Gunung Agung dan Letusan Terdahsyat se-Indonesia pasca Krakatau

Layangkan jemari anda di peta, tentu saja di era kekinian berarti peta digital dalam wujud program komputer maupun aplikasi pemetaan populer layaknya Google Earth atau Google Maps. Layangkan di atas sebagian Kepulauan Sunda Kecil, mulai dari pulau Bali di barat hingga pulau Sumbawa di timur. Akan kita saksikan jajaran pulau-pulau dengan rupabumi memukau, kombinasi produk subduksi lempeng Australia dengan mikrolempeng Sunda (bagian dari lempeng Eurasia) dengan pahatan erosi seiring curah hujan yang tinggi.

Aktivitas subduksi juga membuat jajaran pulau ini kaya akan gunung-gemunung berapi aktif dengan sejarah nan letusan dahsyat. Ubah tampilan peta ke moda medan (terrain) maka saat menelusuri pulau Sumbawa, kita akan bersirobok dengan ketampakan Gunung Tambora yang khas dengan kalderanya . Inilah gunung berapi dengan letusan terdahsyat sejagat dalam kurun 7,5 abad terakhir. Letusan Tambora 1815 sangat tercatat dalam sejarah karena menjadi salah satu penentu perubahan geopolitik Eropa yang pada akhirnya berimbas pula ke tanah Nusantara, salah satunya lewat meletusnya Perang Jawa (Perang Diponegoro).

Gambar 1. Gunung Agung dalam keremangan Matahari senja menjelang terbenam, diabadikan dari pantai Senggigi, pulau Lombok (Nusa Tenggara Barat). Gunung Agung demikian tinggi menjulang sehingga bisa disaksikan dari pulau lain. Sumber: Google/Panoramio/Bracker, 2007.

Lalu beranjaklah ke barat, menyusuri pulau Lombok. Disini Gunung Rinjani memukau dengan kalderanya yang berdanau kawah. Inilah gunung berapi dengan letusan terdahsyat sejagat untuk kurun waktu 7.000 tahun terakhir. Yakni pada Letusan Samalas 1257 dengan volume rempah letusan mendekati 200 kilometer3, sedikit lebih dahsyat ketimbang Letusan Tambora 1815 yang volume rempah letusannya 160 kilometer3. Kedahsyatan letusan ini baru terungkap pada 2013 TU (Tarikh Umum) silam. Bagaimana dampaknya dalam lingkup global masih diteliti, namun diperkirakan melebihi dampak Letusan Tambora 1815.

Mercusuar Bali

Lebih beranjak ke barat, kita sampai di pulau Bali. Di sini menjulang Gunung Agung, yang juga mudah dikenali. Dan seperti halnya ‘saudara’-nya di sebelah timur, Gunung Agung pun menyimpan sejarah kedahsyatan tersendiri. Inilah gunung berapi dengan letusan terdahsyat se-Indonesia untuk abad ke-20 TU.

Gunung Agung adalah ‘mercusuar’-nya Bali yang demikian mendominasi bentang lahan bagian timur pulau mirip berlian itu. Menjulang sebagai kerucut tunggal hingga setinggi 3.142 meter dpl (dari paras air laut rata-rata), puncak Gunung Agung adalah titik tertinggi seantero Bali. Demikian menjulangnya gunung ini sehingga tubuh gigantisnya mudah dilihat bahkan dari pesisir barat pulau Lombok. Tumbuh di wilayah administratif Kabupaten Karangasem, Gunung Agung berbataskan pada Gunung Batur di sisi barat dan baratlaut, Gunung Seroja nan tua di sisi timur dan sebuah gunung berapi purba disisi selatan. Hanya ke arah timurlaut dan tenggara saja lereng Gunung Agung bisa berkembang bebas sehingga bisa ‘membasuh’ kakinya dengan air asin Laut Flores dan Samudera Indonesia.

Gambar 2. Gunung Agung dan Gunung Batur dalam peta tiga dimensi pulau Bali berdasar NASA Photojournal. Arah pandang ke selatan-baratdaya. Nampak tubuh Gunung Agung masih berbentuk kerucut utuh, tidak seperti Gunung Batur. Di latar belakang terlihat pula semenanjung Blambangan, ujung timur dari pulau Jawa. Sumber: Geiger, 2014.

Gunung Agung adalah satu dari empat gunung berapi muda yang tumbuh berkembang di pulau Bali. Tiga yang lainnya adalah Gunung Batukau, Bratan dan Batur. Dua yang terakhir dikenal sebagai dua gunung berapi berkaldera. Namun hanya Gunung Agung dan Gunung Batur yang memiliki catatan aktivitas pada masa sejarah. Gunung Batur jauh lebih rajin meletus. Sejak 1804 TU hingga 2000 TU, ia sudah memuntahkan debu vulkaniknya hingga 27 kali. Meski skala letusannya tergolong kecil.

Namun di masa silam ia pernah jauh lebih lasak. Sekitar 29.300 tahun silam, Gunung Batur purba meletus demikian dahsyat. Tak kurang dari 84 kilometer3 rempah letusan disemburkannya ke langit, membuat sebagian besar tubuhnya terpangkas menjadi kaldera lonjong sepanjang 14 kilometer dan lebar 10 kilometer. Pentas drama Gunung Batur tak hanya di situ saja. Berbelas ribu tahun kemudian, tepatnya sekitar 10.000 tahun yang lalu, gunung ini kembali meletus dahsyat. Meski kali ini skala kedahsyatannya sedikit berkurang karena ‘hanya’ memuntahkan 19 kilometer3 rempah letusan. Letusan dahsyat ini membentuk kaldera baru seukuran 7,5 kilometer di dalam kaldera lama Batur. Di dalam kaldera baru inilah Gunung Batur modern seperti yang kita lihat tumbuh. Sisi timur kaldera lama kini digenangi air sebagai Danau Batur.

Jika Gunung Batur (pernah) mendemonstrasikan kedahsyatannya, lantas bagaimana dengan Gunung Agung?

Letusan 1963

Gambar 3. Saat-saat erupsi Plinian yang pertama di Gunung Agung berlangsung pada 17 Maret 1963 TU. Kolom letusan nampak membumbung tinggi ke udara. Diabadikan dari desa Rendang sebelah selatan Gunung Agung dalam koleksi keluarga Denis Mathews. Sumber: Self & Rampino, 2012.

Tabuh sedang berada pada hari Senin 18 Februari 1863 TU kala penduduk Karangasem dikagetkan oleh dentuman suara menggelegar dari arah Gunung Agung. Sejurus kemudian mereka menyaksikan kepulan asap menyembur dari puncak gunung. Segera terjadi hujan debu. Tak ada keraguan lagi, Gunung Agung telah meletus setelah terdiam lelap selama 120 tahun (diselingi hembusan-hembusan asap tipis dalam tahun 1908, 1915 dan 1917 TU). Letusan ini adalah jawaban dari getaran dan guncangan yang dirasakan orang-orang di sekeliling gunung besar itu selama beberapa minggu terakhir. Namun tak satupun yang mengira bahwa letusan ini akan bencana yang tak pernah terbayangkan penduduk Bali.

Enam hari setelah awal letusan, Gunung Agung mulai melelerkan lava panas ke utara. Selama 20 hari kemudian lava bergerak perlahan hingga menjangkau 7,5 kilometer dari kawah. Tersaji panorama mirip lidah sehingga dikenal sebagai lidah lava. Lidah lava Agung memiliki lebar 500 hingga 800 meter, ketebalan 30 hingga 40 meter dan volume sekitar 100 juta meter3. Terbentuknya lidah lava umumnya menandakan erupsi yang terjadi adalah erupsi efusif (leleran). Jenis erupsi yang tak semerusak erupsi eksplosif (ledakan). Namun tidak demikian dengan Gunung Agung.

Gambar 4. Sisa lidah lava letusan Gunung Agung pada 54 tahun silam, nampak membukit dan gersang dengan bongkahan batuan beku di sana-sini. Pasca melelerkan lava ini, Gunung Agung lalu meletus dahsyat. Sumber: Geiger, 2014.

Karakter letusan berubah total pada Minggu 17 Maret 1963 TU. Selama 3,5 jam penuh gunung ini menampakkan wajah angkernya dengan erupsi eksplosif nan dahsyat. Tak kurang dari 40.000 ton rempah letusan dimuntahkan dari kawahnya dalam setiap detik. Mereka disemburkan dahsyat hingga mencapai ketinggian 26 kilometer dpl. Selama beberapa saat tampak pemandangan awan cendawan/bunga kol yang indah namun mengerikan. Awan cendawan ini merupakan ciri khas erupsi tipe Plinian, yang terjadi tatkala dorongan sangat tinggi yang membawa rempah letusan bergerak vertikal sebagai kolom letusan mulai melambat. Sehingga ujung kolom mulai melebar di ketinggian udara. Lalu berjatuhan kembali ke tubuh gunung. Erupsi sedahsyat ini kembali terulang pada Kamis 16 Mei 1963 TU. Kali ini Gunung Agung memuntahkan 23.000 ton rempah letusan per detik selama 4 jam penuh. Kolom letusan menyembur hingga setinggi 20 kilometer dpl. Pasca 16 Mei 1963 TU letusan Agung kembali berubah menjadi letusan demi letusan kecil yang terus meluruh hingga akhirnya berhenti sepenuhnya pada 24 Januari 1964 TU.

Baik pada erupsi Plinian pertama maupun yang kedua, debu dan batu yang berjatuhan kembali ke tubuh gunung hingga menghasilkan awan panas letusan. Ia menderu secepat 60 kilometer per jam ke arah utara, tenggara dan baratdaya, melalui lembah-lembah sungai hingga sejauh 15 kilometer dari kawah. Selain diterjang awan panas letusan dan dibedaki debu vulkanik tebal, nestapa di pulau Bali bagian timur bertambah seiring letusan berlangsung dalam musim hujan. Hujan membuat sejumlah endapan lava dan debu vulkanik terlarut menjadi lahar, yang mengaliri sungai-sungai di lereng utara dan tenggara dengan demikian deras hingga berujung ke laut.

Dapur dan Kantung Magma

Gambar 5. Sebaran debu vulkanik letusan Gunung Agung khususnya pada erupsi Plinian pertama 17 Maret 1963 TU. Atas: distribusi debu dalam lingkup regional yang menjangkau hampir segenap pulau Jawa menurut Zen & Hadikusumo (1964) serta Soerjo (1981). Bawah: tebal endapan debu vulkanik dalam lingkup lokal pulau Bali, dinyatakan dalam sentimeter, menurut Soerjo (1981). S = Singaraja, K = Klungkung, Ka = Karangasem, R = pos PGA Agung di Rendang. Sumber: Self & Rampino, 2012.

Indonesia menyaksikan Letusan Agung 1963-1964 sebagai letusan gunung berapi terdahsyat di negeri ini pasca amukan Krakatau 1883). Di kemudian hari letusan ini juga adalah letusan terdahsyat se-Indonesia sepanjang abad ke-20 TU. Selama letusannya itu Gunung Agung memuntahkan sekitar 0,95 kilometer3 magma padat setara batuan. Bila sifat magmanya dianggap sama dengan magma Letusan Tambora 1815, maka Letusan Agung 1963-1964 memuntahkan sekitar 4 kilometer3 (4 milyar meter3) rempah letusan. Inilah yang membuatnya memiliki skala letusan 5 VEI (Volcanic Explosivity Index). Bandingkan dengan Letusan Merapi 2010, yang ‘hanya’ memuntahkan 150 juta meter3. Bahkan apabila seluruh volume letusan Gunung Kelud, salah satu gunung berapi terlasak Indonesia selain Merapi, sejak abad ke-20 TU (yakni letusan 1919, 1966, 1990 dan 2014) digabungkan, ia masih kalah jauh dibanding Gunung Agung.

Erupsi Plinian pertama menyemburkan debu vulkanik sangat berlimpah yang lantas terdorong angin regional ke arah barat-barat laut, menyebar hingga jarak yang cukup jauh. Hujan debu menyirami pulau Jawa hingga menjangkau DKI Jakarta. Lapisan debu (produk pengendapan dari hujan debu) dengan ketebalan hingga 10 sentimeter terdistribusi sampai radius 50 kilometer dari Gunung Agung. Sementara erupsi Plinian kedua sedikit lebih ramah. Debunya tersebar ke arah utara, dengan lapisan debu 10 sentimeter hanya menjangkau 20 kilometer dari Gunung Agung.

Terjangan awan panas dan lahar berdampak luar biasa untuk kehidupan manusia sekitar Gunung Agung. Tak kurang dari 10 desa yang dirusak olehnya. Korban jiwa yang jatuh mencapai hampir 2.000 orang. Sekitar 1.186 jiwa diantaranya meregang nyawa akibat terjangan bara awan panas letusan dalam erupsi Plinian yang pertama.

Bagi dunia, Letusan Agung 1963-1964 selalu dikenang sebagai salah satu letusan dahsyat di abad ke-20 TU yang berdampak pada terganggunya atmosfer global. Letusan ini melepaskan tak kurang dari 7 juta ton gas belerang (SO2) ke atmosfer. Di udara, gas ini bereaksi dengan uap air membentuk sulfat (H2SO4) sehingga terbentuk tak kurang dari 11 juta ton butir-butir aerosol sulfat. Bersamanya terlepas pula tak kurang dari 3 juta ton gas khlor, salah satu substansi yang dikenal sebagai perusak lapisan Ozon.

Gambar 6. Sebagian dari endapan Letusan Agung 1963-1964 di Suter, 12 kilometer sebelah barat kawah Gunung Agung. Panjang papan skala (hitam putih) pada sisi kiri foto adalah 10 sentimeter. Fall Unit 1 = kerikil dan pasir produk letusan sejak 18 Februari hingga 15 Maret 1963 TU. Fall Unit 2 = debu sangat halus produk letusan 16 Maret 1963 TU. Fall Unit 3 = kerikil, debu dan pasir produk erupsi Plinian pertama 17 Maret 1963 TU. Sumber: Self & Rampino, 2012.

Layaknya narasi yang selalu didaras letusan-letusan dahsyat umumnya, Letusan Agung 1963-1964 menyemburkan aerosol sulfatnya demikian tinggi hingga memasuki lapisan stratosfer, lalu terdistribusi secara global. Di sini aerosol sulfat itu membentuk tabir surya alamiah yang memantulkan kembali sinar Matahari ke antariksa. Sehingga mengurangi intensitas sinar Matahari yang seharusnya menjangkau paras Bumi. Berkurangnya penyinaran menyebabkan paras Bumi sedikit lebih dingin dibanding normal. Belahan Bumi utara mencatat penurunan suhu pasca Letusan Agung 1963-1964 mencapai 0,3º C. Penurunan suhu ini memang relatif kecil, tak semerusak dampak global Letusan Tambora 1815. Gangguan atmosfer akibat Letusan Agung 1963-1964 adalah yang terbesar keempat yang dialami Bumi kita sepanjang abad ke-20 TU setelah Letusan Novarupta 1912 (Alaska, Amerika Serikat), Letusan El Chichon 1982 (Meksiko) dan Letusan Pinatubo 1991 (Filipina).

Mengapa Gunung Agung bisa seperti itu?

Jajaran pulau Bali, Lombok dan Sumbawa dibentuk oleh proses interaksi lempeng Australia dengan mikrolempeng Sunda. Lempeng Australia mendesak relatif ke utara secepat 60 hingga 70 milimeter pertahun. Karena berat jenisnya lebih besar maka interaksinya dengan mikrolempeng Sunda mewujud sebagai subduksi, dimana lempeng Australia melekuk dan menelusup ke bawah mikrolempeng Sunda. Subduksi ini menghasilkan sejumah gejala, termasuk pembengkakan margin mikrolempeng Sunda yang mewujud sebagai pulau-pulau yang menyembul di tepian Samudera Indonesia. Pulau Bali, Lombok dan Sumbawa tumbuh di atas tepian mikrolempeng Sunda, yang bergerak relatif ke timur dengan kecepatan 11 milimeter per tahun. Di sisi timur mikrolempeng Sunda berbatasan dengan mikrolempeng Timor dan mikrolempeng Laut Banda yang menjadi bagian dari tatanan tektonik Indonesia bagian timur nan rumit.

Kerak bumi yang mengalasi pulau Bali relatif tipis, hanya 18 hingga 20 kilometer tebalnya. Sebagai pembanding, ketebalan kerak bumi di pulau Jawa mencapai 30 kilometer. Selain tipis, kerak bumi pulau Bali juga menunjukkan sifat kerak samudera. Bagian 4 kilometer teratas dari kerak samudera ini adalah lapisan sedimen yang sangat tebal. Pada kedalaman 18 hingga 20 kilometer di bawah pulau Bali terdapat zona Moho, batas antara lapisan kerak di bagian atas dengan lapisan selubung di bagian bawah. Di zona Moho inilah dapur magma Gunung Agung berada, sebagai tempat penampungan untuk magma yang bermigrasi dari sumber lebih dalam (kedalaman sekitar 150 kilometer).

Gambar 7. Penampang vertikal Gunung Agung dan batuan dibawahnya. Nampak dapur magmanya (kedalaman 20 kilometer) dan kantung magmanya (kedalaman 4 kilometer). Migrasi magma segar dari dapur magma ke kantung magma inilah yang menghasilkan gempa-gempa vulkanik dalam dan dangkal. Sumber: Geiger, 2014 dengan teks oleh Sudibyo, 2017.

Sementara di kedalaman 4 kilometer, yakni batas antara lapisan endapan dengan kerak pulau Bali, terdapat kantung magma Gunung Agung. Kantung magma berperan sebagai tenpat penampungan sementara magma yang bermigrasi dari dapur magma di kedalaman, sebelum kemudian mengalir lagi menuju ke moncong saluran magma di puncak gunung. Eksistensi dapur magma dan kantung magma ini terkuat lewat penyelidikan intensif dan komprehensif akan sifat-sifat magma yang dimuntahkan dalam Letusan Agung 1963-1964. Sistem serupa ternyata juga dijumpai pada tetangganya, Gunung Batur.

Meletus 2017?

Sistem magma Gunung Agung inilah yang menyedot perhatian besar pada September 2017 TU ini. Hingga Agustus 2017 TU lalu Gunung Agung masih tenang-tenang saja. Seismometer (radas pengukur gempa) yang ditanam di kaki gunung memang merekam aneka getaran tanah di lingkungan Gunung Agung. Namun semua masih dalam nilai wajar. Memang beberapa kali terdeteksi gempa vulkanik dalam (VT-A). Namun gempa khas ini tidak kontinu setiap hari, hanya muncul pada 5 Juli, 6 Juli, 28 Juli dan 5 Agustus 2017 TU. Geliat magma segar dari dapur magma mulai terdeteksi pada 10 Agustus 2017 TU, saat gempa vulkanik dalam terjadi setiap hari. Magma segar yang sedang mencoba naik ini sekaligus berusaha memecah dan menembus magma sisa letusan 1963 penyumbat saluran magma di antara dapur dan kantung magma Agung. Pemecahan itulah yang menghasilkan gempa vulkanik dalam.

Gempa khas yang lain, yakni gempa vulkanik dangkal (VT-B) mulai terdeteksi pada 24 Agustus 2017 TU. Awalnya juga tidak terjadi setiap hari, hanya muncul pada 24 Agustus, 25 Agustus, 29 Agustus dan 4 September 2017 TU. Namun mulai 8 September 2017 TU ia terjadi setiap hari. Gempa vulkanik dangkal ini adalah indikasi terjadi gerakan fluida pada kantung magma Agung. Dikombinasikan dengan kejadian gempa-gempa vulkanik dalam yang kian meningkat, maka secara keseluruhan Gunung Agung memperlihatkan peningkatan kegempaan secara konsisten. Inilah yang menjadi dasar Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) Badan Geologi Kementerian Energi dan Sumberdaya Mineral RI untuk menaikkan status aktivitas Gunung Agung menjadi Waspada (Level II) pada 14 September 2017 TU.

Gambar 8. Indikasi mulai menggelembungnya tubuh Gunung Agung berdasar analisis InSAR dengan satelit Sentinel-1. Nampak pada lokasi Gunung Agung terdapat pola warna berulang (fringe), indikasinya terjadinya kenaikan paras tanah setempat dibanding observasi satelit yang sama pada periode sebelumnya. Hal tersebut tak dijumpai pada posisi Gunung Batur. Sumber: PVMBG, 2017.

Hatta kegempaan Gunung Agung kian riuh dan mengarah ke krisis seismik, baik pada gempa vulkanik dalam, vulkanik dangkal maupun tektonik lokal. Hanya dalam empat hari saja telah terjadi 602 gempa vulkanik dalam, 21 gempa vulkanik dangkal dan 12 gempa tektonik lokal. Dalam delapan hari kemudian gempa vulkanik dalamnya meroket menjadi 2.547 kejadian, sementara gempa vulkanik dangkal juga membumbung tinggi ke 134 kejadian dan gempa tektonik lokal melonjak hebat ke angka 97 kejadian. Krisis seismik yang belum pernah terjadi sepanjang sejarah pemantauan Gunung Agung ini menjadi pertanda kian intensifnya aliran magma segar dari dapur magma ke kantung magma. Juga menandakan mulai terjadinya peretakan batuan dasar gunung akibat terus mendesaknya magma segar memasuki kantung magma bersamaan dengan upaya magma segar keluar dari kantung magma menuju ke atas, seperti diperlihatkan gempa-gempa tektonik lokal.

Mulai masuknya magma segar ke dasar gunung juga diperlihatkan oleh mulai membengkaknya tubuh Gunung Agung, berdasarkan analisis data radar dari satelit Sentinel-1 dengan teknik InSAR sejak Agustus 2017 TU. Tubuh gunung yang mulai menggelembung menunjukkan magma segar sudah mencapai dasar gunung. Satelit lain, yakni ASTER dalam kanal inframerah, memperlihatkan berkembangnya titik-panas di kawah (puncak) Gunung Agung sejak Juli 2017 TU. Titik-panas itu semakin meluas memasuki Agustus dan September 2017 TU. Perluasan titik-panas disebabkan oleh lebih banyak panas yang memancar dari kawah, indikasi tak langsung bahwa magma segar sudah memasuki dasar gunung. Pengamatan dari pos PGA (Pengamatan Gunung Api) Agung di Rendang (13 kilometer dari kawah) juga mendeteksi hembusan asap solfatara. Awalnya setinggi 50 meter dari kawah, lalu berkembang menjadi 200 meter.

Krisis seismik dan sejumlah perkembangan itu memaksa PVMBG meningkatkan status Gunung Agung menjadi Siaga (Level III) yang disusul status tertinggi: Awas (Level IV), masing-masing pada 18 dan 22 September 2017 TU. Keputusan ini disertai pembentukan Daerah Bahaya (Zona Merah) hingga jarak mendatar 9 kilometer dari kawah. Berikut adalah peta Daerah Bahaya Gunung Agung yang dipublikasikan PVMBG :

Khusus untuk lereng sektor utara-timur laut dan sektor tenggara-selatan-baratdaya, Daerah Bahaya Gunung Agung sedikit lebih jauh, yakni hingga jarak mendatar 12 kilometer dari kawah. Kawasan yang diperkirakan dhuni oleh tak kurang dari 100 ribu jiwa ini diputuskan musti kosong dari kegiatan penduduk. Konsekuensinya penduduk pun mulai dievakuasi. Hingga 24 September 2017 TU sore, Badan Nasional Penanggulangan Bencana (BNPB) mencatat jumlah pengungsi telah mencapai tak kurang dari 42.000 jiwa yang tersebar di lebih dari 300 pusat pengungsian. Pengungsian sudah terjadi sebelum sang gunung meletus, sebagai langkah antisipasi dengan bersandar pada kejadian letusan 54 tahun silam.

Bagaimana jika Gunung Agung benar-benar meletus?

Gambar 9. Prakiraan ketebalan debu vulkanik di sekitar Gunung Agung apabila terjadi letusan dengan skala 3 VEI. Hingga 30 kilometer ke arah barat daya dari kawah, debu vulkaniknya setebal 40 sentimeter. Sumber: PVMBG, 2017.

PVMBG telah membentuk model hipotetik Gunung Agung untuk memerikan potensi dampak ke lingkungan. Model ini berlandaskan pada skenario optimistik (bukan worst-case scenario), jadi tak sepenuhnya mengacu sejarah letusan Gunung Agung 54 tahun silam. Volume rempah letusan yang dimuntahkan dihipotesiskan lebih kecil dari Letusan Agung 1963-1964, yakni pada skala letusan 3 VEI (volume antara 10 hingga 100 juta meter3). Pada skala tersebut dan dengan vektor angin regional saat ini, maka hujan debu akan berpotensi mengarah ke baratlaut serta barat dan utara. Dalam jarak 15 kilometer dari kawah, hujan debu lebat akan menghasilkan lapisan debu setebal 160 sentimeter, sementara dalam jarak 30 kilometer masih setebal 40 sentimeter.

Berbeda halnya dengan potensi awan panas letusan. Awan panas lebih berat dibanding debu sehingga arah geraknya tidak dipengaruhi oleh angin, hanya dikontrol gravitasi. Bila letusan pendahuluan memuntahkan 10 juta meter3 rempah letusan, maka awan panas akan meluncur ke lembah-lembah sungai di lereng utara-timurlaut, tenggara dan selatan-baratdaya. Daya jangkau maksimum sekitar 10 kilometer dari kawah. Namun jika volumenya lebih besar dari 10 juta meter3, maka jangkauan awan panas letusan juga akan lebih jauh. Sedangkan potensi hujan batu dengan ukuran 6 sentimeter akan terjadi pada radius hingga 9 kilometer dari kawah ke segala arah.

Gambar 10. Prakiraan ketebalan dan arah hempasan awan panas letusan di lereng Gunung Agung apabila terjadi letusan dengan skala 3 VEI dan dengan volume letusan pembuka sebesar 10 juta meter3 . Awan panas letusan akan menjangkau radius 10 kilometer dari kawah. Sumber: PVMBG, 2017.

Sepanjang sejarah pencatatan gunung berapi di Indonesia, Gunung Agung telah tiga kali meletus. Dan dua letusan terakhirnya, masing-masing Letusan Agung 1843 dan Letusan Agung 1963-1964, demikian besar dengan skala letusan 5 VEI. Karena itu tak berlebihan jika dikatakan Gunung Agung tak pernah meletus kecil. Memahami karakter Gunung Agung yang demikian menjadi kunci agar nestapa 54 tahun silam tak lagi terulang.

Referensi :

Pusat Vulkanologi dan Mitigasi Bencana Geologi. 2017. Peningkatan Status G. Agung Dari Siaga (Level III) Ke Awas (Level IV) 22 September 2017 Pkl. 20.30 WITA. Diakses 22 September 2017.

Self & Rampino. 2012. The 1963-1964 Eruption of Agung Volcano (Bali, Indonesia). Bulletin of Volcanology, vol. 74 (2012), p 1521-1536.

Geiger. 2014. Characterising the Magma Supply System of Agung and Batur Volcanoes on Bali, Indonesia. Department of Earth Sciences, Uppsala University, Sweden.

Iklan

Bila Cassini Menjadi Bola Api (di Saturnus)

Saat terakhir itu terjadi pada Jumat 15 September 2017 TU (Tarikh Umum) pukul 17:32:20 WIB. Yakni kala Cassini, salah satu wantariksa (wahana antariksa) penyelidik planet nan legendaris, mengakhiri masa tugasnya. Pada saat itulah Cassini mulai menjadi kobaran api kala tiba di ketinggian 1.650 kilometer dari paras Saturnus pada garis 10º LU. Inilah perjalanan terakhir Cassini yang dilakukannya terjun bebas menembus lapisan demi lapisan udara Saturnus, planet raksasa gas bercincin eksotis yang telah dikawalnya dengan setia dalam 13 tahun terakhir. Namun gelombang elektromagnetik terakhirnya baru diterima Bumi pukul 18:55:46 WIB, seiring demikian jauhnya jarak Saturnus ke Bumi (yakni 1.500 juta kilometer).

Gambar 1. Sepasang foto terakhir hasil bidikan wantariksa Cassini dalam beberapa belas jam sebelum terjun bebasnya ke Saturnus. Kiri: Enceladus yang berfasa sabit hampir terbenam dengan Saturnus di latar depan. Kanan: bayangan struktur cincin Saturnus (sebagai jalur kehitaman di tengah foto) di badan planet raksasa tersebut. Di sebelah utara (atas) pita hitam itulah Cassini menerjunkan dirinya. Sumber: NASA/JPL/SSI, 2017.

Saat terjun bebas sebagai bola api, Cassini mencatatkan diri sebagai salah satu penyelidik planet bermasa tugas cukup lama. Ia tiba di lingkungan Saturnus pada 1 Juli 2004 TU dan terus bertahan dengan kinerja nyaris sempurna hingga 15 September 2017 TU. Jika dihitung sejak lepas landasnya, yakni pada 15 Oktober 1997 TU, maka Cassini telah berada di antariksa selama hampir 20 tahun. Sebagai pembanding Galileo, wantariksa ‘saudara’-nya yang bertugas menyelidiki Jupiter, hanya bertahan hampir 14 tahun saja di antariksa.

Purna tugasnya Cassini juga menjadi penanda bagi berakhirnya satu era menggelegak dalam khasanah penjelajahan antariksa. Yakni era wantariksa berukuran besar (dan sangat mahal) sekaligus wantariksa penyelidik planet yang lebih jauh ketimbang Mars. Era yang dipelopori oleh Pioneer 10 dan Pioneer 11 (meluncur tahun 1972 TU dan 1973 TU) dan mencapai puncaknya dengan Voyager 1 dan Voyager 2 nan fenomenal (keduanya meluncur tahun 1977 TU). Lewat dua Voyager ini praktis tak hanya Jupiter dan Saturnus yang ‘diaduk-aduk’ tetapi juga dua planet besar lainnya yakni Uranus dan Neptunus. Dalam hal ini baik Cassini maupun Galileo merupakan ‘keturunan langsung’ Voyager.

Zuhal nan Ganjil

Gambar 2. Saturnus dalam bidikan teleskop refraktor berdiameter 70 mm dari Bumi pada 4 Agustus 2014 TU silam. Meski terlihat kecil, namun bentuk cincin yang menjadi ciri khasnya terlihat jelas. Sumber: Sudibyo, 2014

Saturnus telah dikenal umat manusia sejak peradaban bermula karena dapat dilihat mata tanpa bantuan alat optik apapun. Mitologi Yunani menyebutnya Kronus dan dianggap pelindung dunia pertanian mereka, mungkin karena tampilan warna kekuningannya yang mengingatkan akan gandum. Bangsa Romawi kuno melabelinya sebagai Saturnus, dengan fungsi mirip Kronus. Di Timur, Bangsa Cina menyebutnya Tu-xing yang bermakna ‘bintang tanah.’ Tanah merupakan salah satu dari lima elemen dasar semesta dalam filosofi Cina selain air, api, logam dan kayu. Bagi bangsa Jepang kuno, planet ini dinamakan Do-sei yang juga adalah ‘bintang tanah.’ Di India kuno, Saturnus dinamakan Shani dan dikaitkan dengan pengadil segala perbuatan baik dan buruk. Dan bagi bangsa Arab, Saturnus memiliki nama Zuhal atau Zohal yang berkaitan dengan otoritas dan kekuasaan.

Meski demikian sifat-sifat fisis Saturnus baru mulai diketahui dalam empat abad terakhir. Tepatnya setelah Galileo Galilei (Italia) mengarahkan teleskop panggung rakitannya pada tahun 1610 TU. Apa yang dilihatnya mengejutkan. Saturnus seakan-akan dihiasi sepasang telinga di kiri dan kanannya. Butuh setengah abad lebih untuk menguak misteri ‘sepasang telinga’ tersebut, yakni lewat tangan Christiaan Huygens (Belanda) dengan teleskop rakitan berkemampuan pembesaran 50 kali pada tahun 1665 TU. ‘Sepasang telinga’ itu ternyata struktur cincin raksasa, sehingga kosakata planet bercincin pun sontak melekat pada Saturnus. Meski di kemudian hari, tepatnya jelang akhir abad ke-20 TU diketahui bahwa seluruh planet raksasa dalam tata surya kita (Jupiter, Saturnus, Uranus dan Neptunus) ternyata memiliki cincinnya masing-masing. Huygens juga menemukan satelit alamiah terbesar Saturnus, yang dinamakan Titan. Satelit-satelit lainnya seperti Iapetus, Rhea, Tethys dan Dione ditemukan secara berturut-turut oleh Giovanni Domenico Cassini (Italia).

Gambar 3. Saturnus dalam pandangan mata inframerah Cassini. Warna biru dan hijau masing-masing menunjukkan sinar inframerah yang berasal dari Matahari pada panjang gelombang 2 dan 3 mikron. Sementara warna merah adalah pancaran panas dari interior Saturnus, yang hanya bisa dilihat pada panjang gelombang 5 mikron. Diabadikan pada 1 November 2008 TU. Sumber: NASA/JPL/SSI, 2008.

Akan tetapi hampir semua informasi detil tentang Saturnus dan lingkungannya baru diperoleh dalam setengah abad terakhir. Yakni dalam era penerbangan antariksa, tepatnya melalui wantariksa Pioneer 11, Voyager 1 dan Voyager 2. Meski ketiganya hanya sempat berada di dekat Saturnus dalam tempo sangat singkat karena sifat misi antariksanya sebagai misi terbang-lintas dekat (flyby). Barulah Cassini, lengkapnya misi antariksa Cassini-Huygens, yang menjalankan peran sebagai misi pengorbit Saturnus dengan beredar mengelilingi planet bercincin itu lewat orbit yang senantiasa berubah seiring waktu sesuai dengan desain observasi yang telah ditentukan. Cassini-Huygens menyajikan informasi luar biasa besarnya, sehingga mendorong lahirnya lebih dari 1.000 makalah ilmiah dan sejumlah buku.

Kini kita tahu planet Saturnus adalah 9 kali lebih besar dan 95 kali lebih massif ketimbang Bumi. Ia butuh waktu 29,46 tahun untuk menyelesaikan gerak mengelilingi Matahari sekali putaran. Maka setahun bagi Saturnus setara dengan 29,46 tahun di Bumi. Akan tetapi planet ini berputar pada sumbunya pada kecepatan yang jauh lebih besar ketimbang Bumi, yakni hanya dalam tempo 10,55 jam. Jadi sehari di Saturnus adalah kurang dari setengah hari di Bumi.

Banyak hal ganjil di Saturnus. Salah satunya adalah kerapatan (densitas)-nya yang sangat kecil, yakni 690 kilogram/meter3 (rata-rata). Sebagai pembanding, densitas air murni 1.000 kilogram/meter3. Karenanya Saturnus akan terapung bilamana diletakkan dengan hati-hati di sebuah samudera mahaluas. Rendahnya densitas Saturnus disebabkan oleh dominannya Hidrogen dan Helium sebagai penyusun planet ini. Bagian yang relatif padat hanyalah inti Saturnus, berupa gumpalan padat berbatu yang 2 kali lebih besar dan 9 hingga 22 kali lebih massif ketimbang Bumi. Inti ini bersuhu sangat tinggi, hingga 11.700º C.

Gambar 4. Saturnus dan lingkungannya diabadikan Cassini jauh tinggi di atas kutub utaranya. Nampak badai raksasa unik berbentuk segienam yang mengamuk di area kutub utara Saturnus. Badai permanen ini diperkirakan telah berhembus sejak masa bayi Saturnus dengan pasokan tenaga berlimpah dari interior Saturnus. Diabadikan pada 10 Oktober 2013 TU. Sumber: NASA/JPL/SSI, 2013.

Inti Saturnus dikelilingi lapisan es dan Hidrogen/Helium metalik. Yakni lapisan dengan tekanan sangat tinggi sehingga Hidrogen/Helium tertekan hebat, membuatnya berbentuk cair dan bisa menghantarkan listrik layaknya logam. Dari lapisan inilah medan magnet Saturnus bermula. Lapisan ini diselubungi lagi oleh lapisan tebal berisi Hidrogen/Helium cair tanpa sifat metalik. Dan lapisan terluar Saturnus adalah lapisan gas Hidrogen (dengan sangat sedikit Helium) yang mempunyai ketebalan 1.000 kilometer. Interior seperti ini adalah hal yang umum pada planet raksasa gas. Jadi tidak ada permukaan padat layaknya Bumi. Apa yang disebut sebagai paras (permukaan) Saturnus merupakan himpunan titik-titik pada lapisan terluar yang memiliki tekanan 1 bar (100 kPa atau 100 kN/m2), yakni tekanan yang hampir sama dengan tekanan 1 atmosfer di Bumi.

Tekanan luar biasa besar yang diderita inti Saturnus memproduksi mekanisme Kelvin-Helmholtz yang menghasilkan panas. Pada lapisan lebih luar, tepatnya di batas antara lapisan Hidrogen/Helium metalik dengan lapisan Hidrogen/Helium cair, panas juga muncul melalui hujan Helium. Yakni saat butir-butir Helum cair dari lapisan luar jatuh (turun) menembusi Hidrogen dibawahnya, sehingga saling bergesekan. Lewat dua sumber panas ini Saturnus memancarkan energi luar biasa besar ke lingkungan sekitarnya, dalam jumlah 2,5 kali lipat lebih besar dari energi sinar Matahari yang diterimanya. Badai unik di Saturnus, yakni badai raksasa heksagonal (berbentuk segienam) permanen yang ada di kutub utara Saturnus, demikian halnya badai raksasa di kutub selatannya, diyakini mendapatkan tenaganya dari panas internal ini. Hal serupa juga dijumpai pada Jupiter. Bedanya pancaran energi dari interior Saturnus tidak berdampak pada meraksasanya medan magnet Saturnus.

Lautan Minyak dan Air Mancur Raksasa

Gambar 5. Sejumlah satelit alamiah Saturnus berada dalam satu medan pandang mata tajam Cassini. Mulai dari Titan yang terbesar, Janus (diameter 181 kilometer), Prometheus (diameter 102 kilometer) dan Mimas (diameter 397 kilometer). Sebagian Saturnus nampak di sisi kanan, dengan bayang-bayang struktur cincin dengan beberapa bagiannya tercetak jelas dibadannya. Diabadikan pada 26 Oktober 2007 TU. NASA/JPL/SSI, 2007.

Keganjilan berikutnya adalah Saturnus memiliki satelit alamiah luar biasa banyak, yakni 62 buah. Ini menjadikannya planet terkaya kedua akan satelit alamiah setelah Jupiter (dengan 69 satelit alamiah). Tetapi Saturnus juga dikitari oleh ratusan bongkahan-bongkahan berdimensi 40 hingga 500 meter yang terselip di dalam cincinnya. Mereka disebut satelit alamiah mini atau satelit mini atau moonlet. Namun diyakini moonlet tidak tergolong ke dalam satelit alamiah yang sesungguhnya. Dimensi moonlet demikian kecil sehingga mata tajam Cassini sekalipun tak dapat menyaksikannya. Moonlet hanya bisa dideteksi berdasarkan gangguannya terhadap bagian cincin Saturnus disekelilingnya, yang menampakkan panorama baling-baling (propeller).

Gambar 6. Cincin A Saturnus dalam pandangan tajam Cassini dari jarak dekat. Nampak sejumlah gejala eksistensi satelit alamiah mini (moonlet) dalam wujud panorama mirip baling-baling (propeller). Diabadikan pada 19 April 2017. Sumber: NASA/JPL/SSI, 2017.

Dari 62 satelit alamiah itu 53 diantaranya telah bernama dan 48 diantaranya memiliki diameter kurang dari 50 kilometer. Titan adalah yang paling gede (diameter 5.150 kilometer), bahkan sedikit lebih gede ketimbang Merkurius. Karenanya memiliki cukup gravitasi untuk menyekap atmosfer, menjadikannya satu-satunya satelit alamiah yang beratmosfer di tata surya kita. Atmosfer Titan cukup tebal, dua kali lipat tebal atmosfer Bumi, dan dijejali kabut merah kekuningan tak tembus pandang. Sehingga upaya eksplorasi Titan, baik dengan teleskop dari Bumi maupun dengan penerbangan antariksa sebelumnya, tidak sanggup menguak paras Titan. Barulah setelah Cassini meluncurkan pendarat Huygens ke benda langit ini di awal 2005 TU serta berulang-ulang melintasinya sembari mengamatinya dengan gelombang radar dan pencahayaan inframerah maka rahasia Titan mulai terkuak.

Gambar 7. Panorama salah satu bagian bentanglahan Titan dari dua ketinggian berbeda, diabadikan pendarat Huygens dalam perjalanannnya menuju daratan Titan. Nampak lembah besar dengan bekas delta (muara sungai) yang diapit dua perbukitan di kedua sisinya. Pada salah satu dasar anak sungai dalam bekas delta inilah Huygens mendarat. Diabadikan pada 14 Januari 2005 TU. Sumber: ESA/Huygens, 2005.

Titan ternyata memiliki paras yang mencengangkan mirip Bumi kita, bergunung-gunung dan berlembah-lembah. Sebagian lembah raksasanya terisi cairan sebagai laut dan danau yang luasnya beragam. Ada juga sungai yang panjangnya hampir menyamai Bengawan Solo. Cairan pengisi laut, danau dan sungai Titan bukanlah air, melainkan metana dan etana cair. Di Bumi kedua senyawa itu dikenal sebagai komponen minyak (bumi). Laut, danau dan sungai Titan disokong daur hidrologis mirip di Bumi, bedanya di sini melibatkan metana cair. Hujan deras yang megguyurkan metana cair kerap terjadi, juga disertai sambaran petir. Hujan membasahi daratan Titan yang tersusun dari bongkahan es bercampur minyak. Cairan minyak di Titan demikian berlimpah, sekitar 300 kali lebih banyak ketimbang cadangan minyak yang kita miliki di Bumi.

Gambar 8. Pemandangan daratan Titan di lokasi mendaratnya Huygens. Nampak bongkahan-bongkahan batu yang tersusun dari es bercapur minyak dan menampakkan tanda-tanda erosi, jejak dari aliran fluida permukaan di masa silam. Lokasi pendaratan Huygens adalah dasar sebuah sungai kering. Diabadikan pada 14 Januari 2005 TU. Sumber: ESA/Huygens, 2005.

Selain Titan, Enceladus juga cukup menarik. Dimensinya hanyalah sepersepuluh Titan, namun sajian fenomenanya tak kalah mencengangkan. Pada 2005 TU Cassini mengungkap adanya semburan luar biasa laksana air mancur raksasa, yang muncrat dari kawasan kutub selatan secara terus menerus. Materi semburan melesat secepat 4.500 kilometer/jam hingga ke ketinggian 500 kilometer. Materi tersebut adalah adalah air (sebanyak 250 kilogram/detik) berbentuk uap yang bercampur dengan karbondioksida dan beberapa senyawa karbon seperti metana, propana, asetilena dan formaldehida. Semburan raksasa ini adalah pertanda adanya samudera bawahtanah di interior Enceladus. Samudera berair asin (kadar Natrium antara 0,5 hingga 2 %) itu bagian dari lapisan selubung yang berada di bawah lapisan kerak es, yakni pada kedalaman 30 hingga 40 kilometer dari paras Enceladus. Tebal lapisan selubung ini diperkirakan 30 kilometer.

Gambar 9. Semburan dahsyat yang menyeruak dari kutub selatan Enceladus, laksana air mancur raksasa yang memuntahkan 250 kilogram air per detik secara terus menerus. Selain jejak aktivitas vulkanisme dingin, semburan ini juga pertanda eksistensi samudra bawahtanah berair asin di satelit alamiah Saturnus yang satu ini. Nampak pula daratan di lokasi semburan yang penuh retakan di sana sini. Diabadikan pada 30 November 2010 TU. Sumber: NASA/JPL/SSI, 2010.

Semburan raksasa di Enceladus merupakan pertanda aktivitas vulkanisme dingin. Selain Enceladus, jejak vulkanisme dingin juga berhasil diungkap Cassini di tempat lain. Yakni di Titan, tepatnya pada Gunung Doom dengan kaldera Sotra Patera di kakinya (lebar kaldera 7 kilometer dan kedalaman 1,7 kilometer). Di lerengnya dijumpai jejak aliran mirip lava yang berstruktur menjemari dengan ketebalan sekitar 100 meter. Lava tersebut mungkin tersusun dari air bercampur amonia dan senyawa karbon kompleks seperti polietilena, parafin dan aspal.

Planet Bercincin

Struktur cincin raksasa adalah keganjilan Saturnus yang paling menonjol. Cassini berkesempatan mengamatinya dari jarak dekat secara berulang-ulang selama bertahun-tahun. Dan di tahun terakhirnya bahkan berkesempatan lewat di antara sela-sela cincin maupun di bagian yang paling tipis.

Cincin Saturnus merentang dari ketinggian 7.000 kilometer hingga 420.000 kilometer di atas khatulistiwa’. Namun bagian terpadat hanya sampai ketinggian 80.000 kilometer. Cincin Saturnus terbagi menjadi 9 bagian berbeda. Dari yang terdekat hingga terjauh dari Saturnus masing-masing adalah cincin D (lebar 7.500 kilometer), cincin C (lebar 17.500 kilometer), cincin B (lebar 25.500 kilometer), cincin A (lebar 14.600 kilometer), cincin F (lebar 30 – 500 kilometer), cincin Janus-Epimetheus (lebar 5.000 kilometer), cincin G (lebar 9.000 kilometer), cincin Pallene (lebar 2.500 kilometer) dan yang terluar sekaligus terlebar adalah cincin E (lebar 300.000 kilometer). Cincin B dan cincin A dipisahkan oleh ruang selebar 4.700 kilometer yang disebut divisi Cassini, sementara antara cincin A dan cincin F terdapat divisi Roche (lebar 2.600 kilometer).

Gambar 10. Bumi dalam mata tajam Cassini saat mengabadikan Saturnus dan Matahari dalam garis syzygy. Saat itu Cassini berposisi 2,2 juta kilometer di ‘belakang’ Saturnus. Sehingga mampu menguak pemandangan segenap lingkungan Saturnus termasuk hampir seluruh cincinnya. Diabadikan pada 15 September 2006 TU. Sumber: NASA/JPL/SSI, 2006.

Pada dasarnya cincin Saturnus merupakan cakram raksasa yang ketebalannya bervariasi mulai dari 10 meter hingga 1.000 meter. Cakram raksasa ini didominasi oleh butir-butir es yang ukurannya mulai dari sekecil butir pasir hingga sebesar kerikil (diameter 1 hingga 10 sentimeter). Namun di tempat-tempat tertentu terdapat pula bongkahan besar lonjong mirip jarum raksasa dengan panjang hingga 2,5 kilometer. Komposisi cincin Saturnus didominasi air (99,9 %) dengan sedikit senyawa pengotor seperti silikat. Meski strukturnya luar biasa besar massa keseluruhan materi cincin Saturnus cukup kecil. Yakni hanya seper 820 massa Bulan kita.

Sebagian besar cincin Saturnus diperkirakan terbentuk pada masa bayi Saturnus. Dulu diduga ada satu satelit alamiah sebesar Titan atau lebih besar lagi. Karena orbitnya tak stabil, ia terus bergeser hingga akhirnya terlalu dekat ke Saturnus. Segera gaya tidal Saturnus meremukkannya menjadi kerikil dan debu. Bagian yang lebih ringan, yakni butir-butir es, terserak dan seiring waktu perlahan-lahan membentuk struktur cincin Saturnus. Sementara bagian lebih padat, yakni butir-butir batuan, juga terserak layaknya butir-butir esnya. Namun mereka perlahan-lahan saling menempel kembali, menggumpal hingga akhirnya membentuk gumpalan besar. Di kemudian hari gumpalan-gumpalan besar itu adalah segenap satelit alamiah yang jaraknya lebih jauh dari Tethys.

Gambar 11. Struktur unik dalam cincin Saturnus, tepatnya di tepi cincin B. Yakni jajaran bongkahan besar sangat lonjong mirip jarum-jarum raksasa yang menjulang hingga setinggi 2,5 kilometer sehingga menampakkan bayang-bayangnya di bagian cincin lainnya kala tersinari Matahari. Nampak celah Huygens dan celah Herschel yang menjadi bagian dari divisi Cassini. Diabadikan pada 26 Juli 2009 TU. Sumber: NASA/JPL/SSI, 2009.

Sementara sebagian kecil cincin Saturnus dibentuk oleh materi yang tersembur dari satelit-satelit alamiahnya. Misalnya cincin E, mendapatkan pasokan debu dari semburan Enceladus. Juga cincin Janus-Epimetheus, ditemukan pada 2006 TU, dengan pasokan debu dari Janus (diameter 200 kilometer) dan Epimetheus (diameter 130 kilometer). Janus dan Epimetheus adalah sepasang satelit alamiah yang menempati orbit yang sama sehingga bisa saling bertukar posisi. Benturan mikrometeoroid dengan Janus dan Epimetheus melesatkan debu yang membentuk cincin ini. Demikian halnya cincin G, khususnya bagian dalam, dengan pasokan debu dari Aegaeon. Baru ditemukan pada 2008 TU, Aegaeon adalah satelit alamiah Saturnus yang terkecil sekaligus terganjil karena sangat lonjong (panjang 1,4 kilometer lebar 0,5 kilometer).

Begitu pula cincin Pallene dengan pasokan debu dari Pallene (diameter 6 kilometer), satelit alamiah yang baru ditemukan pada 2004 TU. Cincin F pun demikian. Perhitungan menunjukkan cincin ini dibentuk oleh debu-debu produk benturan kosmik antara Prometheus dan Pandora di masa silam. Akibat benturan tersebut, maka baik Prometheus maupun Pandora dipahat hingga menjadi berbentuk lonjong (masing-masing memiliki panjang 136 kilometer dan 104 kilometer. Prometheus lantas berperan sebagai ‘penggembala’ agar cincin ini tetap utuh di lokasinya.

Gambar 12. Transparannya cincin Saturnus, sebagai konsekuensi dari ketebalan cincin yang kecil (sekitar 10 meter), materi yang kecil (seukuran butir pasir hingga kerikil) dan tembus pandang (air yang membeku) terlihat di sini. Bagian Saturnus di latar belakangnya pun dapat dilihat dengan mudah. Diabadikan pada 4 November 2006 TU. Sumber: NASA/JPL/SSI, 2006.

Campurtangan satelit-satelit alamiah Saturnus juga berperan membentuk keganjilan lainnya. Yakni busur cincin, bentangan materi mirip bagian cincin namun tidak sampai membentuk kurva tertutup seperti lingkaran. Cassini mengungkap Saturnus memiliki sedikitnya dua busur cincin. Yang pertama adalah busur cincin Methone, ditemukan pada September 2006 TU dengan panjang bentangan 34.000 kilometer. Busur cincin ini dibentuk oleh debu yang dilepaskan Methone (diameter 3,9 kilometer) seiring tumbukan dengan mikrometeoroid. Methone sendiri baru ditemukan saat Cassini baru tiba di Saturnus. Dan yang kedua adalah busur cincin Anthe yang jauh lebih panjang (69.000 kilometer) dan ditemukan pada Juni 2007 TU. Ia bersumber dari Anthe (diameter 2 kilometer) yang juga ditemukan pada 2007 TU. Baik busur cincin Methone maupun Anthe dikontrol sepenuhnya oleh gravitasi Mimas (diameter 396 kilometer) sehingga bentuknya tetap terjaga meski dipaksa berayun-ayun ke utara dan ke selatan secara teratur.

Opsi Uranus

Layaknya Saturnus, perjalanan Cassini menuju planet bercincin tujuannya pun tak kalah ganjilnya. Dibangun bersama oleh tiga badan antariksa, masing-masing dari Amerika Serikat (NASA), gabungan negara Eropa (ESA) dan Italia (ASI), Cassini mewujudkan diri sebagai wantariksa terberat kedua yang pernah diluncurkan. Massa Cassini adalah 2.125 kilogram dan pendarat Huygens 319 kilogram. Ditambah dengan 3.132 kilogram bahan bakar dan 132 kilogram adapter, maka massa total Cassini-Huygens mencapai 5.712 kilogram. Cassini sekaligus menjadi wantariksa termahal. Mulai dari tahap pembangunan hingga peluncurannya saja Cassini-Huygens menelan ongkos Rp 42,5 trilyun (berdasar kurs 2017 TU) dengan 80 % diantaranya ditanggung NASA.

Gambar 13. Wantariksa Cassini dan pendarat Huygens saat hendak menjalani rangkaian tes getaran dan panas di fasilitas Jet Propulsion Laboratory NASA, negara bagian California (AS) pada 31 Oktober 1996 TU. Tes ini wajib dilakukan sebelum Cassini-Huygens didorong ke langit. Sumber: NASA/JPL/SSI, 1996.

Hanya roket angkut terkuatlah yang bisa mendorong Cassini ke antariksa dan pada dekade 1990-an TU itu hanya berarti satu: roket Titan IV. Begitupun Titan IV tak cukup bertenaga untuk melontarkan Cassini langsung ke Saturnus. Kombinasi Titan IV dan upperstage Centaur hanya sanggup menghasilkan tambahan kecepatan heliosentris 4 kilometer/detik (relatif ke Matahari). Padahal untuk bisa langsung ke Saturnus butuh tambahan kecepatan heliosentris hingga 17 kilometer/detik (relatif ke Matahari). Agar bisa melejit secepat itu, maka Cassini harus mengonsumsi tak kurang 75.000 kilogram bahan bakar. Ini teramat berat sehingga tak mungkin untuk diangkut berdasarkan teknologi peroketan saat ini. Sebab untuk mengangkat massa seberat itu butuh roket angkut yang berkali lipat lebih jumbo ketimbang roket raksasa Saturnus V, roket terbesar sepanjang sejarah (kini telah pensiun). Dan jelas membuat biaya peluncuran menjadi ‘menyentuh langit’ (sangat mahal).

Untung tersedia solusi alamiah yang jauh lebih murah: daya lontar gravitasi atau ketapel gravitasi (gravity assist). Saat sebuah benda kecil (misalnya komet, asteroid atau wantariksa) lewat dalam jarak sangat dekat ke sebuah planet dan arah kedatangannya sejajar dengan arah gerak planet itu dalam mengelilingi Matahari, maka terjadi transfer momentum yang membuat kecepatan benda kecil itu (relatif ke Matahari) meningkat pesat. Ketapel ini memungkinkan sebuah wantariksa melesat cepat dengan meminjam tenaga Bumi (dan planet-planet lain) tanpa harus menyalakan mesin roketnya. Penjelajahan Cassini membutuhkan ketapel berganda yang melibatkan tiga planet: Bumi, Venus dan Jupiter. Sehingga lahirlah istilah VVEJGA (Venus-Venus-Earth-Jupiter Gravity Assist) karena Cassini harus menjalani empat daya lontar berbeda, yakni dua kali dengan Venus, satu kali dengan Bumi dan satu kali dengan Jupiter.

Maka saat Cassini meluncur dengan roket Titan IV dari Cape Canaveral, negara bagian Florida (Amerika Serikat) pada 15 Oktober 1997 TU pukul 15:43 WIB, ia justru diarahkan menuju Venus. Cassini pun melintas dalam jarak hanya 284 kilometer dari paras Venus pada 26 April 1998 TU. Daya lontar gravitasi Venus membuat Cassini kini melaju 6 kilometer/detik (relatif ke Matahari). Selanjutnya pada 24 Juni 1999 TU, Cassini kembali lewat di dekat Venus dalam jarak hanya 623 kilometer. Kembali daya lontar gravitasi Venus bekerja dan Cassini dipercepat melaju 9,5 kilometer/detik (relatif ke Matahari) sekaligus menempuh lintasan lonjong menuju Bumi. Pada 18 Agustus 1999 TU, Cassini lewat hanya dalam jarak 1.171 kilometer dari paras Bumi dan mengalami daya lontar gravitasi. Kini tambahan kecepatan heliosentrisnya meningkat pesat hingga 16 kilometer/detik dan menempuh lintasan baru ke Jupiter. Akhirnya saat melintas pada jarak 9,7 juta kilometer dari Jupiter pada 30 Desember 2000 TU, bekerjalah ketapel gravitasi yang terakhir yakni dari Jupiter. Sehingga pada akhirnya Cassini memiliki kecepatan akhir mencukupi untuk terbang ke Saturnus.

Gambar 14. Lintasan rumit yang harus ditempuh Cassini semenjak meluncur dari Bumi (1997 TU) hingga akhirnya tiba di Saturnus (2004 TU). Lintasan ini harus dijalani agar Cassini tak harus mengangkut 75.000 klogram bahan bakar, hal yang mustahil dalam teknologi peroketan saat ini. Dengan lintasan ini maka Cassini memanfaatkan daya lontar gravitasi dari tiga planet sekaligus: Venus, Bumi dan Jupiter. Sumber: NASA/JPL, 1998.

Ketapel gravitasi memang tak membutuhkan apapun. Namun agar teknik ini bekerja baik hingga ke ambang batas teknis yang diperkenankan, dibutuhkan serangkaian manuver. Dan itu mengonsumsi bahan bakar Cassini karena mesin roketnya harus dinyalakan sesuai kebutuhan. Sehingga saat tiba di Saturnus, Cassini telah menghabiskan 1.135 kilogram bahan bakarnya untuk rangkaian manuver itu. Selanjutnya agar gravitasi Saturnus bisa menangkap dan memaksanya beredar mengelilingi planet cincin itu dengan orbit tertentu, Cassini kembali harus menyalakan roketnya dan kali ini untuk mengerem. Pengeremen ini mengonsumsi sekitar 1.200 kilogram bahan bakar. Sehingga pada awal 2005 TU sisa persediaan bahan bakar Cassini tinggal sekitar seperempatnya saja (sekitar 800 kilogram).

Beruntung Saturnus memiliki Titan. Lewat teknik daya lontar gravitasi pula, Cassini berulang-ulang dilewatkan di dekat Titan. Selain menambah kecepatan dan sangat menghemat penggunaan bahan bakar, Cassini juga bisa mengubah orbitnya mengikuti desain observasi yang dibebankan padanya. Sehingga meski hanya dirancang untuk bertugas selama empat tahun, sisa bahan bakar yang masih cukup banyak memungkinkan masa tugas Cassini diperpanjang. Awalnya selama dua tahun dalam misi Cassini Equinox Mission (2008-2010 TU), dimana Cassini memusatkan perhatiannya pada momen eukinoks Saturnus (Matahari tepat di atas khatulistiwa’ Saturnus) yang terjadi pada 9 Agustus 2009 TU. Lalu diperpanjang tujuh tahun lagi di bawah tajuk Cassini Solstice Mission (2010-2017 TU) guna menyongsong momen titik balik musim panas (solstice) Saturnus yang terjadi pada 23 Mei 2017 TU. Selama dua misi tambahan itu berlangsung, Cassini lebih banyak memusatkan perhatiannya pada Titan dan Enceladus.

Gambar 15. Salah satu usulan opsi untuk perjalaan Cassini selanjutnya pasca menjalani misi utamanya di Saturnus. Dengan memanfaatkan daya lontar gravitasi Titan dan Jupiter, maka Cassini bisa diarahkan untuk meneliti Uranus dan Neptunus. Namun opsi ini ditolak NASA. Sumber: Kloster dkk, 2009.

Sejak misi utamanya berakhir pada 2008 TU, NASA telah mendiskusikan bagaimana mengoptimalkan Cassini hingga bahan bakarnya habis kelak. Beragam opsi disajikan. Salah satunya, yang paling menantang, adalah bagaimana memanfaatkan Cassini untuk mengeksplorasi dua planet raksasa terluar: Uranus dan Neptunus. Dalam opsi ini, bilamana Cassini bisa meninggalkan Saturnus pada 19 Februari 2014 TU (dengan kombinasi penyalaan mesin dan daya lontar gravitasi Titan) menuju Jupiter guna memanfaatkan daya lontar gravitasinya (yang akan terjadi pada 10 Agustus 2021 TU), maka Cassini tiba di lingkungan Uranus pada 2 Agustus 2029 TU. Dan selanjutnya dengan memanfaatkan daya lontar gravitasi Uranus, maka Cassini bisa tiba di Neptunus pada 12 Februari 2061 TU. Opsi ini membutuhkan serangkaian manuver sudah harus dilakukan sejak 2,4 hingga 1,4 tahun sebelum 19 Februari 2014 TU.

Meski sangat menantang, terlebih hingga saat ini belum ada rencana baru penerbangan antariksa untuk mengeksplorasi Uranus dan Neptunus pasca Voyager 2, namun opsi ini tidak dipilih. Dengan pertimbangan nilai ilmiah, biaya dan ketersediaan waktu, maka NASA memilih opsi untuk menjatuhkan Cassini secara terkontrol (controlled reentry) ke Saturnus. Opsi ini juga dipilih sebagai bentuk kepatuhan atas etika penerbangan antariksa yang ditegakkan Planetary Protocol, yakni agar tidak mengontaminasi benda langit yang memiliki kemungkinan untuk menyemaikan kehidupan. Untuk lingkungan Saturnus, benda langit tersebut adalah Enceladus. Jika Cassini dibiarkan terus beredar dalam orbitnya mengelilingi Saturnus dengan bahan bakar yang sudah habis, maka ia takkan lagi bisa dikendalikan dan berpeluang jatuh ke Titan maupun Enceladus (uncontrolled reentry).

Referensi :

NASA. 2017. The Saturn System Through The Eyes of Cassini.

Goodson dkk. 1998. Cassini Manuver Experience, Launch and Early Cruise. Guidance, Navigation and Control Conference, American Institute of Aeronautics and Astronautics, 10-12 August 1998.

Kloster dkk. 2009. Saturn Escape Options for Cassini Encore Missions. Journal of Spacecraft and Rockets, vol. 46 (2009) no.4, 874-882.

Bagaimana Nasibmu, (Satelit) Telkom-1 ?

Menit demi menit semburan itu terekam oleh sebuah teleskop optis dari Australia bagian timur. Teleskop itu bagian dari sebuah jaringan pemantau satelit yang beranggotakan 165 teleskop dari berbagai observatorium di segenap penjuru paras Bumi, yang dikelola oleh sebuah perusahaan pelacak satelit dari Amerika Serikat bernama ExoAnalytic Solutions. Apa yang direkamnya menakjubkan, memperlihatkan sebintik cahaya (yang adalah satelit Telkom-1) berdampingan dengan bintik cahaya lain (yang adalah satelit NSS-11, tetangga terdekat Telkom-1 pada orbit yang sama) dengan latar belakang bintang-bintang yang nampak bergaris-garis, pertanda setiap citra (foto) yang membentuk video rekaman ini dihasilkan dari pemotretan dengan waktu paparan (exposure) yang relatif panjang.

Gambar 1. Momen peristiwa semburan yang dialami satelit Telkom-1 pada 25 Agustus 2017 TU lalu seperti direkam oleh jaringan teleskop pemantau satelit di Australia timur dan dianalisis ExoAnalytic Solutions. Nampak tetangganya, satelit komunikasi NSS-11 yang juga sama-sama berusia tua. Sumber: ExoAnalytic Solutions, 2017.

Dalam satu kesempatan, yang bertepatan dengan Jumat 25 Agustus 2017 TU (Tarikh Umum) sore waktu Indonesia, bintik cahaya satelit Telkom-1 mempertontonkan perilaku ganjil. Sesuatu mendadak tersembur darinya, awalnya melejit ke dua arah berbeda namun untuk selanjutnya hanya ke satu arah. Semburan itu mirip kabut yang selanjutnya menyelubungi bintik cahaya Telkom-1 hingga membuatnya lebih redup ketimbang tetangganya. Di paras Bumi khususnya di Indonesia, momen tersebut ditandai oleh sekitar 8.000 buah titik ATM (anjungan tunai mandiri) dari beberapa bank yang mendadak keluar dari jaringan (offline) dan tak bisa digunakan, mulai pukul 18:00 WIB. Tiga hari kemudian manajemen PT Telkom Indonesia, selaku pemilik satelit, merilis kabar satelit Telkom-1 telah mengalami gangguan (anomali) yang membuat antenna-nya tidak lagi mengarah ke kawasan yang selama ini dilayaninya.

Berdasarkan rekamannya, ExoAnalytic Solutions tak hanya menegaskan terjadinya gangguan pada satelit Telkom-1 namun juga mengklaim satelit itu telah berkeping di langit. Klaim tersebut belakangan dibantah PT Telkom, terutama karena stasiun bumi Cibinong masih dapat berkomunikasi dengan satelit ini meski tak lagi bisa mengontrol gerakannya.

Orbit Geostasioner

Satelit Telkom-1 adalah sebuah satelit buatan yang dibangun untuk tujuan memperlancar telekomunikasi. Satelit ini ditempatkan pada orbit geostasioner di garis bujur 108º BT. Orbit geostasioner adalah wilayah khayali yang menghubungkan titik-titik yang yang terbentang tepat di atas garis khatulistiwa’ pada ketinggian 35.792 kilometer dari paras air laut rata-rata (dpl). Sebuah satelit buatan yang ditempatkan persis pada salah satu dari titik-titik ini akan memiliki periode revolusi (periode orbit) yang tepat sama dengan periode rotasi Bumi yakni 23 jam 56 menit 4,0906 detik (1.436,068 menit). Sehingga satelit buatan tersebut terlihat seakan-akan berada pada satu titik yang tetap (stasioner) di langit, dilihat dari paras Bumi manapun. Kondisi ini sangat menguntungkan karena antenna-antenna komunikasi yang diarahkan ke satelit buatan itu bisa diset untuk hanya menuju satu arah yang tetap, tak perlu berubah-ubah. Ini menjadikan orbit geostasioner sebagai salah satu sumberdaya antariksa yang paling berharga bagi umat manusia di era ini.

Gambar 2. Gambaran sederhana orbit geostasioner, yakni wilayah khayali dengan titik-titik yang bila ditempati oleh satelit buatan maka satelit tersebut akan memiliki periode revolusi yang tepat sama dengan periode rotasi Bumi. Sumber: Anonim.

Satelit Telkom-1 dirancang sebagai satelit geostasioner yang melanjutkan tugas satelit Palapa nan legendaris, khususnya satelit Palapa B2R. Satelit Palapa B2R, yang terkenal dengan sejarah dramatisnya dalam khasanah penerbangan antariksa, berakhir tugasnya pada bulan Desember 2000 TU setelah melayani Indonesia 10 tahun penuh. Sebagai penggantinya dibangunlah generasi satelit komunikasi yang baru yang juga mengemban nama baru. Pemilihan nama Telkom dan bukannya melanjutkan nama legendaris Palapa merupakan konsekuensi dari dialihkannya pengelolaan satelit ini dari manajemen Telkom ke Satelindo, yang di kemudian hari diakuisisi Indosat.

Berbeda dengan generasi satelit Palapa, generasi satelit Telkom ini (yang mendapat nama Telkom-1) dibangun dengan mengacu tren baru dunia persatelitan. Yakni dengan jumlah transponder lebih besar dan umur teknis lebih lama. Lockheed Martin membangun Telkom-1 dengan basis spacebus A2100A. Ia memiliki massa 2.763 kilogram dengan 1.063 kilogram diantaranya bahan bakar. Ia berbentuk kubus besar dengan sepasang ‘sayap’ di kiri-kanan, yang adalah panel surya untuk memasok 4.000 watt listrik. Ia memiliki 36 transponder berupa 24 transponder pada frekuensi C-band standar dan 12 transponder pada frekuensi C-band tambahan, dua pita frekuensi yang dikenal tangguh terhadap cuaca (khususnya hujan). Ia sengaja dirancang untuk bisa melayani titik-titik dengan antenna parabola berukuran kecil yang dikenal sebagai VSAT (very small apperture terminal), sehingga titik sekecil ATM pun dapat menggunakannya. Dan akhirnya, ia juga dirancang untuk bertugas lebih lama, dengan umur teknis 15 tahun.

Gambar 3. Satelit Telkom-1 saat selesai dibangun dan dites sebelum dikirim ke pusat peluncuran Kourou. Sumber: Lockheed Martin, 1998.

Satelit Telkom-1 meluncur ke langit dengan digendong oleh roket Ariane-42P pada 12 Agustus 1999 TU. Roket Ariane-42P meluncur mulus, mulai dari lepas landas di pangkalan peluncuran Kourou yang dikelola badan antariksa Eropa (ESA) di Guyana Perancis hingga mendorong Telkom-1 ke orbit transfer geosinkron yang bentuknya sangat lonjong. Dari titik apogee (titik terjauh dari pusat Bumi) orbit ini, Telkom-1 kemudian bermanuver dengan menggunakan mesin roketnya sendiri untuk menempati slot orbit geostasioner yang telah diatur.

Baru setelah tiba di slot lokasinya, dijumpai masalah. Yakni motor pada salah satu ‘sayap’ panel suryanya, tepatnya ‘sayap’ yang mengarah ke selatan, ternyata tidak berfungsi. Masalah yang berakar dari proses manufaktur satelit itu membuat ‘sayap’ panel surya sebelah selatan tak bisa mengikuti gerakan Matahari kala satelit beredar dalam orbitnya. Namun masalah ini tidak mengganggu pasokan daya listrik ke satelit, apalagi berdampak problem lain. Sehingga Telkom-1 pun tetap bisa berfungsi sesuai tujuan semula.

Telkom-1 berkedudukan tepat di atas titik koordinat 0º LU 108º BT (atau 0º LS 108º BT), titik yang secara geografis berada di Selat Karimata sejarak 160 kilometer sebelah barat kota Pontianak (Kalimantan Barat). Dengan demikian segenap Asia dan Australia serta sebagian kecil Afrika, Eropa dan Antartika dapat menyaksikan satelit ini di langitnya. Namun cakupan kerja Telkom-1 dibatasi hanya untuk kawasan Asia Tenggara, Papua Nugini serta sebagian Australia, sebagian India dan sebagian Cina.

Gambar 4. Saat roket Ariane-42P yang menggendong muatan satelit Telkom-1 di hidungnya mulai menyala dalam proses lepas landas di pangkalan peluncuran Kourou, pada 12 Agustus 1999 TU malam waktu setempat. Sumber: Arianespace, 1999.

Selain guna berpindah dari orbit transfer ke orbit geostasioner, bahan bakar pada Telkom-1 juga ditujukan untuk menjaga stabilitas satelit itu selama bertugas. Sebab setiap satelit buatan yang ditempatkan dalam orbit geostasioner sejatinya selalu mengalami gangguan dari tetangga Bumi kita, khususnya dari Bulan dan Matahari. Gangguan gravitasi Bulan dan Matahari menyebabkan satelit buatan di orbit geostasioner ‘berayun-ayun’ pada arah utara-selatan membentuk pola yang berulang setiap 24 jam. Gangguan juga datang dari bentuk Bumi yang menggelembung di area khatulistiwa’-nya (dan pepat di kedua kutubnya), medan gravitasi Bumi yang tidak homogen serta tekanan segala gelombang elektromagnetik dari Matahari. Tiga gangguan terakhir ini menyebabkan satelit ‘berayun-ayun’ dalam arah barat-timur, juga dalam pola yang berulang.

Telkom-1 pun menderita dua jenis ‘ayunan’ ini. Padahal secara teknis ia hanya boleh bergeser maksimal 0,05º saja dari posisinya. Artinya, Telkom-1 akan dikatakan stabil jika ia hanya bergeser-geser dalam sebuah kotak persegi yang dibatasi koordinat 0,05º LU 107,995º BT dan 0,05º LS 107,995º BT pada sisi barat serta koordinat 0,05º LU 108,05º BT dan 0,05º LS 108,05º BT di sisi timur. Menjaga stabilitas Telkom-1 membutuhkan manuver kendali sikap (attitude). Untuk itulah Telkom-1 dibekali juga dengan mesin-mesin roket mini (thruster) bagi keempat arah mataangin. Perhitungan menunjukkan setiap tahunnya Telkom-1 mengonsumsi ~ 45 kilogram bahan bakar Hidrazin untuk keperluan manuver tersebut.

Gambar 5. Cakupan tugas satelit Telkom-1 dalam frekuensi C-band standar dan C-band tambahan. Meski satelit bisa dilihat dari sepertiga belahan Bumi, namun cakupannya dibatasi hanya untuk kawasan Asia Tenggara, Papua Nugini serta sebagian Australia, sebagian India dan sebagian Cina. Sumber: SatBeam, 2017.


Perubahan Orbit

Jumlah bahan bakar Hidrazin inilah yang membatasi umur teknis sebuah satelit. Telkom-1 memiliki umur teknis 15 tahun, sebab khusus untuk melakukan manuver kendali sikap ia hanya dibekali ~ 650 kilogram bahan bakar Hidrazin. Saat tanki Hidrazin dalam Telkom-1 kosong, oleh sebab apapun, maka praktis satelit itu takank bermanfaat lagi karena tak bisa lagi dikendalikan sikapnya meskipun seluruh subsistem lainnya masih berfungsi.

Akan tetapi meski di atas kertas umur teknisnya ‘hanya’ 15 tahun, perhitungan bersama Lockheed Martin dan Telkom sebelum tahun 2014 TU berdasarkan data-data manuver kendali sikap Telkom-1 menunjukkan sisa bahan bakar Hidrazin ternyata masih banyak, yakni ~ 250 kilogram. Hal ini bisa terjadi karena dalam praktiknya konsumsi bahan bakar Hidrazin Telkom-1 lebih kecil. Sehingga disimpulkan satelit Telkom-1 masih bisa dimanfaatkan hingga tahun 2019 TU mendatang, sembari menunggu penggantinya (yakni satelit Telkom-4) yang rencananya akan diluncurkan pada 2018 TU mendatang.

Gambar 6. Bagaimana orbit satelit Telkom-1 berubah dramatis antara sebelum dan sesudah semburan. Selama 6 hari pertama (hingga 25 Agustus 2017 TU), satelit Telkom-1 sangat stabil di orbitnya dengan perigee 35.781 dan apogee 35.793 (masing-masing dalam kilometer dpl). Pasca semburan perigeenya menurun sementara apogeenya justru bertambah tinggi, indikasi bahwa orbit satelit telah lebih lonjong dan mulai takstabil. Sumber: Sudibyo, 2017 berdasar data Celestrak, 2017.

Sisa Hidrazin inilah yang menyembur keluar dalam kejadian 25 Agustus 2017 TU lalu. Semburan menandakan ada kebocoran, entah pada tanki bahan bakar, saluran bahan bakar maupun thruster satelit Telkom-1. Kebocoran ini praktis menamatkan riwayat satelit uzur tersebut. Sebab selain menghabiskan simpanan bahan bakarnya, kebocoran dalam wujud semburan juga menghasilkan dorongan gaya yang tak dikehendaki bagi satelit. Akibatnya Telkom-1 dibikin berguling-guling tanpa bisa distabilkan lagi. Tak hanya itu, gaya yang sama juga berakibat pada berubahnya orbit dan kedudukan satelit Telkom-1.

Sebelum 25 Agustus 2017 TU, satelit Telkom-1 memiliki orbit stabil dengan apogee 35.793 kilometer dpl dan perigee (titik terdekat dalam orbitnya ke Bumi) 35.781 kilometer dpl. Selisih ketinggian antara perigee dan apogee pun stabil pada angka 12 kilometer. Demikian halnya kedudukannya, yang stabil di atas koordinat 0º LU 108º BT. Namun pasca kejadian 25 Agustus 2017 TU, satelit ini mulai mengalami perubahan orbit dramatis. Sehingga delapan hari pasca kejadian, orbit Telkom-1 menjadi lebih lonjong dengan perigee lebih rendah, yakni pada 35.757 kilometer dpl. Sebaliknya apogee-nya melambung lebih tinggi, yakni setinggi 35.799 kilometer dpl. Selisih ketinggian perigee terhadap apogee pun membengkak hingga 84 kilometer. Kedudukan satelit ini juga telah bergeser jauh, kali ini di atas koordinat 0,03º LU 106,45º BT. Sehingga satelit telah bergeser 1,55º dari ke barat lokasi seharusnya. Jika dirata-ratakan maka satelit Telkom-1 telah ‘hanyut’ ke arah barat dengan kecepatan rata-rata 0,19º perhari.

Gambar 7. Perubahan kedudukan satelit Telkom-1 antara sebelum dan sesudah kejadian semburan. Pada 25 Agustus 2017 TU pagi, Telkom-1 berada lebih dekat ke pulau Kalimantan. Dalam delapan hari kemudian, satelit Telkom-1 bergeser perlahan-lahan ke barat sehingga lebih mendekat ke pulau Sumatra. Sumber: Sudibyo 2017 berdasar data Celestrak, 2017.

Maka, satelit Telkom-1 praktis sudah tak bisa diselamatkan lagi. Ia sudah menyandang status sampah antariksa. Dengan kecepatan ‘hanyut’-nya saat ini maka tinggal menunggu waktu saja bagi bangkai satelit Telkom-1 untuk melintas di slot satelit geostasioner tetangga, yakni satelit penginderaan jauh Gaofen 4 dan satelit komunikasi AsiaSat 7 (keduanya milik Cina), yang masing-masing berada di atas garis bujur 105,7º BT dan 105,45º BT pada orbit geostasioner.

Masih harus dilakukan evaluasi lebih lanjut apakah sampah antariksa terbaru ini berpotensi mengganggu satelit-satelit aktif yang ada dalam orbit geostasioner. Sebab orbit yang sangat bernilai ini seharusnya bebas dari sampah antariksa. Di sisi lain, butuh waktu hingga ribuan tahun lagi sebelum sampah antariksa Telkom-1 ini jatuh kembali ke Bumi.

Referensi :

Celestrak. 2017. Telkom-1 (Object 25580), 19 Aug 2017 to 2 Sep 2017. komunikasi pribadi.

Spaceflight101. 2017. More Trouble in GEO, Indonesia’s Telkom 1 Satellite Shed Debris Start Drifting, diakses 30 Agustus 2017 TU.

SatBeam. 2017. Telkom-1 (25580), diakses 2 September 2017.

Mari Simak Gerhana Bulan Seperempat 15 Zulqaidah 1438 H

Silahkan tandai waktunya dalam kalender maupun gawai (gadget) anda: Senin-Selasa dinihari, 7-8 Agustus 2017 TU (Tarikh Umum). Atau bertepatan dengan tanggal 15 Zulqaidah 1438 H dalam penanggalan Hijriyyah. Bilamana langit cerah, kita akan menyaksikan Bulan berkedudukan cukup tinggi di langit dengan wajah bundar penuh sebagai purnama. Namun sesuatu akan terjadi sejak pukul 22:50 WIB hingga lima jam kemudian. Sisi selatan Bulan akan ‘robek’ yang berangsur-angsur kian membesar saja hingga mencapai puncaknya sekitar pukul 01:20 WIB. Selepas itu ‘robekan’ yang samasedikit demi sedikit mengecil kembali hingga menghilang. Pada puncaknya, ‘robekan’ tersebut akan memiliki luasan setara dengan seperempat bundaran Bulan. Inilah Gerhana Bulan Seperempat 7-8 Agustus 2017.

Gerhana Bulan Seperempat ini sejatinya adalah peristiwa Gerhana Bulan Sebagian (Parsial). Ia masih menjadi bagian dari musim gerhana tahun 2017 TU ini yang terdiri dari empat gerhana, masing-masing dua Gerhana Matahari dan dua Gerhana Bulan. Seluruh Gerhana Bulan tersebut dapat disaksikan dari Indonesia, karena negeri ini berada dalam cakupan wilayah kedua gerhana. Sebaliknya seluruh Gerhana Matahari tersebut tak berkesempatan ‘menyentuh’ wilayah Indonesia. Dalam hal Gerhana Bulan, hanya saja gerhana Bulan pertama di musim ini adalah gerhana Bulan yang pemalu karena bersifat Gerhana Bulan Penumbral. Sehingga sangat sulit untuk disaksikan secara kasat mata.

Gambar 1. Wajah Bulan purnama yang tinggal separo dengan separo sisanya telah ‘robek’ dalam sebuah peristiwa Gerhana Bulan. Diabadikan pada Gerhana Bulan Total 16 Juni 2011 di Gombong, Kebumen (Jawa Tengah). Pada puncak Gerhana Bulan Seperempat 7-8 Agustus 2017, wajah Bulan akan seperti ini hanya bagian yang ‘robek’ lebih kecil. Sumber: Sudibyo, 2011.

Dalam Gerhana Bulan Seperempat ini cakram Bulan takkan sepenuhnya menghilang. Ia masih ada, hanya ‘kehilangan’ seperempat bagian wajahnya saja. Bagian yang ‘menghilang’ itu pun sejatinya juga tak sepenuhnya gelap. Karena dalam kondisi yang tepat bagian tersebut akan nampak kemerah-merahan (merah darah). Sebab meski bagian yang ‘menghilang’ itu tak terpapar cahaya Matahari sepenuhnya, ia tetap mendapatkan pencahayaan dari sinar Matahari yang dibiaskan atmosfer Bumi. Khususnya cahaya dalam spektrum warna merah atau inframerah.

Sebagian

Konfigurasi benda langit yang membentuk peristiwa Gerhana Bulan Seperempat ini identik dengan yang memproduksi Gerhana Bulan pada umumnya. Gerhana Bulan terjadi tatkala Matahari, Bulan dan Bumi tepat berada dalam satu garis lurus dalam konfigurasi yang menghasilkan fase Bulan purnama. Namun konfigurasi tersebut bersifat syzygy, yakni segaris lurus ditinjau dari segenap arah tiga dimensi. Di tengah-tengah konfigurasi tersebut bertenggerlah Bumi. Sementara Bulan menempati salah satu dari dua titik nodal, yakni titik potong orbit Bulan dengan ekliptika (bidang orbit Bumi mengelilingi Matahari). Akibatnya pancaran sinar Matahari yang seharusnya tiba di paras Bulan menjadi terhalangi Bumi.

Mengingat diameter Matahari jauh lebih besar ketimbang Bumi kita, yakni 109 kali lipat lebih besar, maka Bumi tak sepenuhnya menghalangi pancaran cahaya Matahari. Sehingga terbentuk umbra dan penumbra. Umbra adalah kerucut bayangan inti, yakni kerucut imajiner di belakang Bumi yang sepenuhnya tak mendapat pencahayaan Matahari. Sedangkan penumbra adalah kerucut bayangan samar/tambahan, yakni kerucut imajiner di belakang Bumi kita yang ukurannya jauh lebih besar ketimbang umbra dan masih mendapatkan cukup banyak pencahayaan Matahari.

Gambar 2. Bulan dalam peristiwa Gerhana Bulan Penumbral (Gerhana Bulan Samar), yang hanya bisa disaksikan secara leluasa dengan menggunakan teleskop. Diabadikan dalam momen Gerhana Bulan Penumbral 16-17 September 2016. Dalam Gerhana Bulan Seperempat, sebagian tahap gerhana akan lebih mudah disaksikan kasat mata. Sumber: Sudibyo, 2016.

Pada dasarnya tidak setiap kejadian Bulan purnama bersamaan dengan peristiwa Gerhana Bulan. Sebaliknya suatu peristiwa Gerhana Bulan pasti terjadi bertepatan dengan saat Bulan purnama. Musababnya adalah orbit Bulan yang tak berimpit dengan bidang edar Bumi mengelilingi Matahar), melainkan menyudut sebesar 5o. Hanya ada dua titik dimana Bulan berpeluang tepat segaris lurus syzygy dengan Bumi dan Matahari, yakni di titik nodal naik dan titik nodal turun. Dan dalam kejadian Bulan purnama, mayoritas terjadi tatkala Bulan tak berdekatan ataupun berada dalam salah satu dari dua titik nodal tersebut. Inilah sebabnya mengapa tak setiap saat Bulan purnama kita bersua dengan Gerhana Bulan.

Bagaimana Bulan berperilaku terhadap umbra dan penumbra Bumi menentukan jenis gerhananya. Ada tiga jenis Gerhana Bulan. Pertama ialah Gerhana Bulan Total (GBT), terjadi kala cakram Bulan sepenuhnya memasuki umbra Bumi tanpa terkecuali. Kedua adalah Gerhana Bulan Sebagian (GBS), terjadi kala umbra tak sepenuhnya menutupi cakram Bulan. Akibatnya pada puncak gerhananya Bulan hanya akan lebih redup (ketimbang saat GBT) dan ‘robek’ di salah satu sisinya. Dan yang terakhir adalah Gerhana Bulan Penumbral (GBP) atau gerhana Bulan samar, yang bisa terjadi kala hanya penumbra Bumi yang menutupi cakram Bulan baik sepenuhnya maupun hanya separuhnya. Tiada umbra Bumi yang turut menutupi. Dalam gerhana Bulan yang terakhir ini, Bulan masih tetap mendapatkan sinar Matahari sehingga sekilas nampak tak berbeda dibanding Bulan purnama umumnya.

Tahap dan Wilayah

Dalam kasus Gerhana Bulan Seperempat ini, pada puncaknya sebanyak 24,6 % wajah Bulan berada dalam umbra. Sebagai akibatnya Bulan yang sejatinya sedang berada dalam fase purnama pun menjadi temaram dan ‘robek’ seperempat bagiannya. Gerhana Bulan Seperempat ini terdiri dari lima tahap. Tahap pertama adalah awal gerhana atau kontak awal penumbra (P1) yang akan terjadi pada 7 Agustus 2017 TU pukul 22:50 WIB. Lalu tahap kedua adalah awal gerhana kasat mata atau kontak awal umbra (U1) yang terjadi pada pukul 00:23 WIB. Berikutnya adalah tahap ketiga yang berupa puncak gerhana, terjadi pada pukul 01:20 WIB. Selanjutnya tahap keempat berupa kontak akhir umbra (U4) atau akhir gerhana kasat mata, yang terjadi pada pukul 02:18 WIB. Dan yang terakhir adalah kontak akhir penumbra (P4) atau akhir gerhana, terjadi pada pukul 03:51 WIB.

Satu aspek istimewa dari Gerhana Bulan adalah bahwa tahap-tahap gerhananya secara umum terjadi pada waktu yang sama di setiap titik yang berada dalam wilayah gerhana. Jika ada perbedaan antara satu titik dengan titik lainnya hanyalah dalam orde detik. Dengan demikian durasi gerhana Bulan di setiap titik pun dapat dikatakan adalah sama. Durasi Gerhana Bulan Seperempat ini adalah 5 jam 1 menit. Namun durasi gerhana yang kasat mata lebih singkat, yakni hanya 1 jam 55 menit.

Sedikit berbeda dengan Gerhana Matahari, Gerhana Bulan memiliki wilayah gerhana cukup luas meliputi lebih dari separuh bola Bumi yang sedang berada dalam situasi malam hari. Wilayah Gerhana Bulan Sebagian 7-8 Agustus 2017 melingkupi seluruh benua Asia, Australia, Afrika, Eropa dan sebagian kecil Brazil di benua Amerika. Hanya mayoritas benua Amerika yang tak tercakup ke dalam wilayah gerhana ini. Wilayah gerhana terbagi menjadi tiga, yakni wilayah yang mengalami gerhana secara utuh, wilayah yang mengalami gerhana secara tak utuh (saat Bulan mulai terbenam maupun mulai terbit) dan yang terakhir wilayah yang tak mengalami gerhana sama sekali.

Gambar 3. Peta wilayah Gerhana Bulan Seperempat 15 Zulqaidah 1438 H dalam lingkup global. Perhatikan bahwa segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara utuh. Sehingga seluruh tahap gerhana bisa disaksikan, sepanjang langit cerah. Sumber: Sudibyo, 2017.

Segenap tanah Indonesia juga tercakup ke dalam wilayah gerhana ini. Kabar baiknya, segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara utuh, kecuali kota Jayapura (propinsi Papua). Di Jayapura, Matahari telah terbit dalam waktu 3 menit sebelum gerhana berakhir (tepatnya sebelum tahap P4 berakhir).

Shalat Gerhana

Gerhana Bulan Seperempat ini merupakan gerhana Bulan yang kasat mata. Sehingga dapat kita amati tanpa bantuan alat optik apapun, sepanjang langit cerah. Namun penggunaan alat bantu optik seperti kamera dan teleskop akan menyajikan hasil yang lebih baik. Sepanjang dilakukan dengan pengaturan (setting) yang tepat sesuai dengan tahap-tahap gerhana. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :

Bagi Umat Islam terdapat anjuran untuk menyelenggarakan shalat gerhana baik di kala terjadi peristiwa Gerhana Matahari maupun Gerhana Bulan. Hal tersebut juga berlaku dalam kejadian Gerhana Bulan Seperempat ini. Musababnya gerhana Bulan ini dapat diindra dengan mata manusia secara langsung. Sementara dasar penyelenggaraan shalat gerhana adalah saat peristiwa tersebut dapat disaksikan (kasat mata), seperti dinyatakan dalam hadits Bukhari, Muslim dan Malik yang bersumber dari Aisyah RA. Pendapat ini pula yang dipegang oleh dua ormas Islam terbesar di Indonesia, yakni Nahdlatul ‘Ulama dan Muhammadiyah. Mengingat durasi gerhana yang kasatmata adalah dari tahap U1 hingga tahap U4, yakni dari pukul 00:23 WIB hingga pukul 02:18 WIB, maka shalat Gerhana Bulan seyogyanya juga diselenggarakan pada rentang waktu tersebut. Berikut adalah infografis tatacara pelaksanaan shalat gerhana

Tatacara shalat gerhana Bulan. Sumber: RM Khotib Asmuni, 2017

Dalam peristiwa Gerhana Matahari dan Gerhana Bulan dianjurkan untuk mengerjakan shalat gerhana, karena baik Matahari maupun Bulan merupakan dua benda langit yang menjadi bagian dari tanda-tanda kekuasaan Alloh SWT. Dan peristiwa gerhana merupakan peristiwa langit yang menakjubkan (sekaligus menerbitkan rasa takut) bagi sebagian kalangan. Namun peristiwa ini adalah bagian dari tanda-tanda kekuasaan-Nya dan tidak terkait dengan kematian seseorang. Di sisi lain, shalat gerhana mendorong umat Islam untuk lebih dekat dengan-Nya. Terlebih mengingat peristiwa Gerhana pada khususnya (baik Gerhana Bulan maupun gerhana Matahari) serta fase Bulan baru dan Bulan purnama pada umumnya ternyata mampu memicu salah satu gaya endogen dalam sistem kerja Bumi kita, yakni gempa bumi tektonik.

Ledakan Besar Akibat Petasan (Lagi) di Kebumen

Ledakan besar itu terjadi pada Sabtu 23 Juli 2017 TU (Tarikh Umum) sekitar pukul 21:30 WIB. Lokasinya pada suatu sudut di RT 05 RW 04 desa Krakal yang termasuk ke dalam kecamatan Alian Kab. Kebumen (Jawa Tengah). Titik pusat ledakan berada di sebuah rumah kosong yang difungsikan sebagai gudang. Gudang itu beralamatkan di jalan Pagerkemiri di sekitar koordinat 7º 36′ 31″ LS 109º 42′ 11″ BT dan secara fisik ada di sebelah barat Pasar Indrakila Alian, sejarak sekitar 250 meter. Dari lokasi mataair panas Krakal yang menjadi markah (icon) daerah ini, lokasi ledakan berjarak 1.200 meter.

Gambar 1. Lokasi di sekitar titik pusat Ledakan Krakal, sekitar 10 jam pasca kejadian. Titik pusat ledakan berada di rumah berdinding merah, yang menjadi rumah dengan kerusakan terparah. Secara keseluruhan 23 rumah mengalami kerusakan dengan 9 diantaranya berderajat rusak sedang hingga berat. Sumber: Lintas Kebumen, 2017.


Ledakan besar itu tidak melukai siapapun apalagi menelan korban jiwa. Namun terlepas dari ‘keberuntungan’ itu, ledakan menghasilkan dampak aneka kerusakan bagi rumah-rumah disekelilingnya mulai dari derajat rusak ringan hingga rusak berat. Secara keseluruhan 23 rumah mengalami kerusakan, dimana dua diantaranya rumah rusak berat, sembilan rumah rusak sedang dan sisanya rusak ringan. Radius kerusakan mencapai sekitar 50 meter dari titik pusat ledakan. Namun dalam kondisi tertentu pecahnya kaca jendela masih dijumpai hingga radius 500 meter ke arah tertentu.

Tak pelak ledakan besar jelang tengah malam ini menggegerkan daerah setempat. Dentuman suara ledakan terdengar hingga ke kecamatan tetangga, yakni Karangsambung, yang berjarak tak kurang dari 4 kilometer. Dentuman menggelegar itu juga diiringi dengan getaran tanah layaknya gempa. Warga sekitar pun sempat dibikin panik.

Ini adalah ledakan besar kedua di tanah Kebumen dalam kurun sebulan terakhir, setelah peristiwa Ledakan Gemeksekti. Dan seperti halnya Ledakan Gemeksekti, peristiwa ledakan besar di Krakal ini (yang untuk selanjutnya disebut Ledakan Krakal) pun disebabkan oleh bahan petasan alias mercon. Bedanya, peristiwa Ledakan Krakal ini mendapat perhatian lebih lanjut termasuk dengan melibatkan tim Laboratorium Forensik Polda Jawa Tengah. Sebaliknya dalam kejadian Ledakan Gemeksekti, penyebab dan pelakunya telah terang benderang sedari awal.

Gambar 2. Detik-detik awal bahan petasan mengalami ledakan (deflagrasi) dalam peristiwa Ledakan Gemeksekti, sebulan sebelum kejadian Ledakan Krakal. Dua peristiwa ledakan besar di Kabupaten Kebumen itu sama-sama disebabkan oleh bahan petasan. Sumber: Kebumen Ekspres, 2017.


Petasan

Seperti halnya dalam peristiwa ledakan-ledakan besar pada umumnya, kerusakan-kerusakan dan getaran yang mengiringi Ledakan Krakal diakibatkan oleh penjalaran gelombang kejut (shockwave) ledakan. Gelombang kejut adalah tekanan tak-kasat mata yang diekspresikan oleh nilai tekanan-lebih (overpressure), yakni selisih antara tekanan gelombang kejut terhadap tekanan atmosfer standar (diidealkan pada paras laut rata-rata). Nilai overpressure itu bisa mulai dari sekecil 200 Pascal (Pa, 1 Pa = 1 Newton/meter2) dengan dampak minimal yakni hanya menggetarkan kaca jendela dan berkemungkinan meretakkan kisi-kisinya. Namun bisa juga sebesar 1 MegaPascal (1.000.000 Pa) dengan dampak sangat mematikan bagi manusia, karena mampu memutilasi tubuh manusia tanpa ampun. Parah tidaknya dampak gelombang kejut bergantung kepada jaraknya terhadap titik pusat ledakan. Sebab nilai overpressure berbanding terbalik dengan bertambahnya jarak. Dan dalam kondisi tertentu bahkan ia bisa berbanding terbalik dengan pangkat dua (kuadrat) jarak dari titik pusat ledakan.

Gambar 3. Lokasi titik pusat Ledakan Krakal dalam peta Google Maps. Secara fisis titik pusat ledakan berada di sebelah barat Pasar Indrakila, pasar sentral di kecamatan Alian, dengan jarak sekitar 200 meter. Sumber: Sudibyo, 2017.


Dua rumah yang terkategori rusak berat mengalami kaca-kaca jendela yang hancur lebur dan tembok jebol. Satu dari rumah yang rusak berat ini adalah lokasi titik pusat ledakan. Sementara tujuh rumah yang terkategori rusak sedang memiliki kaca-kaca jendela yang pecah dan pintu jebol. Sembilan rumah ini bertebaran hingga radius sekitar 50 meter dari titik pusat ledakan. Dengan anggapan ledakan terjadi di udara terbuka tanpa halangan, maka perhitungan menggunakan persamaan-persamaan gelombang kejut memprakirakan bahwa kekuatan Ledakan Krakal adalah sekitar 3 kilogram TNT.

Hasil ini relatif tak berbeda dengan temuan Polres Kebumen, yang mengindikasikan ada sedikitnya 4 kilogram bahan peledak. Bahan peledak tersebut berupa bahan petasan (mercon), yang tergolong kelompok peledak low explosives. Dalam jumlah yang sama, bahan petasan memiliki kekuatan sedikit lebih kecil dibanding bahan peledak TNT (trinitrotoluena) yang menjadi standar kekuatan ledakan. Dengan demikian cukup beralasan untuk menyimpulkan bahwa Ledakan Krakal disebabkan oleh deflagrasi bahan petasan yang kekuatannya setara 3 kilogram TNT.

Perhitungan lebih lanjut dengan persamaan yang sama memperlihatkan bagaimana dampak gelombang kejut dari Ledakan Krakal ini. Dalam jarak hingga 12 meter, gelombang kejutnya masih sanggup merusak dinding beton. Dalam jarak 17 meter, gelombang kejut yang sama masih cukup kuat untuk melengkungkan lembaran logam. Dalam jarak 25 meter ia juga masih cukup kuat untuk menghancurkan kaca-kaca jendela sekaligus meretakkan dinding. Angka-angka ini sekaligus menyajikan gambaran seperti apa dampaknya jika ‘bahan peledak dalam bobot kecil’ diledakkan. Aksi terorisme masakini kerap melibatkan ‘bahan peledak dalam bobot kecil’ dengan daya rusak ditingkatkan seperti tergambar dalam peledak yang lebih populer sebagai bom panci.

Gambar 4. Hasil perhitungan dampak papasan gelombang kejut dalam peristiwa Ledakan Krakal yang telah dibandingkan dengan kondisi lapangan. Dampak gelombang kejut dipilih untuk sejumlah deskripsi dampak tertentu, yang lantas diplot ke dalam peta. Sumber: Sudibyo, 2017.


Harus digarisbawahi bahwa perhitungan dampak tersebut bersandar pada kondisi ideal, yakni titik pusat ledakan di udara terbuka. Realitanya titik pusat Ledakan Krakal berada dalam sebuah rumah kosong. Sehingga banyak dari dampaknya yang teredam oleh dinding-dinding rumah tersebut. Rumah kosong tersebut juga berjendela pada sisi tertentu dan ini yang mungkin menghasilkan dampak terpolarisasi (terkutub) ke satu arah. Sehingga sebuah rumah yang berjarak 500 meter dari titik pusat ledakan pun dijumpai mengalami pecahnya kaca-kaca jendela.

Peristiwa Ledakan Krakal, seperti halnya peristiwa Ledakan Gemeksekti, sekali lagi mendemonstrasikan seperti apa dampaknya jika bahan peledak low explosive seperti petasan ditumpuk dalam jumlah besar dan kemudian meledak (lebih tepatnya ter-deflagrasi). Baik Ledakan Gemeksekti maupun Ledakan Krakal sama-sama berakar pada tradisi yang mewabah di Kebumen sepanjang Ramadhan dan terutama saat hari raya Idul Fitri. Yakni petasan. Razia yang gencar dilaksanakan Polres Kebumen di bawah tajuk Operasi Ramadniya tidak sepenuhnya berhasil mengeliminasi ‘wabah’ tersebut. Pada satu sisi, razia tersebut bahkan berbalik memukul Polres Kebumen sendiri saat pemusnahan bahan petasan telah disita tak ditangani dengan baik sehingga berujung pada peristiwa Ledakan Gemeksekti.

Referensi:

Kinney & Graham. 1985. Explosive Shocks in the Air. Springer-Verlag, New York, 2nd edition.

Twitter Lintas Kebumen. diakses 22 Juli 2017 2017.

Sampah Antariksa yang Jatuh di Tepi Kaldera Purba

Sebuah benda logam yang aneh dilaporkan jatuh dari langit pada Selasa 18 Juli 2017 Tarikh Umum (TU) pada satu tempat di pesisir timur Danau Maninjau. Danau Maninjau adalah kaldera purba Gunung Maninjau yang terbentuk sekitar 52.000 tahun silam dalam letusan dahsyat yang memuntahkan material letusan sebanyak 200 hingga 250 kilometer3, letusan terdahsyat kedua di tanah Sumatera sepanjang sejarahnya setelah Letusan Toba Muda74.500 tahun silam.

Gambar 1. Ketampakan benda logam aneh yang jatuh dari langit di nagari Sungai Batang, Kec. Tanjungraya Kab. Agam (Sumatra Barat) pada Selasa 18 Juli 2017 TU sekitar pukul 09:30 WIB. Terlihat ada bagian yang mirip pangkal sebuah pipa, yang mengesankan bahwa benda ini adalah sebuah tanki. Sumber: Andri Piliang, 2017.


Titik lokasi jatuhnya benda langit aneh tersebut terletak di sekitar koordinat 0º 27′ 07″ LS 100º 13′ 16″ BT. Titik ini secara fisik terletak di depan Kantor pos Jorong Kubu, yang secara administratif menjadi bagian nagari Sungai Batang, kecamatan Tanjungraya, Kabupaten Agam (propinsi Sumatra Barat). Lokasi ini terletak tepat di jalan raya yang relatif ramai, sehingga peristiwa jatuhnya benda logam aneh tersebut sontak menggamit perhatian banyak insan. Foto-foto yang dipublikasikan di media sosial, misalnya oleh Andri Piliang (diunggah pukul 09:39 WIB) menyajikan kesan bahwa benda tersebut jatuh mencium Bumi sebelum pukul 09:30 WIB.

Benda logam aneh tersebut berbentuk sferis (membulat), atau lebih tepatnya ellipsoid (mirip telur). Sumbu panjangnya adalah 110 sentimeter sementara sumbu pendeknya 55 sentimeter. Bagian dalamnya berongga sementara di salah satu ujungnya terdapat lubang pipa, yang mengesankan bahwa benda logam ini adalah sejenis tanki. Bobotnya ringan, yakni hanya 7,4 kilogram. Saat menimpa titik jatuhnya, terbentuk sebuah cekungan kecil di tanah namun tanpa adanya bekas-bekas terbakar.

Gambar 2. Lokasi jatuhnya benda logam aneh di tepi Danau Maninjau, yakni pada pinggiran jalan beraspal di depan kantor pos Jorong Kubu, nagari Sungai Batang. Titik jatuh ditandai oleh cekungan kecil produk benturan yang memperlihatkan jejak tekanan kuat pada lapisan aspal disekelilingnya tanpa ada jejak terbakar. Sumber: Andri Piliang, 2017.


Ciri-ciri benda logam aneh tersebut tak konsisten dengan komponen pesawat terbang umumnya. Sebaliknya saat dibandingkan dengan sejumlah komponen roket, terdapat kemiripan. Sepintas lalu benda logam aneh ini menyerupai bagian roket Soyuz A-2/SL-4 milik Rusia yang jatuh sebagai sampah antariksa di Lampung pada 16 April 1988 TU silam dan kini di-display di Pusat Sains dan Teknologi Antariksa LAPAN Bandung. Dengan kemiripan ini dapat diduga bahwa benda logam aneh yang jatuh dari langit dan mendarat di tepi Danau Maninjau itu adalah sebuah sampah antariksa. Dalam kosakata resmi di Indonesia, peristiwa ini disebut sebagai kejadian benda jatuh antariksa (BJA).

Kejadian ini merupakan peristiwa BJA kedua di Indonesia dalam kurun setahun terakhir. Sebelumnya pada 26 September 2016 TU silam terjadi peristiwa BJA di Kabupaten Sumenep (propinsi Jawa Timur), tepatnya di dua pulau kecil yakni Pulau Giligenting dan Pulau Giliraja. Analisis lebih lanjut memperlihatkan bahwa BJA di Pulau Madura tersebut disebabkan oleh jatuhnya roket Falcon 9 Full Thrust, tepatnya roket tingkat teratas (upperstage), setelah sukses mengantarkan satelit komunikasi JCSAT-16 (Jepang) ke orbit geostasioner dalam Penerbangan 28 pada 14 Agustus 2016 TU.

Gambar 3. Perbandingan antara BJA (benda jatuh antariksa) komponen roket Soyuz A-2/SL-4 (Russia) di Lampung 16 April 1988 TU (kini tersimpan di Bandung) dengan benda logam aneh yang jatuh di tepi Danau Maninjau 18 Juli 2017 TU. Analisis lebih lanjut mengindikasikan benda logam aneh di tepi Danau Maninjau adalah BJA juga. Sumber: Sudibyo, 2013 & Andri Piliang, 2017.

Bagian Roket Long March-3A

Darimana asal sampah antariksa dalam kejadian BJA tepi Danau Maninjau?

Karena lokasi titik jatuh BJA dan waktu kejadian BJA telah diketahui, maka kita bisa melacak sampah antariksa mana yang bertanggung jawab atasnya. Yakni dengan melihat adakah sampah antariksa yang lewat di sekitar titik jatuh pada waktu kejadian. Pelacakan dengan menggunakan laman SatFlare menyajikan indikasi bahwa sampah antariksa tersebut adalah obyek 31116 dalam katalog NORAD (obyek 2007-011B dalam katalog internasional). Obyek ini secara fisik adalah tingkat teratas (upperstage) dari roket Long March-3A (Chang Zeng-3A) milik badan penerbangan antariksa Cina. Laman SatFlare memperlihatkan bahwa pada pukul 09:09 WIB obyek 31116 lewat di atas koordinat 0,1º LU 99,89º BT. Terhadap titik jatuh BJA di tepi Danau Maninjau, koordinat ini berjarak horizontal 148 kilometer.

Obyek 31116 ini melintas dari arah barat daya menuju ke timur laut dengan orbit ellips yang cenderung menurun dari waktu ke waktu. Dua jam sebelum jatuh, obyek 31116 masih beredar mengelilingi Bumi dengan perigee (titik terdekat ke paras Bumi) 95 kilometer dan apogee (titik terjauh dari paras Bumi) 387 kilometer pada periode orbital 89 menit. Obyek ini memang telah diprediksi akan masuk kembali ke atmosfer Bumi (reentry) dan jatuh pada sekitar tanggal 18 Juli 2017 TU. Joseph Remis misalnya, memprakirakan obyek 31116 akan jatuh pada pukul 09:40 WIB dengan prakiraan titik jatuh di lepas pantai pesisir barat Amerika Serikat. Namun seperti umumnya prediksi reentry benda langit buatan, senantiasa terdapat ketidakpastian yang cukup besar bahkan hingga jam-jam terakhir sebelum benar-benar terjadi. Dalam prediksi Remis, ketidakpastian itu bernilai 4 jam. Sehingga obyek 31116 akan jatuh kapan saja di antara pukul 05:40 hingga pukul 13:40 WIB dengan lokasi jatuh dimana saja di antara garis lintang 53º LU hingga 53º LS yang berada di bawah lintasan benda tersebut.

Gambar 4. BJA di Sumenep, pulau Madura, pada 26 September 2016 TU silam. Analisis memperlihatkan BJA ini merupakan sampah antariksa yang semula adalah tabung COPV (composite overwrapped pressure vessel), komponen upperstage roket Falcon 9 Full Thrust. Sumber: Tribunnews, 2016.


Obyek 31116 mengangkasa sejak 14 April 2007 TU silam sebagai bagian dari roket Long March-3A/Chang Zheng-3A (CZ-3A). Roket ini adalah roket angkut berat yang menjadi kuda kerja Cina sejak 1994 TU dalam mengarungi antariksa. Roket ini memiliki tiga tingkat dan secara keseluruhan menjulang setinggi 52,5 meter, berdiameter 3,4 meter dengan bobot total 241 ton. Khusus untuk upperstage-nya memiliki panjang 12,4 meter dengan diameter 3 meter dan massa total 20,9 ton.

Long March-3A membutuhkan tiga tingkat agar bisa mencapai kecepatan yang mencukupi sejak lepas landas dari paras Bumi dan terbang hingga ke ketinggian 200 hingga 300 kilometer untuk kemudian mengubah arah guna mencapai tujuan akhir sesuai dengan hukum-hukum peroketan. Baik menuju ke orbit rendah (ketinggian kurang dari 1.000 kilometer), menengah hingga geostasioner/geosinkron (ketinggian 35.780 kilometer). Roket Long March-3A memiliki kemampuan mengangkut muatan dengan bobot hingga 6.000 kilogram ke orbit rendah dan 2.650 kilogram ke orbit geostasioner/geosinkron.

Berbeda dengan tingkat pertama dan kedua yang mesin-mesin roketnya ditenagai oleh bahan bakar Hidrazin (N2H4) dengan pengoksid Nitrogen Tetroksida (N2O4), tingkat ketiga yang juga tingkat teratas (upperstage) roket Long March-3A mengonsumsi bahan bakar Hidrogen cair (LH2) dengan pengoksid Oksigen cair (LO2). Sepasang mesin roket kriogenik terpasang rapi di pantatnya dengan daya dorong total sebesar 16 ton dalam ruang hampa dan memiliki kemampuan untuk dimatikan dan dinyalakan kembali sesuai kebutuhan. Selain sepasang mesin roket utamanya, tingkat ketiga juga dilengkapi dengan sistem kemudi arah dan sikap yang bertumpu pada mesin-mesin roket kecil. Mesin-mesin roket kemudi tersebut bertumpu pada bahan bakar tunggal Hidrazin yang tersimpan dalam dua tanki kecil sferis bertekanan tinggi.

Gambar 5. Lintasan obyek 31116 pada jam-jam terakhirnya di antariksa beserta prakiraan lokasi dan waktu jatuhnya menurut Joseph Remis. Lokasi jatuh aktual ditambahkan kemudian. Sumber: Remis, 2017.


Beidou

Misi antariksa yang diemban oleh roket Long March-3A dalam peluncuran 13 April 2007 TU itu adalah mengorbitkan satelit Compass-M1 atau dikenal juga sebagai satelit Beidou-M1. Satelit ini adalah satelit eksperimental, bagian dari rencana ambisius Cina untuk mengembangkan sistem navigasi tersendiri yang dinamakan Beidou. Sistem navigasi berbasis satelit ini seperti halnya sistem GPS (Amerika Serikat) maupun GLONASS (Russia) yang mendunia, namun murni milik bangsa Cina sendiri. Berbeda dengan GPS dan GLONASS, konfigurasi satelit-satelit Beidou menggunakan baik orbit geostasioner, orbit geosinkron dengan inklinasi 55º dan orbit menengah.

Jika di awal mula hanya ada 3 satelit dalam sistem Beidou dan lebih ditujukan untuk kepentingan bangsa Cina sendiri, maka kini telah terdapat 10 satelit aktif dalam sistem Beidou dan bisa digunakan untuk kepentingan navigasi di segenap penjuru manapun. Cina telah menargetkan hingga tahun 2020 TU mendatang konstelasi satelit-satelit Beidou terdiri dari 5 satelit di orbit geostasioner, 3 satelit di orbit geosinkron berinklinasi 55º dan 27 satelit di orbit menengah. Untuk kepentingan sipil, Beidou menyajikan akurasi hingga 10 meter. Sebaliknya untuk kepentingan militer Cina, Beidou memberikan akurasi sampai 10 sentimeter.

Satelit Compass-M1 merupakan bagian dari sistem awal Beidou dan menjadi satelit orbit menengah pertama yang diluncurkan untuk sistem tersebut. Satelit ini memiliki massa 2.200 kilogram yang dilengkapi sepasang panel surya mirip sepasang sayap sebagai pemasok tenaga. Badan satelitnya berbentuk kubus dengan panjang 2,25 meter, lebar 1 meter dan tinggi 2,2 meter. Roket Long March-3A beserta Compass-M1 mengangkasa dari landasan peluncuran Xichang di propinsi Sichuan, Cina barat daya, pada 14 April 2007 TU dinihari waktu Cina (pukul 03:11 WIB). Kombinasi kinerja roket tingkat pertama dan kedua mendorong tingkat ketiga dan muatan satelitnya hingga ke ketinggian 200 kilometer.

Gambar 6. Struktur roket Long March-3A (Chang Zheng-3A) yang telah disederhanakan beserta bagian-bagian pentingnya. Roket ini adalah roket bertingkat tiga. BJA di tepi Danau Maninjau merupakan komponen dari tingkat ketiga/upperstage roket tersebut. Sumber: Spaceflight101, 2017.


Dari ketinggian ini pekerjaan diambil alih upperstage, setelah tingkat pertama dan kedua masing-masing dilepaskan secara berturut-turut untuk menjaga rasio massa bahan bakar dan massa total roket tetap mematuhi hukum-hukum peroketan.Upperstage Long March-3A kemudian dinyalakan hingga membentuk orbit sangat lonjong dengan perigee 200 kilometer dan apogee 21.500 kilometer. Begitu tiba di titik apogeenya, satelit Compass-M1 memisahkan diri dan menyalakan pendorong internalnya untuk memasuki orbitnya sendiri (perigee 21.519 kilometer, apogee 21.545 kilometer dan inklinasi 55,3º). Saat proses ini terjadi maka praktis upperstage Long March-3A itu tidak dibutuhkan lagi dan berubah peran menjadi sampah antariksa nomor 31116 menurut kataog NORAD.

Pada awal mulanya, sampah antariksa ini menempati orbit sangat lonjong. Data posisi pada 14 April 2007 TU pukul 14:00 WIB menunjukkan obyek 31116 ini berada pada orbit dengan perigee 245 kilometer, apogee 21.459 kilometer, inklinasi 54,9º dan periode orbital 375 menit (6 jam 15 menit). Namun orbit ini sangat takstabil, terutama karena sebagian diantaranya (yakni yang berada di sekitar titik perigee) sejatinya berada di lapisan atmosfer bagian atas. Sehingga obyek 31116 senantiasa bergesekan dengan molekul-molekul udara saat melintas dengan kecepatan 7,76 km/detik di titik perigee-nya. Pergesekan ini lambat laun menurunkan kecepatan obyek 31116, sehingga berimplikasi pada berubahnya orbit menjadi cenderung lebih sirkular dengan ketinggian kian menurun. Hal ini berlangsung terus-menerus, sehingga lebih dari sepuluh tahun kemudian tepatnya pada 12 Juli 2017 TU pukul 22:00 WIB, orbitnya telah berubah total dengan perigee 110 kilometer, apogee 2.607 kilometer, inklinasi 54,7º dan periode orbital 113 menit (1 jam 53 menit).

Gambar 7. Saat-saat roket Long March-3A yang mengangkut satelit Compass-M1 untuk sistem navigasi Beidou mengangkasa dari landasan peluncuran Xichang pada 14 April 2007 TU fajar waktu Cina (pukul 03:11 WIB). Nampak upperstage, yang di kemudian hari mengalami reentry di atas Indonesia bagian barat. Sumber: Cina Satellite Navigation Office, 2010.


Reentry

Seperti halnya yang dialami sampah-sampah antariksa sebelumnya, obyek 31116 juga menjalani proses reentry serupa. Begitu mulai menyentuh ketinggian 104 kilometer, reentry pun terjadilah. Sampah antariksa itu sontak mengalami deselerasi (perlambatan) yang besar sehingga ketinggiannya kian menurun. Pada saat yang sama besarnya deselerasi, yang bisa mencapai 20G, membuat struktur obyek 31116 pun hancur berantakan. Komponen-komponennya terlepas dan melejit sendiri-sendiri.

Pada saat yang sama, masih tingginya kecepatan obyek 31116 menghasilkan tekanan ram yang sangat kuat, persis seperti halnya yang diciptakan bongkahan pecahan asteroid maupun remah-remah komet. Komponen yang lemah dihancurkan oleh besarnya tekanan ram dan dipaksa mengalami sublimasi hingga berubah menjadi uap. Sementara komponen yang lebih kuat lebih mampu bertahan. Inilah yang mendarat di paras Bumi sebagai BJA di tepi Danau Maninjau. Perbandingan dengan komponen upperstage Long March-3A mengindikasikan bahwa BJA ini merupakan tanki Hidrazin. Tanki ini memasok bahan untuk sistem kemudi arah dan sikap.

Upperstage Long March-3A memiliki massa kosong (tanpa bahan bakar) 2.740 kilogram. Pada umumnya 10 % dari massa sebuah sampah antariksa akan bertahan selama melewati proses reentry dan mendarat di paras Bumi. Dengan demikian terdapat setidaknya 20 kilogram massa yang selamat dari jatuhnya obyek 31116. BJA di tepi Danau Maninjau memiliki massa 7,4 kilogram, angka yang cukup dekat dengan perkiraan tersebut. Pada umumnya sisa-sisa sampah antariksa yang jatuh ke paras Bumi menempati sebuah daerah sempit sangat lonjong yang bentuknya mirip cerutu dengan panjang 200 hingga 250 kilometer. Dengan demikian komponen-komponen obyek 31116 mungkin berjatuhan ke arah timur laut dari Danau Maninjau, yakni hingga ke sebelah utara kota Pekanbaru (propinsi Riau).

Gambar 8. Kiri: prakiraan lintasan sampah antariksa obyek 31116 dalam jam-jam terakhirnya menurut data posisi terakhir sebelum mengalami reentry (garis putus-putus). Bandingkan dengan lintasan aktualnya (garis takputus berpanah) hingga jatuh di tepi Danau Maninjau (tanda bintang). Kurva ellips putus-putus menunjukkan prakiraan area tempat sisa-sisa obyek 31116 kemungkinan jatuh, khususnya bagian-bagian yang lebih ringan. Kanan: titik jatuh tanki Hidrazin bagian dari obyek 31116. Diolah berdasarkan data SatFlare. Sumber: Sudibyo, 2017 dengan basis Google Earth dan Google Maps.


Sampah antariksa merupakan efek samping yang belum bisa dielakkan dari teknologi eksplorasi dan eksploitasi antariksa. Dan khusus untuk Indonesia, sebagai negara terbesar di kawasan khatulistiwa’, resiko dijatuhi sampah antariksa relatif tinggi. Sebab lebih banyak satelit yang ditempatkan di orbit geostasioner dibanding orbit yang lain. Sementara orbit ini terletak tepat di atas garis khatulistiwa’. Hingga umat manusia bisa menemukan cara untuk mereduksi jumlah sampah antariksa tanpa harus mengurangi intensitas eksplorasi dan eksploitasi antariksa, maka problem semacam ini akan selalu menghantui Indonesia.

Referensi :

Pribadi dkk. 2007. Mekanisme Erupsi Ignimbrit Kaldera Maninjau. Jurnal Geologi Indonesia, vol. 2 no. 1 Maret 2007, hal. 31-41.

Facebook Andri Piliang, diakses 18 Juli 2017.

Joseph Remis. 2017. Update: object 31116 BEIDOU M1 CZ-3A R/B Decay Prediction: July 18, 2017 UTC 02h40mn ± 4h. Twitter, diakses 17 Juli 2017.

Cina Satellite Navigation Office. 2010. Beidou (Compass) Navigation Satellite System Development. Munich Satellite Navigation Summit 2010, March 9th – 10 th, 2010.

Spaceflight101. Long March 3A Launch Vehicle, diakses 18 Juli 2017.

Gunter. 2017. BD-2M (Beidou-2M) / BD-2I (Beidou-2I). Gunter SpacePage, diakses 18 Juli 2017.

Satflare. 2017. CZ-3A R/B – NORAD 31116.

Dieng, Desa yang Hilang dan Elegi Api di Atas Awan

Terbanglah di atas Dataran Tinggi Dieng, daerah yang secara administratif dimiliki oleh dua kabupaten yakni Kabupaten Banjarnegara dan Kabupaten Wonosobo di propinsi Jawa Tengah. Kita bisa terbang secara fisik, entah secara langsung menggunakan pesawat ultralight maupun secara tak langsung dengan PUNA (pesawat udara nir awak) atau lebih dikenal sebagai dron (drone). Tetapi bisa juga kita terbang secara non-fisik, dengan menggunakan program komputer (software) atau aplikasi pemetaan populer seperti Google Earth maupun Google Maps. Tetapkan koordinat 7º 12′ LS 109º 51′ BT (-7,2; 109,85) sebagai titik awal. Lalu bergeraklah perlahan ke barat.

Jika dilakukan dengan benar maka panorama memukau Dataran Tinggi Dieng bagian barat pun tersajilah. Tepatnya panorama di sekitar kota Batur (Kabupaten Banjarnegara). Kita akan menyaksikan bentang lahan berbukit-bukit yang terbagi-bagi ke dalam bidang-bidang lahan tertentu berpola geometris khas. Lahan-lahan pertanian mudah dikenali sebagai kotak persegi empat mengikuti kontur tanah. Di lereng yang curam, kotak-kotak itu ramping dan membentuk sistem undak-undakan (terasering). Sebaliknya di lereng landai, kotak-kotak tersebut nampak lebih lebar.

Gambar 1. Panorama sebagian Dataran Tinggi Dieng barat di sekitar koordinat 7º 12′ LS 109º 51′ BT. Nampak Desa Pesurenan dan bekas Desa Kepucukan. Desa Kepucukan adalah desa yang hilang pasca tragedi seiring meletusnya Telaga Sinila (Kawah Sinila) di tahun 1979 TU. Sumber: Sudibyo, 2017 dengan basis Google Earth.


Sekitar setengah kilometer ke barat daya dari titik awal penerbangan kita, tersaji panorama berbeda. Tempat ini juga lahan pertanian, namun pola geometrisnya berbeda. Ukuran kotak-kotak di sini lebih kecil dibanding lahan pertanian disekelilingnya. Mereka juga cenderung menampakkan geometri mendekati bujursangkar, bukan persegi empat. Saat dibandingkan dengan geometri lahan pemukiman, misalnya di kota Batur (sebelah barat) maupun desa Pesurenan (sebelah timur), terlihat geometri lahan di tempat itu relatif serupa dengan lahan pemukiman. Inilah lokasi dari sebuah desa yang hilang. Sebelum tahun 1979 Tarikh Umum (TU), tempat ini bernama Desa Kepucukan, bagian dari kecamatan Batur (Kabupaten Banjarnegara).

Kepucukan

Kita mungkin pernah mendengar tentang desa yang hilang di Dataran Tinggi Dieng. Namun hampir semuanya selalu merujuk ke dusun Legetang, bagian dari Desa Kepakisan (juga di kecamatan Batur). Dusun yang makmur itu lenyap dalam semalam dan terhapus dari peta setelah bencana tanah longsor dahsyat menimbuni sepenuhnya pada tengah malam 16 April 1955 TU. Kecuali jasad kepala dusun, segenap 350 orang penduduk dan tamu yang berkunjung ke dusun tersebut pada malam naas itu tertimbun di bawah berton-ton material tebal produk longsoran lereng sektor tenggara Gunung Pangamun-amun.

Gambar 2. Pintu masuk ke bekas desa Kepucukan dengan gapura yang masih berdiri tegak. Desa Kepucukan dinyatakan dihapus secara administratif pasca Tragedi Sinila 1979 dan dinyatakan sebagai kawasan terlarang. Meski demikian pelanggaran sering terjadi. Sumber: BanyumasNews/Nanang, 2014.


Tetapi sesungguhnya ada beberapa desa yang hilang di Dieng. Salah satunya adalah desa Kepucukan. Berbeda dengan ketampakan bekas dusun Legetang yang kini hanya berupa bukit kecil sebagai kuburan massal bagi ratusan penduduknya, bekas desa Kepucukan masih mudah dikenali baik dalam citra satelit maupun foto udara. Desa Kepucukan hilang setelah dinyatakan dihapus pemerintah Kabupaten Banjarnegara pada tahun 1979 TU, menyusul malapetaka memilukan Tragedi Sinila. Tragedi itu merenggut nyawa 149 orang dan memaksa tak kurang dari 15.000 orang lainnya di kawasan Dataran Tinggi Dieng bagian barat untuk mengungsi. Tragedi ini sekaligus menyajikan gambaran nyata bagi dunia, betapa sebuah gunung berapi yang bererupsi dalam skala kecil bisa berujung pada malapetaka berskala besar dalam situasi khusus.

Tragedi Sinila terjadi pada Selasa 20 Februari 1979 TU. Petaka diawali oleh rentetan tiga gempa dangkal berturut-turut. Gempa pertama terjadi pada pukul 01:55 WIB. Getarannya cukup keras dengan skala intensitas mungkin mencapai 4 hingga 5 MMI (Modified Mercalli Intensity) sehingga cukup kuat untuk membangunkan orang-orang yang terlelap di kota Batur. Gempa kedua menyusul terjadi pada pukul 02:40 WIB, getarannya juga cukup kuat pula hingga dirasakan warga desa Pesurenan. Dan gempa terakhir mengguncang pada pukul 04:00 WIB.

Gambar 3. Panorama Kawah Sinila dan Kawah Sigludug, dua kawah yang berperan besar Tragedi Sinila 1979. Kawah Sinila tergenangi air sebagai telaga, sementara Kawah Sigludug tetap kering. Kawah Sigludug baru muncul pada 20 Februari 1979 TU. Sumber: Sudibyo, 2017 dengan basis Google Earth.


Tanpa disadari penduduk yang tinggal diatasnya, rentetan gempa menyebabkan kesetimbangan rapuh dalam perut bumi Dataran Tinggi Dieng bagian barat terganggu berat. Retakan-retakan timbul dan menyebar dalam tanah yang sejatinya sudah rapuh karena dibelah oleh aneka sesar dan diperlemah oleh alterasi hidrotermal khas vulkanisme. Retakan-retakan itu juga menembus cebakan-cebakan (reservoir) gas vulkanik yang ada di kedalaman sekitar 1 hingga 2 kilometer. Akibatnya isi cebakan berupa gas karbondioksida (CO2) dan uap air bertekanan tinggi pun segera meraih jalan keluarnya.

Gerakan gas dan uap itu memilih jalan termudah yang sudah ada, yakni titik lemah yang berujung di Kawah Sinila. Penduduk Dieng sudah lama mengenal kawah ini. Ia adalah cekungan bergaris tengah sekitar 50 meter yang terisi air sehingga menjadi sebuah telaga (danau kecil) yang diberi nama Telaga Nila atau Telaga Sinila. Kawah yang ini kurang populer dibandingkan dengan kawah-kawah tetangganya seperti Kawah Candradimuka, Telaga Dringo dan Sumur (kawah) Jalatunda. Penduduk juga mengenalnya sebagai kawah yang kalem, tak seperti Kawah Timbang yang juga tetangganya namun lasak. Akan tetapi kesan kalem itu akan segera terhapus pada petaka Selasa pagi itu.

Erupsi freatik pun terjadilah, yang dimulai sejak pukul 05:04 WIB. Dorongan sangat kuat dari gas dan uap bertekanan tinggi membobol dasar Kawah Sinila diiringi dentuman menggelegar. Material letusan pun menyembur tinggi hingga beberapa ratus meter, membentuk kolom coklat gelap meraksasa yang mendirikan bulu roma. Bongkahan-bongkahan tanah dan bebatuan hingga seukuran 40 sentimeter mulai terlontar hingga sejarak 150 meter dari kawah. Bersamaan dengannya uap pekat pun terus mengepul. Tanah bergetar. Sekitar pukul 06:00 WIB terjadilah semburan kedua. Horor kian mencekam saat tanah sejarak 250 meter di sebelah barat-baratdaya kawah Sinila mendadak berlubang pada pukul 06:50 WIB. Kawah baru ini sontak menyemburkan material letusan dan kepulan uap pekat. Ia rajin mengirimkan suara gemuruh susul menyusul mirip petir. Dalam istilah setempat petir memiliki nama gluduk atau gludug. Sehingga kawah baru itupun mendapatkan nama Kawah Sigludug.

Gambar 4. Rekonstruksi aliran lahar dari Kawah Sinila dan Kawah Sigludug dalam peristiwa erupsi 1979 yang berujung pada Tragedi Sinila. Nampak aliran lahar mengepung Desa Kepucukan dari arah utara dan timur sehingga hanya menyisakan arah ke barat sebagai pilihan untuk menyelamatkan diri, yang berujung pada tragedi. Digambar ulang dari Guern dkk (1982). Sumber: Sudibyo, 2017 dengan basis Google Earth.


Pada pukul 06:00 WIB itu kawah Sinila mulai melelehkan lahar. Lahar bergerak mengikuti alur batang sungai kecil didekatnya. Sekitar pukul 07:00 WIB, kawah Sinila kembali memuntahkan laharnya. Lahar mengalir hingga sejauh kurang lebih 4 kilometer, memotong jalan raya utama Dieng dan hampir menjangkau jalan lintas selatan di dekat desa Kaliputih. Kawah Sigludug pun turut memuntahkan lahar, namun dengan volume lebih sedikit. Lahar Sigludug hanya mengalir sejauh sekitar 1 kilometer saja mengikuti alur batang kali Tempurung untuk kemudian berhenti sebelum gerbang desa Kepucukan.

Kejadian ini sontak menggemparkan penduduk Dataran Tinggi Dieng bagian barat. Warga enam desa yang mengitari kawah Sinila dan kawah Sigludug pun mengungsi. Termasuk desa Kepucukan. Namun tanpa disadari penduduk Kepucukan, takdir kebumian menempatkan mereka dalam simalakama. Desa ini dijepit dua lembah sungai, baik di sisi timur maupun barat. Terdapat tiga jalur untuk keluar masuk desa, masing-masing ke utara menuju jalur raya utama Dieng. Lalu ke timur menuju desa Pesurenan dan yang terakhir ke barat menuju kota Batur. Sebagian jalur ke barat adalah jalan setapak yang menyeberangi kali Tempurung dan berujung di jalur jalan raya lintas utara Dieng sejarak 1,5 kilometer sebelah timur kota Batur. Di sini berdiri bangunan SD (sekolah dasar) Inpres Kepucukan.

Liang Maut

Pada horor Selasa pagi itu penduduk Kepucukan tak mungkin mengungsi ke utara. Itu sama saja menuju marabahaya, karena disanalah Kawah Sinila dan Kawah Sigludug berada. Mereka juga tak mungkin ke timur, sebab lahar Sinila telah memutus jalur tersebut. Maka pilihan rasional yang tersedia adalah ke barat. Akan tetapi tak satupun menyadari bahwa jalur barat yang dikira aman sesungguhnya adalah jalur maut.

Gambar 5. Lokasi jalur maut Tragedi Sinila 1979, digambar ulang dari Guern dkk (1982) Direktorat Vulkanologi (1979). Nampak pula posisi liang-liang maut penyembur gas karbondioksida, yang turut berkontribusi pada jatuhnya korban terutama di sekitar SD Inpres Kepucukan. Sumber: Sudibyo, 2017 dengan basis Google Earth.


Rentetan gempa disusul erupsi kawah Sinila dan kawah Sigludug membuat tanah yang sudah rapuh itu kian retak-retak di banyak tempat. Beberapa dari retakannya menjulur hingga muncul di paras bumi, sebagai rekahan atau liang kecil. Seperti halnya di Kawah Sinila dan Kawah Sigludug, dari liang-liang kecil ini tersembur gas CO2. Dua liang muncul di sekitar Kawah Timbang. Kawah Timbang sendiri juga turut menyemburkan gas yang sama. Densitas (massa jenis) gas CO2 lebih berat dibanding udara, sehingga selalu menempel ke paras tanah. Keterikatan gas CO2 dengan uap air seperti yang umum dijumpai di Dieng membuat densitasnya menjadi lebih besar. Sehingga ia menjadi laksana air mengalir, bergerak dari tempat yang tinggi ke rendah dengan dikendalikan gravitasi Bumi.

Kombinasi semburan gas CO2 dari dua liang dan Kawah Timbang mengalir jauh ke selatan-baratdaya, menyusuri lembah sungai kecil. Sejarak 800 meter dari kawah Timbang, aliran maut ini bersua dengan barisan pengungsi Kepucukan yang sedang menyusuri jalan raya utama Dieng menjelang kompleks makam (bong) Cina, sekitar 1 kilometer dari kota Batur. Tak terelakkan lagi dalam tempo singkat barisan ini bertumbangan di tempatnya masing-masing. Pingsan lalu meregang nyawa. Sisanya, yang melihat barisan bagian depan gugur, sontak berbalik arah kembali ke Kepucukan. Tanpa disadari, liang-liang kecil yang sama juga bermunculan di sekitar SD Inpres Kepucukan. Bahkan ada empat liang disini, satu diantaranya persis di pinggir jalan setapak. Tak pelak, CO2 pun menyambar-nyambar. Sebanyak 145 orang meregang nyawa di jalan raya.

Gambar 6. Daerah bahaya dalam Tragedi Sinila 1979, digambar ulang dari Direktorat Vulkanologi (1979). Nampak segenap Desa Kepucukan tercakup ke dalam daerah bahaya, sehingga desa ini terlalu rawan untuk dihuni kembali. Sumber: Sudibyo, 2017 dengan basis Google Maps.


Mulai pukul 11:00 WIB aktivitas di kawah Sinila dan Sigludug cenderung mereda. Letusan benar-benar berhenti pada keesokan harinya. Secara keseluruhan erupsi Sinila dan Siglugug memiliki skala 1 VEI (Volcanic Explosivity Index), karena muntahan material letusannya kurang dari sejuta meter kubik. Kawah Sinila sendiri hanya memuntahkan 15.000 meter3 lahar dengan komponen lava didalamnya adalah lava tua (berasal dari magma tua, tanpa keterlibatan magma segar).

Kaldera

Banjarnegara pun gempar kala menyaksikan ratusan penduduk Kepucukan telah bergelimpangan tanpa nyawa. Upaya evakuasi intensif terutama mulai Rabu pagi (21 Februari 1979 TU) juga diiringi jatuhnya lagi 4 korban jiwa dari relawan. Butuh waktu tiga hari untuk mengevakuasi seluruh jasad korban. Seluruh jasad disemayamkan secara terpisah di tiga lokasi dalam kota Batur, yakni di kantor Koramil, Masjid Batur dan kantor kecamatan. Mereka semua lantas dimakamkan pada sebuah pemakaman massal di tengah-tengah ladang kentang tak jauh dari kota Batur. Sebuah tugu peringatan didirikan di sini.

Indonesia dan juga dunia dibuat terpana menatap korban-korban tragedi Sinila. Tragedi letusan gunung berapi yang aneh, karena jasad para korban nampak relatif bersih tanpa diselimuti debu vulkanik. Perhatian besar pun tertuju ke kawasan Dataran Tinggi Dieng. Ebiet G Ade mengabadikan tragedi ini dengan apik dalam lagunya Berita kepada Kawan di album Camelia III.

Penyelidikan memperlihatkan korban-korban berjatuhan akibat paparan gas CO2 dalam konsentrasi tinggi. Selain di sekitar kawah Timbang dan SD Inpres Kepucukan, liang-liang gas itu juga muncul di sejumlah titik. Sebagian diantaranya terkonsentrasi di tepi barat Kali Tempurung. Sebagian diantaranya juga sudah diketahui sebelum tahun 1979 TU. Konsentrasi gas CO2 demikian pekat hingga mencapai 40 kali lipat ambang batas aman. Eksistensi liang-liang tersebut dan hasil pengukuran gas vulkanik di berbagai titik menjadi alasan Direktorat Vulkanologi (kini Pusat Vulkanologi dan Mitigasi Bencana Geologi/PVMBG) untuk membentuk Daerah Bahaya Dieng. Zona tersebut terbagi ke dalam dua zona, yakni zona tertutup total dan tertutup sebagian. Tidak boleh ada orang yang masuk dan beraktivitas di zona tertutup total, apapun alasannya. Sementara pada zona tertutup sebagian boleh dimasuki dan ada aktivitas manusia meski terbatas hanya di siang hari dan hanya pada saat angin berhembus.

Segenap desa Kepucukan dan desa Simbar tercakup ke dalam Daerah Bahaya Dieng ini. Beberapa bulan kemudian pemerintah kabupaten Banjarnegara mengambil keputusan menghapus desa Kepucukan dan desa Simbar secara administratif. Sebagian dari penyintas (survivor) di kedua desa diikutsertakan program transmigrasi ke pulau Sumatra. Sebagian lainnya berpindah tempat tinggal ke desa-desa tetangga. Seluruh bangunan di bekas kedua desa pun dibongkar. Namun lahan tempat bangunan-bangunan itu semula berdiri tetap dibiarkan apa adanya. Inilah yang membuat bekas desa Kepucukan mudah dikenali dari udara.

Gambar 7. Struktur kompleks vulkanik Dieng, yang terdiri dari kaldera (garis merah) di sisi timur dan graben/cekungan Batur (garis hitam) di sisi barat. Nampak sejumlah kerucut vulkanis yang tumbuh dalam kompleks vulkanik ini. Digambar ulang dari Sukhyar (1994). Sumber: Sudibyo, 2017 dengan basis Google Maps.


Tragedi Sinila menampakkan salah satu wajah Dieng, yakni wajah ancaman. Wajah yang merugikan bagi kehidupan umat manusia dan makhluk hidup lainnya. Di sisi lain Dataran Tinggi Dieng juga memiliki wajah yang ramah, yakni wajah keindahan. Ancaman dan keindahan memang berbaur menjadi satu bagi tanah yang adalah dataran tinggi tertinggi kedua di dunia setelah Dataran Tinggi Tibet.

Secara geologis Dataran Tinggi Dieng adalah kaldera, atau cekungan (depresi) vulkano-tektonik. Jadi ia adalah produk dari letusan dahsyat sebuah gunung berapi, yang di kemudian hari nampaknya diikuti oleh pergerakan tektonik khususnya pematahan (pensesaran). Dalam hal ini Dataran Tinggi Dieng memiliki kemiripan dengan Danau Toba, meski tentu saja dari segi ukurannya jauh lebih kecil. Karena aktivitas vulkaniknya maka dataran tinggi ini disebut juga Kompleks Vulkanik Dieng.

Kompleks vulkanik Dieng mencakup area sepanjang 14 kilometer (arah barat-timur) dan lebar 6 kilometer (arah utara-selatan). Antara setengah hingga satu juta tahun silam, sebagian kompleks vulkanik ini adalah bagian barat dari Gunung Prahu tua. Suatu letusan dahsyat dialami Gunung Prahu tua pada masa akhir hidupnya, menghasilkan kaldera yang memiliki diameter 7 kilometer. Sisa tubuhnya (tinggal setinggi 2.566 meter dpl) menjadi Gunung Prahu muda yang juga adalah batas sisi timur kaldera. Batas sisi barat dan selatannya masing-masing diduduki Gunung Nagasari (2.365 meter dpl) dan Gunung Bisma (2.365 meter dpl), dua kerucut vulkanik yang lahir dalam aktivitas pascakaldera.

Aktivitas pascakaldera juga membentuk Gunung Seroja (2.275 meter dpl), yang di kemudian hari mengalami erupsi parasitik di kakinya dan membentuk kawah 800 meter yang lantas terisi air sebagai Telaga Menjer. Lalu terbentuk pula Gunung Merdada dan Gunung Pangonan (2.308 meter dpl). Puncak keduanya juga berhias kawah, namun hanya kawah Merdada saja yang tergenangi air sebagian menjadi Telaga Merdada. Di sekitar jajaran Gunung Pangonan dan Merdada inilah kemudian lahir Gunung Pagerkandang/Sipandu (2.241 meter dpl) dan Igir Binem. Gunung Pagerkandang memiliki kawah kering, namun di kakinya tumbuh kawah parasiter yang tergenangi air menjadi telaga Sileri. Sementara Igir Binem memiliki dua kawah berisi air yang saling berdampingan, masing-masing Telaga Warna dan Telaga Pengilon.

Kerucut-kerucut vulkanis ini mulai tumbuh sekitar 17.000 tahun silam. Sementara leleran lava termuda dalam kaldera berumur 8.500 tahun, yakni aliran lava Sikunang. Setelah itu masih lahir lagi sejumlah kerucut vulkanik seluruhnya terkonsentrasi di dekat batas selatan kaldera. Misalnya Gunung Sidede (2.231 meter dpl), Gunung Pakuwaja (2.395 meter dpl), Gunung Sikunir (2.463 meter dpl), Gunung Sikendil (2.340 meter dpl), Gunung Prambanan dan Gunung Watusumbul (2.154 meter dpl).

Setelah kaldera Dieng terbentuk dan aktivitas pascakaldera mulai tumbuh, ketidakstabilan masih berlangsung di sisi barat. Hingga terjadilah pensesaran turun atau pengamblesan (subsidence) yang membentuk graben Batur. Segera sesar-sesar di graben menjadi jalur-jalur lemah yang dilalui magma dari dapur magma di bawah kaldera. Sehingga sejumlah kerucut vulkanis pun lahir. Misalnya Gunung Dringo dan Gunung Petarangan (2.135 meter dpl). Keduanya muncul pada masa yang sama dengan lahirnya Gunung Pangonan dan Gunung Merdada. Lalu Gunung Legetang, yang lahir tepat di sisi timur graben Batur. Baik di dalam kaldera maupun graben Batur, kerucut-kerucut vulkanik tersebut menjulang mulai dari setinggi 100 hingga 300 meter dari paras dataran Dieng.

Gambar 8. Diagram skematik sederhana tentang sistem sesar besar Kebumen-Muria-Meratus dan Cilacap-Pamanukan-Lematang di Jawa Tengah. Aktivitas sistem sesar besar ini diduga menjadi penyebab kompleks vulkanik Dieng “terdorong” ke utara dari lokasi seharusnya. Digambar ulang dari Satyana dan Purwaningsih (2002) Sumber: Sudibyo, 2015.


Dibanding jajaran gunung berapi aktif di tanah Jawa yang bergabung dalam jalur vulkanik Jawa muda, kompleks vulkanik Dieng terletak terlalu ke utara. Selain Dieng, hanya ada tiga gunung berapi muda Jawa yang juga berposisi demikian. Masing-masing Gunung Ciremai, Gunung Ungaran dan Gunung Muria. Keempat gunung berapi tersebut bisa menyebal keluar dari jalur vulkanik Jawa muda akibat aktifnya dua sesar besar, masing-masing sesar besar Kebumen-Muria-Meratus dan sesar besar Cilacap-Pamanukan-Lematang. Selain menjadi penyebab keluarnya kompleks vulkanik Dieng dari jalur vulkanik Jawa muda, dua sesar besar tersebut juga bertanggung jawab atas lebih sempitnya lebar pulau Jawa di bagian tengah ketimbang di bagian barat maupun timur.

Api di Atas Awan

Kompleks vulkanik Dieng adalah satu-satunya gunung berapi berkaldera yang ada di Jawa Tengah. Aktivitas pascakaldera disini dalam kurun 17.000 tahun terakhir telah membentuk tak kurang dari 100 kawah. Sebagian besar diantaranya, yakni sekitar 70 kawah, terkonsentrasi dalam kaldera. Sementara sisanya, yakni sekitar 30 kawah, mengambil tempat dalam graben Batur.

Gambar 9. Kawah Timbang, diabadikan dari sisi utara. Kawah kering ini dikenal rajin menyemburkan gas karbondioksida yang terikat uap air. Gas tersebut akan mengalir menuruni lembah di latar belakang. Sebagian korban Tragedi Sinila menghirup gas beracun dari kawah Timbang ini. Sumber: Aldhila Gusta, 2014.


Dengan lokasinya yang menjulang di ketinggian dan dipahat secara simultan oleh panas magma dan air hujan selama beribu-ribu tahun, tak heran bila kompleks vulkanik Dieng menjadi tempat yang eksotis. Eksotisme yang telah dikenal sejak beratus-ratus tahun silam. Peradaban Jawa masa kuna bahkan menempatkannya dalam posisi tempat suci sesuai dengan kosmologi yang diyakini. Candi-candi Hindu tertua di Jawa pun berdiri di sini, yang dibangun di masa Kerajaan Medang. Dua pusat kerajaan Medang pada zamannya, yakni Mamrati dan Poh Pitu, pun (diduga) terletak tak jauh dari Dieng yakni di sebelah timur Gunung Sindoro. Candi-candi tersebut kini menjadi tempat kunjungan wisatawan yang ramai.

Selain candi, Dieng juga banyak dikunjungi karena aktivitas pascakalderanya. Hanya di Dieng kita bisa ‘merasakan’ gelegak aktivitas vulkanik dalam jarak yang begitu dekat seperti di Kawah Sikidang. Suatu sensasi yang unik karena api (kawah) itu berada di daerah yang sesungguhnya dingin menggigil karena berlokasi di atas garis awan. Panorama di aneka telaga seperti Telaga Warna, Telaga Pengilon dan Telaga Menjer pun sungguh menawan. Pada aras yang lain, kompleks vulkanik ini terkenal akan kesuburan tanahnya, salah satu ciri khas kawasan vulkanik. Dengan kesuburan lahannya dan ditunjang oleh kedudukannya di ketinggian, lahan pertanian Dieng menjadi produsen kentang terbesar se-Indonesia.

Gambar 10. Kawah Sikendang, tepat di tepi jalur lalu-lalang antara Telaga Warna dan Telaga Pengilon. Dengan konsentrasi gas CO2 yang dilepaskan kawah ini mencapai 74 % maka perlu penataan lebih lanjut agar pengunjung tidak tepat berada di bibir kawah. Sumber: Geomagz/Parpar Priatna, 2015.


Akan tetapi high risk high gain, sisi eksotika Dieng sebanding dengan sisi ancamannya. Kompleks ini adalah kompleks vulkanik yang masih aktif, sehingga gejolak magmanya kerap menghasilkan erupsi. Meski dalam tiga abad terakhir karakter letusan di Dieng berupa erupsi freatik yang kerap diikuti lontaran/semburan lumpur dengan lubang letusan yang berbeda-beda. Erupsi di Dieng memiliki skala yang kecil, hanya 1 hingga 2 VEI, terhitung sejak catatan tahun 1786 TU. Gelegak magma juga memanasi tubuh kompleks vulkanik Dieng dengan begitu intensif dan berkesinambungan sehingga laksana dikukus terus menerus. Akibatnya terjadi alterasi hidrotermal (persentuhan dengan cairan panas produk aktivitas vulkanik), yang melemahkan kekuatan batuan. Sehingga tanah Dieng menjadi lebih rapuh dan mudah longsor. Diduga pernah terjadi letusan yang cukup besar dengan segala akibatnya sehingga Dieng sempat kosong dari hunian manusia selama beberapa waktu, sebelum kemudian mulai dihuni kembali di abad ke-19 TU.

Gambar 11. Distribusi gas karbondioksida dalam tanah pada kompleks vulkanik Dieng. Nampak konsentrasi tertinggi (lebih dari 25 %) dijumpai baik dalam kaldera maupun graben Batur. Sumber: UGM/Fak. Geografi, 2014.


Namun ancaman paling menonjol di Dieng adalah gas beracunnya, dalam wujud gas CO2. Gas ini adalah gas vulkanik, berasal dari magma segar nun jauh di kedalaman Dieng. Magma segar tersebut tak bergerak, namun melepaskan cairan hidrotermal yang kaya gas CO2 secara kontinu. Berkurangnya tekanan saat bergerak ke atas membuat cairan superpanas ini mengalami pendidihan pada kedalaman sekitar 4,5 kilometer sehingga terbentuklah gas CO2 yang kaya uap air. Campuran ini terus bergerak ke atas sembari terus memperkaya konsentrasi gas CO2-nya hingga akhirnya tiba di cebakan-cebakan pada kedalaman sekitar 1 kilometer. Dari sini sebagian gas tersebut mengalir keluar terutama lewat lubang-lubang kawah. Namun sebagian lainnya tetap tersekap dalam cebakan dan dalam tanah.

Kawah Sikidang melepaskan gas CO2 dalam konsentrasi 5,7 % yang tergolong rendah. Sebaliknya Kawah Sileri, yang paling rajin meletus itu, memiliki konsentrasi gas CO2 yang cukup tinggi, yakni sebesar 56 %. Bahkan Kawah Sikendang, kawah kecil tak populer yang terletak di sisi Telaga Warna, melepaskan gas CO2 hingga 73,8 %. Pengukuran gas CO2 dalam tanah menunjukkan bahwa baik kaldera maupun graben Batur umumnya mengandung gas CO2 dalam konsentrasi lebih dari 0,5 % (angka batas aman). Sebaliknya konsentrasi gas CO2 di udara terbuka hanya berkisar 0,03 % atau setara dengan lingkungan selain Dieng. Kandungan gas CO2 yang besar di dalam tanah membawa implikasi bahwa mereka bisa terbebaskan ke udara saat terjadi gangguan besar dalam tanah Dieng, baik berupa gempa bumi maupun letusan gunung berapi.

Referensi:

IAVCEI. 2000. Crater Lakes of Java: Dieng, Kelud and Ijen, Excursion Guidebook. International Association of Volcanology and Chemistry of the Earth’s Interior, 2000 General Assembly. Bali: Denpasar.

Rizal. 2014. Kajian Sebaran dan Karakteristik Kawah di Gunungapi Dieng. Kuliah Kerja Lapangan 3, Fakultas Geografi UGM, Yogyakarta.

Priatna. 2015. Menata Eksotisme Dieng. Majalah Geomagz, vol. 5 no. 3 September 2015, hal. 35-39.

Guern dkk. 1982. An Example of Health Hazard, People Killed by Gas during a Phreatic Eruption: Dieng Plateau (Java, Indonesia), February 20th 1979. Bulletin of Volcanology, vol. 45-2 (1982), hal. 153-156.

Sukhyar dkk. 1994. Peta Geologi Komplek Gunungapi Dieng, Jawa Tengah. Direktorat Vulkanologi.

Global Volcanism Program. Dieng Volcanic Complex. Smithsonian Institution, National Museum of Natural History.

Nanang. 2014. Kompleks Sinila dan Timbang Jadi Incaran Penggarap. BanyumasNews.com, 5 April 2014.