. Peta area temuan meteorit dalam Peristiwa Chelyabinsk 2013, yang ditandai dengan lingkaran kuning. Garis hitam merupakan proyeksi lintasan boloid di paras Bumi. Angka 14, 18, 24 dan seterusnya di sisi garis hitam menunjukkan ketinggian boloid pada saat melintas. Sumber: Popova dkk, 2013.

Salah satu aspek menarik Peristiwa Chelyabinsk 2013 adalah ditemukannya meteorit cukup besar sekaligus cukup berat. Segera setelah semua kehebohan di kawasan Chelyabinsk dan sekitarnya, penduduk di sekitar Danau Cherbakul dikejutkan dengan adanya sebentuk lubang aneh di dataran es permukaan danau. Danau ini terletak 40 kilometer di sebelah barat-barat laut kota Chelyabinsk. Perhitungan menunjukkan danau ini terletak di sekitar ujung lintasan boloid Peristiwa Chelyabinsk 2013. Lubang aneh tersebut berbentuk lonjong dengan ukuran 7 x 8 meter persegi. Semula lubang aneh ini diduga hadir akibat ulah manusia, yang iseng membentuk lubang di dataran es setebal 70 cm dengan kapak es. Namun di sekeliling lubang ini lalu dijumpai banyak meteorit kecil-kecil. Seluruhnya terdapat 51 buah meteorit kecil, yang terserak dalam radius 5 hingga 50 meter dari lubang aneh itu. Muncul kecurigaan bahwa lubang aneh tersebut terbentuk secara alamiah, akibat hantaman meteorit yang berukuran besar. Apalagi setelah kamera keamanan sirkuit tertutup di kediaman Nikolaj Mel’nikov yang menghadap ke danau memperlihatkan memang ada obyek besar jatuh ke danau. Hanya 1 menit 2,5 detik pasca kamera merekam permukaan danau yang mendadak lebih terang (akibat paparan cahaya boloid), gumpalan asap putih menyeruak dari sebuah titik di tengah-tengah danau lantas terbawa angin. Gumpalan asap putih itu nampaknya butir-butir es atau salju yang terhambur ke udara akibat jatuhnya meteorit besar. Karena resolusinya, kamera tersebut tak menangkap obyek meteorit saat hendak jatuh ke danau.

Gambar 13. Dinamika dataran es di permukaan Danau Cherbakul pada saat Peristiwa Chelyabinsk 2013, seperti direkam kamera keamanan di kediaman Nikolaj Mel'nikov. Waktu dalam GMT (UTC). 03:20:32,20: lansekap danau diterangi oelh cahaya boloid khususnya dari kilatan cahaya pertamanya. 03:21:34,72: gumpalan asap putih yang adalah titik-titik es atau salju yang terhambur ke udara akibat hantaman meteorit besar ke permukaan danau mulai terbentuk (tanda panah). 03:22:44,20: gumpalan asap putih (tanda panah) telah membesar dan bergeser ke kanan akibat hembusan angin. 03:26:52,20: gumpalan asap putih (tanda panah) kian bergeser ke kanan oleh hembusan angin. Sumber: Popova dkk, 2013.

Gambar 13. Dinamika dataran es di permukaan Danau Cherbakul pada saat Peristiwa Chelyabinsk 2013, seperti direkam kamera keamanan di kediaman Nikolaj Mel’nikov. Waktu dalam GMT (UTC). 03:20:32,20: lansekap danau diterangi oleh cahaya boloid khususnya dari kilatan cahaya pertamanya. 03:21:34,72: gumpalan asap putih yang adalah titik-titik es atau salju yang terhambur ke udara akibat hantaman meteorit besar ke permukaan danau mulai terbentuk (tanda panah). 03:22:44,20: gumpalan asap putih (tanda panah) telah membesar dan bergeser ke kanan akibat hembusan angin. 03:26:52,20: gumpalan asap putih (tanda panah) kian bergeser ke kanan oleh hembusan angin. Sumber: Popova dkk, 2013.

Pengukuran dengan radas magnetometer-gradiometer menunjukkan adanya sebentuk obyek besar padat dan kaya besi terbenam di dasar danau. Obyek padat dan kaya besi adalah salah satu ciri khas meteorit. Namun saat danau diselami di awal mula, hasilnya mengecewakan. Penyelam hanya menemukan sebentuk cekungan lumayan besar di lumpur tebal di dasar danau. Butuh lebih dari setengah tahun kemudian, setelah lapisan es mencair sepenuhnya dan menghilang di musim panas, untuk dapat menemukan meteorit besar tersebut. Pada 24 September 2013 TU penyelam Alexei Lyahov menemukan bongkahan 1,5 kilogram, yang adalah meteorit dan diyakini merupakan bagian dari meteorit besar tersebut. Pencarian mencapai puncaknya pada 16 Oktober 2013 TU kala sebongkah batu besar dengan volume 0,1533 meter kubik dan massa 500 kilogram berhasil diangkat dari dasar danau. Inilah meteorit terbesar produk Peristiwa Chelyabinsk 2013.

Perhitungan menunjukkan meteorit besar ini jatuh dengan kecepatan 225 meter/detik (810 km/jam) pada saat menyentuh permukaan es Danau Cherbakul. Meteorit besar ini adalah bagian dari bongkahan pertama, yang terbentuk saat boloid mengalami pemecah-belahan brutal di ketinggian 27 kilometer dpl. Tak seperti bongkahan kedua yang hancur berkeping-keping dalam kilatan cahaya ketiga di ketinggian 18,5 kilometer dpl, bongkahan pertama terus melaju tanpa mengalami kilatan maupun pemecah-belahan signifikan lagi hingga tiba di ketinggian 13,6 kilometer dpl. Setelah itu bongkahan pertama lenyap dari pandangan mata. Namun ia masih melanjutkan perjalanannya hingga akhirnya tercebur di Danau Cherbakul.

Gambar 14. Lubang yang dibentuk oleh hantaman meteorit besar di dataran es permukaan Danau Cherbakul dilihat dari udara (kanan) beserta sejumlah meteorit kecil yang ditemukan disekitar lubang (kiri). Sumber: Popova dkk, 2013.

Gambar 14. Lubang yang dibentuk oleh hantaman meteorit besar di dataran es permukaan Danau Cherbakul dilihat dari udara (kanan) beserta sejumlah meteorit kecil yang ditemukan disekitar lubang (kiri). Sumber: Popova dkk, 2013.

Perhitungan juga menunjukkan, andaikata meteorit besar ini jatuh ke tanah dampaknya pun lumayan. Dengan kecepatan 810 km/jam maka tanah yang ditumbuknya akan berubah menjadi cekungan kawah tumbukan bergaris tengah 5 meter dengan kedalaman maksimum 1 meter. Dari cekungan ini akan terhambur tanah produk tumbukan sebanyak 9 meter kubik. Dapat dibayangkan apa yang akan terjadi jika meteorit besar ini menghantam sebidang tanah yang terdapat bangunan atau aktivitas manusia. Korban jiwa bakal tak terelakkan.

Epilog

Lebih dari seabad sebelum kejadian di Chelyabinsk, Russia (saat itu masih kekaisaran Russia) juga didera oleh peristiwa serupa. Kilatan cahaya yang sangat benderang diiringi suara gemuruh khas ledakan yang sangat besar (dan misterius) terjadi di kawasan Tunguska, Siberia, pada 30 Juni 1908 TU. Segera setelah itu diketahui bahwa lebih dari 80 juta pepohonan yang terserak di kawasan seluas 2.000 kilometer persegi di tengah-tengah belantara Siberia ambruk. Arah jatuhnya pohon-pohon tersebut pun khas. Di tengah-tengah kawasan ini masih tersisa area kecil dengan pepohonan yang masih tegak, namun telah kehilangan cabang-cabang dan ranting-rantingnya. Getaran seismik yang setara dengan gempa 5,0 skala Richter pun mengguncang seismometer-seismometer di sekujur Eurasia. Perubahan tekanan udaranya terekam hingga ke stasiun di Inggris Raya. Selama beberapa hari kemudian langit senja Eropa dan Asia terlihat lebih terang, pemandangan yang mengingatkan pada langit senja pasca Letusan Krakatau 1883 maupun pasca Letusan Tambora 1815. Pengukuran di observatorium Gunung Wilson (Amerika Serikat) memperlihatkan bahwa semenjak peristiwa tersebut langit belahan Bumi utara cenderung lebih kotor, yang bertahan hingga berbulan-bulan kemudian. Situasi tersebut lagi-lagi mengingatkan kembali pada langit pasca Letusan Krakatau 1883 dan pasca Letusan Tambora 1815.

Gambar 15. Atas: dua bongkahan besar nampak melejit dari titik dimana boloid Peristiwa Chelyabinsk 2013 mengalami pemecah-belahan brutal di ketinggian 27 kilometer dpl. Masing-masing adalah bongkahan pertama (1) dan bongkahan kedua (2). Bongkahan kedua lenyap di ketinggian 18,5 kilometer dpl bersamaan dengan kilatan cahaya ketiga. Bawah: meteorit terbesar dan terberat dalam Peristiwa Chelyabinsk 2013, yang berhasil diangkat dari dasar Danau Cherbakul lebih dari setengah tahun setelah kejatuhannya. Meteorit besar ini adalah bongkahan pertama yang berhasil selamat tiba di paras Bumi dan membentur permukaan danau dengan kecepatan 810 km/jam. Sumber: Popova dkk, 2013.

Gambar 15. Atas: dua bongkahan besar nampak melejit dari titik dimana boloid Peristiwa Chelyabinsk 2013 mengalami pemecah-belahan brutal di ketinggian 27 kilometer dpl. Masing-masing adalah bongkahan pertama (1) dan bongkahan kedua (2). Bongkahan kedua lenyap di ketinggian 18,5 kilometer dpl bersamaan dengan kilatan cahaya ketiga. Bawah: meteorit terbesar dan terberat dalam Peristiwa Chelyabinsk 2013, yang berhasil diangkat dari dasar Danau Cherbakul lebih dari setengah tahun setelah kejatuhannya. Meteorit besar ini adalah bongkahan pertama yang berhasil selamat tiba di paras Bumi dan membentur permukaan danau dengan kecepatan 810 km/jam. Sumber: Popova dkk, 2013.

Kini kita menyebut kejadian itu sebagai Peristiwa Tunguska 1908. Seperti halnya peristiwa Chelyabinsk, kejadian di Tunguka pun disebabkan oleh tumbukan benda langit yang berujung pada peristiwa airburst. Hanya saja energi kinetik boloid yang terlepas di Tunguska jauh lebih besar, yakni antara 10 hingga 15 megaton TNT dengan estimasi tertinggi hingga 30 megaton TNT. Dengan demikian ia 17 hingga 25 kali lebih energetik (maksimum 51 kali lebih energetik) ketimbang Peristiwa Chelyabinsk 2013. Ketinggian lokasi airburst-nya pun lebih rendah, yakni antara 6 hingga 10 kilometer dpl. Mujur bahwa Peristiwa Tunguska 1908 terjadi tepat di jantung hutan belantara Siberia yang tak berpenghuni (manusia). Bila berlangsung di pusat pemukiman manusia apalagi di pusat peradaban modern, entah apa jadinya.

Secara umum Peristiwa Chelyabinsk 2013, bersama dengan Peristiwa Tunguska 1908, mendemonstrasikan dengan telanjang apa yang selama ini menjadi kekhawatiran para ilmuwan, khususnya astronom dan astrofisikawan. Yakni bahwa tumbukan benda langit khususnya yang melepaskan energi kinetik besar, hingga berada dalam rentang kekuatan ledakan senjata nuklir taktis maupun strategis, memproduksi dampak perusak yang sama dengan ledakan nuklir (minus radiasinya). Termasuk jika sebuah tumbukan benda langit berujung hanya pada kejadian airburst tanpa terbentuknya kawah tumbukan. Peristiwa Chelyabinsk 2013 memperlihatkan betapa sebutir asteroid yang garis tengahnya 20 meter sanggup menghasilkan kerusakan ringan-sedang dalam wilayah yang cukup luas di Bumi. Ini memperlihatkan betapa rentannya peradaban manusia modern dalam menghadapi ancaman bahaya tumbukan benda langit, mengingat asteroid berdiameter 20 meter adalah terhitung kecil bila dibandingkan dengan dimensi asteroid pada umumnya. Termasuk di kalangan populasi asteroid dekat Bumi.

Apa yang harus dilakukan? Sejauh ini sistem penyigian langit semi-otomatis yang kita miliki sejatinya telah sanggup mendeteksi asteroid dekat-Bumi seukuran 20 meter atau lebih yang melintas di dekat Bumi. Dalam beberapa kasus khusus, asteroid yang berukuran lebih kecil pun sanggup diendus, bahkan hingga sekecil 1 meter! namun keberhasilan tersebut dibatasi oleh banyak faktor. Salah satunya kurang meratanya distribusi teleskop/observatorium yang terlibat dalam sistem penyigian langit saat ini, yang masih terkonsentrasi di belahan Bumi utara dan di benua-benua tertentu saja. Di sisi lain keampuhan sistem penyigian langit tersebut juga sangat terbatasi bila berhadapan dengan asteroid/komet yang geometri orbitnya demikian rupa sehingga magnitudo semu asteroid/komet baru akan mencapai ambang batas deteksi hanya dalam beberapa jam sebelum jatuh menumbuk Bumi. Asteroid-tanpa-nama yang menjadi penyebab Peristiwa Chelyabinsk 2013 pun demikian.

Jika upaya deteksi benda langit yang berpotensi menumbuk Bumi telah mendapat kemajuan besar, tak demikian dengan upaya antisipasinya. Sejauh ini belum ada satu perangkat teknis yang memadai dan teruji untuk mengeliminasi potensi ancaman sebuah benda langit. Baik kala benda langit tersebut masih cukup jauh dan sedang menyusuri orbitnya untuk menuju ke Bumi. Ataupun kala ia sudah menjadi boloid di lapisan atmosfer atas. Pun demikian bagaimana mereduksi bahayanya. Meski dampak tumbukan benda langit menyerupai dampak ledakan senjata nuklir (minus radiasinya), sejauh ini hanya negara-negara adidaya seperti Russia dan Amerika Serikat yang telah memperkenalkan mitigasi bencana ledakan nuklir. Begitupun, Peristiwa Chelyabinsk 2013 memperlihatkan betapa mitigasi bencana ledakan nuklir masih harus dikembangkan lagi jika hendak diaplikasikan ke dalam mitigasi bencana tumbukan benda langit. Jalan masih panjang, pekerjaan rumah masih banyak.

Referensi :

Popova dkk. 2013. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization. Science no. 342 (2013) October 2013 + Supplementary Materials.

Hildebrand dkk. 1990. Chicxulub Crater Size and Structure as Revealed by Horizontal Bouguer Gravity Gradients and Cenote Distribution. Lunar & Planetary Science XXVI, 603-604.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Kala Asteroid Sebesar Rumah Lewat di Atas Indonesia

Bagaimana perasaan anda jika mengetahui sebongkah batu besar, sebesar sebuah rumah kecil, melejit cepat laksana kilat dalam senyap di atas Indonesia dalam malam gelap gulita? Takjub? Terkaget-kaget? Atau malah menggigil ketakutan dan membayangkan bakal terjadi apa yang digambarkan Hollywood dalam film “Deep Impact” ?

Gambar 1. Asteroid 2014 UF56 (bintik redup di titik potong garis kuning horizontal dan vertikal), diabadikan pada 25 Oktober 2014 TU dengan teleskop reflektor 43 cm VirtualTelescope di Italia. Dua hari kemudian asteroid ini lewat dalam jarak yang cukup dekat dengan Bumi kita, dalam skala astronomi. Sumber: Gianluca Masi, 2014.

Gambar 1. Asteroid 2014 UF56 (bintik redup di titik potong garis kuning horizontal dan vertikal), diabadikan pada 25 Oktober 2014 TU dengan teleskop reflektor 43 cm VirtualTelescope di Italia. Dua hari kemudian asteroid ini lewat dalam jarak yang cukup dekat dengan Bumi kita, dalam skala astronomi. Sumber: Gianluca Masi, 2014.

Peristiwa tersebut benar-benar terjadi pada Senin 27 Oktober 2014 Tarikh Umum (TU) lalu, tepatnya di malam hari waktu Indonesia. Bongkahan batu besar itu adalah sebuah asteroid tanpa-nama yang diberi kode 2014 UF56. Diameternya 14 meter, dengan massa diperkirakan antara 2.900 hingga 5.800 ton. Ia baru ditemukan dua hari sebelumnya, tepatnya Sabtu 25 Oktober 2014 TU, lewat teleskop reflektor 180 cm (f-ratio 2,7) di Observatorium Kitt Peak, Arizona (Amerika Serikat) selagi menyisir langit dalam program penyigian Spacewatch. Segera diketahui asteroid 2014 UF56 ini adalah bagian dari asteroid yang gemar berdekat-dekat ke Bumi dalam skala astronomi, tepatnya asteroid dekat Bumi (ADB) kelas Apollo. Orbitnya melonjong dan melambung di antara orbit Venus hingga kawasan sabuk asteroid. Tepatnya dengan perihelion 0,87 SA (satuan astronomi) atau 130 juta kilometer dari Matahari dan aphelion 3,38 SA atau 506 juta kilometer dari Matahari. Ia membutuhkan waktu hingga 3,1 tahun lamanya guna mengelilingi Matahari sekali putaran.

Konfigurasi orbitnya demikian rupa sehingga pada Selasa 28 Oktober 2014 TU dinihari, tepatnya pada pukul 04:22 WIB, sang asteroid akan menempati titik terdekatnya ke Bumi dengan jarak ‘hanya’ 158.000 kilometer. Maka pada saat itu asteroid 2014 UF56 adalah 2,3 kali lipat lebih dekat ketimbang Bulan kita. Kala menempati titik terdekatnya ke Bumi, saat itu asteroid 2014 UF56 berada di atas Samudera Pasifik lepas pantai Peru, Amerika Selatan. Antara 9 hingga 7 jam sebelumnya, tepatnya pada Senin 27 Oktober 2014 TU pukul 19:00 hingga 21:00 WIB, asteroid 2014 UF56 praktis melayang di atas Indonesia. Saat itu ia melejit pada ketinggian mulai 457.000 hingga 382.000 kilometer di atas paras laut Indonesia, atau masih lebih jauh ketimbang Bulan. Ia melintas mulai dari di atas pulau Halmahera, pulau Sulawesi bagian utara, pulau Kalimantan hingga akhirnya keluar dari Indonesia setelah lewat di atas pulau Sumatra. Asteroid ini praktis lewat tepat di atas kepala penduduk kota Gorontalo dan Pontianak. Sejam setelah meninggalkan kepulauan Nusantara, barulah bongkahan asteroid ini mulai menempuh lintasan yang menjadikannya lebih dekat ke Bumi dibanding Bulan dan bertahan hingga berjam-jam kemudian.

Gambar 2. Peta proyeksi lintasan asteroid 2014 UF56 di Indonesia pada 27 Oktober 2014 mulai pukul 19:00 WIB. Asteroid bergerak ke arah barat. Garis putus-putus menunjukkan proyeksi lintasan yang diestimasikan. Nampak asteroid melintas di atas pulau Halmahera, Sulawesi, Kalimantan dan Sumatra. Disimulasikan dengan Starry Night Backyard 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Gambar 2. Peta proyeksi lintasan asteroid 2014 UF56 di Indonesia pada 27 Oktober 2014 mulai pukul 19:00 WIB. Asteroid bergerak ke arah barat. Garis putus-putus menunjukkan proyeksi lintasan yang diestimasikan. Nampak asteroid melintas di atas pulau Halmahera, Sulawesi, Kalimantan dan Sumatra. Disimulasikan dengan Starry Night Backyard 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Dimensi asteroid 2014 UF56 ini sekitar satu setengah kali lebih besar dibanding asteroid-tanpa-nama yang memasuki atmosfer Bumi dalam Peristiwa Bone (8 Oktober 2009 TU) di atas Sulawesi Selatan (Indonesia). Sebaliknya ukurannya pun satu setengah kali lebih kecil ketimbang asteroid-tanpa-nama lainnya yang juga menerobos atmosfer, kali ini dalam Peristiwa Chelyabinsk (13 Februari 2013 TU) di Siberia (Russia). Namun berbeda dengan keduanya, asteroid 2014 UF56 tidak memiliki potensi untuk jatuh ke Bumi setidaknya hingga 100 tahun mendatang. Ketiadaan potensi inilah yang membuat asteroid 2014 UF56 tak pernah tercantum dalam Sentry Risk Table NASA, sebuah tabel yang memeringkatkan seluruh asteroid-asteroid dekat Bumi yang sudah teramati berdasarkan peluang tumbukan, skala Palermo dan skala Torino-nya. Karena itu meski ia lewat pada jarak yang relatif cukup dekat ke Bumi kita, khususnya dalam skala astronomi, ia tidak mendatangkan petaka.

Apa yang akan terjadi jika asteroid 2014 UF56 mengalami nasib sebaliknya, yakni benar-benar jatuh ke Bumi?

Asteroid ini akan menjadi meteroroid dan selanjutnya menjadi meteor-terang (fireball) begitu menerobos masuk ke lapisan-lapisan udara Bumi kita. Namun ia takkan sampai ke daratan, kecuali hanya sebagian sangat kecil (kurang lebih 0,1 % massa awal). Selagi melesat cepat dalam atmosfer kita, ia akan memijar hingga pada puncaknya bakal seterang hingga dua kali lipat lebih terang dibanding Bulan purnama. Meteor-terang ini takkan sanggup menahan tekanan besar sajian atmosfer sehingga akan terfragmentasi (terpecah-belah) pada ketinggian antara 44 hingga 65 kilometer dpl (dari paras laut rata-rata). Selanjutnya pada ketinggian antara 22 hingga 30 kilometer dpl, mayoritas fragmen meteor-terang ini akan sangat terlambatkan hingga melepaskan hampir seluruh energi kinetiknya dalam peristiwa mirip ledakan di udara (airburst). Energi yang dilepaskan berkisar antara 91 hingga 182 kiloton TNT. Ini setara dengan 5 hingga 9 butir bom nuklir Hiroshima yang diledakkan serempak.

Gambar 3. Peta proyeksi lintasan asteroid 2014 UF56 dalam lingkup global semenjak 27 Oktober 2014 pukul 19:00 WIB hingga 13 jam kemudian. Asteroid bergerak ke arah barat melintasi Indonesia, Afrika bagian tengah dan Amerika Selatan. Tanda bintang (*) adalah proyeksi dimana asteroid 2014 UF56 mencapai titik terdekatnya ke Bumi kita, yakni 'hanya' sejauh 158.000 kilometer di atas paras Samudera Pasifik. Disimulasikan dengan Starry Night Backyar 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Gambar 3. Peta proyeksi lintasan asteroid 2014 UF56 dalam lingkup global semenjak 27 Oktober 2014 pukul 19:00 WIB hingga 13 jam kemudian. Asteroid bergerak ke arah barat melintasi Indonesia, Afrika bagian tengah dan Amerika Selatan. Tanda bintang (*) adalah proyeksi dimana asteroid 2014 UF56 mencapai titik terdekatnya ke Bumi kita, yakni ‘hanya’ sejauh 158.000 kilometer di atas paras Samudera Pasifik. Disimulasikan dengan Starry Night Backyar 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Apa dampaknya? Pelepasan energi setinggi 91 kiloton TNT pada ketinggian 30 kilometer dpl takkan berdampak ke daratan yang tepat berada dibawahnya. Namun pelepasan energi sebesar 182 kiloton TNT pada ketinggian yang lebih rendah, yakni 22 kilometer dpl, masih sanggup membuat kaca-kaca jendela pada bangunan di daratan yang tepat ada dibawahnya bergetar atau bahkan retak akibat hempasan gelombang kejutnya. Sekilas dampak ini mirip dengan apa yang terjadi dalam Peristiwa Bone. Jika mau dibandingkan lagi, dampaknya bakal jauh lebih ringan ketimbang Peristiwa Chelyabinsk yang melukai ribuan orang dan merusak ratusan bangunan dengan total kerugian puluhan milyar rupiah itu. Jadi, andaikata asteroid 2014 UF56 benar-benar jatuh ke Bumi, dampaknya relatif minimal.

Sukses deteksi asteroid 2014 UF56 merupakan bagian dari upaya umat manusia mengenali dan memitigasi potensi bencana dari langit dalam wujud tumbukan benda langit (komet dan asteroid). Kini lewat sistem-sistem penyigi langit, baik yang masih maupun yang pernah aktif, kita telah mampu memetakan sekurang-kurangnya 90 % populasi asteroid dekat Bumi yang diameternya melebihi 1.000 meter. Asteroid seukuran ini menjadi target untuk dipetakan karena potensi bahayanya yang mengerikan, dapat menyebabkan bencana dalam lingkup global di Bumi. Setelah asteroid besar ini relatif terpetakan, target selanjutnya adalah menyisir dan memetakan asteroid-asteroid yang lebih kecil. Yakni yang berukuran antara 140 meter hingga 1.000 meter. Sebab disadari asteroid yang berukuran menengah pun masih sanggup mendatangkan bencana dalam lingkup lokal hingga regional kala menubruk Bumi. Tantangannya cukup besar dan berat, mengingat jumlah asteroid berukuran menengah ini diestimasikan mencapai jutaan hingga puluhan juta butir. Dengan terpetakannya populasi asteroid besar maupun menengah, maka potensi bahaya dari mereka relatif dapat dideteksi secara lebih dini. Sehingga langkah-langkah mitigasi pun diharapkan dapat disusun dan dilaksanakan.

Referensi :

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Asteroid 2014 RC dan “Kawah Meteor” Nikaragua

Bongkahan besar itu akhirnya melanjutkan perjalanannya dengan selamat meski melintas pada jarak cukup dekat terhadap Bumi kita. Ya. Pada puncak perlintasannya asteroid 2014 RC berhasil dibidik dan diamati sifat-sifatnya lewat sejumlah teleskop dari berbagai penjuru. Benderangnya malam dengan cahaya Bulan yang mendekati purnamanya memang membuat asteroid yang di atas kertas pun sudah sangat redup (magnitudo semu +11,5) jadi lebih sulit diamati. Namun beberapa observatorium dari sejumlah penjuru berhasil mencetak sukses. Sebut saja Observatorium Siding Spring (Australia), Virtual Telescope Project di Ceccano (Italia) serta observatorium Lowell di Arizona dan NASA Infrared Telescope Facility di Hawaii (keduanya di Amerika Serikat).

Lewat kerja keras mereka kini kita telah selangkah lebih maju dalam memahami sifat-sifat asteroid. Teleskop inframerah NASA memperlihatkan betapa asteroid 2014 RC memantulkan hingga 25 % cahaya Matahari yang menerpanya. Angka ini hampir menyamai kemampuan Bumi (memantulkan 30 % cahaya Matahari) dan jauh lebih besar ketimbang Bulan yang hanya sanggup memantulkan 12 % saja sinar Matahari yang jatuh kepadanya. Dengan kata lain asteroid ini memiliki albedo hingga 0,25.

Gambar 1. Film pendek yang memperlihatkan pergerakan asteroid 2014 RC di latar depan bintang-bintang saat hendak mencapai titik terdekatnya ke Bumi, diabadikan lewat teleskop Hall diameter 105 cm di Observatorium Lowell, Arizona (Amerika Serikat). Film dibuat dengan menggabungkan sejumlah citra/foto terpisah yang diambil dalam waktu berurutan. Sumber: Lowell Observatory, 2014.

Gambar 1. Film pendek yang memperlihatkan pergerakan asteroid 2014 RC di latar depan bintang-bintang saat hendak mencapai titik terdekatnya ke Bumi, diabadikan lewat teleskop Hall diameter 105 cm di Observatorium Lowell, Arizona (Amerika Serikat). Film dibuat dengan menggabungkan sejumlah citra/foto terpisah yang diambil dalam waktu berurutan. Sumber: Lowell Observatory, 2014.

Albedo ini lumayan tinggi. Albedo dalam nilai ini menunjukkan bahwa asteroid 2014 RC banyak mengandung mineral-mineral logam. Sehingga strukturnya relatif lebih padat. Massa jenisnya pun relatif tinggi. Dengan albedo demikian maka asteroid 2014 RC adalah bagian keluarga asteroid tipe S. Yakni asteroid-asteroid yang komposisinya didominasi oleh besi dan magnesium silikat. Asteroid tipe S merupakan keluarga asteroid dengan populasi terbanyak kedua di lingkung tata surya kita, yakni mencakup 17 % dari seluruh asteroid yang telah ditemukan hingga saat ini.

Selain mencerminkan strukturnya, nilai albedo yang lumayan tinggi juga berimplikasi pada ukuran sang asteroid. Semula asteroid ini dianggap berdiameter sekitar 20 meter berdasarkan asumsi albedonya hanya senilai 0,05 seperti halnya asteroid pada umumnya. Namun kini dengan nilai albedo 0,25 dipastikan bahwa ukuran asteroid 2014 RC adalah tak lebih besar dari 12 meter. Dan karena menjadi bagian dari asteroid tipe S, massa jenis 2014 RC diperkirakan berada di sekitar 3 gram di setiap sentimeter kubiknya. Sehingga saat menjangkau titik terdekatnya terhadap Bumi, asteroid 2014 RC mengangkut energi kinetik sebesar 73 kiloton TNT. Energi tersebut hampir menyamai 4 butir bom nuklir Hiroshima yang diledakkan secara serempak.

Gambar 2. Asteroid 2014 RC diabadikan per 7 September 2014 jelang pukul 24:00 WIB dengan teleskop robotik reflektor astrograf 43 cm di Observatorium Siding Spring (Australia). Teleskop diarahkan mengikuti gerakan bintang-bintang dengan waktu penyinaran (paparan) 60 detik. Asteroid bergerak dengan kecepatan sudut yang tinggi sehingag nampak sebagai garis lurus panjang. Sumber: Remanzacco Observatory, 2014.

Gambar 2. Asteroid 2014 RC diabadikan per 7 September 2014 jelang pukul 24:00 WIB dengan teleskop robotik reflektor astrograf 43 cm di Observatorium Siding Spring (Australia). Teleskop diarahkan mengikuti gerakan bintang-bintang dengan waktu penyinaran (paparan) 60 detik. Asteroid bergerak dengan kecepatan sudut yang tinggi sehingag nampak sebagai garis lurus panjang. Sumber: Remanzacco Observatory, 2014.

Di samping bisa menentukan ukurannya dengan tingkat ketelitian yang jauh lebih tinggi, observasi yang digelar tatkala asteroid 2014 RC menghampiri titik terdekatnya ke Bumi itu juga menjumpai fakta mencengangkan lainnya. Asteroid ternyata berotasi sangat cepat pada sumbunya, dengan periode rotasi hanya 15,8 detik. Ini adalah periode rotasi benda langit terpendek bagi anggota tata surya yang pernah teramati. Begitu cepatnya maka panjang siang hari di asteroid ini hanya akan berlangsung selama 7,9 detik. Begitupun panjang malam harinya.

Nikaragua

Tiga belas jam sebelum asteroid 2014 RC mencapai titik terdekatnya ke planet kita sebuah peristiwa aneh terjadi di pinggiran bandara internasional Augusto Cesar Sandino di kota Managua (Nikaragua). Petugas bandara dan penduduk sekitar melaporkan adanya dentuman keras disertai getaran tanah menjelang tengah malam, tepatnya sekitar pukul 23:05 waktu setempat. Keesokan paginya di kawasan penyangga bandara dijumpai lubang besar membulat nan aneh dengan bentuk mirip mangkuk, yang menghamburkan tanah alluvial ke sekelilingnya. Terdapat juga pepohonan yang rubuh. Diameter lubang besar ini sekitar 12 meter dengan kedalaman maksimum 5 meter. Di dasar lubang dijumpai bongkahan-bongkahan tanah berukuran besar yang kasar (blocky).

Gambar 3. Cekungan besar mirip mangkuk yang terbentuk di kawasan pinggiran bandara internasional Sandino di dekat kota Managua (Nikaragua), diabadikan dari udara oleh militer Nikaragua. Sumber: National Geographic, 2014.

Gambar 3. Cekungan besar mirip mangkuk yang terbentuk di kawasan pinggiran bandara internasional Sandino di dekat kota Managua (Nikaragua), diabadikan dari udara oleh militer Nikaragua. Sumber: National Geographic, 2014.

Temuan ini, bersama dengan fakta terjadinya dentuman menggelegar beserta tanah bergetar, sontak menghebohkan jagat. Ia mengingatkan semua orang pada peristiwa sejenis 1,5 tahun silam. Yakni tatkala asteroid 2012 DA14 melintas-dekat Bumi hingga hanya sejarak 27.700 kilometer saja di atas sudut barat daya pulau Sumatra (Indonesia). Beberapa jam sebelumnya, Rusia dikejutkan oleh munculnya kilatan cahaya singkat di langit namun benderangnya melebihi Matahari, yang disusul dengan hempasan kuat di udara dan getaran tanah. Awan nan lurus segera terlihat memanjang di langit. Ribuan orang luka-luka ringan hingga sedang, akibat terkena pecahan kaca-kaca jendela yang hancur berkeping oleh hempasan udara. Sejumlah bangunan ambruk. Beberapa orang bahkan melaporkan ada rasa pedih di kulit ibarat lama terpapar sinar Matahari tropik. Total kerugian material mencapai puluhan milyar rupiah. Penyelidikan lebih lanjut menunjukkan bahwa peristiwa yang kemudian lebih dikenal sebagai Peristiwa Chelyabinsk atau Tumbukan Chelyabinsk disebabkan oleh jatuhnya asteroid tak-bernama sebesar sekitar 20 meter ke Bumi. Atmosfer Bumi masih sanggup meredamnya sehingga ia keburu hancur berkeping dan melepaskan sebagian besar energi kinetiknya menyerupai ledakan di udara (airburst). Namun tetap saja dampak pelepasan energi tersebut, dalam rupa rambatan gelombang kejut (gelombang tekanan di udara) tetap terasakan di permukaan Bumi yang ada dibawahnya. Inilah yang menciptakan kerusakan berskala luas di kawasan Chelyabinsk dan sekitarnya serta merenggut korban luka-luka.

Apakah hal serupa juga yang terjadi di Nikaragua barusan?

Gambar 4. Perbandingan antara "kawah meteor" Nikaragua dengan kawah Meteor Carancas (Peru). Cincin kawah setebal 1 meter dan bongkah-bongkah tanah yang kasar nampak menghiasi kawah Carancas, hal yang tak dijumpai di "kawah" Nikaragua. SUmber: Space.com, 2014 & Brown dkk, 2008.

Gambar 4. Perbandingan antara “kawah meteor” Nikaragua dengan kawah Meteor Carancas (Peru). Cincin kawah setebal 1 meter dan bongkah-bongkah tanah yang kasar nampak menghiasi kawah Carancas, hal yang tak dijumpai di “kawah” Nikaragua. SUmber: Space.com, 2014 & Brown dkk, 2008.

Pemerintah Nikaragua segera membentuk komisi penyelidik beranggotakan sejumlah astronom dan geosifikawan untuk menguak peristiwa tersebut. Sejauh ini geofisikawan Instituto Nicaraguense de Estudios Territoriales (INETER) menyebut lubang besar itu terbentuk akibat tumbukan benda langit (meteor) dan dikaitkan dengan kepingan asteroid yang mungkin menjadi bagian dari asteroid 2014 RC. Maka lubang besar itu boleh disebut sebagai “kawah meteor” Nikaragua. Namun demikian banyak astronom dan geofisikawan di luar Nikaragua yang tak sependapat.

Faktor

Dalam hemat penulis, ada empat faktor yang membuat “kawah meteor” Nikaragua diragukan keabsahannya sebagai produk tumbukan meteor. Yang pertama, terbentuknya kawah tumbukan seukuran itu seharusnya didahului penampakan boloid (bolide), yakni meteor yang sangat terang disertai suara gemuruh, di langit. Simulasi sederhana memperlihatkan agar sebuah meteoroid yang dianggap sebagai bagian pecahan 2014 RC dapat menghasilkan kawah tumbukan bergaris tengah 12 meter, maka ia harus berukuran sekitar 10 meter dengan massa sekitar 1.600 ton. Saat memasuki atmosfer Bumi meteoroid akan berpijar sangat terang dengan kecerlangan menyamai Bulan purnama. Andaikata terjadi peristiwa airburst, kecerlangannya bahkan akan berlipat-lipat kali Bulan purnama atau malah bahkan mendekati benderangnya Matahari.

Pemandangan seperti itu akan sangat mudah dilihat di langit, bahkan di kala siang sekalipun. Kita umat manusia pernah menyaksikan langsung betapa sebentuk boloid dengan terang hampir menyamai Matahari terlihat di siang bolong dan kemudian jatuh di Desaguadero (Peru) pada 15 September 2007. Inilah Peristiwa Carancas. Titik jatuhnya boloid itu pun kini dikenal sebagai kawah Carancas (diameter 13,5 meter), kawah tumbukan termuda di Bumi. Dengan situasi tersebut maka boloid pun bahkan masih bisa disaksikan kala langit tertutupi awan sekalipun. Apalagi di saat malam. Apalagi jika terjadi di sebuah kota besar seperti Managua, yang adalah ibukota Nikaragua. Apalagi di dekat sebuah bandara internasional yang sibuk dan nyaris tak pernah tidur. Ketiadaan ini membuat status “kawah meteor” Nikaragua diragukan.

Gambar 5. Gambaran sederhana bagaimana masuknya meteoroid ke atmosfer Bumi yang berujung peristiwa airburst menghasilkan gelombang infrasonik dan gelombang gempa, dua jenis gelombang berbeda yang memungkinkan untuk mendeteksi (sekaligus mengonfirmasi) peristiwa tersebut. Sumber: Sudibyo, 2014 dengan gambar latarbelakang dari Neisius, 2004.

Gambar 5. Gambaran sederhana bagaimana masuknya meteoroid ke atmosfer Bumi yang berujung peristiwa airburst menghasilkan gelombang infrasonik dan gelombang gempa, dua jenis gelombang berbeda yang memungkinkan untuk mendeteksi (sekaligus mengonfirmasi) peristiwa tersebut. Sumber: Sudibyo, 2014 dengan gambar latarbelakang dari Neisius, 2004.

Yang kedua, saat meteoroid yang bersumber dari pecahan asteroid berukuran kecil (dalam skala astronomi) memasuki atmosfer Bumi, pada umumnya hanya menyisakan 1 % saja massanya untuk menjadi meteorit. Sisanya terhambur di dalam atmosfer sebagai partikulat berukuran debu. Di sisi lain, kawah tumbukan bergaris tengah 12 meter dapat dibentuk oleh meteorit tunggal seukuran 2,2 meter (massa hampir 16 ton) yang jatuh pada kecepatan 700 kmjam, menyamai kecepatan jelajah pesawat jet komersial. Jika meteorit ini dianggap sebagai bongkahan tunggal yang tersisa dari sebuah meteoroid, maka sebelum memasuki atmosfer Bumi meteoroid itu akan bermassa sekitar 1.600 ton dengan diameter 10 meter. Mayoritas massanya memang akan terhambur menjadi partikulat debu, Namun andaikata terjadi peristiwa airburst, maka akan terbentuk kepingan dan bongkahan seukuran kerikil atau lebih besar lagi. Mereka akan berjatuhan sebagai meteorit ke permukaan Bumi dibawahnya, dalam sebuah kawasan ellips (lonjong) seluas beberapa kilometer persegi.

Lokasi “kawah meteor” Nikaragua berada di pinggiran kota Managua. Jika benar ia dibentuk oleh meteor, seharusnya ada kawasan ellips tempat meteorit berjatuhan. Kawasan itu sangat mungkin berimpit dengan pemukiman di pinggiran kota. Dan meteorit-meteorit yang mengguyur pemukiman ini tentu akan menyebabkan hujan batu yang mudah diidentifikasi. Ketiadaan temuan meteorit dalam jarak tertentu dari “kawah meteor menjadi salah satu faktor untuk meragukan statusnya.

Yang ketiga, kawah meteor berdiameter kecil pada umumnya berbentuk mirip mangkuk, khususnya bila meteoroidnya memiliki lintasan yang terhadap paras Bumi membentuk sudut 30 derajat atau lebih. Namun cekungan mirip mangkuk ini mempunyai sejumlah ciri khas, yakni salah satunya memiliki tepi yang meninggi sebagai tanggul yang melingkari cekungan. Fenomena ini dikenal sebagai cincin kawah. Cincin kawah merupakan konsekuensi dari hantaman berkecepatan sangat tinggi dari meteorit ke tanah. Sehingga tanah target tergerus dan terciprat ke sekelilingnya hingga mengendap dengan posisi lapisan-lapisan tanahnya terbalik dibanding semula. Akibat lainnya, hantaman berkecepatan sangat tinggi juga akan menghamburkan material tanah dalam wujud bongkahan beraneka ukuran keluar dari kawah ke lingkungan sekelilingnya hingga radius tertentu.

Hal tersebut tak teramati di “kawah meteor” Nikaragua. Nyaris tak ada cincin kawah di “kawah meteor” tersebut. Partikel-partikel tanah yang terhambur ke sekelilingnya juga berukuran kecil, seukuran butir pasir. Bongkah-bongkah besar memang ada, namun justru berserakan di dasar “kawah meteor” tanpa bisa keluar darinya. Fenomena ini juga yang meragukan identitas “kawah meteor” Nikaragua.

Gambar 6. Contoh sinyal gelombang infrasonik dan gempa (seismik) produk tumbukan benda langit yang terekam di mikrobarometer dan seismometer. Dalam hal ini adalah Peristiwa Carancas. Rekaman infrasonik berasal dari stasiun yang berjarak 80 km dari titik tumbukan, sementara rekaman gempa dari seismometer yang berjarak lebih jauh yakni 100 km. Sumber: Brown dkk, 2008.

Gambar 6. Contoh sinyal gelombang infrasonik dan gempa (seismik) produk tumbukan benda langit yang terekam di mikrobarometer dan seismometer. Dalam hal ini adalah Peristiwa Carancas. Rekaman infrasonik berasal dari stasiun yang berjarak 80 km dari titik tumbukan, sementara rekaman gempa dari seismometer yang berjarak lebih jauh yakni 100 km. Sumber: Brown dkk, 2008.

Dan yang keempat, tiap kali meteoroid memasuki atmosfer Bumi, ia akan menekan lapisan-lapisan udara yang dilintasinya dengan sangat kuat sekaligus mentransfer sejumlah energi kinetiknya. Sehingga terjadi sebentuk gelombang yang menjalar sebagai gelombang akustik (suara). Salah satu bagiannya adalah gelombang infrasonik, yang sanggup menjalar sangat jauh dari sumbernya. Bila gelombang akustiknya masih sangat kuat saat menyentuh permukaan Bumi, maka terjadi transformasi menjadi gelombang permukaan yang disebut gelombang Rayleigh, bagian dari gelombang gempa (seismik). Gelombang infrasonik dapat diendus oleh detektor mikrobarometer sementara gelombang gempa diindra seismometer. Dewasa ini cukup banyak instrumen seismometer dan barometer yang terpasang simultan di berbagai sudut Bumi, khususnya dalam tiap-tiap IMS (International Monitoring Station) bagian dari CTBTO (The Comprehensive nuclear Test Ban Treaty Organization). CTBTO adalah lembaga di bawah Perserikatan Bangsa-Bangsa yang bertugas menegakkan pengawasan atas larangan ujicoba nuklir global dalam segala matra. Selain oleh ledakan nuklir, secara alamiah gelombang infrasonik dan gelombang gempa bisa disebabkan oleh peristiwa tumbukan benda langit maupun letusan besar/dahsyat sebuah gunung berapi.

Simulasi sederhana menunjukkan jika meteoroidnya berdiameter 10 meter, bermassa sekitar 1.600 ton dan melejit dengan kecepatan setara asteroid 2014 RC saat di titik terdekatnya ke Bumi, yakni 15 km/detik (54.000 km/jam), maka ia mengandung 42 kiloton energi. Energi tersebut setara dengan 2 butir bom nuklir Hiroshima yang diledakkan serempak. Energi sebesar ini akan menghasilkan gelombang infrasonik dan gelombang gempa yang sangat mudah dideteksi oleh mikrobarometer dan seismometer yang berdekatan dengannya. Sebagai gambaran, saat Peristiwa Carancas terjadi, energi kinetik meteoroidnya berkisar antara 0,06 hingga 0,23 kiloton TNT. Namun gelombang infrasoniknya terekam oleh detektor mikrobarometer yang terpasang di titik berjarak hingga 1.600 km dari lokasi tumbukan. Sementara gelombang gempanya terekam seismometer yang berajark 100 km dari titik tumbukan. Sampai sejauh ini belum dijumpai stasiun yang mendeteksi gelombang infrasonik dan gempa terkait pembentukan “kawah meteor” Nikaragua ini, hal yang menguatkan keraguan akan statusnya.

Gambar 7. Peta proyeksi lintasan asteroid 2014 RC di permukaan Bumi mulai 7 September 2014 pukul 10:00 WIB hingga 10 jam kemudian. Nampak asteroid bergerak ke barat. Nampak lokasi kota Managua (Nikaragua) yang terletak jauh di utara proyeksi lintasan asteroid. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Gambar 7. Peta proyeksi lintasan asteroid 2014 RC di permukaan Bumi mulai 7 September 2014 pukul 10:00 WIB hingga 10 jam kemudian. Nampak asteroid bergerak ke barat. Nampak lokasi kota Managua (Nikaragua) yang terletak jauh di utara proyeksi lintasan asteroid. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Jika empat faktor itu saja cukup membuat status “kawah meteor” Nikaragua diragukan, apalagi bila dikait-kaitkan dengan asteroid 2014 RC. Saat ledakan misterius menggelegar di pinggiran bandara internasional Sandino tersebut, asteroid 2014 RC sedang melintas di atas Amerika Selatan dalam jarak lebih dari 280.000 kilometer dari paras Bumi. Dan kala itu ia sedang bergerak ke arah barat. Sementara lokasi kawah meteor” Nikaragua berjarak lebih dari 4.600 kilometer dari titik proyeksi asteroid 2014 RC pada saat itu dengan arah ke utara. Dengan jarak pisah sejauh itu dan apalagi berbeda arah, dapat dikatakan mustahil untuk menghubungkan asteroid 2014 RC dengan “kawah meteor” Nikaragua. Apalagi status “kawah meteor” itu sendiri meragukan.

Referensi :

Cooke. 2014. Did a Meteorite Cause a Crater in Nicaragua? Watch the Skies, Blog NASA.

Vergano. 2014. NASA Raises Doubts About Reports of Nicaraguan Meteorite, Questions Follow Supposed Meteorite Impact. National Geographic News. September 8, 2014.

Wall. 2014. Nicaragua Meteorite Impact Theory May be Meteor-wrong. Space.com, September 8, 2014.

Guido, Howes & Niccolini. 2014. Close Approach of Asteroid 2014 RC, Update. Remanzacco Observatory, Italia.

Brown dkk. 2008. Analysis of a Crater-forming Meteorite Impact on Peru. Journal of Geophysical Research, vol. 113, E09007.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

2014 RC: Asteroid yang Mendekat Hingga 34.000 km

Bongkahan batu itu kira-kira sebesar rumah berukuran sedang berlantai tiga. Selama ini ia melayang-layang di kedalaman langit, beredar mengelilingi sang surya dalam tata surya kita. Lintasan peredarannya sungguh aneh untuk ukuran manusia karena begitu lonjong. Demikian lonjongnya sehingga pada suatu saat bongkahan batu tersebut akan lebih terpanggang bara mentari ketimbang Bumi kita karena posisinya yang lebih dekat ke Matahari. Sebaliknya di lain waktu bongkahan batu ini pun bisa menggigil kedinginan tatkala menempati lokasi yang demikian jauh, sehingga lebih jauh ketimbang jarak planet Mars ke Matahari. Tak hanya itu, konfigurasi orbitnya demikian rupa sehingga pada 7 dan 8 September 2014 ini bongkahan batu besar itu akan berposisi cukup dekat dengan Bumi kita. Demikian dekatnya sehingga ia bakal melesat hanya pada jarak 34.000 kilometer di atas kita. Namun jangan cemas, ia tak berpotensi memasuki selimut udara Bumi kita, apalagi hingga jatuh mencium daratan/lautan.

Gambar 1. Asteroid 2014 RC (tanda panah) diabadikan pada 5 September 2014 pukul 14:00 WIB dengan teleskop robotik reflektor astrograf 61 cm di Auberry, California (Amerika Serikat). Teleskop diarahkan untuk mengikuti gerak asteroid dan mencitra/memotret sebanyak 30 kali dengan masing-masing citra/foto dibuat lewat waktu penyinaran (paparan) 30 detik. Seluruh citra kemudian digabungkan menjadi satu lewat teknik stacking. Sehingga asteroid terlihat sebagai bintik cahaya, sementara bintang-bintang di latar belakang nampak sebagai garis-garis. Sumber: Remanzacco Observatory, 2014.

Gambar 1. Asteroid 2014 RC (tanda panah) diabadikan pada 5 September 2014 pukul 14:00 WIB dengan teleskop robotik reflektor astrograf 61 cm di Auberry, California (Amerika Serikat). Teleskop diarahkan untuk mengikuti gerak asteroid dan mencitra/memotret sebanyak 30 kali dengan masing-masing citra/foto dibuat lewat waktu penyinaran (paparan) 30 detik. Seluruh citra kemudian digabungkan menjadi satu lewat teknik stacking. Sehingga asteroid terlihat sebagai bintik cahaya, sementara bintang-bintang di latar belakang nampak sebagai garis-garis. Sumber: Remanzacco Observatory, 2014.

Bongkahan batu besar itu adalah asteroid. Ia sama sekali tak pernah dikenal sebelumnya. Hingga awal September 2014 ini, yakni kala sistem penyigi langit Catalina Sky Survey yang bersenjatakan teleskop reflektor Schmidt 68 cm di Observatorium Gunung Tucson, Arizona (Amerika Serikat) melihatnya untuk pertama kalinya pada 1 September 2014. Sistem penyigi langit semi-otomatis yang dirancang untuk mengenali benda langit tak dikenal khususnya yang berada di lingkungan dekat Bumi ini melihatnya sebagai sebintik cahaya yang amat sangat redup. Dengan magnitudo semu +20 praktis asteroid ini 250 kali lebih redup dibanding planet-kerdil Pluto. Di malam berikutnya, asteroid yang sama pun terlihat melalui sistem penyigi langit semi-otomatis yang lainnya, yakni Pan-STARRS (Panoramic Survey Telescope and Rapid Response Systems) yang berpangkalan di Gunung Haleakala, Kepulauan Hawaii (Amerika Serikat).

Saat orbit asteroid ini dibandingkan dengan basis data asteroid yang telah terobservasi sebelumnya, tak satupun yang memiliki identitas serupa. Maka jelas bahwa ia adalah asteroid baru, asteroid yang tak pernah dikenal sebelumnya. Sesuai aturan yang ditegakkan IAU (International Astronomical Union) maka asteroid baru ini tidak diberi nama. Namun ia diberi kode yang khas yakni 2014 RC, mengingat asteroid ini adalah asteroid ketiga (kode C) yang ditemukan pada paruh pertama bulan September (kode R) di tahun 2014 (kode 2014). Dengan magnitudo mutlak/absolut +26,8 maka asteroid 2014 RC ini berukuran sekitar 20 meter, jika dianggap berbentuk sferis (menyerupai bola). Jika massa jenisnya dianggap berada di antara 2 hingga 4 gram per sentimeter kubik, yakni massa jenis kebanyakan asteroid, maka asteroid 2014 RC ini bermassa antara 8.400 hingga 16.800 ton.

Observasi demi observasi memperlihatkan asteroid 2014 RC beredar mengeliling Matahari dalam orbit lonjong dengan titik terdekat ke Matahari (perihelion) sejarak 123 juta kilometer. Bandingkan dengan perihelion Bumi, yang masih sebesar 147,5 juta kilometer. Sebaliknya titik terjauhnya ke Matahari (aphelion) melambung hingga sejarak 270 juta kilometer. Bandingkan dengan orbit planet Mars, yang ‘hanya’ sejauh 228 juta kilometer dari Matahari (rata-rata). Jarak rata-rata orbit asteroid 2014 RC ke Matahari adalah sebesar 196 juta kilometer. Asteroid ini menempuh orbitnya dalam sekali putaran setiap 1,5 tahun. Dengan konfigurasi orbit demikian maka asteroid 2014 RC tergolong asteroid dekat Bumi (ADB) atau near earth asteroid (NEA) kelas Apollo, karena perihelionnya lebih kecil ketimbang orbit Bumi namun jarak rata-ratanya (dan juga periode revolusinya) lebih besar ketimbang Bumi.

Melintas Dekat

Gambar 2. Orbit asteroid 2014 RC di antara orbit planet-planet Merkurius, Venus, Bumi dan Mars. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Gambar 2. Orbit asteroid 2014 RC di antara orbit planet-planet Merkurius, Venus, Bumi dan Mars. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Selain sebagai asteroid dekat Bumi asteroid 2014 RC juga merupakan asteroid berpotensi bahaya. Sebuah asteroid digolongkan berpotensi bahaya jika ia pada suatu saat melintas dalam jarak maksimum 7,5 juta kilometer terhitung dari inti Bumi kita, atau setara dengan 19,5 kali lipat jarak rata-rata Bumi ke Bulan. Bagi asteroid 2014 RC, situasi tersebut terjadi saat ia melintas-dekat/berpapasan-dekat (near miss) dengan Bumi kita pada tahun 2014 dan 2017.

Khusus di tahun 2014 ini, perlintasan-dekatnya tergolong ekstrim karena asteroid akan melesat hanya sejarak 33.500 hingga 33.700 kilometer di atas paras Bumi. Situasi tersebut terjadi pada 7 September 2014 pukul 18:01 UTC, atau sama dengan 8 September 2014 pukul 01:01 WIB. Pada saat itu titik terdekat di permukaan Bumi ke asteroid tersebut berada di kawasan Oseania di Samudera Pasifik bagian tengah. Hunian terdekat berjarak sekitar 200 kilometer di sebelah tenggara, yakni pulau Pitcairn (Inggris). Pada jarak 33.500 hingga 33.700 kilometer tersebut praktis bongkahan batu sebesar rumah itu melesat dalam jarak lebih dekat ke Bumi ketimbang orbit geostasioner. Orbit geostasioner adalah orbit setinggi 35.782 kilometer di atas khatulistiwa yang disesaki oleh satelit-satelit komunikasi dan cuaca dalam jumlah bejibun sebagai penunjang kehidupan manusia modern. Namun demikian potensi tubrukan antara satelit-satelit buatan yang masih aktif di orbit geostasioner dengan asteroid 2014 RC ini adalah nol. Musababnya saat melintas di atas garis khatulistiwa, asteroid 2014 RC telah berjarak lebih besar ketimbang orbit geostasioner.

Selandia Baru menjadi kawasan yang mampu menikmati jam demi jam perjalanan asteroid 2014 RC saat hendak berpapasan-dekat dengan Bumi. Saat koordinat ekuatorial yang dilintasi asteroid ini dalam setiap jamnya diproyeksikan ke permukaan Bumi sebagai koordinat geografis, dijumpai pola unik. Awalnya titik-titik itu bergerak ke barat dari Samudera Pasifik menuju kepulauan Selandia Baru. Lalu proyeksi lintasan itu berbalik (retrograde), seakan-akan mengitari kepulauan Selandia Baru dari utara ke selatan untuk kemudian kembali bergerak ke timur menuju samudera. Di kawasan Oseania, proyeksi lintasan asteroid kembali berubah arah, kali ini ke utara hingga menyeberang khatulistiwa. Setelah kembali berubah arah ke barat di Samudera Pasifik bagian utara, titik-titik proyeksi itu selanjutnya melintas di Asia tenggara, tepatnya di ujung utara kepulauan Filipina dan akhirnya memasuki kawasan Indocina.

Gambar 3. Bumi dilihat dari asteroid 2014 RC pada 7 September 2014 20:01 WIB, atau 5 jam sebelum mencapai jarak terdekatnya ke Bumi. Nampak kawasan Antartika dan Australia, serta lokasi orbit geostasioner. Pada saat mencapai jarak terdekatnya, asteroid 2014 RC akan lebih dekat ke Bumi ketimbang satelit-satelit komunikasi dan cuaca di orbit geostasioner. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Gambar 3. Bumi dilihat dari asteroid 2014 RC pada 7 September 2014 20:01 WIB, atau 5 jam sebelum mencapai jarak terdekatnya ke Bumi. Nampak kawasan Antartika dan Australia, serta lokasi orbit geostasioner. Pada saat mencapai jarak terdekatnya, asteroid 2014 RC akan lebih dekat ke Bumi ketimbang satelit-satelit komunikasi dan cuaca di orbit geostasioner. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Saat berada di titik terdekatnya di atas Oseania, asteroid 2014 RC bakal mengerjap dengan magnitudo semu sekitar +11,5. Dengan begitu ia takkan mungkin disaksikan oleh mata kita tanpa alat bantu apapun. Kita harus menggunakan teleskop dengan lensa atau cermin obyektif berdiameter minimal 16 cm untuk menyaksikannya. Tak hanya itu, teleskop tersebut pun harus disetel untuk selalu mengikuti pergerakan asteroid tersebut melanglang langit. Tantangan observasi bertambah besar mengingat langit malam pada saat itu dalam kondisi relatif benderang seiring kehadiran Bulan dengan fase sedang menuju purnama. Sehingga menyulitkan untuk menyaksikan benda-benda langit yang redup.

Dari Indonesia, asteroid ini akan berada di langit bagian tenggara berdekatan dengan bintang Formalhaut di rasi Piscis Austrinis pada Minggu 7 September 2014 saat Matahari terbenam. Dalam jam-jam berikutnya asteroid akan kian meninggi di langit sembari beringsut ke arah selatan dengan mengambil posisi di dekat bintang Ankaa (rasi Phoenix) pada pukul 22:00 WIB. Asteroid kemudian mulai menurun kembali sehingga dalam sejam kemudian ia telah berposisi di dekat bintang terang Archenar (rasi Eridanus). Dan akhirnya di sekitar tengah malam waktu WIB, asteroid bakal terbenam di langit tenggara. Namun demikian ia bakal muncul lagi di langit timur pada pagi harinya (Senin 8 September 2014) jelang fajar, berdekatan dengan planet Venus. Hanya saja pada saat itu ia telah demikian redup dan sangat sulit dilihat, bahkan dengan teleskop sekalipun.

Potensi Bahaya

Bukan kali ini saja sebuah asteroid melintas-dekat dengan Bumi. Dan asteroid 2014 RC bahkan tak memecahkan rekor sebagai asteroid pelintas-terdekat Bumi. Hingga kini rekor tersebut masih dipegang asteroid 2011 CQ1 (diameter 1 meter), yang melintas di atas Samudera Pasifik pada 5 Februari 2011 silam pada jarak hanya 5.480 kilometer saja di atas paras Bumi. Namun setiap kali peristiwa semacam ini terjadi, kita selalu dihadapkan pada pertanyaan. Apakah ia akan jatuh ke Bumi? Seberapa berbahayakah ia bagi peradaban kita saat ini?

Gambar 4. Proyeksi lintasan asteroid 2014 RC di permukaan Bumi semenjak 7 September 2014 pukul 17:0 WIB hingga 8 September 2014 pukul 11:00 WIB. Nampak lintasan asteroid seakan-akan mengelilingi kepulauan Selandia Baru. Tanda bintang (*) merupakan proyeksi titik terdekat asteroid ke Bumi. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Gambar 4. Proyeksi lintasan asteroid 2014 RC di permukaan Bumi semenjak 7 September 2014 pukul 17:0 WIB hingga 8 September 2014 pukul 11:00 WIB. Nampak lintasan asteroid seakan-akan mengelilingi kepulauan Selandia Baru. Tanda bintang (*) merupakan proyeksi titik terdekat asteroid ke Bumi. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Asteroid 2014 RC membawa energi yang bukan main. Melesat dengan kecepatan 9,99 km/detik, ia bakal secepat 15 km/detik (54.000 km/jam) bila jatuh menuju ke Bumi. Pada kecepatan tersebut asteroid 2014 RC membawa energi kinetik sebesar 225 hingga 450 kiloton TNT, atau setara dengan 11 hingga 23 kali lipat kekuatan bom nuklir Hiroshima. Energi kinetik sebesar itu harus mendapat perhatian serius. Apalagi setelah kawasan Chelyabinsk dan sekitarnya (Rusia) luluh lantak pada 15 Februari 2013 silam, kala sebuah asteroid tak-bernama dan tak-teridentifikasi melesat ke atmosfer dan melepaskan energi kinetik yang sedikit lebih besar dari energi kinetik asteroid 2014 RC ini. Ribuan orang luka-luka dan kerugian material mencapai milyaran rupiah.

Peristiwa Chelyabinsk membuat semua terkesiap, menyaksikan betapa rentannya peradaban manusia modern dalam berhadapan dengan kekuatan alam dari langit. Betapa tidak? Asteroid yang bertanggung jawab atas peristiwa Chelyabinsk adalah seukuran dengan asteroid 2014 RC ini, yang tergolong ‘asteroid kecil’ bagi astronomi. Selama ini hanya asteroid-asteroid berukuran besar (diameter lebih dari 100 meter) saja yang dianggap bakal mengganggu kenyamanan hidup kita di Bumi. Kita pun makin terkesiap setelah data terbaru menunjukkan ternyata asteroid lebih kerap berjatuhan ke Bumi dari semula diduga. Secara rata-rata tiap tahun terjadi sedikitnya 2 kali peristiwa masuknya asteroid ke atmosfer Bumi yang mengangkut energi kinetik minimal 1 kiloton TNT.

Mujurnya, meski melintas-relatif dekat asteroid 2014 RC ini hanya lewat saja. Ia tak punya potensi untuk jatuh ke permukaan Bumi. Evaluasi NASA Meteoroid Environment Office menunjukkan bahwa hingga satu abad mendatang, asteroid 2014 RC tidak memiliki peluang untuk menjatuhi Bumi, sekecil apapun. Karena itu asteroid 2014 RC pun telah dikeluarkan dari Sentry Table, yakni daftar yang memuat asteroid-asteroid yang memiliki peluang untuk berbenturan dengan Bumi meski nilai peluangnya kecil. Karena itu tak ada yang perlu dikhawatirkan.

Di sisi lain kesempatan melintas-dekatnya asteroid 2014 RC mendemonstrasikan bagaimana kemampuan sistem-sistem penyigi langit semi-otomatis terkini dalam mendeteksi benda langit yang berpeluang mendekati Bumi. Namun sistem tersebut belumlah sempurna. Terbatasnya jumlah observatorium yang berpartisipasi dan gangguan alamiah konfigurasi Bumi-Bulan (yang membuat malam-malam tertentu berhias Bulan terang hingga purnama) membuat sistem penyigi tersebut masih berlubang di sana-sini. Karena itu jangan heran meski asteroid 2014 RC telah terdeteksi dalam tujuh hari sebelum melintas-dekat, namun sistem yang sama gagal mendeteksi asteroid yang bertanggung jawab atas peristiwa Chelyabinsk (meski sama-sama berdiameter sekitar 20 meter). Inilah salah satu tantangan terbesar astronomi di era kontemporer, untuk membangun sebuah sistem penyigi langit semi-otomatis yang mampu bekerja dalam setiap saat dan setiap kondisi tanpa terkecuali sebagai bagian dari mitigasi. Pada saat yang sama, mitigasi potensi tumbukan benda langit pun harus mengenali karekteristik struktur dan komposisi komet/asteroid secara langsung. Inilah yang menjadi dasar sejumlah misi antariksa tak berawak spesifik ke asteroid/komet, seperti Rosetta. Semua itu dilakukan sebagai upaya agar kelak kita bisa mengelola ancaman dari langit dengan lebih baik. Dan agar tak bernasib mengenaskan seperti halnya yang dialami kawanan dinosaurus pada 65 juta tahun silam, hewan-hewan raksasa yang merajai Bumi namun punah akibat hantaman benda langit.

Referensi:

Guido, Howes & Niccolini. 2014. Close Approach of Asteroid 2014 RC. Remanzacco Observatory, Italia.

NASA. 2014. Jet Propulsion Laboratory Small-Body Database Browser: 2014 RC. NASA Solar System Dynamics, JPL, California.