Roket Falcon 9 Full Thrust Penerbangan 28 Jatuh di Pulau Madura

Sebuah peristiwa takbiasa terjadi di bagian pulau Madura (propinsi Jawa Timur) pada Senin 26 September 2016 Tarikh Umum (TU) siang. Tepatnya sekitar pukul 10:00 WIB. Di satu bagian Kabupaten Sumenep, tepatnya di pulau kecil Giligenting dan Giliraja, benda-benda aneh mendadak berjatuhan dari langit. Benda aneh terbesar berbentuk silinder dengan kedua ujung membulat, sepanjang 150 cm dengan garis tengah 60 cm. Secara keseluruhan ada empat titik dimana benda-benda aneh tersebut ditemukan, dua di daratan dan dua di laut. Salah satu titik diantaranya bahkan tepat berada di kandang sapi warga setempat. Sebagian kandang itu pun hancur berantakan, beruntung tak ada korban baik manusia maupun binatang peliharaan.

Gambar 1. Tabung silinder yang aneh yang ditemukan dalam peristiwa Sumenep. Analisis lebih lanjut mengindikasikan bawa benda aneh ini mungkin merupakan sisa-sisa upperstage roket Falcon 9 Full Thrust Penerbangan 28 yang mengangkasa 14 Agustus 2016 TU lalu. Sumber: Tribunnews, 2016.

Gambar 1. Tabung silinder yang aneh yang ditemukan dalam peristiwa Sumenep. Analisis lebih lanjut mengindikasikan bawa benda aneh ini mungkin merupakan sisa-sisa upperstage roket Falcon 9 Full Thrust Penerbangan 28 yang mengangkasa 14 Agustus 2016 TU lalu. Sumber: Tribunnews, 2016.

Seluruh benda aneh itu diselubungi sejenis lapisan fiber yang sekilas mirip lilitan tali plastik. Lapisan tersebut tahan api, setidaknya menurut pengujian langung Kapolsek Sumenep AKBP Josep Ananta Pinora. Tepat sesaat menjelang peristiwa takbiasa ini, sejumlah warga juga mengaku mendengar suara dentuman lumayan keras di langit.

Benda apakah itu?

Roket Falcon 9

Saat berjumpa dengan benda-benda yang takbiasa yang jatuh dari langit dengan ciri-ciri tertentu, sebagian kita mungkin akan langsung mengaitkannya dengan komponen pesawat.  Beberapa kali terjadi pesawat yang sedang terbang di ruang udara Indonesia mengalami insiden yang berujung pada lepas dan berjatuhannya sejumlah komponennya ke Bumi. Sementara pesawatnya masih tetap bisa melaju dan mendarat di tempat lain. Kasus paling terkenal adalah saat pesawat raksasa Airbus A380 Qantas penerbangan 32 yang bermasalah di atas pulau Batam pasca lepas landas dari Singapura menuju Australia pada 4 November 2010 TU. Sejumlah komponen mesin kanannya berjatuhan ke daratan pulau Batam setelah mesin itu meleda, sementara pesawatnya sendiri berhasil memutar arah dan melakukan pendaratan darurat di Singapura, tanpa korban.

Apakah peristiwa Sumenep, demikian untuk mudahnya kita sebut, juga demikian? Sayangnya tidak. Data otoritas penerbangan Indonesia menunjukkan tak ada penerbangan yang lewat di atas Sumenep saat itu. Sehingga kemungkinan bahwa benda-benda aneh itu berasal dari komponen pesawat yang terlepas dalam penerbangannya bisa dieliminir.

sumenep-gb2_lapan

Gambar 2. Atas: peta proyeksi lintasan roket bekas bernomor 41730 di paras Bumi pada Senin 26 September 2016 TU dari LAPAN. Titik terakhir tepat berada di atas pulau Madura pada pukul 09:21 WIB. Bawah: peta serupa yang dipublikasikan Joseph Remis dengan prakiraan reentry pukul 02:10 UTC (09:10 WIB) di lepas pantai timur pulau Madagaskar. Dalam kenyataannya, roket bekas ini melaju lebih jauh dan baru benar-benar mengalami reentry pada sekitar pukul 09:21 WIB. Sumber: Djamaluddin, 2016, Remis 2016.

Gambar 2. Atas: peta proyeksi lintasan roket bekas bernomor 41730 di paras Bumi pada Senin 26 September 2016 TU dari LAPAN. Titik terakhir tepat berada di atas pulau Madura pada pukul 09:21 WIB. Bawah: peta serupa yang dipublikasikan Joseph Remis dengan prakiraan reentry pukul 02:10 UTC (09:10 WIB) di lepas pantai timur pulau Madagaskar. Dalam kenyataannya, roket bekas ini melaju lebih jauh dan baru benar-benar mengalami reentry pada sekitar pukul 09:21 WIB. Sumber: Djamaluddin, 2016, Remis 2016.

Lantas dari mana? Sumber lain yang perlu disibak adalah penerbangan antariksa. Dalam perspektif ini, peristiwa Sumenep bisa saja merupakan kejadian jatuhnya sampah antariksa sehingga merupakan kejadian benda jatuh antariksa (BJA). Sampah antariksa tersebut bisa berupa roket bekas, khususnya roket tingkat tiga/empat untuk generasi roket-roket klasik atau roket tingkat dua untuk generasi roket-roket kontemporer. Roket bekas ini, yang dikenal pula sebagai upperstage (roket tingkat atas) semula bertugas untuk mendorong satelit ke orbit tujuan dari orbit parkir. Jadi tatkala sebuah roket diluncurkan, awalnya ia mendorong muatannya ke sebuah orbit parkir yang berada di ketinggian rendah (150 hingga 300 km dari paras Bumi). Selanjutnya giliran upperstage mengambil alih mendorong muatannya ke orbit tujuan. Begitu usai menunaikan tugasnya, upperstage (yang sudah kehabisan bahan bakarnya) akan terlepas dan melayang-layang dalam orbitnya sendiri yang terus berubah sebelum kemudian jatuh kembali ke paras Bumi dalam beberapa waktu kemudian. Sampah antariksa juga bisa berupa satelit rombeng, yakni satelit-satelit yang sudah kehabisan bahan bakarnya ataupun sudah rusak komponennya. Di luar roket bekas dan satelit rombeng, sampah antariksa dapat pula merupakan kepingan-kepingan roket/satelit maupun peralatan yang terlepas ke langit dari astronot yang lalai.

Gambar 3. Detik-detik saat roket Falcon 9 Full Thrust mengangkasa dari landasan nomor 40 di Cape Canaveral, Florida (AS) pada 14 Agustus 2016 TU pukul 12:26 WB. Upperstage roket inilah yang jatuh di pulau Madura dalam peristiwa Sumenep. Sumber: SpaceX, 2016.

Gambar 3. Detik-detik saat roket Falcon 9 Full Thrust mengangkasa dari landasan nomor 40 di Cape Canaveral, Florida (AS) pada 14 Agustus 2016 TU pukul 12:26 WB. Upperstage roket inilah yang jatuh di pulau Madura dalam peristiwa Sumenep. Sumber: SpaceX, 2016.

Pada hari Senin 26 September 2016 TU pukul 09:21 WIB sebuah roket bekas melintas di ruang udara Indonesia tepat di atas pulau Madura. Ia memiliki nomor 41730 dalam katalog benda-benda angkasa buatan manusia dalam katalog NORAD (North American Aerospace Defence Command) atau komando pertahanan langit Amerika utara. Identitasnya adalah Falcon 9 R/B (rocket body), yakni upperstage (tingkat kedua) roket Falcon 9 Full Thrust milik perusahaan inovatif SpaceX yang ditujukan untuk mengorbitkan satelit komunikasi JCSAT-16 (Jepang) ke orbit geostasioner pada 14 Agustus 2016 TU lalu . Ia menjadi bagian dari penerbangan bersejarah, dimana tingkat pertama roket Falcon 9 berhasil mendarat kembali dengan selamat ke paras Bumi setelah sukses mengantar muatan beserta upperstagenya ke ketinggian 180 km. Tepatnya di sebuah bargas yang mengapung tenang di keluasan Samudera Atlantik. Sementara upperstagenya,yang bergaris tengah 366 cm dengan panjang 1.430 cm, bertugas mengantar muatan dari ketinggian 184 km ke ketinggian orbit transfer 35.912 km pada inklinasi (kemiringan) 20o terhadap bidang khatulistiwa. Dari orbit transfer inilah satelit JCSAT-16 kemudian digeser secara perlahan ke orbit geostasioner (ketinggian 35.792 km, inklinasi 0o) pada garis bujur 162 BT. Usai menjalankan tugasnya dengan baik, upperstage Falcon 9 pun menjadi sampah antariksa dengan nomor 41730.

Nah roket bekas bernomor 41730 ini telah diprediksi akan jatuh kembali ke Bumi pada akhir September 2016 TU. Hal ini terjadi karena roket bekas tersebut bersentuhan dengan atmosfer Bumi bagian atas secara berulang, dimana pergesekannya dengan molekul-molekul udara membuat kecepatannya melambat. Konsekuensinya bentuk orbit lonjongnya, yang mengandung titik perigee (titik terdekat ke paras Bumi) dan titik apogee (titik terjauh ke paras Bum) pun berubah secara dinamis, dimana perigee dan apogee kian berkurang. Perhitungan oleh Joseph Remis menunjukkan roket bekas ini bakal jatuh pada 26 September 2016 TU pukul 09:10 WIB dengan plus minus 4 jam. Sehingga diprakirakan ia bakal jatuh kapan saja dalam tempo antara pukul 05:10 WIB hingga pukul 13:10 WIB. Namun kapan dan dimana persisnya roket bekas bernomor 41730 ini bakal jatuh mencium Bumi hanya akan bisa diketahui pada menit-menit terakhir.

sumenep-gb4_perigee

Gambar 4. Dinamika orbit roket bekas bernomor 41730 selama lima hari terakhir sebelum jatuh, meliputi perigee (atas) dan apogee (bawah). Perigeenya berfluktuasi, namun apogeenya menunjukkan konsistensi terus menurun dengan cepat. Sumber: Sudibyo, 2016 dengan data NORAD.

Gambar 4. Dinamika orbit roket bekas bernomor 41730 selama lima hari terakhir sebelum jatuh, meliputi perigee (atas) dan apogee (bawah). Perigeenya berfluktuasi, namun apogeenya menunjukkan konsistensi terus menurun dengan cepat. Sumber: Sudibyo, 2016 dengan data NORAD.

Analisis dinamika orbit roket bekas bernomor 41730 memperlihatkan ia mengalami perubahan orbit yang cukup radikal sepanjang lima hari terakhir. Jika pada 17 Agustus 2016 TU silam ia memiliki orbit 184 km x 35.912 km (dibaca : orbit lonjong dengan perigee 184 km dan apogee 35.912 km), maka pada 20 September 2016 TU lalu orbitnya sudah berubah dramatis menjadi 96 km x 6.448 km. Dan lima hari kemudian orbitnya berubah dramatis kembali menjadi 105 km x 1.145 km. Titik perigee orbit roket bekas bernomor 41730 ini berfluktuasi, namun titik apogeenya jelas menunjukkan kecenderungan terus menurun secara dramatis. Konsekuensinya periode orbital roket bekas bernomor 41730 pun turut berkurang, dari 163 menit pada 20 September 2016 TU menjadi tinggal 97 menit pada lima hari kemudian. Semua ini merupakan pertanda bahwa roket bekas itu akan segera jatuh kembali ke Bumi.

Problema 

Dengan semua informasi tersebut, hampir dapat dipastikan bahwa peristiwa Sumenep merupakan akibat dari jatuhnya, atau tepatnya masuk-kembalinya (reentry), roket bekas bernomor 41730 yang adalah upperstage Falcon 9 Full Thrust penerbangan 28. Sebelum diterbangkan, upperstage ini memiliki bobot mati 4 ton dan sanggup mengangkut 107,5 ton bahan bakar. Bahan bakarnya adalah kerosene (minyak tanah) yang diolah khusus sebagai RP-1 (Rocket Propellant-1), sementara pengoksid (oksidizer)-nya adalah Oksigen cair. Baik tabung bahan bakar maupun pengoksidnya memiliki bentuk khas, yakni silinder tabung dengan kedua ujungnya berupa setengah bola. Ia dibuat dari bahan komposit yang dikemudian diselubungi dengan lapisan antiapi, sehingga SpaceX menamakannya COPV (Composite Overwrapped Pressure Vessel).

Tabung inilah yang ditemukan dalam peristiwa Sumenep. Jelas bahwa upperstage yang masuk-kembali ke atmosfer Bumi di atas pulau Madura itu telah terkikis nyaris habis oleh tekanan ram supertinggi yang dihadapinya sepanjang menembus atmosfer. Tepat sama seperti yang dialami meteoroid-meteoroid dari langit. Sehingga hanya sebagian kecil saja yang masih tersisa dan mendarat di pulau Madura. Dan seperti halnya meteoroid yang berukuran besar, yang menembus selimut udara Bumi sebagai boloid, masuk kembalinya roket bekas bernomor 41730 pun menghempaskan gelombang kejut dan dentuman sonik yang terdengar di paras Bumi sebagai suara menggelegar.

Gambar 5. Perbandingan antara benda takbiasa yang jatuh di Sumenep (kanan) dengan yang jatuh di Brazil beberapa waktu lalu (kiri). Tabung di Brazil sudah dipastikan sebagai tabung bahan bakar/pengoksid upperstage roket Falcon 9. Nampak jelas kemiripan keduanya. Sumber: Firmanda, 2016.

Gambar 5. Perbandingan antara benda takbiasa yang jatuh di Sumenep (kanan) dengan yang jatuh di Brazil beberapa waktu lalu (kiri). Tabung di Brazil sudah dipastikan sebagai tabung bahan bakar/pengoksid upperstage roket Falcon 9. Nampak jelas kemiripan keduanya. Sumber: Firmanda, 2016.

Meski mekanismenya serupa, namun peristiwa Sumenep berbeda apabila dibandingkan dengan masuk-kembalinya sampah antariksa jumbo seperti Phobos-Grunt maupun GOCE di waktu lalu. Dengan bahan bakar berupa kerosene, jelas tak perlu khawatir berlebihan terkait jatuhnya upperstage Falcon 9 di pulau Madura dalam peristiwa Sumenep. Kerosene jauh lebih ramah lingkungan dan tak bersifat toksik bila dibandingkan dengan Hydrazine yang menjadi sumber tenaga utama upperstage roket-roket klasik. Namun peristiwa ini sekali lagi kembali mengingatkan kita semua terkait masalah serius yang dihadapi umat manusia semenjak era penerbangan antariksa bersemi. Yakni persoalan sampah antariksa. Hingga kini tercatat tak kurang dari 16.000 buah sampah antariksa (dengan diameter lebih dari 10 cm) yang melayang-layang di orbit. Total massa seluruhnya mencapai tak kurang dari 62.000 ton. Dan hingga kini bagaimana solusi untuk mengatasi persoalan ini belum kunjung dijumpai.

Pembaharuan : Detik-Detik Terakhir

Evaluasi lebih lanjut memastikan benda aneh pada peristiwa Sumenep memang merupakan tabung COPV. Ini tabung yang umum dijumpai dalam struktur roket kontemporer khususnya yang dibangun di Amerika Serikat dan Eropa. Eksistensi tabung COPV ditunjang dengan data elemen orbital roket bekas bernomor 41730 hingga 2,5 jam sebelum terjadinya peristiwa Sumenep memastikan bahwa benda aneh itu memang sisa-sisa upperstage roket Falcon 9 Full Thrust yang digunakan dalam penerbangan 28. Evaluasi juga memperlihatkan bahwa tabung COPV itu bukanlah tabung bahan bakar, melainkan tabung penyimpanan gas bertekanan tinggi.

Gambar 6. Perbandingan bentuk dan struktur salah satu tabung COPV yang digunakan badan antariksa Amerika Serikat/NASA (kiri) dengan reruntuhan tabung yang ditemukan dalam peristiwa Sumenep. Perhatikan kemiripannya. Sumber: NASA, 2011 & Tribunnews, 2016.

Gambar 6. Perbandingan bentuk dan struktur salah satu tabung COPV yang digunakan badan antariksa Amerika Serikat/NASA (kiri) dengan reruntuhan tabung yang ditemukan dalam peristiwa Sumenep. Perhatikan kemiripannya. Sumber: NASA, 2011 & Tribunnews, 2016.

SpaceX menggunakannya untuk menyimpan gas Helium bertekanan tinggi. Gas mulia yang bersifat lembam (inert) ini ditujukan untuk membantu mendorong Oksigen cair memasuki mesin roket dengan kuantitas dan debit sesuai kebutuhan teknis mesin tersebut. Karena itu SpaceX menempatkan tabung-tabung COPV berisikan gas Helium di dalam tabung Oksigen cairnya. Meski terbuat dari komposit fiber dan resin, namun tabung COPV tak kalah kokoh dibanding tabung logam. Ia juga lebih ringan, faktor yang membuatnya lebih unggul dalam penerbangan antariksa. Tabung COPV didesain untuk sanggup menahan tekanan hingga sebesar 300 bar (300 kN/m2 atau setara dengan 296,2 atmosfer. Karena itu tabung COPV menjadi salah satu bagian yang relatif bertahan selama menembus lapisan-lapisan udara Bumi tatkala roket bekas masuk kembali ke atmosfer. Karena dayatahannya maka ia juga menjadi bagian yang kerap dijumpai mendarat di paras Bumi.

Selain dalam katalog NORAD, elemen orbit roket bekas bernomor 41730 juga dicatat dengan teliti oleh JSpOC (Joint Space Operation Center). Catatan tersebut lebih intensif, dimana elemen orbit terakhir yang dicatat JSpOC adalah hingga 2,5 jam sebelum  roket bekas bernomor 41730 itu masuk kembali ke atmosfer. Pada saat itu orbitnya pun telah berubah dramatis menjadi 92 km x 788 km. Berbekal data ini dan temuan di lapangan, kita bisa merekonstruksi (secara kasar) bagaimana detik-detik terakhir roket bekas bernomor 41730 hingga jatuh tersungkur mencium Bumi di pulau Madura.

Gambar 7. Proyeksi lintasan terakhir bekas roket upperstage Falcon 9 Full Thrust penerbangan 28 di paras Bumi. Titik X berada di utara pulau Natal (Australia), yang berjarak 950 km sebelah barat daya Kabupaten Sumenep, Madura (Indonesia). Sumber; Sudibyo, 2016 dengan data JSpOC.

Gambar 7. Proyeksi lintasan terakhir bekas roket upperstage Falcon 9 Full Thrust penerbangan 28 di paras Bumi. Titik X berada di utara pulau Natal (Australia), yang berjarak 950 km sebelah barat daya Kabupaten Sumenep, Madura (Indonesia). Sumber; Sudibyo, 2016 dengan data JSpOC.

Sebuah benda langit buatan yang mengorbit Bumi pada orbit rendah menderita gangguan permanen dari atmosfer Bumi seiring pergesekannya dengan molekul-molekul udara. Pergesekan tersebut membuat orbit benda langit itu berubah secara gradual, yang mudah dilihat pada perubahan titik apogee dan  setengah sumbu orbit utamanya. Apogee mengecil secara dramatis sementara perigeenya relatif tetap, sehingga orbit benda langit buatan itu pada dasarnya kian mendekati lingkaran sempurna. Proses masuk kembali ke atmosfer Bumi umumnya terjadi tatkala orbit benda langit buatan itu, khususnya setengah sumbu orbit utamanya,  telah menyentuh ketinggian 104 km dari paras Bumi atau lebih rendah lagi. Pada ketinggian ini lapisan udara Bumi mulai lebih padat. Akibatnya gesekannya dengan benda langit membuat pengurangan kecepatannya menjadi lebih besar. Konsekuensinya benda langit itu pun akan mulai turun menembus atmosfer Bumi. Titik dimana orbit benda langit itu tepat menyentuh ketinggian 104 km disebut titik X atau reentry interface.

Roket bekas bernomor 41730 mulai menghampiri titik X pada suatu tempat di sebelah utara pulau Natal atau pulau Christmas (Australia) di tengah-tengah Samudera Indonesia (Indian Ocean). Titik ini terletak pada jarak mendatar 950 km di sebelah barat daya Sumenep. Pada umumnya jarak mendatar antara titik temuan benda-benda aneh khas sampah antariksa dengan proyeksi titik X di paras Bumi berkisar antara 900 hingga 1.300 km. Pada titik X itu roket bekas bernomor 41730 masih melaju secepat 7,85 km/detik atau 28.200 km/jam.  Dari titik X ini roket bekas bernomor 41730 mulai mengalami penurunan ketinggiannya secara drastis. Hingga akhirnya pada jarak 750 km sebelah barat daya Sumenep, ketinggian roket bekas bernomor 41730 mulai menyentuh angka 80 km.

Gambar 8. Proyeksi lintasan terakhir bekas roket upperstage Falcon 9 Full Thrust penerbangan 28 di paras Bumi sebagian pulau Jawa dalam detik-detik terakhir penerbangannya. Bekas roket itu memasuki udara pulau Jawa di atas kompleks gunung berapi purba Wediombo (Kab. Gunung Kidul). Dengan cepat ia lalu bergerak hingga tiba di atas kota Ponorogo, kota Kediri bagian utara dan kota Sidoarjo secara berturut-turut dalam waktu hanya 30 detik saja. Proyeksi lintasan ini berujung di Prenduan, namun hembusan angin samping nampaknya membuat sisa-sisa roket tersebut bergeser ke Giliraja (keduanya di Kab. Sumenep). Sumber; Sudibyo, 2016 dengan data JSpOC.

Gambar 8. Proyeksi lintasan terakhir bekas roket upperstage Falcon 9 Full Thrust penerbangan 28 di paras Bumi sebagian pulau Jawa dalam detik-detik terakhir penerbangannya. Bekas roket itu memasuki udara pulau Jawa di atas kompleks gunung berapi purba Wediombo (Kab. Gunung Kidul). Dengan cepat ia lalu bergerak hingga tiba di atas kota Ponorogo, kota Kediri bagian utara dan kota Sidoarjo secara berturut-turut dalam waktu hanya 30 detik saja. Proyeksi lintasan ini berujung di Prenduan, namun hembusan angin samping nampaknya membuat sisa-sisa roket tersebut bergeser ke Giliraja (keduanya di Kab. Sumenep). Sumber; Sudibyo, 2016 dengan data JSpOC.

Disinilah peristiwa dramatis mulai terjadi. Lapisan udara yang kian padat membuat gaya geseknya berkembang ke titik yang menghancurkan. Roket bekas bernomor 41730 itu menjadi sangat diperlambat, dengan puncak perlambatan bisa melampaui 20 kali percepatan gravitasi standar (20 G) yang jauh melampaui ambang batas dayatahan struktur roket. Roket mulai terpecah belah dan menghancur di ketinggian itu. Tekanan ram yang diakibatkannya juga menciptakan suhu teramat tinggi yang membuat molekul-molekul udara didalamnya terionisasi. Terpancarlah cahaya khas, yang jika di malam hari akan mudah dilihat sebagai obyek mirip meteor. Suhu sangat tinggi juga membuat sebagian besar pecahan, khususnya yang terbuat dari logam, mulai meleleh dan menguap. Sehingga roket bekas itu kini tinggal kumpulan partikel-partikel yang menghasilkan bentuk mirip awan lurus, sangat mirip dengan meteor. Hanya bagian terkuatnya saja yang sanggup bertahan dari penghancuran dan suhu yang menggidikkan ini. Transisi dari kecepatan supertinggi menjadi lebih lambat menghasilkan gelombang kejut yang bisa terdengar di paras Bumi sebagai dentuman sonik.

Sisa-sisa roket bekas bernomor 41730 itu mulai memasuki ruang udara di atas daratan pulau Jawa pada pukul 09:23:05 WIB, atau hampir 1,5 menit pasca melewati titik X. Saat itu sisa-sisa roket bekas ini ada pada ketinggian sekitar 35 km di atas kompleks gunung berapi purba pantai Wediombo, di ujung tenggara Kabupaten Gunung Kidul (propinsi DI Yogyakarta). Tiga belas detik kemudian sisa-sisa roket bekas ini sudah melesat cepat memasuki propinsi Jawa Timur hingga tiba di atas kota Ponorogo pada ketinggian sekitar 28 km. Duapuluh satu detik kemudian ia sudah melesat dan tiba di atas kota Kediri bagian utara, dengan ketinggian berkurang menjadi sekitar 21 km. Dan tigapuluh tiga detik kemudian ia sudah ada di atas kota Sidoarjo, pada ketinggian hanya sekitar 4 km. Proyeksi lintasan sisa-sisa roket bekas tersebut sejatinya berujung di daratan utama pulau Madura, tepatnya di bagian pesisir Prenduan (Kabupaten Sumenep). Namun hembusan angin dari samping nampaknya meniup sisa-sisa roket ini lebih ke timur sehingga lintasannya mengarah ke Giliraja. Analisis JSpOC mengindikasikan dari pulau Giliraja ke arah timur laut (searah dengan proyeksi lintasan roket bekas bernomor 41730) hingga sejauh 250 km menjadi kawasan dimana sisa-sisa roket bekas bernomor 41730 berjatuhan. Dalam perspektif aerodinamika, fragmen terbesar dan terberat memang akan berjatuhan di pulau Giliraja. Namun fragmen-fragmen yang lebih kecil dan lebih ringan terdorong lebih jauh ke timur laut hingga sejauh 250 km.

Gambar 9. Profil penerbangan roket-roket Falcon 9 Full Thrust secara umum. Setelah separasi di ketinggian 80 km, lowerstage Falcon 9 Full Thrust bermanuver mengubah arah dan mengerem kecepatannya untuk bisa mendarat kembali di Bumi dengan selamat agar kelak bisa digunakan kembali. Sementara upperstage Falcon 9 Full Thrust hanya sekali pakai mendorong muatannya ke orbit tujuan, setelah itu berubah menjadi sampah antariksa. Sumber: SpaceX, 2015.

Gambar 9. Profil penerbangan roket-roket Falcon 9 Full Thrust secara umum. Setelah separasi di ketinggian 80 km, lowerstage Falcon 9 Full Thrust bermanuver mengubah arah dan mengerem kecepatannya untuk bisa mendarat kembali di Bumi dengan selamat agar kelak bisa digunakan kembali. Sementara upperstage Falcon 9 Full Thrust hanya sekali pakai mendorong muatannya ke orbit tujuan, setelah itu berubah menjadi sampah antariksa. Sumber: SpaceX, 2015.

Peristiwa Sumenep merupakan jatuhnya sisa-sisa upperstage roket Falcon 9 Full Thrust penerbangan 28. Roket Falcon 9 Full Thrust (FT), atau resminya bernama Falcon 9 v1.2, merupakan kuda beban perusahaan swasta Space Exploration Technologies yang lebih dikenal dengan nama SpaceX. Roket ini menggamit perhatian dunia penerbangan antariksa masakini seiring inovasinya. Yang paling menonjol adalah upaya penggunaan-berulang roket ini, setidaknya sebagian diantaranya. Dengan penggunaan-berulang maka ongkos penerbangan antariksa bisa ditekan cukup drastis, mengingat secara teknis pengguna tinggal mengganti biaya bahan bakar-pengoksid dan biaya-biaya ujicoba teknis. Berbeda dengan roket-roket klasik, dimana selain biaya tersebut pengguna masih dibebani ongkos pembangunan roket yang selangit mahalnya. Sebab roket-roket klasik hanyalah sekali pakai untuk kemudian dibuang tanpa bisa dipergunakan lagi.

Gambar 10. Rekaman video telemetri saat-saat roket Falcon 9 Full Thrust penerbangan 28 mengangkasa pada 14 Agustus 2016 TU silam, yang mengantar muatan satelit komunikasi JCSAT-16 ke orbit geostasioner. Kiri: lowerstage Falcon 9 Full Thrust saat sedang mengurangi kecepatan di ketinggian menggunakan 3 dari 9 mesin roketnya. Nampak salah satu dari 4 sirip berongganya sedang bekerja menyetabilkan badan roket secara aerodinamis. Kanan: mesin roket upperstage Falcon 9 Full Thrust menyala penuh mendorong muatannya. Upperstage inilah yang jatuh dalam peristiwa Sumenep 44 hari pasca lepas landas. Sumber: SpaceX, 2016.

Gambar 10. Rekaman video telemetri saat-saat roket Falcon 9 Full Thrust penerbangan 28 mengangkasa pada 14 Agustus 2016 TU silam, yang mengantar muatan satelit komunikasi JCSAT-16 ke orbit geostasioner. Kiri: lowerstage Falcon 9 Full Thrust saat sedang mengurangi kecepatan di ketinggian menggunakan 3 dari 9 mesin roketnya. Nampak salah satu dari 4 sirip berongganya sedang bekerja menyetabilkan badan roket secara aerodinamis. Kanan: mesin roket upperstage Falcon 9 Full Thrust menyala penuh mendorong muatannya. Upperstage inilah yang jatuh dalam peristiwa Sumenep 44 hari pasca lepas landas. Sumber: SpaceX, 2016.

Roket Falcon 9 Full Thrust merupakan roket bertingkat dua (dua tahap) setinggi 70 meter dan berdiameter 3,66 meter yang tidak menggunakan roket-bantu pendorong (booster). Berbobot 549 ton pada saat diluncurkan, Falcon 9 Full Thrust mampu mengantar muatan ke manapun dengan bobot maksimal 22,8 ton untuk orbit rendah dan 8,3 ton untuk orbit geostasioner. Tingkat pertama atau lowerstage Falcon 9 Full Thrust merupakan bagian yang dapat digunakan-berulang. Ia memiliki tinggi 41,2 meter dan bobot 409,5 ton dalam keadaan terisi penuh bahan bakar dan pengoksid. Bahan bakarnya adalah RP-1 atau kerosene (minyak tanah), sementara pengoksidnya berupa Oksigen cair. Di pantatnya terpasang 9 mesin roket Merlin pada  konfigurasi oktaweb. Lowerstage Falcon 9 Full Thrust juga membawa gas Nitrogen dingin yang mencukupi untuk keperluan manuver di antariksa,  4 sirip berongga sebagai perlengkapan kendali permukaan dan sistem pendaratan berwujud 4 kaki pendarat.

Saat lepas landas, roket Falcon 9 Full Thrust  terbang dengan kecepatan penuh hingga menjangkau ketinggian 80 kmdengan kecepatan 13.000 km/jam sebelum kemudian mengalami pemisahan (separasi) antara lowerstage dengan upperstage. Lowerstage Falcon 9 Full Thrust lantas terbang hingga ketinggian 140 km sebelum kemudian mesinnya dimatikan. Selanjutnya ia bermanuver agar posisinya berubah menuju titik pendaratan. Saat lowerstage Falcon 9 Full Thrust kemudian tiba di ketinggian 70 km, 3 dari 9 mesin roketnya kembali dinyalakan. Kali ini mengemban tugas sebagai retro roket untuk mengerem.  Dengan demikian kecepatannya pun berkurang dari semula 4.700 km/jam menjadi 900 km/jam. Dari titik itu giliran 4 sirip berongga mengambil alih kendali selagi ketinggian lowerstage Falcon 9 Full Thrust kian menurun, demikian pula kecepatannya. Sirip-sirip itu memastikannya tetap stabil, layaknya layang-layang raksasa selama perjalanan menuruni lapisan-lapisan udara yang lebih rendah dan padat. Barulah setelah mendekati titik pendaratannya, 1 dari 9 mesin roketnya kembali dinyalakan untuk memperlambat. Beberapa detik kemudian 4 kaki pendaratnya pun direntangkan. Sehingga lowerstage Falcon 9 Full Thrust akan mendarat secara vertikal dengan kecepatan pendaratan hanya 7 km/jam.  Seluruh prosesn ini terjadi tak lebih dari 10 menit pasca lepas landas.

Gambar 11. Gambaran artis upperstage Falcon 9 Full Thrust saat mendorong muatan satelit komunikasinya. Berbeda dengan lowerstagenya, upperstage Falcon 9 Full Thrust hanya sekali pakai untuk kemudian dibuang. Sumber: SpaceX, 2016.

Gambar 11. Gambaran artis upperstage Falcon 9 Full Thrust saat mendorong muatan satelit komunikasinya. Berbeda dengan lowerstagenya, upperstage Falcon 9 Full Thrust hanya sekali pakai untuk kemudian dibuang. Sumber: SpaceX, 2016.

Sebaliknya tingkat kedua atau upperstage Falcon 9 Full Thrust hanyalah sekali pakai, tidak bisa digunakan berulang. Ia ditenagai oleh bahan bakar dan pengoksid yang sama dengan lowerstage Falcon 9 Full Thrust, namun hanya memiliki 1 mesin roket dipantatnya yang juga bisa dinyalakan ulang kala terbang. Beberapa detik setelah separasi, mesin roket ini dinyalakan sehingga upperstage Falcon 9 Full Thrust akan mendorong muatannya menuju ke orbit parkir di dekat orbit tujuan. Begitu tugasnya selesai, maka muatan pun dilepas dan upperstage Falcon 9 Full Thrust berubah menjadi sampah antariksa. Bergantung kepada orbit parkir muatannya, sampah antariksa ini bisa bertahan berminggu-minggu hingga berbulan-bulan di langit sebelum kemudian masuk-kembali ke atmosfer dan jatuh ke Bumi. Praktik ini sejatinya umum dilakukan dalam industri penerbangan antariksa, jadi tidak terbatas hanya pada SpaceX saja.

Referensi.

Joseph Remis. 2016. komunikasi personal.

TS Kelso. 2016. Two Line Element: Object 41730 in NORAD. komunikasi personal.

Thomas Djamaluddin. 2016. komunikasi personal.

Elka Firmanda. 2016. komunikasi personal.

Spaceflight101.com. Falcon 9 FT (Falcon 9 v1.2).

McLaughlan & Grimes-Ledesma. 2011. Composite Overwrapped Pressure Vessel, A Primer. Lyndon B. Johnson Space Center, NASA

Detik-Detik Terakhir Satelit GOCE

Satelit penyelidik medan gravitasi Bumi pada ketelitian yang belum pernah dijumpai sebelumnya yang bertajuk GOCE (Gravity-field and steady-state Ocean Circulation Explorer) akhirnya purna dari tugasnya setelah lebih dari empat tahun mengangkasa. US Strategic Command merilis GOCE memasuki lapisan atmosfer yang lebih padat (atmospheric reentry) di atas Samudera Atlantik selatan di sekitar Kepulauan Falklands (Inggris) pada Senin 11 November 2013 pukul 00:16 UTC +/- 1 menit, atau pukul 07:16 waktu Indonesia (WIB) +/- 1 menit kala ketinggiannya telah menembus batas 80 kilometer dari paras air laut. Kejatuhan satelit GOCE sempat diabadikan Bill Chater di Falklands timur sekitar pukul 09:20 waktu setempat (00:20 UTC) lewat kamera dan videonya.

Gambar 1. Bangkai satelit GOCE melintas, memijar dan terpecah-belah di langit senja Kepulauan Falklands pada saat kejatuhannya, diabadikan oleh Bill Chater. Sumber: Chater, 2013.

Gambar 1. Bangkai satelit GOCE melintas, memijar dan terpecah-belah di langit senja Kepulauan Falklands pada saat kejatuhannya, diabadikan oleh Bill Chater. Sumber: Chater, 2013.

Citra hasil bidikan kamera lantas diunggahnya ke media sosial, namun tidak demikian dengan rekaman videonya seiring terbatasnya akses internet di Falklands. Dalam citra tersebut GOCE terlihat melintas dari selatan ke utara, awalnya sebagai bintik cahaya terang yang melesat cepat dan menghasilkan bentukan mirip ekor di langit senja Falklands. Tak lama berselang GOCE terpecah dalam dua bagian besar dan lalu terpecah-pecah kembali menjadi kepingan-kepingan yang lebih kecil. Bila ada bagian-bagian GOCE yang masih tersisa setelah menembus atmosfer, nampaknya semuanya jatuh tercebur ke Samudera Atlantik.

Ferrari

Jatuhnya GOCE memang kian menambah panjang daftar benda-benda angkasa buatan manusia yang berjatuhan tanpa terkontrol (uncontrolled reentry). Beberapa diantaranya sempat menimbulkan ancaman terhadap kualitas kehidupan manusia. Misalnya jatuhnya bangkai satelit mata-mata Kosmos 954 (Uni Soviet) di Canada pada 21 Januari 1978 yang menghamburkan bahan radioaktif Uranium-235 dari reaktornya dan mencemari lintasan sepanjang sekitar 600 kilometer. Pun jatuhnya bangkai stasiun antariksa Skylab (AS) pada 11 Juli 1979 di sekitar kota Esperance, Balladonia dan Rawlina (Australia). Demikian pula jatuhnya bangkai stasiun antariksa Salyut 7 (Uni Soviet) di kota kecil Capitan Bermudez, 400 kilometer dari Buenos Aires (Argentina) pada 7 Februari 1991. Namun begitu tulisan ini tak bertujuan untuk mengupas dampak sampah antariksa yang berjatuhan ke Bumi, melainkan pada bagaimana proses tersebut terjadi. Dan proses jatuhnya GOCE memberikan kesempatan unik yang menambah pengetahuan kita tentang bagaimana proses jatuhnya sebuah sampah antariksa yang dikendalikan.

Gambar 2. Salah satu frame video rekaman jatuhnya bangkai satelit GOCE, diabadikan oleh Bill Chater. Nampak jejak asap mirip jejak kondensasi (contrail) di sepanjang lintasan GOCE. Sumber: Chater, 2013.

Gambar 2. Salah satu frame video rekaman jatuhnya bangkai satelit GOCE, diabadikan oleh Bill Chater. Nampak jejak asap mirip jejak kondensasi (contrail) di sepanjang lintasan GOCE. Sumber: Chater, 2013.

GOCE adalah satelit unik. Agar bisa memetakan medan gravitasi Bumi dalam resolusi yang dikehendaki (yakni kurang dari 100 kilometer), maka satelit ini harus mengorbit Bumi pada ketinggian kurang dari 270 kilometer terhadap paras air laut rata-rata. Dengan begitu orbit GOCE jauh lebih rendah dibanding satelit-satelit orbit rendah pada umumnya. Di sisi lain, pembatasan tersebut membuat satelit GOCE bakal mengalami gaya hambat lebih besar karena berada di lingkungan yang molekul-molekul udaranya lebih padat dibanding orbit lebih tinggi. Pada saat yang sama ketinggian satelit GOCE bakal berfluktuasi sedikit mengikuti dinamika konsentrasi massa di bagian Bumi yang sedang dilintasinya. Kedua tantangan berbeda itu membuat badan antariksa Eropa (ESA) merancang satelit GOCE dengan struktur yang aerodinamis, sehingga berbentuk panjang, ramping, bersayap (panel surya) dengan tonjolan permukaan yang minimal. Struktur aerodinamis ini membuat gaya gesek molekul-molekul udara yang dialami GOCE pun minim. Sedangkan untuk mengompensasi penurunan ketinggian (akibat penurunan kecepatan oleh gaya gesek molekul-molekul udara) dan fluktuasi ketinggian akibat distribusi konsentrasi massa bagian Bumi yang tak merata, maka satelit GOCE dilengkapi mesin ion dengan Xenon sebagai bahan bakarnya. Untuk itu satelit GOCE membawa hingga 40 kilogram Xenon yang dikenal ramah lingkungan. Desain yang futuristik dengan bahan bakar yang tak kalah futuristiknya membuat satelit GOCE pun dijuluki ‘satelit Ferrari’.

Gambar 3. Gambaran artis tentang dimensi satelit GOCE saat masih bekerja di orbit operasionalnya dan sedang menyalakan salah satu dari sepasang mesin ion-nya. Struktur dan bahan bakar satelit yang futuristis membuat GOCE dijuluki satelit Ferrari. Sumber: ESA, 2013.

Gambar 3. Gambaran artis tentang dimensi satelit GOCE saat masih bekerja di orbit operasionalnya dan sedang menyalakan salah satu dari sepasang mesin ion-nya. Struktur dan bahan bakar satelit yang futuristis membuat GOCE dijuluki satelit Ferrari. Sumber: ESA, 2013.

Setelah mengangkasa semenjak 17 Maret 2009, satelit GOCE kehabisan bahan bakar Xenon-nya pada 18 Oktober 2013 lalu sehingga dalam tiga hari kemudian ESA mendeklarasikan berakhirnya misi GOCE. Praktis setelah itu satelit GOCE pun menyandang status sampah antariksa. Namun satelit GOCE masih tetap aktif hingga saat-saat terakhir kehidupannya, berbeda dengan satelit-satelit lainnya yang pernah berstatus serupa dan telah mati jauh hari sebelumnya. Maka peluang unik pun tercipta dalam memahami lebih lanjut proses jatuhnya sampah antariksa yang tak terkontrol.

Unik

Pada saat diluncurkan, awalnya satelit GOCE berada di orbit setinggi 280 kilometer untuk kemudian berangsur-angsur diturunkan ke orbit operasional di ketinggian 260 kilometer yang bertahan hingga hampir tiga tahun kemudian. Pertengahan 2012, untuk mengantisipasi habisnya bahan bakar, satelit GOCE pun diturunkan lagi secara gradual hingga akhirnya berada di ketinggian 223 kilometer yang terus bertahan hingga 18 Oktober 2013. Meski menderita gaya gesek lebih besar, yakni hingga mendekati 8 mN (miliNewton) ketimbang saat berada di orbit 260 kilometer yang lebih kecil yakni antara 2 hingga 4 mN, namun pada orbit 223 kilometer ini seluruh instrumen GOCE masih tetap bekerja normal.

Begitu satelit GOCE kehabisan bahan bakarnya, ketinggiannya pun menurun drastis meski semua instrumennya tetap bekerja normal. Observasi awal menunjukkan meskipun ketinggiannya mulai menurun, namun dengan bentuknya yang aerodinamis maka GOCE tetap stabil dalam sikapnya. Sehingga komunikasi dan telemetri data tetap berlangsung dengan baik. Situasi berubah semenjak 9 November 2013, saat gaya gesek yang diderita satelit ini telah melampaui 90 mN. Gaya gesek yang kian meninggi membuat akselerometer GOCE tersaturasi yang membuat kinerja Electrostatic Gravity Gradiometer terganggu. Maka instrumen utama GOCE ini pun dimatikan sejak 10 November 2013. Saat itu satelit GOCE telah kian menurun dengan ketinggian tinggal 133 kilometer (pukul 15:30 UTC) dengan orbit telah berubah menjadi 131 x 142 kilometer. GOCE mengalami penurunan ketinggian hingga 1,5 kilometer/jam namun dengan sikap (attitude) yang stabil sehingga instrumen GPS-nya tetap berfungsi dengan baik.

Gambar 4. Satelit GOCE diabadikan dari muka Bumi oleh Ralf Vandebergh (Belanda) dengan teleskop dan kamera khusus pada 22 September 2013, sebulan sebelum misinya dinyatakan berakhir (atas dan bawah), dibandingkan dengan gambaran artis ESA mengenai satelit tersebut (tengah). Garis kuning menunjukkan posisi sayap GOCE.Sumber: Vandebergh, 2013.

Gambar 4. Satelit GOCE diabadikan dari muka Bumi oleh Ralf Vandebergh (Belanda) dengan teleskop dan kamera khusus pada 22 September 2013, sebulan sebelum misinya dinyatakan berakhir (atas dan bawah), dibandingkan dengan gambaran artis ESA mengenai satelit tersebut (tengah). Garis kuning menunjukkan posisi sayap GOCE.Sumber: Vandebergh, 2013.

Pada pukul 17:30 UTC satelit GOCE masih tetap menjalin komunikasi dengan stasiun bumi Kiruna meskipun ketinggiannya kian merosot dan sudah menembus batas 130 kilometer. Imbas dari lapisan udara yang lebih padat mulai dirasakan dengan naiknya suhu komputer dan baterei menjadi 45 derajat Celcius. Pukul 19:50 UTC satelit GOCE kembali menjalin komunikasi, kali ini dengan stasiun bumi Troll (Antartika) dan melaporkan ketinggiannya tinggal 126 kilometer dan kian memanas sehingga suhu baterei dan komputernya melonjak ke 54 derajat Celcius. Komunikasi dengan Troll kembali berulang pada pukul 21:26 UTC, saat satelit GOCE tinggal setinggi 122 kilometer dengan suhu baterei dan komputernya terus meningkat hingga 64 sebesar derajat Celcius. Komunikasi terakhir berlangsung pukul 22:42 UTC saat satelit telah menempati orbit baru 118 x 127 kilometer dengan suhu komputer setinggi 80 derajat Celcius sementara suhu batereinya 84 derajat Celcius.

Pasca komunikasi terakhir ini satelit masih beredar mengelilingi Bumi sekali lagi dengan orbit kian menurun, kini tinggal 109 x 121 kilometer. Lintasan terakhir ini melewati Indonesia dari arah timur-timur laut menuju barat-barat daya, tepatnya melintas di atas Selat Makassar berdekatan dengan garis pantai pulau Kalimantan, Laut Flores dan pulau Lombok. Sempat muncul dugaan ia akan jatuh di wilayah Indonesia, mengingat ESA sempat memprediksi titik kejatuhan satelit ini di selatan pulau Lombok. Namun rupanya satelit GOCE masih tetap melaju tanpa terganggu dan lantas menyusuri Samudera Hindia sebelah barat Australia hingga Antartika. Pantauan radar US Strategic Command menunjukkan akhirnya satelit GOCE benar-benar jatuh pada pukul 00:16 UTC dengan mengambil lokasi di dekat Kepulauan Falklands, ujung selatan benua Amerika. Pada saat itu ketinggiannya telah merosot jauh hingga tinggal 80 kilometer, yang membuatnya tak sanggup bertahan lagi.

Pelajaran

Jatuhnya bangkai satelit buatan yang tak terkontrol telah dikenal semenjak fajar abad antariksa, tepatnya semenjak satelit buatan pertama yakni Sputnik-1 jatuh dalam waktu tiga bulan setelah mengangkasa. Namun sayangnya bagaimana kejadiannya dan faktor-faktor yang mengontrolnya masih belum bisa diketahui dengan pasti. Pada dasarnya kita baru bisa mengetahui dimana lokasi jatuhnya sebuah satelit buatan yang tak terkontrol hanya dalam menit-menit terakhir. Dengan kian meningkatnya aktivitas pengiriman armada satelit-satelit buatan ke orbit Bumi yang berujung pada kian membengkaknya jumlah sampah antariksa yang bertebaran di atas sana, situasinya pun kian mengkhawatirkan mengingat pada umumnya tak seluruh bagian satelit buatan tersebut yang hancur menguap di atmosfer. Bagian-bagian yang tahan panas umumnya akan bertahan dan jatuh mencium paras Bumi dengan kecepatan tertentu. Selain potensi kerusakan bangunan/benda yang dikenai tumbukannya, potensi cemaran lingkungan akibat eksistensi bahan toksik (seperti hidrazin) ataupun bahan radioaktif tertentu pun terbuka. Belum lagi bagaimana interaksi keping-keping satelit buatan yang jatuh dengan penerbangan komersial seperti diperlihatkan kasus Airbus A340 LAN Airlines (Chile) berpenumpang 270 orang yang hampir bertabrakan dengan keping-keping satelit mata-mata Russia di atas Samudera Pasifik pada 27 Maret 2007 saat menerbangi rute Santiago (Chile) – Auckland (Selandia Baru).

Gambar 5. Titik jatuhnya satelit GOCE di dekat Kepulauan Falklands (kiri) dan lintasan terakhirnya di atas Indonesia berdasarkan data TLE (two-line element) GOCE epoch 10 November 2013 23:03 UTC (kanan). Sumber; Sudibyo, 2013 berdasarkan data USSTRATCOM dan ESA, 2013.

Gambar 5. Titik jatuhnya satelit GOCE di dekat Kepulauan Falklands (kiri) dan lintasan terakhirnya di atas Indonesia berdasarkan data TLE (two-line element) GOCE epoch 10 November 2013 23:03 UTC (kanan). Sumber; Sudibyo, 2013 berdasarkan data USSTRATCOM dan ESA, 2013.

Jatuhnya satelit GOCE membuat kita selangkah lebih maju dalam memahami proses tersebut. Kini kita tahu pemanasan akibat gaya gesek satelit dengan udara mulai dirasakan pada ketinggian sekitar 130 kilometer. Kini kita pun tahu bahwa jika satelit memiliki bentuk yang aerodinamik, maka sikapnya akan tetap stabil sehingga telemetri data bisa terus berlangsung. Dan kini kita pun tahu bahwa satelit yang aerodinamik masih tetap bertahan meskipun telah menembus batas ketinggian 122 kilometer, batas yang selama ini diyakini sebagai titik awal proses jatuhnya satelit buatan.

Catatan: juga ditulis di langitselatan.

Lintasan Bangkai Satelit GOCE di atas Indonesia pada 10-11 November 2013

Seperti diketahui, satelit penyelidik Bumi bernama GOCE (Gravity field and steady-state Ocean Circulation Explorer) telah berakhir masa tugasnya dan berubah menjadi bangkai satelit mulai 21 Oktober 2013 lalu seiring habisnya bahan bakar Xenon-nya. Semenjak itu orbit bangsa satelit ini mulai berubah secara gradual dan terus menurun dari hari ke hari sehingga bakal segera jatuh ke paras Bumi dalam waktu dekat. Karena tak dirancang untuk menjalani penjatuhan terkendali, maka kapan dan dimana bangkai satelit ini bakal jatuh menjadi sangat sulit diprediksi. Paling tidak baru dalam 24 jam sebelum kejadiannya, barulah titik kejatuhannya bisa diprediksi dengan lebih baik.

Gambar 1. Sebuah bangkai satelit dalam tahap awal kejatuhannya, nampak pijaran api terang menyala laksana meteor. Sumber: NASA/ESA, 2013.

Gambar 1. Sebuah bangkai satelit dalam tahap awal kejatuhannya, nampak pijaran api terang menyala laksana meteor. Sumber: NASA/ESA, 2013.

Sebuah satelit buatan yang mengorbit Bumi senantiasa memiliki mesin roket internal untuk beragam keperluan, mulai dari kendali sikap hingga menjaga ketinggian orbitnya tetap stabil. Pada umumnya mesin roket tersebut merupakan mesin konvensional dengan bahan bakar hidrazin yang dikenal sangat beracun dan bisa menyebabkan kematian bila seseorang terpapar, meski dalam jumlah kecil. Hidrazin inilah yang membuat peristiwa jatuhnya sebuah bangkai satelit menjadi cukup berbahaya bagi manusia, terutama bila ada bagian yang masih tersisa dan menumbuk paras Bumi setelah menembus atmosfer sehingga potensi kontaminasi lingkungan oleh hidrazin terbuka lebar. Untungnya bangkai satelit GOCE tidak demikian. Ia menggunakan mesin roket futuristis yakni mesin ion yang ditenagai bahan bakar eksotik yang tak kalah futuristis-nya, yakni Xenon. Dan tak seperti hidrazin, Xenon tidak bersifat racun. Sebagai unsur anggota golongan gas mulia, Xenon dikenal sangat sulit bereaksi dengan substansi lain terkecuali dalam kondisi khusus yang sangat sulit terjadi secara alamiah. Karena itu tak ada bahaya peracunan dari bangkai GOCE.

Dalam persepsi umum, jatuhnya sebuah bangkai satelit ke paras Bumi adalah sangat mengerikan. Namun sesungguhnya tidak demikian. Saat bangkai satelit berjuang menembus atmosfer Bumi, ia akan mengalami nasib serupa dengan meteoroid. Melejit pada kecepatan yang sangat tinggi (yakni lebih dari 8 kilometer/detik), bangkai satelit akan terpanaskan hebat dan terpecah-belah menampilkan panorama mirip meteor di langit. Namun begitu tetap tersisa bagian-bagian yang tahan panas sehingga mampu bertahan dan selanjutnya bakal mencium Bumi dengan kecepatan masih terhitung tinggi, sekitar 100 meter/detik atau lebih. Bangkai satelit GOCE pun bakal demikian. Dengan massa 1 ton lebih, diperkirakan ada sekitar 250 kilogram bagian GOCE yang tetap bertahan kala menembus atmosfer dalam wujud kepingan-kepingan sebanyak setidaknya 50 keping, sehingga setiap keping bermassa rata-rata 5 kilogram. Dengan menerapkan persamaan energi kinetik, maka kita akan mendapatkan energi tumbuk rata-rata tiap keping ke paras Bumi sebesar 25 kiloJoule. Energi ini setara dengan yang terkandung dalam 6 gram bahan peledak, sehingga cukup mampu mengagetkan manusia namun masih jauh dari cukup guna menghancurkan bangunan. Jadi hantaman tiap keping bangkai GOCE mungkin bisa disetarakan dengan ledakan sebutir petasan besar. Maka sepanjang tidak menghantam tubuh manusia secara langsung, sejatinya potensi kerusakan akibat jatuhnya keping-keping bangkai GOCE adalah kecil.

Gambar 2. Bangkai satelit saat kejatuhannya dalam tahap lebih kemudian, nampak pijaran api telah berubah menjadi hamburan keping-keping berpijar laksana semburan debu menyala-nyala. Kecuali bagian yang tahan panas, seluruh keping berpijar ini bakal musnah di atmosfer Bumi. Sumber: NASA/ESA, 2013.

Gambar 2. Bangkai satelit saat kejatuhannya dalam tahap lebih kemudian, nampak pijaran api telah berubah menjadi hamburan keping-keping berpijar laksana semburan debu menyala-nyala. Kecuali bagian yang tahan panas, seluruh keping berpijar ini bakal musnah di atmosfer Bumi. Sumber: NASA/ESA, 2013.

Indonesia

Berdasarkan data TLE (two line element) GOCE hasil observasi terhadap bangkai satelit ini hingga 8 November 2013, maka Corbellini memperkirakan bangkai GOCE bakal memasuki lapisan atmosfer pada titik setinggi 120 kilometer dari paras Bumi pada 10 November 2013 pukul 18:42 WIB, namun dengan ketidakpastian hingga 20 jam. Sehingga bangkai GOCE pada galibnya dapat memasuki titik tersebut dalam rentang waktu kapan saja di antara Sabtu 9 November 2013 pukul 22:42 WIB hingga Senin 11 November 2013 pukul 07:42 WIB. Pada 10 November 2013 pukul 18:42 WIB, bangkai GOCE akan berposisi di atas koordinat 64,4 LU 105 BT yang secara geografis terletak di pedalaman Rusia bagian tengah. Namun dengan ketidakpastian yang masih merentang hingga 20 jam, pada dasarnya bangkai GOCE dapat jatuh dimana saja di antara garis lintang 83,5 LU (dekat kutub utara) hingga 83,5 LS (dekat kutub selatan).

Bagaimana dengan Indonesia? Sepanjang rentang waktu 9 November 2013 22:42 WIB hingga 11 November 2013 07:42 WIB, bangkai GOCE akan lewat di atas Indonesia hingga tujuh kali. Setiap perlintasan hanya berlangsung dalam waktu 5-6 menit. Pada dasarnya hanya di titik-titik yang berada di dalam lintasan inilah bangkai GOCE berpeluang jatuh di Indonesia. Beberapa kota penting yang dilintasinya adalah Ambon (Maluku) pada 10 November 2013 pagi, Samarinda (Kalimantan Timur) dan Denpasar (Bali) pada 11 November 2013 pagi masing-masing hanya berselisih 2 menit, serta Gorontalo (Gorontalo) pada 10 November 2013 malam. Berikut petanya.

Gambar 4. Peta lintasan bangkai GOCE di atas Indonesia pada 10 hingga 11 November 2013 pagi berdasarkan TLE GOCE 8 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis merah. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya "10/11/2013; 5:58" berarti lintasan dimulai pada 10  November 2013 pukul 05:58 WIB di titik utara (garis lintang 10 LU) dan berakhir di titik selatan (garis lintang 12 LS) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 3. Peta lintasan bangkai GOCE di atas Indonesia pada 10 hingga 11 November 2013 pagi berdasarkan TLE GOCE 8 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis merah. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya “10/11/2013; 5:58” berarti lintasan dimulai pada 10 November 2013 pukul 05:58 WIB di titik utara (garis lintang 10 LU) dan berakhir di titik selatan (garis lintang 12 LS) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

z

Gambar 5. Peta lintasan bangkai GOCE di atas Indonesia pada 10 November 2013 malam berdasarkan TLE GOCE 8 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis biru. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya "10/11/2013; 19:50" berarti lintasan dimulai pada 10  November 2013 pukul 19:50 WIB di titik selatan (garis lintang 12 LS) dan berakhir di titik utara (garis lintang 10 LU) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 5. Peta lintasan bangkai GOCE di atas Indonesia pada 10 November 2013 malam berdasarkan TLE GOCE 8 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis biru. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya “10/11/2013; 19:50” berarti lintasan dimulai pada 10 November 2013 pukul 19:50 WIB di titik selatan (garis lintang 12 LS) dan berakhir di titik utara (garis lintang 10 LU) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Catatan : peta dibuat berdasarkan data TLE (two-line element) bangkai GOCE per 8 November 2013. Seiring waktu, maka prediksi lintasan bangkai satelit GOCE dengan data TLE baru bakal bergeser sedikit di sebelah barat/timur dari prediksi lintasan yang disajikan dalam peta ini.

(Satelit) “Gravity” Bersiap Mencium Bumi

Sudah nonton film “Gravity”? Jika belum, silahkan pergi ke bioskop terdekat dan tontonlah film fiksi ilmiah menarik yang dibintangi aktris senior Sandra Bullock dan George Clooney ini. Singkatnya, “Gravity” adalah film psikologis yang berkisah akan perjuangan hidup mati sepasang astronot kala bertugas memperbaiki teleskop antariksa Hubble namun mendadak menjumpai dirinya harus terkatung-katung di langit seiring rusaknya pesawat ulang alik mereka akibat gempuran sampah antariksa. Kehilangan jalur komunikasi dengan Bumi, mereka melayang ke stasiun antariksa terdekat, yakni stasiun antariksa internasional (ISS), dengan harapan bisa mendapat tumpangan pulang. Apa lacur, ISS ikut rusak oleh gempuran sampah antariksa dan sekoci antariksanya, yakni wahana Soyuz, telah penuh dimuati astronot lain. Sementara sekoci satunya lagi rusak sebagian sehingga tak bisa dipakai mendarat ke Bumi, namun masih berfungsi untuk pergi ke stasiun antariksa Cina: Tiangong. Dan beruntung Tiangong masih menggandeng wahana Shenzou yang bisa digunakan sebagai sekoci. Dengan Shenzou inilah Dr. Stone (diperankan Sandra Bullock) kembali lagi ke Bumi meski harus mendarat di danau terpencil di pedalaman Asia.

Geodesi

Meski baru dirilis awal Oktober 2013, “Gravity” sontak mendunia dan mencatatkan diri dalam box office. Film ini mencatatkan pendapatan hingga sebesar US $ 368,8 juta dalam tempo sebulan saja dan melampaui biaya pembuatannya yang ‘hanya’ US $ 100 juta. Meski lebih merupakan film psikologis yang menekankan perjuangan manusia untuk bertahan hidup dan tetap tabah di tengah kerasnya semesta pasca sebuah bencana, “Gravity” memberikan perspektif baru terkait potensi bahaya yang menghadang manusia kala terbang ke langit, yakni sampah antariksa. Ironisnya, sampah antariksa terjadi akibat ulah manusia pula khususnya dalam setengah abad terakhir yang gemar mengirim beraneka ragam satelit dan wahana antariksa lainnya ke langit, terutama ke lingkungan dekat Bumi, namun enggan memikirkan bagaimana membuang bangkainya saat usia pakainya sudah habis.

Gambar 1. Gambaran artis saat satelit GOCE bertugas di orbitnya dan sedang menyalakan salah satu dari kedua mesin ionnya. Sumber: Spaceflight101.com, 2013.

Gambar 1. Gambaran artis saat satelit GOCE bertugas di orbitnya dan sedang menyalakan salah satu dari kedua mesin ionnya. Sumber: Spaceflight101.com, 2013.

Entah kebetulan atau tidak, bersamaan dengan melambungnya “Gravity”, sebuah satelit yang menyandang namanya telah menjadi sampah antariksa dan sedang bersiap untuk jatuh dari langit. Satelit itu bernama lengkap GOCE, akronim dari Gravity-field and steady-state Ocean Circulation Explorer. Penyelidik medan gravitasi Bumi dengan akurasi yang belum pernah dicapai program antariksa lainnya ini tak bisa lagi dikendalikan manusia setelah kehabisan bahan bakar Xenon-nya semenjak 21 Oktober 2013 lalu. Dan karena mengorbit Bumi pada ketinggian cukup rendah dibanding satelit-satelit orbit rendah lainnya, maka tak butuh waktu lama baginya untuk kembali jatuh ke Bumi. Saat ini diprediksikan bahwa GOCE bakal memasuki bagian atmosfer Bumi yang lebih padat pada 8 November 2013 mendatang dan seperempat bagian GOCE bakal tetap utuh untuk kemudian jatuh mencium permukaan Bumi.

Satelit GOCE dibangun badan antariksa Eropa (ESA) dengan tujuan untuk menyelidiki medan gravitasi Bumi dalam lingkup global pada akurasi yang tak pernah diperoleh sebelumnya. GOCE dilengkapi dengan instrumen gradiometer dan pemantul laser guna memetakan medan gravitasi hingga tingkat akurasi 1 miliGal (0,00001 g, g = percepatan gravitasi Bumi rata-rata) pada resolusi spasial kurang dari 100 km. Selain itu GOCE juga bertujuan untuk membantu menentukan model geoid, yakni model bentuk Bumi yang khas dengan mendasarkan pada permukaan laut rata-rata, dengan tingkat akurasi hingga 1 atau 2 cm, juga pada resolusi spasial kurang dari 100 km. Dengan tujuan seperti itu jelas bahwa GOCE adalah satelit geodesi yang bakal membantu kita memahami dinamika interior Bumi dengan lebih baik khususnya yang terkait lapisan litosfer dan selubung (mantel) Bumi. Misalnya komposisi selubung serta proses subduksi dan pengangkatan (uplift) lempeng-lempeng tektonik. Selain itu GOCE juga bakal membantu kita lebih memahami dinamika arus laut global dan ketebalan lembaran-lembaran es di kutub berikut pergerakannya.

GOCE dirakit oleh perusahaan Thales AleniaSpace dan EADS Astrium dalam bentuk tabung sepanjang 5,3 meter yang dilengkapi sayap-sayap panel surya sehingga lebarnya 2,3 meter. Panel surya tersebut mampu memasok tenaga listrik hingga 1.600 watt. Secara keseluruhan GOCE berbobot 1.077 kilogram dan memuat 40 kilogram Xenon sebagai bahan bakar bagi mesin ion-nya. Untuk kepentingan komunikasi, GOCE memiliki kemampuan untuk mengirim data ke Bumi hingga 1,2 Mbit/detik dengan menggunakan frekuensi 2 GHz. Sebaliknya kemampuannya untuk menerima data dari pengendalinya di Bumi hanya maksimum 4 kbit/detik. Agar misinya berjalan dengan lancar, GOCE harus mengorbit Bumi pada di bawah ketinggian 270 kilometer. Ini jauh lebih rendah ketimbang ketinggian satelit-satelit orbit rendah lainnya yang umumnya antara 300 hingga 600 kilometer. Agar panel suryanya berfungsi maksimal, GOCE pun harus mengorbit Bumi dalam kondisi tersinkron dengan Matahari, sehingga terus mendapat pancaran sinarnya tanpa terputus. Pada ketinggian itu molekul-molekul udaranya masih lebih rapat ketimbang di ketinggian lebih dari 300 km. Akibatnya GOCE mengalami pergesekan dengan molekul-molekul udara lebih intensif dan terus-menerus sehingga kecepatannya terus berkurang, yang berimbas pada turunnya orbitnya. Karena itu GOCE harus menyalakan mesin ionnya secara teratur guna mempertahankan kecepatannya sehingga tetap bertahan di orbitnya. Sebagai konsekuensinya GOCE dirancang hanya bekerja efektif selama 20 bulan saja.

Jatuh

Gambar 2. Bumi mirip kentang, gambaran model geoid terkini berdasarkan data-data medan gravitasi Bumi hasil observasi satelit GOCE. Sumber: Spaceflight101.com, 2013.

Gambar 2. Bumi mirip kentang, gambaran model geoid terkini berdasarkan data-data medan gravitasi Bumi hasil observasi satelit GOCE. Sumber: Spaceflight101.com, 2013.

Pada kenyataannya satelit GOCE akhirnya diterbangkan melalui kosmodrom Plesetsk (Rusia) pada 17 Maret 2009 dengan digendong roket Rockot. GOCE lantas mengorbit Bumi dengan orbit setinggi antara 223 hingga 232 kilometer pada inklinasi (sudut antara bidang orbit GOCE dan bidang ekuator Bumi) sebesar 96,5 derajat sehingga tersinkron dengan Matahari. Dengan orbit tersebut, satelit ini mengelilingi Bumi setiap 89 menit sekali. Dan setiap 61 hari sekali satelit GOCE melintasi titik yang sama di muka Bumi. Dan berbeda dengan perencanaannya, satelit GOCE ternyata mampu bertahan hingga 55 bulan di orbitnya, atau dua kali lipat lebih lama dibanding rencananya. Sepanjang waktu itu GOCE berhasil memproduksi model medan gravitasi Bumi dalam lingkup global dan peta arus laut yang lebih detil. namun pencapaian GOCE yang paling mengesankan adalah keberhasilannya mendeteksi gelombang gempa akbar Jepang 11 Maret 2011 yang merambat ke udara pada kecepatan 300 hingga 1.500 meter/detik. Ini memberikan pemahaman baru tentang gempa sekaligus menjadikan GOCE sebagai seismometer pertama di antariksa.

Pada 18 Oktober 2013 ESA menyatakan bahan bakar Xenon di GOCE telah amat menipis sehingga tekanannya sudah turun di bawah batas 2,5 bar. Akibatnya mesin ion GOCE tak lagi mendapat suplai bahan bakar mencukupi. Maka dalam tiga hari berikutnya ESA pun mendeklarasikan berakhirnya tugas GOCE sehingga satelit itu berubah menjadi bangkai satelit, bagian dari sampah antariksa. Tanpa kerja mesin ion, bangkai GOCE kian melambat sehingga orbitnya terus menurun menuju lapisan-lapisan atmosfer yang lebih rendah dan lebih padat. Akibatnya gesekan yang dideritanya kian membesar sehingga penurunan kecepatannya kian meningkat yang berakibat pada kian intensifnya penurunan ketinggiannya. Jika ketinggian orbit bangkai GOCE telah menyentuh angka 120 km, maka gesekan udara spontan melonjak hebat sehingga ia bakal memasuki lapisan atmosfer yang lebih rendah dengan kecepatan tinggi sehingga berpijar membara layaknya meteor. Sebagian besar struktur bangkai GOCE bakal menguap, namun seperempat bagian diantaranya (dengan massa sekitar 250 kilogram) bakal tetap utuh dan mencium muka Bumi dalam 40 hingga 50 keping. Sehingga berat rata-rata tiap keping sampah antariksa yang diproduksinya antara 5 hingga 6 kilogram.

Sedihnya, karena tergolong peristiwa jatuhnya sampah antariksa yang tak terkendali (uncontrolled re-entry), maka kapan waktu kejatuhan bangkai GOCE dan dimana koordinat titik jatuhnya tak bisa diketahui secara pasti sejak dini, kecuali pada saat-saat terakhir. Kapan sebuah sampah antariksa bakal jatuh kembali ke Bumi memang sangat bergantung pada dinamika lapisan atmosfer, khususnya pada ketinggian lebih dari 120 kilometer. Secara umum dinamika itu bergantung kepada aktivitas Matahari. Sehingga kala aktivitas Matahari memuncak dalam setiap siklusnya maka jatuhnya sampah antariksa akan lebih cepat terjadi seiring mengembangnya lapisan atmosfer. Dan sebaliknya kala aktivitas Matahari minimal, maka sampah antariksa bakal lebih lambat jatuh karena atmosfer mengempis. Namun bagaimana sebenarnya faktor-faktor yang mempengaruhi jatuhnya sampah antariksa sehingga prediksi bisa dilakukan dengan ketelitian tinggi dari detik ke detik belum jelas benar. Sejauh ini prediksi lokasi jatuhnya sebuah sampah antariksa dengan tingkat ketelitian tinggi hanya bisa diperoleh dalam 24 jam sebelum sampah tersebut benar-benar jatuh.

Indonesia

Gambar 3. Sampah antariksa yang terpecah belah dan terbakar saat sedang menembus atmosfer Bumi yang lebih padat. Bangkai satelit GOCE pun bakal bernasib seperti ini. Namun seperempat bagiannya cukup tahan panas sehingga bakal tetap bertahan saat menembus atmosfer dan bakal jatuh mencium muka Bumi di titik kejatuhannya. Sumber: Spaceflight101.com, 2013.

Gambar 3. Sampah antariksa yang terpecah belah dan terbakar saat sedang menembus atmosfer Bumi yang lebih padat. Bangkai satelit GOCE pun bakal bernasib seperti ini. Namun seperempat bagiannya cukup tahan panas sehingga bakal tetap bertahan saat menembus atmosfer dan bakal jatuh mencium muka Bumi di titik kejatuhannya. Sumber: Spaceflight101.com, 2013.

Hal yang sama juga berlaku bagi bangkai GOCE. Kita bisa melihat bagaimana prediksi jatuhnya satelit ini benar-benar bervariasi dari waktu ke waktu. Pada 27 Oktober 2013, simulasi Simone Corbellini melalui elemen posisi satelit (TLE : two-line element) GOCE berdasarkan hasil pengamatan saat itu menunjukkan bangkai GOCE bakal jatuh per 8 November 2013 pukul 06:10 WIB dengan titik jatuh di Australia bagian tengah, namun dengan nilai ketidakpastian hingga 84 jam. Simulasi serupa dengan TLE hasil pengamatan hingga 29 Oktober 2013 menghasilkan prediksi berbeda, dimana bangkai GOCE diperkirakan bakal jatuh pada 10 November 2013 pukul 14:50 WIB di Rusia bagian utara, dengan ketidakpastian sedikit mengecil menjadi 78 jam. Dan prediksi terbaru di 1 November 2013, menggunakan data hasil pengamatan pada tanggal yang sama, menunjukkan bangkai GOCE mungkin bakal jatuh pada 8 November 2013 pukul 13:38 WIB di tengah-tengah Samudera Pasifik, dengan ketidakpastian lebih menyempit lagi menjadi 45 jam.

Jika menggunakan prediksi 1 November 2013 tersebut, maka bangkai GOCE berpotensi jatuh ke Bumi pada waktu kapan saja di antara 6 November 2013 16:38 WIB hingga 10 November 2013 03:38 WIB. Titik jatuhnya bangkai GOCE bisa terjadi dimanapun di muka Bumi yang terletak di antara garis lintang 83,LU (dekat kutub utara) hingga 83,5 LS (dekat kutub selatan), khususnya di titik-titik yang terletak di sepanjang lintasan satelit tersebut.

Bagaimana dengan Indonesia? Sepanjang rentang waktu itu, bangkai GOCE bakal melintas di atas Indonesia sebanyak 14 kali, dimulai pada 6 November 2013 pukul 1:37 WIB dan berakhir pada 9 November 2013 pukul 19:29 WIB. Setiap perlintasan hanya berlangsung dalam waktu 5-6 menit. maka pada hakikatnya hanya di titik-titik yang berada di dalam lintasan inilah bangkai GOCE berpeluang jatuh di Indonesia. Berikut petanya.

Gambar 4. Peta lintasan bangkai GOCE di atas Indonesia pada 7 hingga 9 November 2013 pagi berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis merah. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya "8/11/2013; 5:39" berarti lintasan dimulai pada tanggal 8 November 2013 pukul 05:39 WIB di titik utara (garis lintang 10 LU) dan berakhir di titik selatan (garis lintang 12 LS) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 4. Peta lintasan bangkai GOCE di atas Indonesia pada 7 hingga 9 November 2013 pagi berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis merah. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari timurlaut ke barat daya. Tiap lintasan memiliki label, misalnya “8/11/2013; 5:39” berarti lintasan dimulai pada tanggal 8 November 2013 pukul 05:39 WIB di titik utara (garis lintang 10 LU) dan berakhir di titik selatan (garis lintang 12 LS) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 5. Peta lintasan bangkai GOCE di atas Indonesia pada 6 hingga 9 November 2013 malam berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis biru. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari tenggara ke barat laut. Tiap lintasan memiliki label, misalnya "6/11/2013; 17:37" berarti lintasan dimulai pada tanggal 6 November 2013 pukul 17:37 WIB di titik selatan (garis lintang 12 LS) dan berakhir di titik utara (garis lintang 10 LU) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Gambar 5. Peta lintasan bangkai GOCE di atas Indonesia pada 6 hingga 9 November 2013 malam berdasarkan TLE GOCE 1 November 2013. Lintasan bangkai satelit GOCE diperlihatkan oleh garis biru. Dalam tiap lintasannya, bangkai GOCE bakal bergerak cepat dari tenggara ke barat laut. Tiap lintasan memiliki label, misalnya “6/11/2013; 17:37” berarti lintasan dimulai pada tanggal 6 November 2013 pukul 17:37 WIB di titik selatan (garis lintang 12 LS) dan berakhir di titik utara (garis lintang 10 LU) pada 5-6 menit kemudian. Sumber : Sudibyo, 2013 dengan data dari Corbellini, 2013.

Catatan : peta dibuat berdasarkan data TLE (two-line element) bangkai GOCE per 1 November 2013. Seiring waktu, maka prediksi lintasan bangkai satelit GOCE dengan data TLE baru bakal bergeser sedikit di sebelah barat/timur dari prediksi lintasan yang disajikan dalam peta ini.

Referensi :

1. TLE GOCE satellite, per 1 Nov 2013, http://www.tle.info.
2. Corbellini, 2013, http://satflare.com.
3. GOCE Re-entry, http://www.spaceflight101.com.