Banjir Jakarta dan Sekitarnya lewat Mata Satelit

Jakarta dan sekitarnya digenangi banjir tepat pada saat tahun berganti dari 2019 menjadi 2020 TU (Tarikh Umum). Citra satelit radar menunjukkan luasan genangan pada kota-kota di DKI Jakarta sesungguhnya lebih kecil ketimbang luasan genangan di Kota Tangerang. Hal itu mengindikasikan bekerjanya Kanal Banjir Barat dan Kanal Banjir Timur dalam menyalurkan air banjir. Namun titik-titik genangan di DKI Jakarta bertempat di kawasan pemukiman berpenduduk padat dan sejumlah pusat perekonomian. Sehingga dampaknya jelas lebih besar.

Gambar 1. Titik-titik genangan air dalam banjir Jakarta dan sekitarnya pada 2 Januari 2020 TU di wilayah DKI Jakarta, Kota Bekasi, Kab. Bekasi (sebagian besar), Kab. Tangerang (sebagian), Kota Tangerang, Kota Tangerang Selatan, Kota Depok dan Kab. Bogor (sebagian) berdasarkan analisis citra radar Sentinel-1. Sumber: EOS & ARIA, 2020.

InSAR ARIA

Pada 2 Januari 2020 TU siang, manakala banjir di Jakarta dan sekitarnya masih hebat-hebatnya, satelit Sentinel-1 melintas di langit. Satelit milik badan antariksa negara-negara Eropa / ESA (European Space Agency) itu bergerak dari utara menuju ke selatan. Langit Jakarta dan sekitarnya saat itu sepenuhnya tertutupi awan. Namun satelit ini bekerja dalam segala cuaca dan kondisi siang malam tanpa terganggu seiring pemanfaatan gelombang radar, sehingga mampu menembus pekatnya awan dan mencitra apa yang ada di permukaan tanah. Terdiri atas sepasang satelit yang identik (Sentinel-1A dan Sentinel-1B) yang menempati bidang orbit tersinkron Matahari yang sama, satelit Sentinel-1 selalu melintas di atas tempat yang sama setiap 12 hari sekali.

Sifat orbit satelit Sentinel-1 dan gelombang radarnya memungkinkan para cendekiawan Earth Observatory of Singapore (EOS) di Nanyang Technological University (NTU) Singapura bekerja sama dengan tim ARIA (advanced rapid imaging and analysis) untuk menguak apa yang terjadi pada daratan Jakarta dan sekitarnya saat banjir melanda. ARIA adalah kolaborasi antara Jet Propulsion Laboratory NASA dengan California Institute of Technology. Tim EOS dan ARIA memanfaatkan teknik InSAR (interferometry synthetic apperture radar)

Gambar 2. Titik-titik genangan air di Kota Jakarta Barat, Jakarta Utara (sebagian) dan Jakarta Pusat pada 2 Januari 2020 TU dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.

Sederhananya, teknik InSAR mencoba membandingkan dua citra radar pada daerah yang sama yang diambil pada dua kesempatan berbeda. Sehingga perubahan yang terjadi pada daratan di daerah tersebut dalam skala besar, baik yang bersifat temporer maupun permanen, dapat dikuak. Teknik InSAR umum digunakan untuk mengevaluasi terjadinya deformasi daratan dalam peristiwa gempa bumi tektonik, atau letusan gunung berapi, maupun penurunan daratan (subsidence) akibat eksploitasi air bawahtanah yang berlebihan. Namun belakangan juga berkembang penggunaan teknik ini untuk memonitor bencana banjir.

Dalam menganalisis banjir Jakarta dan sekitarnya, tim EOS dan ARIA memanfaatkan dua citra radar Sentinel-1. Masing-masing citra 21 Desember 2019 TU yang ditetapkan sebagai citra pra-banjir dan citra 2 Januari 2020 TU yang dinyatakan sebagai citra saat banjir. Sebagai pembanding adalah data lapangan yang ditampilkan Peta Bencana. Resolusi citra adalah 30 meter per pixel mencakup seluruh DKI Jakarta, kota Depok, kota Tangerang Selatan, kota Tangerang dan kota Bekasi. Sementara Kab. Tangerang, Kab. Bekasi dan Kab. Bogor hanya dicitra separuhnya saja.

Seperti apa hasilnya?

Gambar 3. Titik-titik genangan air di Kota Jakarta Utara (sebagian), Jakarta Pusat dan Jakarta Timur (sebagian) pada 2 Januari 2020 TU dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.

Titik-titik Genangan

Secara umum banjir Jakarta dan sekitarnya memang terjadi di dataran rendah. Berdasarkan luasan daerah yang tergenang, Kab. Bekasi menduduki peringkat pertama daerah yang tergenangi banjir paling luas. Disusul kemudian Kab. Tangerang, Kota Tangerang, DKI Jakarta (khususnya Jakarta Barat dan Jakarta Timur) serta terakhir Kota Bekasi.

Banjir di dataran rendah ini konsisten dengan curah hujan 24 jam (sepanjang 31 Desember 2019 TU 07:00 WIB – 1 Januari 2020 TU 07:00 WIB), yang tergolong ekstrim bagi Kab. Bekasi dan Kota Bekasi (intensitas maksimum 151 mm/hari yang tercatat di Lemah Abang) serta sebagian DKI Jakarta (intensitas maksimum 377 mm/hari yang tercatat di Jakarta Timur). Sementara bagi Kab. Tangerang, hujan dikategorikan sangat lebat. Intensitas hujan maksimum di DKI Jakarta dinyatakan sebagai yang tertinggi sepanjang 1,5 abad terakhir. Meskipun jika dilihat dalam kacamata yang lebih lebar, selama 48 jam intensitas hujan maksimum akumulatif yang tercatat berkisar 400 mm. Ini serupa dengan intensitas hujan maksimum akumulatif pada peristiwa Banjir Kebumen 2013 (di bulan Desember 2013 TU) dan juga banjir Jakarta 2014 (di bulan Januari 2014 TU).

Gambar 4. Titik-titik genangan air di Kota Jakarta Timur dan Bekasi (sebagian) pada 2 Januari 2020 TU dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.

Di kota Jakarta Barat, titik genangan luas menempati sebelah-menyebelah Jl. Daan Mogot hingga mendekati perbatasan Kota Tangerang. Ke arah utara, titik-titik genangan menyebar hingga ke bagian kota Jakarta Utara. Uniknya titik-titik genangan tersebut adalah berada di sebelah barat dari alur Kanal Banjir Barat dan tidak banyak dijumpai di sisi timur kanal.

Selain di sisi barat Kanal Banjir Barat, titik-titik genangan di kota Jakarta Utara dapat dijumpai di dua pelabuhan : Sunda Kelapa dan Tanjung Priok. Namun yang paling menyolok adalah di bagian timur, yakni di Rorotan. Lagi-lagi genangan luas di sini berimpit dengan kanal banjir, yakni di sisi barat Kanal Banjir Timur. Meski genangan di Rorotan tak separah di Tarumajaya (Kab. Bekasi) yang berada di sebelah timur kanal.

Gambar 5. Titik-titik genangan air di Kota Jakarta Selatan pada 2 Januari 2020 TU dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.

Kota Jakarta Pusat tak separah Jakarta Barat dan Jakarta Utara. Meski terdapat pula titik-titik genangan, namun tidak banyak yang menonjol. Salah satunya di Gunung Sahari, yang menggenangi baik jalan raya maupun rel KA. Juga di Karet Tengsin, tepat di sisi Kanal Banjir Barat. Sebaliknya kota Jakarta Selatan, meski secara geografis lebih tinggi ketimbang Jakarta Barat – Jakarta Pusat – Jakarta Utara, namun ternyata memiliki titik-titik genangan yang cukup banyak dan tersebar acak dengan masing-masing berukuran relatif kecil. Dua lokasi yang menonjol adalah Kemang dan bantaran barat Sungai Ciliwung.

Dan kota Jakarta Timur pun demikian. Titik-titik genangan juga cukup banyak dan tersebar acak. Titik paling ikonis adalah Bandara Halim Perdanakusuma, sehingga sempat melumpuhkan penerbangan dari dan ke bandara ini. Sejumlah titik di bantaran timur Sungai Ciliwung juga digenangi air. Mayoritas titik genangan di Jakarta Timur berada di sisi selatan Kanal Banjir Timur. Di sisi utaranya hanya dijumpai sedikit.

Gambar 6. Titik-titik genangan air di Kota Tangerang dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.

Selain DKI Jakarta, genangan banjir juga dijumpai di Kota Tangerang. Bandara Soekarno-Hatta juga tergenangi air di sejumlah titik, namun tidak sempat melumpuhkan operasi bandara ini sebagaimana yang terjadi di Bandara Halim. Titik genangan yang cukup luas dijumpai di Cipondoh di pusat kota. Berikutnya di Panunggangan, di bagian selatan kota. Genangan di Panunggangan berhubungan dengan aliran Sungai Cisadane yang melintas di sini dan meluap. Luapan Sungai Cisadane juga menggenangi bantaran timur di Kota Tangerang Selatan. Selebihnya titik-titik genangan di Tangerang Selatan berukuran kecil-kecil dan tersebar secara acak hingga Bintaro.

Di Kota Bekasi, titik-titik genangan juga tersebar acak. Namun genangan yang luas hanya dijumpai di sisi utara jalan tol Jakarta – Cikampek. Tepatnya di Bekasi Timur dan di pusat kota. Genangan di pusat kota mengesankan berhubungan dengan aliran Sungai Bekasi yang meluap. Dan di Kota Depok, titik-titik genangan relatif sedikit dibandingkan kota-kota lainnya yang telah disebutkan. Selain sedikit, ukurannya juga kecil-kecil. Konsentrasi titik-titik genangan itu terutama di sepanjang alur Jalan Jalan raya Jakarta – Bogor.

Gambar 7. Titik-titik genangan air di Kota Tangerang Selatan dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.

Sumber Air?

Tujuan EOS dan ARIA menyajikan analisis citra satelit radar ini adalah untuk menunjang respon penanganan dampak bencana banjir di lapangan. Meski demikian secara kasar dapat pula dikatakan bahwa analisis ini cukup membantu dalam memetakan sumber air banjir Jakarta dan sekitarnya. Sungai-sungai besar seperti Sungai Cisadane, Sungai Ciliwung, Sungai Bekasi dan dua kanal banjir (Kanal Banjir Barat dan Kanal Banjir Timur) yang meluap merupakan salah satu sumber air banjir. Akan tetapi terdapat cukup banyak titik-titik genangan yang cukup berjarak terhadap sungai manapun. Yang menyajikan kesan bahwa genangan tersebut terjadi akibat situasi yang bersifat lokal.

Gambar 8. Titik-titik genangan air di Kota Bekasi dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.


Gambar 9. Titik-titik genangan air di Kota Depok dengan penanda lokasi tertentu. Sumber: EOS & ARIA, 2020.

Jika dibandingkan, secara kasar dapat dikatakan bahwa peringkat pertama luasan genangan dalam banjir Jakarta dan sekitarnya diduduki oleh Kota Tangerang. Menyusul kemudian kota Jakarta Utara dan Jakarta Barat di peringkat kedua. Selanjutnya kota Bekasi di peringkat ketiga. Relatif keringnya kota-kota Jakarta Timur dan Jakarta Pusat mengindikasikan bekerjanya Kanal Banjir Barat dan Kanal Banjir Timur. Namun titik-titik genangan di DKI Jakarta terjadi pada pemukiman padat penduduk dan pusat-pusat perekonomian sehingga dampaknya lebih besar.

Referensi :

Kasha Patel. 2020. Torrential Rains Flood Indonesia. NASA Earth Observatory, 2 Januari 2020 diakses 5 Januari 2020.

Akankah Stasiun Antariksa Tiangong-1 Jatuh di Indonesia?

Penghujung Maret 2018 TU (Tarikh Umum) menjadi hari-hari terakhir bagi sampah antariksa Tiangong-1 (baca: Tian Gong satu). Bangkai stasiun antariksa pertama milik Cina ini tinggal menunggu waktu saja untuk jatuh memasuki atmosfer Bumi (reentry). Orbitnya kian menurun saja. Hingga Kamis 29 Maret 2018 TU pukul 21:00 WIB, orbit Tiangong-1 sudah turun demikian rupa dengan perigee tinggal 186,7 kilometer dan apogee tinggal 201,7 kilometer, semuanya dari paras air laut rata-rata (dpl). Dan hingga 29 Maret 2018 TU itu prediksi waktu jatuh Tiangong-1 adalah sebagai berikut :

  • Aerospace Corporation = 1 April 2018 TU pukul 17:30 WIB ± 16 jam.
  • US Strategic Command = 1 April 2018 TU pukul 07:52 WIB ± 15 jam.
  • Marco Langbroek = 1 April 2018 TU pukul 16:36 WIB ± 19 jam.
  • Joseph Remis = 1 April 2018 TU pukul 17:40 WIB ± 15 jam.

Dengan nilai ketidakpastian masih cukup besar, yakni antara 15 hingga 19 jam, maka pada dasarnya masih sangat sulit untuk menentukan lokasi titik jatuh Tiangong-1. Ini mengingat bangkai stasiun antariksa itu melejit secepat 7,8 kilometer/detik atau sekitar 28.000 kilometer/jam. Maka ketidakpastian sebesar semenit saja akan setara dengan pergeseran jarak sebesar 467 kilometer.

Gambar 1. Jejak lintasan sampah antariksa Tiangong-1 diabadikan pada Kamis pagi 22 Maret 2018 TU dengan kamera pada waktu papar 8 detik. Tiangong-1 bergerak cukup cepat sehingga saat direkam kamera selama 8 detik nampak sebagai garis bercahaya samar. Sumber: Sudibyo, 2018.

Meski amat menyedot perhatian dunia, Tiangong-1 (massa 8,5 ton) sesungguhnya bukanlah sampah antariksa terberat. Ia masih berada dalam nilai rata-rata massa dari sampah-sampah antariksa signifikan sepanjang satu dekade terakhir. Semenjak tahun 2000 TU hingga saat ini, sampah antariksa terberat masih ditempati oleh wantariksa (wahana antariksa) Phobos-Grunt, yang jatuh ke sisi timur Samudera Pasifik pada 15 Januari 2012 TU silam. Russia meluncurkan Phobos-Grunt (13,5 ton) menuju Mars, namun cacat pada sistem pemrograman membuat sistem komputernya terus bermasalah. Sehingga Phobos-Grunt terperangkap dalam orbit Bumi tanpa daya hingga akhirnya jatuh.

Dalam pandangan ESA (European Space Agency atau badan antariksa gabungan negara-negara Eropa) Tiangong-1 memiliki massa dan dimensi mirip ATV (Automated Transfer Vehicle), wantariksa kargo yang dibangun ESA untuk mengirim muatan ke stasun antariksa internasional ISS. Pasca bertugas di ISS selama jangka waktu tertentu, ATV pun dijatuhkan secara terkendali ke kawasan Samudera Pasifik dengan proses yang terdokumentasi dengan baik (pada ATV Jules Verne). Karena itu apa yang akan terjadi pada Tiangong-1 saat jatuhnya nanti kemungkinan akan mirip dengan ATV.

Tatkala Tiangong-1 mulai menuruni lapisan atmosfer yang lebih padat dengan kecepatan 28.000 kilometer/jam, gesekan dengan udara di sekelilingnya menyebabkan kecepatan Tiangong-1 berkurang dengan pasti. Pengurangan ini mentransfer energi ke udara, menghasilkan tekanan ram yang kian menguat. Awalnya sepasang panel surya Tiangong-1 yang terlepas. Sementara badan Tiangong-1 terus terpanaskan dan ditekan sangat hebat seiring kian memasuki lapisan udara yang lebih padat. Pada ketinggian beberapa puluh kilometer dpl, tekanan hebat itu membuat badan Tiangong-1 terpecah-belah. Pemecah-belahan ini menandai titik mulai punahnya kecepatan asli Tiangong-1 (kecepatan yang dibawanya dari antariksa).

Selanjutnya gravitasi Bumi mengambil-alih sehingga masing-masing pecahan menjalani gerak jatuh bebas pada lintasannya sendiri-sendiri. Keping-keping Tiangong-1, dengan massa total tinggal sekitar 100 kilogram, lantas akan berjatuhan pada wilayah sepanjang sekitar 2.000 kilometer dan lebar sekitar 70 kilometer. Kecepatan jatuhnya (saat menyentuh paras Bumi) tergolong kecil, tinggal sekitar beberapa puluh kilometer per jamnya. Dan tak perlu cemas berlebihan. Peluang keping-keping Tiangong-1 untuk jatuh di kawasan berpenduduk padat sangat kecil. Hanya 1 berbanding beberapa trilyun.

Video berikut dari Aerospace Corporation menyimulasikan proses jatuhnya Tiangong-1 :

Melintas di Indonesia

Sebelum jatuh, sampah antariksa Tiangong-1 masih akan terlihat melayang menyusuri orbitnya. Hanya beberapa lokasi yang berkesempatan menyaksikan Tiangong-1 di langit menjelang kejatuhannya. Misalnya kota Tokyo (Jepang) dan Cape Town (Afrika Selatan), masing-masing berkesempatan menyaksikan Tiangong-1 pada saat fajar dan senja Kamis 29 Maret 2018 TU. Sementara Athena (Yunani) dan Roma (Italia) berpeluang melihat Tiangong-1 pada saat fajar Jumat 30 Maret 2018 TU.

Bagaimana dengan Indonesia?

Peluang terlihatnya Tiangong-1 di langit Indonesia kala fajar ataupun senja telah tertutup. Indonesia berkesempatan menyaksikannya pada minggu lalu tepatnya antara tanggal 19 hingga 24 Maret 2018 TU. Sedikitnya ada dua observasi yang berhasil mengamati Tiangong-1 di langit, misalnya oleh saya sendiri dan oleh Eko Hadi G dari klub astronomi Penjelajah Langit (Yogyakarta).

Gambar 2. Jejak lintasan sampah antariksa Tiangong-1 diabadikan pada Selasa sore 20 Maret 2018 TU oleh Eko Hadi G dengan kamera pada waktu papar 10 detik. Tiangong-1 bergerak cukup cepat sehingga saat direkam kamera selama 8 detik nampak sebagai garis bercahaya samar. Sumber: Penjelajah Langit/Eko Hadi G, 2018.

Namun sejatinya Tiangong-1 tetap melintas di atas wilayah Indonesia meski tak bisa disaksikan lagi. Dalam setiap harinya Tiangong-1 berkesempatan dua kali melintas di atas Indonesia, masing-masing di malam hari dan di siang hari. Perlintasan pada malam hari selalu dari arah barat daya menuju ke timur laut. Sebaliknya perlintasan di siang hari selalu dari arah barat laut menuju tenggara. Dengan luasnya wilayah Indonesia, maka dalam sehari terjadi lima hingga enam kali perlintasan Tiangong-1 dalam setiap harinya.

Perlintasan-perlintasan itu membentuk pola yang khas sebagai berikut :

  • Pulau Sumatra, perlintasan Tiangong-1 terjadi di malam hari pada koridor antara sekitar kota Natal (Sumatra Utara) hingga sekitar kota Bagan Siapi-api (Riau).
  • Pulau Jawa, koridornya adalah di sekitar kota Tulungagung hingga sekitar kota Sumenep (semuanya di propinsi Jawa Timur) dengan perlintasan pada malam hari.
  • Pulau Kalimantan, perlintasan Tiangong-1 terjadi di siang hari dengan koridor antara sekitar kota Pontianak (Kalimantan Barat) hingga sekitar kota Sampit (Kalimantan Tengah).
  • Pulau Sulawesi, koridor perlintasan Tiangong-1 adalah dari sekitar kota Palu (Sulawesi Tengah) hingga sekitar kota Gorontalo (Gorontalo) yang terjadi di malam hari.
  • Pulau Irian memiliki dua koridor perlintasan Tiangong-1. Masing-masing dari sekitar kota Manokwari (Irian Jaya Barat) hingga sekitar kota Merauke (Papua) di siang hari. Dan dari sekitar kota Agats hingga sekitar kota Jayapura (keduanya di propinsi Papua) di malam hari.

Berikut adalah peta perlintasan Tiangong-1 di Indonesia dari hari ke hari semenjak Jumat 30 Maret 2018 TU hingga Senin 2 April 2018 TU :

Gambar 3. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Jumat 30 Maret 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Gambar 4. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Sabtu 31 Maret 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Gambar 5. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Minggu 1 April 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Gambar 6. Peta proyeksi lintasan sampah antariksa Tiangong-1 di wilayah Indonesia untuk Senin 2 April 2018 TU. Garis putus-putus menandakan perlintasan di malam hari, sementara garis tak terputus untuk perlintasan di siang hari. Berdasarkan data TLE (two line elements) Tiangong-1 per 29 Maret 2018 TU. Sumber: Sudibyo, 2018.

Akankah Tiangong-1 jatuh di Indonesia? Peluangnya sangat kecil. Sejauh ini seluruh prediksi yang ada tidak menempatkan prakiraan titik jatuh Tiangong-1 dalam kawasan Indonesia. Namun dengan nilai ketidakpastian yang masih besar, maka peluang jatuh di salah satu koridor perlintasan Tiangong-1 di wilayah Indonesia juga tetap terbuka, meski sangat kecil.

Pembaharuan : Prediksi Terakhir Waktu dan Titik Jatuh

Per 1 April 2018 TU pukul 18:00 WIB, Joseph Remis menyajikan prediksi terakhir waktu dan posisi titik jatuh Tiangong-1. Waktu jatuh adalah pada Senin 2 April 2018 TU pukul 05:46 WIB ± 4 jam. Sehingga waktu jatuh adalah pada saat kapanpun di antara rentang waktu antara pukul 01:46 WIB hingga 09:46 WIB pada 2 April 2018 TU.

Lokasi titik jatuh, jika terjadi pada pukul 05:46 WIB maka akan berada di tengah-tengah Samudera Pasifik pada koordinat 13,23 LS 142,85 BB. Namun dalam rentang waktu antara pukul 01:46 hingga 09:46 WIB, terbuka kemungkinan Tiangong-1 bisa jatuh di daratan dari negara-negara Myanmar, Cina, Jepang, Peru, Argentina, Afrika Selatan, India, Ethiopia, Yaman, Iran, Arab Saudi, Irak, Kazakhstan, Brazil, Italia dan Turki. Berikut petanya :

Pembaharuan 2 : Tiangong-1 Telah Jatuh!

Sampah antariksa yang juga stasiun antariksa Tiangong-1 dipastikan telah jatuh pada Senin 2 April 2018 TU pukul 07:16 WIB ± 1 menit menurut JFSCC (Joint Force Space Component Command) pada Komando Strategis (US Strategic Command/USStratcom) Kementerian Pertahanan Amerika Serikat. Tiangong-1 jatuh di kawasan Samudera Pasifik bagian selatan, tepatnya di antara koordinat 14 LS 162 BB hingga 24 LS 150 BB. Koridor ini membentang mulai dari sebelah barat daya hingga sebelah selatan Tahiti.

Meski tiada rekaman yang memperlihatkan detik-detik jatuhnya Tiangong-1, namun JFSCC memastikan hal tersebut terjadi melalui pantauan satelit militer Amerika Serikat, kemungkinan SBIRS (Space Based Infra Red System). Satelit mata-mata yang bertumpu pada spektrum sinar inframerah ini ditujukan untuk menyigi jejak inframerah dari aktivitas peluncuran rudal, namun juga bisa mengendus aktivitas lain. Termasuk jatuhnya sampah antariksa berukuran besar.

Rekonstruksi memperlihatkan, saat menempuh orbit terakhirnya sebelum kemudian jatuh, Tiangong-1 lewat di atas benua Amerika bagian selatan (yakni Chile dan Argentina), benua Afrika bagian tengah dan utara (masing-masing Gabon, Kamerun, Republik Afrika Tengah dan Sudan) dan benua Asia (Saudi Arabia, Iran, Kazakhstan, Cina dan Jepang). Di Saudi Arabia, Tiangong-1 lewat di atas kotasuci Madinah. Gambar berikut adalah peta lima lintasan terakhir yang dijalani sampah antariksa Tiangong-1, yakni sejak 7 jam 20 menit sebelum waktu jatuh :

Berikut adalah hasil rekonstruksi lintasan terakhir Tiangong-1 dalam aplikasi pemetaan Google Maps. Nampak 44 menit sebelum jatuh, Tiangong-1 melintas di atas kotasuci Madinah (Saudi Arabia) :


Referensi :

The Aerospace Corporation. 2018. Tiangong-1 Reentry. Diakses pada 29 Maret 2018 TU.

Joseph Remis. 2018. komunikasi pribadi.

Marco Langbroek. 2018. komunikasi pribadi

Mau Jatuh Dimana, (Stasiun Antariksa) Tiangong-1?

Bagaimana perasaanmu jika tahu sebongkah benda seukuran bus tingkat bersiap jatuh dari langit dalam waktu dekat? Namun itulah yang akan dialami Tiangong-1. Sampah antariksa sepanjang 10,5 meter yang bergaris tengah 3,4 meter itu sedang bersiap-siap mengakhiri perjalanannya dan akan memasuki atmosfer Bumi kita, proses yang dikenal sebagai reentry. Lebih menyesakkan lagi, Tiangong-1 bakal jatuh dalam kondisi uncontrolled reentry atau jatuh ke Bumi secara tak terkendali sehingga dimana ia bakal memasuki atmosfer belum bisa ditentukan pada saat ini.

Tiangong-1 diprediksi akan jatuh pada minggu pertama April 2018 TU (Tarikh Umum). Per 16 Maret 2018 TU, Aerospace Corporation (Amerika Serikat) memprakirakan peristiwa tersebut akan terjadi pada 4 April 2018 TU ± 7 hari. Sedangkan Joseph Remis, peneliti sampah antariksa dari Perancis, menempatkan prediksinya pada 3 April 2018 TU ± 7 hari. Dan Marco Langbroek, astronom amatir Belanda yang berspesialisasi pada pengamatan satelit-satelit buatan, memprakirakan akan terjadi pada 4 April 2018 TU ± 4 hari. Besarnya angka ketidakpastian dari prediksi-prediksi ini adalah imbas dari variasi sifat lapisan atmosfer teratas kita dari satu titik ke titik lain. Juga dari tidak diketahuinya posisi aktual dan kecepatan aktual sampah antariksa tersebut. Padahal inilah yang sangat menentukan kapan Tiangong-1 akan jatuh kembali ke Bumi.

Gambar 1. Tiangong-1 di orbitnya, dalam gambaran artis yang dipublikasikan badan antariksa nasional Cina. Nampak pintu labuh dengan sistem penambat APAS di sisi kiri, tempat taikonot memasuki prototip stasiun antariksa ini. Raksasa seberat 8,5 ton inilah yang akan jatuh kembali ke Bumi secara tak terkendali pada awal April 2018 TU kelak. Sumber: CNSA, 2011.

Nilai ketidakpastian tersebut juga berimbas pada lebarnya prediksi titik jatuh Tiangong-1. Dengan inklinasi orbit 42,8º maka pada dasarnya setiap titik di paras Bumi yang ada di antara garis lintang 42,8 LU hingga 42,8 LS berpotensi menjadi titik jatuh Tiangong-1. Berdasarkan pengalaman selama ini, titik koordinat mana yang tepatnya akan menjadi titik jatuh Tiangong-1 baru akan diketahui sehari sebelum terjadi. Akan tetapi karena bentuk orbitnya pula, daerah-daerah yang terletak di sekitar atau di sepanjang garis lintang 42,8 LU dan di garis lintang 42,8 LS memiliki peluang menjadi titik jatuh yang lebih tinggi (yakni sekitar 3 %) dibandingkan dengan daerah-daerah yang berada di lingkungan garis khatulistiwa (yakni kurang dari 0,5 %).

Dengan prediksi demikian maka Indonesia pun tidak dikecualikan. Sepanjang tiga tahun terakhir, Indonesia telah mengalami dua kejadian benda jatuh antariksa (BJA), dimana sisa-sisa sampah antariksa jatuh di dekat rumah penduduk. Yakni di pulau Madura (propinsi Jawa Timur) pada tahun 2016 TU dan di tepi Danau Maninjau (propinsi Sumatra Barat) pada tahun 2017 TU. BJA di pulau Madura adalah sisa upperstage roket Falcon 9 Full Thrust milik perusahaan SpaceX (Amerika Serikat) sementara BJA di tepi danau Maninjau adalah sisa upperstage roket Long March-3A milik pemerintah Cina.


Gambar 2. Dua kejadian benda jatuh antariksa (BJA) di Indonesia akibat jatuhnya sampah antariksa. Masing-masing sisa upperstage Long March-3A di tepi Danau Maninjau (atas) dan sisa upperstage Falcon 9 Full Thrust di pulau Madura (bawah). Sumber: Piliang, 2017 & Tribunnews, 2016.

Spesifikasi

Sebelum menjadi sampah antariksa, Tiangong-1 adalah stasiun antariksa pertama Cina sebagai bagian dari program Tiangong. Stasiun antariksa Tiangong-1 diluncurkan ke orbit pada 30 September 2011 TU lewat dorongan kuat roket Long March 2F/G. Roket dan muatannya lepas landas dari landasan nomor 4/landasan selatan pada kompleks Pusat Peluncuran Jiuquan di sisi barat laut padang pasir Gobi, propinsi otonom Mongolia Dalam. Long March 2F/G menempatkan Tiangong-1 pada orbit sirkular setinggi 343 kilometer.

Begitu mencapai orbit, stasiun antariksa berbobot 8,5 ton itu segera membuka sepasang sayap panel suryanya. Masing-masing panel surya memiliki panjang 10 meter dan lebar 3,1 meter. Arus listrik dengan daya rata-rata 2.500 watt dan daya puncak 6.000 watt pun mengalir deras darinya. Sebagian mengalir ke batere kering perak-seng, catudaya untuk situasi malam orbital, Interior Tiangong-1 terdiri atas dua ruang, masing-masing ruang hunian/orbital dan ruang layanan/sumberdaya.

Ruang hunian memiliki panjang 5 meter dan lebar 3,4 meter dengan volume total 15 meter3 dan berisi udara bertekanan 1 atmosfer. Didalamnya terdapat dua ranjang tidur dilengkapi dapur dan sistem toilet. Ruang ini dilengkapi dengan sistem pembuang panas ke lingkungan, yang mampu melepaskan panas yang diproduksi di dalam ruangan hingga sebesar 2.000 watt termal. Di ujungnya, yang juga adalah ujung Tiangong-1, terpasang pintu masuk dilengkapi sistem penambat APAS (Androgynous Peripheral Attach System). Sistem penambat ini serupa dengan yang digunakan pada stasiun-stasiun antariksa lainnya.

Sementara ruang layanan memiliki panjang 3,3 meter namun lebarnya hanya 2,5 meter. Di pusat pantat ruang ini, yang juga adalah pantat Tiangong-1, terpasang dua mesin roket utama. Selain guna menempatkan diri ke orbit kedua mesin ini juga digunakan untuk keperluan manuver pemulihan orbit. Di sisi luarnya, melingkari mesin roket utama, terpasang 8 mesin roket vernier. Mereka berguna untuk penyesuaian orbit yang sangat halus. Dan di sisi terluar terdapat empat set mesin roket kendali (reaction control system), masing-masing set terpisah 90º antara satu dengan yang lain. Dalam setiap set terdapat dua mesin roket kecil. Mesin roket kendali ini berguna untuk manuver anjak (pitch) dan belok (yaw). Dan bersama-sama dengan mesin roket vernier juga digunakan untuk manuver putaran (roll).

Gambar 3. Liu Yang, taikonot perempuan pertama Cina, mendemonstrasikan salah satu gerakan tai chi untuk pertama kalinya di antariksa saat berada dalam Tiangong-1 pada misi antariksa Shenzou 9 yang berlangsung antara 16 hingga 23 Juni 2012 TU. Gambar dari stasiun televisi nasional Cina (CNTV). Sumber: CNTV, 2012.

Beragam mesin roket tersebut ditenagai bahan bakar Hidrazin dan pengoksid Nitrogen Tetroksida. Mereka disimpan dalam empat tanki berbeda, masing-masing berkapasitas 230 liter yang sanggup memuat 1 ton bahan bakar atau pengoksid. Ada lagi dua buah tanki lebih kecil sferis dengan dinding didesain menahan tekanan tinggi. Takni kecil dengan kapasitas masing-masing 20 liter ini ditujukan untuk menampung gas (mungkin Helium) bertekanan tinggi guna mendorong bahan bakar dan pengoksid ke mesin roket yang dituju.

Hidup di Tiangong-1

Pembangunan dan pengoperasian Tiangong-1 adalah demonstrasi kedigdayaan Cina dalam pentas program antariksa global. Cina merintis program antariksanya bersamaan dengan Indonesia, yakni mulai dasawarsa 1960-an TU. Dalam periode yang sama negeri tirai bambu itu nyaris tenggelam seiring salah urus dalam eksperimen pertanian dan industri khas komunisme lewat program Lompatan Jauh ke Depan yang disusul huruhara Revolusi Kebudayaan. Bencana kelaparan meletup dimana-mana dan merenggut tak kurang dari 30 juta jiwa.

Hingga satu dasawarsa kemudian Cina layaknya ‘planet mati’, diemohi orang dan nampaknya bakal menjadi negara gagal. Namun kini situasinya telah sangat berbeda. Cina telah pulih dan bahkan melesat cukup jauh dalam berbagai bidang, termasuk program antariksanya. Sebaliknya Indonesia hingga kini masih tetap berkutat di titik nol dalam membangun kendaraan untuk menuju ke langit.

Program Tiangong adalah jawaban Cina kepada dunia setelah tawarannya bergabung dengan program stasiun antariksa internasional (ISS) bertepuk sebelah tangan. Sebagian negara partisipan ISS, dimotori Amerika Serikat, tidak ingin Cina bergabung atas alasan politis. Tiangong pun dibangun dan diparalelkan dengan Program Shenzou, program penerbangan antariksa berawak Cina. Tiangong-1 merupakan prototip stasiun antariksa moduler, tipe stasiun antariksa yang bisa bertumbuh/dikembangkan di orbit lewat menggabung-gabungkan aneka modul secara bertahap. Sebagai prototip, tujuan utama Cina adalah menguji coba kemampuan menambat (rendezvous) dan berlabuh antara Tiangong-1 dengan wantariksa (wahana antariksa) lain. Baik wantariksa berawak maupun tidak.

Ujicoba itu terlaksana beberapa bulan kemudian. Pada 31 Oktober 2011 TU wantariksa Shenzou 8 lepas landas dari Pusat Peluncuran Jiuquang menuju Tiangong-1. Dua hari berikutnya Shenzou 8 berhasil berlabuh di Tiangong-1 secara otomatis. Peristiwa ini terjadi dalam situasi malam orbital Tiangong-1 guna menghindari pengaruh gemerlap sinar Matahari terhadap radas navigasi dan penambat yang sensitif. Shenzou 8 berlabuh hingga 11 hari berikutnya, lantas melepaskan diri. Proses tersebut lantas diulangi kembali, tapi kali ini dalam situasi siang hari Tiangong-1. Tujuannya guna mengecek akurasi dan daya pakai radas-radas terkait di lingkungan terang benderang. Hasilnya memuaskan, Shenzou 8 tetap dapat berlabuh hingga hampir 2 hari kemudian ketika ia kembali melepaskan diri.

Misi berawak pertama ke Tiangong-1 berlangsung mulai 16 Juni 2012 TU dengan penerbangan wantariksa Shenzou 9 yang mengangkut tiga taikonot, istilah Cina untuk antariksawan. Yakni Jin Haipeng, Liu Wang dan Liu Yang. Dua hari kemudian Shenzou 9 berhasil berlabuh di Tiangong-1. Ketiga taikonot menghabiskan waktu hampir 4 hari. Liu Yang menyedot perhatian dunia karena selain menjadi taikonot perempuan pertama juga mendemonstrasikan gerak tai chi untuk pertama kalinya di antariksa.

Gambar 4. Tiangong-1 (kiri) dalam proses menambat dengan wantariksa berawak Shenzou (kanan) dalam gambaran artis yang dipublikasikan badan antariksa nasional Cina. Sebagai prototip stasiun antariksa moduler, dimensi Tiangong-1 tidak lebih panjang ketimbang Shenzou. Karena yang diuatamakan adalah ujicoba kemampuan tambat dan berlabuh, baik secara otomatis ataupun manual. Sumber: CNSA, 2012.

Sementara misi berawak kedua terlaksana setahun berikutnya. Pada 11 Juni 2013 TU wantariksa Shenzou 10 lepas landas dengan mengangkut tiga taikonot masing-masing Nie Haisheng, Zhang Xiaoguang dan Wang Yaping. Dua hari kemudian Shenzou 10 berlabuh aman di Tiangong-1 selama 12 hari berikutnya. Pada hari ketujuh Wang Yaiping, taikonot perempuan kedua, menggelar pengajaran dari langit yang disiarkan langsung ke 60 juta siswa-siswi di Cina. Pada pengajaran itu didemonstrasikan empat percobaan, mulai dari penimbangan berat badan, ayunan pendulum, sifat-sifat giroskop hingga tegangan permukaan air. Shenzou 10 adalah kunjungan wantariksa terakhir bagi Tiangong-1. pengajaran tersebut dapat disaksikan dalam video berikut ini :

Peluruhan Orbit

Setiap wantariksa di orbit rendah, yakni antara ketinggian 300 hingga 2.000 kilometer, pada dasarnya menempati pucuk lapisan teratas atmosfer Bumi kita. Yakni lapisan eksosfer. Di sini kondisinya tidak benar-benar hampa, masih terdapat molekul-molekul udara meski kerapatannya sangat kecil apabila dibandingkan lapisan-lapisan atmosfer yang lebih rendah. Gaya gesek molekul-molekul udara nan renggang ini membuat kecepatan wantariksa berkurang dan implikasinya orbitnya pun menurun. Ini disebut peluruhan orbit. Peluruhan orbit tak penting artinya bila misi antariksa berlangsung singkat, dalam beberapa hari hingga minggu. Namun jika misi antariksanya berjangka panjang, hingga bertahun-tahun lamanya, maka peluruhan orbit akan sangat terasa dan bisa berbahaya bila dibiarkan.

Gambar 5. Dinamika ketinggian orbit Tiangong-1 dari sejak diluncurkan hingga Januari 2018 TU sebagaimana dihimpun Aerospace Corporation berdasarkan data dari Celestrak. Garis putus-putus menandakan saat-saat manuver pemulihan orbit/penyesuaian orbit dilakukan. Manuver terakhir terjadi pada 16 Desember 2015 TU. Setelah itu orbit Tiangong-1 terus meluruh. Sumber: Aerospace Corporation, 2018.

Untuk itulah setiap stasiun antariksa yang pernah diterbangkan ke orbitnya selalu dibekali mesin roket. Dalam periode tertentu ia dinyalakan selama beberapa saat, sehingga stasiun antariksa akan bergerak naik kembali ke posisi orbit semula. Aktivitas ini disebut manuver pemulihan orbit. Dampaknya mudah diamati kasat mata lewat perubahan kecil dalam orbitnya. Terutama oleh pengamat langit berpengalaman.

Demikian halnya Tiangong-1. Sejak mulai menempati orbitnya hingga 4 tahun kemudian, tepatnya hingga Desember 2015 TU, Tiangong-1 telah mengalami 14 kali manuver pemulihan orbit. Ini menunjukkan stasiun antariksa tersebut tetap bisa berkomunikasi dua-arah dengan pengendalinya di Bumi. Meskipun tak pernah lagi dikunjungi pasca Shenzou 10. Manuver ini membuat sikap dan orbit Tiangong-1 tetap bisa dikendalikan sembari Cina menyiapkan rencana penjatuhan terkendali baginya.

Situasi berubah dramatis di 2016 TU. Pada 21 Maret 2016 TU pemerintah Cina secara resmi menyatakan komunikasi dengan Tiangong-1 terputus. Pengamatan independen menunjukkan manuver pemulihan orbit terakhir Tiangong-1 terjadi pada 16 Desember 2015 TU. Selepas itu tak ada apa-apa lagi sehingga orbit Tiangong-1 terus meluruh. Maka Tiangong-1 pun akan jatuh tak terkendali. Awalnya pemerintah Cina menyatakan reentry Tiangong-1 akan terjadi antara Juli hingga Desember 2017 TU. Pada Desember 2017 TU prediksi ini direvisi kembali menjadi antara Maret hingga April 2018 TU, yakni dalam jawaban Cina kepada Perserikatan Bangsa-Bangsa (PBB). Cina juga menyampaikan komunikasi dengan Tiangong-1 tidaklah terputus total meski sangat bermasalah. Mereka masih bisa mengendalikan sikap Tiangong-1.

Di awal 2018 TU, orbit Tiangong-1 telah meluruh demikian rupa sehingga turun ke ketinggian 280 kilometer dari normalnya 300 kilometer. Dan di awal Maret 2018 TU tinggal setinggi 250 kilometer. Berdasarkan prediksi-prediksi yang tertera di awal tulisan ini dan memperhitungkan ketidakpastiannya, bisa dikatakan bahwa Tiangong-1 masih akan tetap ada di antariksa hingga setidaknya 27 Maret 2018 TU. Cukup menarik bahwa pada rentang waktu 18 hingga 24 Maret 2018 TU, Tiangong-1 diprakirakan akan melintas di atas Indonesia terutama pada saat fajar dan senja. Sehingga memungkinkan melihat saat-saat terakhir Tiangong-1 di langit. Tentu saja sepanjang cuaca cerah.

Peluang Kecil

Jatuhnya Tiangong-1 akan seperti sampah-sampah antariksa lainnya yang telah lebih dulu berjatuhan. Begitu tiba di ketinggian 105 kilometer, udara lebih rapat membuat Tiangong-1 akan sangat diperlambat. Sehingga ia mulai turun dan terus menurun memasuki lapisan atmosfer lebih rapat dan lebih rendah. Kecepatannya yang masih sangat tinggi akan menghasilkan tekanan ram pada kolom udara disekelilingnya, memproduksi suhu tinggi. Komponen-komponen Tiangong-1 akan mulai pecah dan terkikis suhu tinggi. Maka ia akan terlihat mirip meteor dalam jumlah banyak. Sebagian besar komponennya akan menguap habis di atmosfer. Hanya bagian yang paling kuat dengan massa total sekitar 100 kilogram yang akan mendarat di paras Bumi.

Gambar 6. Area yang berpotensi menjadi titik jatuh sampah antariksa Tiangong-1 beserta probabilitas (peluang) jatuh berdasarkan garis lintang menurut badan antariksa gabungan negara-negara Eropa (ESA). Nampak peluang jatuh di sekitar garis lintang 42,8 LU dan 42,8 LS lebih besar. Sumber: ESA, 2018.

Apakah sisa-sisa Tiangong-1 bisa menjatuhi manusia di Indonesia? Peluang itu ada, namun sangat kecil. Seperti dipaparkan di atas, peluang Tiangong-1 jatuh di kawasan khatulistiwa lebih kecil dibanding di sekitar garis lintang 42,8 LU dan 42,8 LS. Hingga saat ini secara global hanya ada satu peristiwa dimana sisa-sisa sampah antariksa menimpuk seseorang. Yakni pada 22 Januari 1997 TU saat Lottie Williams ketimpuk sekeping logam bersisi hangus 15 sentimeter kala berada di taman publik di kota Tulsa, negara bagian Oklahoma (Amerika Serikat). Itu adalah sisa-sisa upperstage roket Delta II 7920-10 yang lepas landas pada 24 April 1996 TU mengangkut satelit militer MSX (Midcourse Space Experiment). Lottie Williams tidak menderita luka-luka karenanya.

Tiangong-1 bukanlah sampah antariksa terberat yang pernah jatuh. Jika kita batasi sampah antariksa hanya pada bekas stasiun antariksa dan yang jatuhnya tak terkendali, masih ada Skylab dan Salyut 7. Skylab adalah stasiun antariksa 74 ton milik Amerika Serikat yang mengorbit mulai 14 Mei 1973 TU. Sempat dihuni selama 171 hari, Skylab akhirnya terjun ke Bumi seiring meningkatnya aktivitas Matahari yang membuat lapisan eksosfer cukup mengembang. Bakal jatuhnya Skylab sempat menjadi insiden internasional yang membikin panik banyak orang, terutama di Filipina. Skylab jatuh pada 11 Juli 1979 TU dengan sisa-sisanya terserak di daratan sepanjang Esperance hingga Rawlina, sebelah timur kota Perth (Australia).

Gambar 7. Proyeksi lintasan Tiangong-1 di paras bumi Indonesia dan sekitarnya pada rentang waktu antara 31 Maret 2018 TU pukul 00:00 WIB hingga 6 April 2018 TU pukul 14:00 WIB menurut SatFlare. Pada rentang waktu itulah Tiangong-1 diprediksi akan jatuh. Nampak proyeksi lintasan Tiangong-1 mengenai pulau Irian bagian barat, kepulauan Bali dan Nusatenggara, pulau Sulawesi, pulau Kalimantan dan pulau Sumatra. Sementara pulau Jawa terbebas darinya. Sumber: SatFlare, 2018.

Salyut 7 lebih dramatis lagi. Stasiun antariksa milik eks-Uni Soviet ini diluncurkan pada 19 April 1982 TU dan sempat dihuni selama 816 hari. Mengikuti nasib nasib Skylab, Salyut 7 pun akhirnya jatuh tak terkendali. Sisa-sisanya menyirami kota Capitan Bermudez di propinsi Santa Fe (Argentina) pada 7 Februari 1991 TU. Beruntung dalam dua kejadian tersebut tak ada bangunan yang terkena secara langsung, apalagi manusia.

Ground track dari stasiun antariksa Tiangong-1 dapat disaksikan misalnya pada peta Lizard Tail.

Referensi:

The Aerospace Corporation. 2018. Tiangong-1 Reentry. Diakses pada 15 Maret 2018 TU.

Dickinson. 2017. China’s Tiangong-1 Space Station to Burn Up. Sky and Telescope, 10 November 2017. Diakses pada 15 Maret 2018 TU.

Daniel. 2018. Tiangong-1 Frequently Asked Questions. Space Debris Office, European Space Agency. Diakses pada 15 Maret 2018 TU.

Spaceflight101. t.t. Tiangong-1 Spacecraft Overview. Diakses pada 15 Maret 2018 TU.

SatFlare. 2018. Tiangong-1 NORAD 37820. Diakses pada 15 Maret 2018 TU.

Joseph Remis. 2018. komunikasi pribadi.

Marco Langbroek. 2018. komunikasi pribadi.

Roket Terkuat Sejagat yang Menerbangkan Mobil Termahal

Sebuah sejarah baru nan ganjil tercipta pada Rabu 7 Februari 2018 Tarikh Umum (TU) antara pukul 03:45 WIB hingga 09:30 WIB lalu. Sebuah mobil sport komersial bertenaga listrik berwarna merah melayang di antariksa dekat Bumi. Mobil bermerk Tesla Roadster produksi tahun 2008 TU ini mengedari planet biru kita pada sebentuk orbit lonjong dengan ketinggian bervariasi mulai 184 kilometer hingga 6.953 kilometer, semuanya dari paras air laut rata-rata (dpl). Kemiringan bidang orbitnya terhadap bidang ekuator Bumi, atau inklinasi orbit, adalah 29º. Periode orbitalnya 165 menit, bermakna setiap 2,75 jam sekali mobil sport ini menyelesaikan sekali putaran mengelilingi Bumi.

Gambar 1. Mobil listrik Tesla Roadster dan boneka Starman sesaat setelah mulai meninggalkan lingkungan pengaruh gravitasi Bumi pada Rabu 7 Februari 2018 TU pukul 09:30 WIB. Foto ikonis ini diabadikan dari salah satu kamera yang turut serta dalam penerbangan antariksa Tesla Roadster. Bumi nampak di latar belakang. Sumber: SpaceX, 2018.

Dummy Payload

Mobil sport di beredar orbit Bumi laksana satelit saja sudah cukup ganjil. Ini belum pernah terjadi sepanjang sejarah penerbangan antariksa. Namun keganjilan itu masih ditambah lagi oleh hadirnya sesosok manekin/boneka berjuluk Starman yang mengenakan baju antariksawan dan duduk di sisi pengemudi pada mobil dengan setir kiri ini. Sejumlah kamera, minimal tiga buah, menyoroti Tesla Roadster dan Starman-nya dari berbagai sisi. Semuanya memiliki massa sekitar 1,4 ton. Tatkala sudah mengangkasa, kamera-kamera ini pun menyajikan tayangan liputan langsung yang diunggah ke laman video populer. Seperti terlihat berikut ini :

Tak pelak kehebohan besar pun tercipta dan membelah dunia. Sebagian melihatnya keren dan unik. Sementara sebagian lagi mencibirnya, beranggapan hanya membuang-buang duit sembari menciptakan jenis baru sampah antariksa. Kalangan cendekiawan pun demikian. Sebagian mereka mengkritisi aksi Tesla Roadster dan Starman. Mulai dari mengapa tidak mengirim muatan lebih berharga yang bisa membantu menyokong peradaban manusia modern seperti halnya satelit-satelit buatan, mengingat banyak diantaranya yang masih antri menunggu terbang. Hingga kekhawatiran potensi kontaminasi benda langit lain oleh bakteri bandel yang terbawa dari Bumi, mengingat baik Tesla Roadster dan Starman tidak disterilkan lebih dulu sebelum terbang.

Dalam khasanah penerbangan antariksa, mobil Tesla Roadster dan boneka Starman itu sejatinya hanyalah dummy payload atau muatan inert. Mereka dipilih sebagai bagian unjuk kebolehan penerbangan perdana roket angkut berat Falcon Heavy milik perusahaan Space Exploration Technologies, atau SpaceX. Target uji terbang ini adalah mendemonstrasikan kemampuan roket Falcon Heavy untuk lepas landas, lantas tingkat terbawah (booster) bisa mendarat kembali dengan selamat pada landasan pendaratan masing-masing. Selanjutnya roket tingkat teratas (upperstage) bisa dimatikan dan dinyalakan ulang sesuai kebutuhan berdasarkan orbit tujuan yang ditargetkan. Dengan kemampuan seperti itu, upperstage mampu mengantar muatannya menuju berbagai tingkat orbit. Mulai dari orbit geostasioner hingga orbit heliosentris.

Gambar 2. Roket berat Falcon Heavy saat lepas landas dari landasan nomor 39A yang bersejarah di kompleks Tanjung Canaveral, Florida (AS) pada Kamis 7 Februari 2018 TU pukul 03:45 WIB. Dalam penerbangan antariksa bersejarah ini nampak bagian-bagian struktur roket tingkat dua ini, yang ditambahkan kemudian. Sumber: SpaceX, 2018.

Pilihan Elon Musk, pendiri sekaligus direktur utama dan pemegang saham terbesar SpaceX, akan dummy payload nampaknya bersandar pada pengalaman buruk SpaceX masa silam. Kala mengembangkan roket Falcon 1, SpaceX harus menelan pil pahit saat uji terbang perdana 24 Maret 2006 TU gagal. Meski berhasil lepas landas, namun mesin roket Falcon 1 mendadak mati hanya setengah menit pasca meluncur. Akibatnya muatan mahal berupa satelit FalconSAT-2 milik Departemen Pertahanan AS terpaksa jatuh berdebum mencium Bumi tanpa bisa digunakan lagi. Kegagalan juga menghampiri Falcon 1 pada dua peluncuran berturut-turut berikutnya, masing-masing 21 Maret 2007 TU dan 3 Agustus 2008 TU. Dalam dua peluncuran tersebut roket hancur di udara, membuat satelit-satelit milik Departemen Pertahanan AS dan badan antariksa AS (NASA) turut remuk.

Tidak Dari Nol

Falcon Heavy adalah roket angkut berat produk pengembangan evolutif semenjak 2004 TU. Dalam rancangan terakhirnya ia ditargetkan memiliki kapasitas muatan dalam skala luar biasa. Ia berkemampuan mengangkut 68,3 ton muatan ke orbit rendah (tinggi kurang dari 2.000 kilometer dpl) pada inklinasi 28º. Ke orbit transfer geostasioner (tinggi maksimum 35.900 kilometer dpl) pada inklinasi 27º, Falcon Heavy sanggup mengangkut 26,7 ton muatan. Ke orbit heliosentris (mengelilingi Matahari) dengan tujuan akhir ke orbit Mars, Falcon Heavy sanggup membawa 16,8 ton muatan. Bahkan bila tujuan akhirnya ke orbit Pluto sekalipun, tentu dalam orbit heliosentris, Falcon Heavy masih sanggup mengangkut 3,5 ton muatan. Jadi pada dasarnya ini jenis roket yang mampu mengantar muatan ke bagian manapun tata surya kita.

Kemampuan ini jelas mengesankan, mengingat pesawat ulang-alik AS yang melegenda, kini sudah pensiun, ‘hanya’ sanggup mendorong 27,5 ton muatan ke orbit rendah. Sedangkan bila dibandingkan dengan kapasitas angkut roket-roket berat serupa yang masih aktif pada saat ini seperti Delta IV Heavy, Ariane 5 dan Proton-M, Falcon Heavy masih jauh lebih unggul. Demikian halnya dengan ongkos peluncuran untuk setiap kilogram massa muatan, Falcon Heavy tetap jauh lebih unggul.

Ada dua faktor yang membuat roket Falcon Heavy jauh lebih murah dalam hal ongkos peluncuran ketimbang roket-roket berat sejawatnya. Yang pertama, Falcon Heavy tidaklah dibangun dari nol. Akan tetapi melanjutkan pengembangan roket Falcon 9, kuda beban SpaceX saat ini. Komponen-komponen roket Falcon 9, yang sebagian diantaranya diproduksi industri berskala kecil dan menengah, dapat digunakan juga dalam Falcon Heavy. Struktur Falcon Heavy sendiri pada dasarnya serupa Falcon 9, yakni sebagai roket bertingkat dua. Keduanya sama-sama memiliki booster (lowerstage) dan upperstage. Keduanya juga sama-sama hanya memiliki satu upperstage. Bedanya booster Falcon Heavy berjumlah tiga buah, terdiri dari dua side booster di samping dan satu core booster di tengah. Sementara Falcon 9 hanya memiliki sebiji booster. Namun booster Falcon Heavy sejatinya adalah tiga booster Falcon 9 yang digandeng paralel menjadi satu.

Gambar 3. Roket Falcon 9, tepatnya Falcon 9 FT (Full Thrust), saat mulai mengangkasa dari landasan nomor 40 di kompleks Tanjung Canaveral pada 14 Agustus 2016 TU silam dengan membawa muatan komersial satelit komunikasi JCSAT-16. Sebulan kemudian upperstage-nya mengalami reentry di atas Jawa Timur dan sisa-sisanya jatuh di pulau Madura. Roket berat Falcon Heavy dikembangkan dari roket Falcon 9 ini. Sumber: SpaceX, 2016.

Penggunaan komponen yang sama membuat biaya perakitan Falcon Heavy lebih murah. Namun hal itu juga tak terlepas dari faktor kedua, yakni konsep daya pakai ulang. Selagi Falcon Heavy dirancang di atas kertas, SpaceX juga bereksperimen dengan konsep daya pakai ulang bagi roket Falcon 9. Sejara penerbangan antariksa hingga 2015 TU memperlihatkan daya pakai ulang tak pernah meraup sukses sesuai harapan. Di masa lalu wantariksa (wahana antariksa) ulang-alik menerapkan konsep ini secara parsial. Komponen yang bisa dipakai lagi berulang-ulang adalah dua booster berbahan bakar padat dan pesawat ulang-alik. Sementara tanki bahan bakar eksternal dirancang hanya sekali pakai untuk kemudian dibuang dan hangus dalam proses reentry di ketinggian atmosfer.

Aplikasi konsep daya pakai ulang pada wantariksa ulang-alik merupakan jawaban atas begitu mahalnya ongkos peluncuran roket-roket Saturnus 5 yang menjadi pendahulunya. Akan tetapi wantariksa ulang-alik juga mengemban misi antariksa berawak, yang bisa mengangkut hingga 7 astronot, membuat biaya keamanannya melonjak. Terlebih pasca tragedi meledaknya wantariksa Challenger pada 28 Januari 1986 TU. Maka penghematan yang diidam-idamkan pada wantariksa ulang-alik pun meredup. Peluncuran wantariksa ulang-alik pun akhirnya sama mahalnya dengan Saturnus 5.

Era Baru Penerbangan Antariksa

SpaceX juga menyiasati konsep daya pakai ulang secara parsial, awalnya pada booster. Booster SpaceX memang nampak seperti roket-roket lain umumnya, yakni berupa tabung panjang yang volumenya sangat didominasi bahan bakar dan bahan pengoksid. Bedanya, SpaceX berinovasi menjadikan booster bisa mendarat kembali secara vertikal ke landasan pendaratan tertentu usai menjalankan tugas. Caranya mulai dari membalikkan arah terbang booster menggunakan semburan nitrogen dingin usai menjalani tahap pelepasan (staging). Lantas mengendalikan arah terbangnya melalui empat sirip jala-jala yang bisa dibuka-tutup-putar hingga mereduksi kecepatan lewat penyalaan ulang sebagian mesin roket Merlin 1D. Dan akhirnya memasang empat buah kaki pendarat untuk menyokong booster tetap tegak begitu telah mendarat.

Gambar 4. Diagram implementasi konsep daya pakai ulang (reusability) parsial pada roket Falcon 9. Booster akan didaratkan kembali setelah bertugas, sementara upperstage hanya bisa sekali pakai untuk kemudian dibuang. Roket berat Falcon Heavy juga mengadaptasi konsep daya pakai ulang parsial yang mirip. Bedanya Falcon Heavy harus mendaratkan ketiga booster-nya sekaligus dan mendaratkan pula cangkang-cangkang sungkup muatan dengan selamat. Sumber: SpaceX, 2016.

Ujicoba konsep daya pakai ulang dilakukan dalam sejumlah penerbangan komersial roket Falcon 9 sebagai eksperimen tambahan pasca setiap roket menunaikan tugas utamanya. Setelah mencoba berulang-ulang dengan sejumlah kegagalan, akhirnya SpaceX mencetak sukses lewat variannya, roket Falcon 9 FT (Full Thrust) penerbangan ke-20. Dimana booster mendarat selamat di landasan darat pada 22 Desember 2015 TU pasca mengantar muatan komersial 11 satelit Orbcomm-OG2 ke orbit rendah. Sementara sukses pendaratan misi antariksa ke orbit geostasioner diperoleh dalam penerbangan ke-24 pada 6 Mei 2016 TU lewat peluncuran satelit komunikasi JCSAT-14. Booster mendarat di tengah laut pada sebuah kapal bekas yang didesain ulang sebagai landasan landasan bargas (droneship). Peluncuran satelit geostasioner berikutnya, yakni JCSAT-16, tercatat di Indonesia karena upperstage-nya mengalami reentry di atas Jawa Timur dan sisa-sisanya mendarat di selatan Pulau Madura.

Hingga dua tahun kemudian, tepatnya hingga awal Februari 2018 TU, SpaceX telah sukses mendaratkan 21 buah booster Falcon 9 FT dalam 20 misi antariksa berbeda. Enam diantaranya telah diterbangkan kembali dalam misi antariksa yang lain. Konsep daya pakai ulang pun mulai menjadi rutinitas. Ongkos peluncuran pun mulai bisa ditekan, dimana untuk roket Falcon 9 FT menjadi 30 % lebih murah. Era baru penerbangan antariksa yang menjanjikan biaya lebih murah pun dimulai.

Gambar 5. Momen pendaratan booster roket Falcon 9 FT di landasan bargas di perairan Samudera Atlantik, dalam misi antariksa penerbangan ke-23 yang mengantar muatan kargo CRS-8 ke stasiun antariksa internasional pada 8 April 2016 TU. Keterangan bagian-bagian penting dari komponen kendali pendaratan ditambahkan kemudian. Sumber: SpaceX, 2016.

Kombinasi dua faktor itu membuat biaya pengembangan Falcon Heavy relatif kecil bila dibandingkan roket-roket berat sejenis. Elon Musk dalam satu kesempatan menyatakan SpaceX merogoh kocek hingga sedikit di atas US $ 500 juta guna membangun Falcon Heavy. Seluruhnya dibiayai dari kocek SpaceX sendiri tanpa bantuan pendanaan dari luar.

Meski demikian upaya pengembangan Falcon Heavy harus tertunda berkali-kali. Saat memperkenalkan Falcon Heavy ke publik 2011 TU silam, Musk menyatakan roket berat ini akan siap terbang dua tahun kemudian. Namun beragam masalah teknis menghinggapinya. Pada saat yang sama, berbagai problem juga berkali-kali menerpa pengembangan roket Falcon 9 dan variannya (termasuk Falcon 9 FT). Sementara Falcon Heavy dikembangkan secara paralel dengan Falcon 9. Pada akhirnya, penundaan berlangsung hingga 5 tahun lamanya sebelum Falcon Heavy benar-benar siap diluncurkan.

SpaceX menyiapkan lokasi peluncuran di landasan nomor 39A kompleks Tanjung Canaveral, Florida (AS). Ini adalah lokasi bersejarah yang digunakan dalam peluncuran roket-roket Saturnus 5 (1967-1973 TU) dan selanjutnya digunakan pula dalam peluncuran wantariksa ulang-alik (1981- 2011 TU). SpaceX menyewanya dari badan aeronotika dan antariksa AS (NASA) selama 20 tahun penuh terhitung sejak 2014 TU.

Setelah melewati hari-hari terakhir yang menegangkan, akhirnya roket berat Falcon Heavy pun siap mengangkasa. Saat berdiri tegak di landasan nomor 39A, massa total roket berat Falcon Heavy adalah 1.421 ton. Bagian bawah adalah tiga booster, masing-masing bermesin roket 9 buah, sehingga seluruhnya terdapat 27 buah mesin roket. Jumlah ini hanya bisa dikalahkan oleh roket N1, roket berat era Uni Soviet yang dibangun guna meluncurkan manusia Uni Soviet pertama ke Bulan. Tingkat pertama roket N1 itu memiliki 30 buah mesin roket.

Dua side booster Falcon Heavy ini merupakan booster Falcon 9 FT yang pernah diterbangkan dalam misi antariksa sebelumnya. Sedangkan core boosternya adalah baru, demikian halnya upperstage-nya. Di pucuk upperstage, bertumpu pada sebuah adapter khusus, bertengger muatan Tesla Roadster dan Starman beserta kamera-kameranya. Harga jual Tesla Roadster sekitar US $ 100 ribu. Dengan ongkos peluncuran sekitar US $ 2.200 per kilogram, maka secara keseluruhan Tesla Roadster itu berharga sekitar US $ 3 juta, menjadikannya mobil termahal sejagat. Muatan ini dilindungi oleh sungkup (fairing), sepasang cangkang yang mengatup menjadi satu dan melindungi muatan didalamnya selama penerbangan menembus lapisan atmosfer yang lebih padat.

Saat lepas landas, ke-27 buah mesin roket Merlin 1D menyala penuh menghasilkan daya dorong sekuat lebih dari 2.300 ton. Dorongan ini adalah yang terkuat di antara roket-roket berat aktif pada saat ini. Sepanjang sejarah penerbangan antariksa, daya dorong roket berat Falcon Heavy adalah yang yang terkuat kelima sejagat, setelah roket berat N1, Saturnus 5, Energia dan wantariksa ulang-alik. Hanya saja seluruh roket berat itu telah purna tugas. Ini menjadikan Falcon Heavy sebagai roket terkuat sejagat saat ini.

Menyinkronkan kinerja 27 buah mesin roket berbeda adalah tugas sulit. Sejarah penerbangan antariksa memiliki beberapa pengalaman tak menyenangkan. Paling menonjol adalah yang dialami roket N1. Dalam empat ujicoba penerbangannya, sebagian hingga seluruh 30 mesin roket tingkat pertamanya berjumpa beragam masalah. Mulai dari seluruh mesin mati mendadak hingga sejumlah mesin meledak. Ini berujung pada gagal terbangnya roket secara keseluruhan.

Bahkan dalam satu ujicobanya, tepatnya 3 Juli 1969 TU atau hanya dua minggu sebelum peluncuran Apollo 11, gagalnya mesin-mesin tingkat pertama roket N1 berujung jatuhnya roket berbahan bakar penuh di landasannya. Ledakan dahsyat pun terjadilah, salah satu ledakan non-nuklir terbesar yang pernah tercatat, dengan pelepasan energi sekitar 1 kiloton TNT. Buntutnya program roket N1 dibatalkan dan kelak mesin-mesinnya dijual ke AS). Akan tetapi SpaceX nampaknya telah sanggup mengatasi persoalan tersebut sehingga roket Falcon Heavy pun lepas landas dengan mulus.

Gambar 6. Detik-detik pendaratan dua side booster roket Falcon Heavy pasca menjalani penerbangan perdananya. Keduanya mendarat di landasan daratan dalam kompleks Tanjung Canaveral hanya beberapa kilometer dari landasan nomor 39A tempat Falcon Heavy lepas landas. Keduanya mendarat pada masing-masing titik yang ditentukan, yang berjarak 170 meter satu dengan yang lain. Sumber: SpaceX, 2018.

Dua setengah menit pasca lepas landas, yakni saat mencapai ketinggian kurang dari 100 kilometer dpl, Falcon Heavy mematikan dan melepaskan kedua side booster-nya. Selanjutnya kedua side booster membalik dan mengendalikan arah penerbangan selagi turun kembali ke lapisan atmosfer lebih rendah. Pada setiap booster, 3 dari 9 mesin roketnya dinyalakan ulang selama beberapa saat untuk mengurangi kecepatannya selagi masih di ketinggian. Langkah serupa dilakukan kembali disertai membukanya kaki-kaki pendarat saat side-side booster itu sudah mendekati paras Bumi. Maka hanya dalam 8 menit pasca lepas landas, koreografi manis kedua side booster membuatnya mendarat dengan selamat di landasan darat . Keduanya mendarat di dua titik berbeda yang hanya terpisah jarak 170 meter.

Langkah serupa juga dijalani core booster. Tiga menit setelah lepas landas, pada ketinggian lebih dari 100 kilometer dpl, core booster melepaskan diri dari Falcon Heavy dan mengikuti koreografi serupa side booster tadi. Hanya, karena melepaskan diri di ketinggian lebih tinggi dengan kecepatan lebih besar, maka core booster harus mendarat di landasan bargas yang mengapung di perairan Samudera Atlantik. Sayangnya pengalaman side booster tak terulang. Mengeringnya cairan pematik khusus guna penyalaan ulang mesin roket membuat core booster hanya sanggup menyalakan 1 mesin roketnya saja. Tak cukuplah untuk mengerem. Akibatnya core booster menumbuk paras Samudera Atlantik secepat 500 km/jam yang mematikan. Ia jatuh terhempas sejarak hanya 100 meter dari bargas. Hempasan tumbukan dan puing-puingnya bahkan membuat bargas mengalami kerusakan ringan.

Pasca boosterbooster-nya melepaskan diri mengikuti prinsip dasar penerbangan roket bertingkat, kini Falcon Heavy hanya terdiri dari upperstage dan muatannya saja. Di titik ini sungkup melepaskan diri sembari membuka, menjadi sepasang cangkang. Keduanya lantas mengatur arah dan sikap menggunakan roket-roket kecil yang tertanam di setiap cangkang. Sehingga ketika menurun kembali ke lapisan atmosfer lebih rendah, kedua cangkang sungkup itu memiliki sikap yang benar sehingga tidak hancur. Pada akhirnya keduanya melepaskan parasut supersonik sebagai pengerem, membuatnya cukup pelan kala mendarat di paras air Samudera Atlantik sehingga masing-masing cangkang sungkup tetap utuh dan mengapung. Langkah ini masih menjadi bagian dari jargon daya pakai ulang SpaceX, karena pembuatan sungkup muatan saja bisa menelan ongkos US $ 6 juta.

Lewat di Atas Indonesia

Tiga seperempat menit pasca lepas landas, upperstage menyalakan mesin roketnya selama 5,25 menit penuh. Membuat dirinya beserta Tesla Roadster dan Starman berpindah dari semula mengikuti lintasan balistik menjadi menyusuri orbit sirkular takstabil setinggi 185 kilometer dpl. Dan 28,5 menit pasca lepas landas, kala tiba di atas Afrika Selatan, mesin roket upperstage dinyalakan kembali. Kali ini hanya selama 30 detik, namun cukup untuk mendorong Tesla Roadster dan Starman ke orbit parkir nan lonjong dengan ketinggian bervariasi antara 184 kilometer hingga 6.953 kilometer. Praktis tinggi orbit Tesla Roadster dan Starman menembus sabuk van Allen yang penuh radiasi sebagai pengorbanannya dalam melindungi Bumi. Sejak itu pula Tesla Roadster dan Starman menyedot perhatian dunia. Siaran langsung akan keduanya berjalan selama 4 jam penuh. Meski sesungguhnya Tesla Roadster membawa batere yang sanggup memasok arus listrik mencukupi hingga 12 jam pasca lepas landas.

Gambar 7. Peta lintasan upperstage Falcon Heavy beserta muatannya (Tesla Roadster dan Starman) kala masih menghuni orbit parkir pada 7 Februari 2018 TU antara pukul 03:45 hingga 09:30 WIB. Pada lintasannya yang kedua, mereka sempat lewat di atas Indonesia tepatnya di antara pukul 08:00 WIB hingga 08:30 WIB. Peta digambar oleh Marco Langbroek, astronom amatir Belanda. Sumber: Langbroek, 2018.

Selama menyusuri orbit parkirnya, Tesla Roadster dan Starman sempat lewat di atas Indonesia. Tepatnya di antara pukul 08:00 hingga 08:30 WIB. Tesla Roadster dan Starman melintas dari barat daya menuju timur laut. Awalnya Tesla Roadster dan Starman melintas di atas pulau Lombok (propinsi Nusa Tenggara Barat) sekitar pukul 08:04 WIB. Beberapa menit kemudian tepatnya sekitar pukul 08:15 WIB keduanya sudah melejit jauh sehingga ada di atas pulau Buru (propinsi Maluku). Dan sekitar pukul 08:20 WIB Tesla Roadster dan Starman sudah tiba di atas perairan Raja Ampat (propinsi Irian Jaya Barat) nan elok.

Melintasnya Tesla Roadster dan Starman di atas Indonesia adalah momen terakhir keduanya berada di dekat Bumi. Sebab berselang sejam kemudian SpaceX kembali menyalakan ulang mesin roket upperstage-nya. Kali ini durasinya cukup lama, hingga lebih dari 8 menit, pada tahap yang disebut SOI (Solar Orbit Injection). Dorongan kuat membuat Tesla Roadster dan Starman memiliki kecepatan mencukupi untuk lepas dari kungkungan gravitasi Bumi dan berubah menjadi benda langit buatan pengorbit Matahari dengan orbit heliosentris. Tahap SOI ini dapat disaksikan langsung oleh sebagian benua Amerika khususnya pantai barat AS, negara-negara Amerika Tengah dan Brazil. Mesin roket yang menyala dalam tahap ini nampak sebagai bintik cahaya besar yang cukup terang, lebih terang dari Venus, dan nampak laksana sorot lampu yang bergerak.

Seperti terlihat berikut, berdasarkan rekaman dari Observatorium MMT di University of Arizona (AS), upperstage Falcon Heavy dalam tahap SOI terlihat bergerak dari arah barat ke selatan :

upperstage Falcon Heavy beserta muatannya (Tesla Roadster dan Starman) lalu menempati orbit lonjong dengan periode 1,53 tahun, inklinasi 1º, perihelion 0,986 SA (147,5 juta kilometer) dan aphelion 1,664 SA (248,9 juta kilometer). Ini menempatkan mereka berkeliaran mulai dari lingkungan sekitar orbit Bumi di perihelionnya hingga melambung ke bagian dalam kawasan Sabuk Asteroid Utama di aphelionnya, melampaui orbit Mars. Meski demikian perhitungan menunjukkan mereka takkan singgah dekat-dekat baik ke Mars maupun Bumi hingga berdekade-dekade mendatang. Diperhitungkan pada Kamis 8 Februari 2018 TU pukul 11:20 WIB, Tesla RoadsterStarmanupperstage telah lebih jauh dari orbit Bulan. Pada Senin dinihari 12 Februari 2018 TU pukul 01:00 WIB, Tesla RoadsterStarmanupperstage telah meninggalkan ruang pengaruh gravitasi sistem Bumi-Bulan. Sekitar bulan Juli 2018 TU mendatang Tesla RoadsterStarmanupperstage akan melintasi orbit Mars (namun berjarak puluhan juta kilometer dari planet merah itu) dan pada bulan November 2019 TU akan mencapai titik aphelionnya.

Siaran langsung Tesla Roadster dan Starman berakhir menjelang tahap SOI, meski arus listrik dari baterenya masih mencukupi. Masalahnya adalah jarak yang kian menjauh, sehingga kuat sinyal elektromagnetiknya merosot drastis sebagai fungsi kuadrat terbalik dari pertambahan jarak. Sehingga kekuatan sinyalnya telah merosot dibawah ambang batas yang bisa diterima antenna-antenna SpaceX. Mulai saat itu giliran para astronom mengambil alih, memelototi gerak-geriknya dengan bersenjatakan teleskop-teleskop modern di sejumlah observatorium.

Misalnya observasi dari tim Elecnor Deimos, perusahaan teknologi aeronotika dan antariksa yang bermarkas di Spanyol.Elecnor Deimos merekam gerak Tesla RoadsterStarmanupperstage pada hari Kamis 8 Februari 2018 TU pukul 13:10 WIB pada jarak 520.000 kilometer dari Bumi. Ada juga timVirtual Telescope, mengamati pada hari yang sama mulai pukul 18:10 WIB hingga sejam kemudian dengan memanfaatkan teleskop robotik di Observatorium Tenagra, Arizona (AS). Selanjutnya ada Observatorium Las Cumbres di Cerro Tololo (Chile) yang turut berpartisipasi. Dan masih banyak lagi.

Hasil observasiElecnor Deimos :

Hasil observasiVirtual Telescope:

Hasil observasi Marco Langbroek:

Observasi-observasi para astronom tersebut memperlihatkan bahwa Tesla RoadsterStarmanupperstage kini telah sangat redup, lebih redup ketimbang Pluto. Magnitudo semunya bervariasi antara +17 hingga +18. Variasi ini disebabkan oleh rotasi Tesla RoadsterStarmanupperstage pada sumbunya (tepatnya pada sumbu upperstage) dengan periode rotasi 4,7 menit. Rotasi ini umumnya disebut sebagai barbecue roll, yang biasa dilakukan wantariksa antarplanet sebagai upaya untuk menjaga agar tidak ada bagian yang terpapar sinar Matahari terlalu lama.

Gambar 8. Plot variasi kecerlangan Tesla RoadsterStarmanupperstage berdasarkan observasi Erik Dennihiy (University of North Carolina Chapel Hill) pada 11 Februari 2018 TU. Dari plot ini diketahui bahwa Tesla RoadsterStarman-uperstage berputar pada sumbunya dengan pola barbecue roll pada periode rotasi 4,7 menit. Sumber: Dennihiy, 2018.

Layaknya hal-hal populer lainnya, keputusan SpaceX untuk menerbangkan Tesla Roadster dan Starman ke antariksa dalam uji terbang perdana roket berat Falcon Heavy tak lepas dari pro dan kontra. Meski peran utama Tesla Roadster dan Starman sejatinya hanyalah dummy payload. Akan tetapi di atas pro dan kontra tersebut, ini adalah keputusan yang jenius. Animo besar dunia terhadap tayangan langsung Tesla Roadster dan Starman mengapung di antariksa tak pelak menjadi iklan gratis, atau setidaknya berbiaya cukup murah, dalam memperkenalkan roket Falcon Heavy sebagai roket baru. Ini sangat berbeda dengan langkah-langkah pengenalan roket baru lainnya yang sudah pernah dilakukan, yang terkesan lebih formal dengan standar agak membosankan sehingga jarang menggamit perhatian publik.

Kini praktis sebagian besar dunia mengetahui bahwa telah ada roket Falcon Heavy. Roket berat yang mampu melayani pengantaran muatan untuk beragam jenis orbit, mulai dari orbit rendah dan orbit geostasioner di Bumi hingga ke orbit heliosentris ke sudut manapun dalam tata surya kita. Roket berat ini juga mampu melayani penerbangan antariksa berawak. Jenis penerbangan antariksa yang kini hanya dilayani oleh wantariksa Soyuz (Russia) dan (sedikit diantaranya) oleh wantariksa Shenzou, sementara pesawat ulang-alik sudah purna tugas. Dan yang lebih mengesankan lagi, adalah tawaran biaya penerbangan antariksa yang jauh lebih murah, bahkan termurah untuk saat ini.

Referensi :

SpaceX. 2011. SpaceX Brochure : Falcon Heavy, 9 Agustus 2011. Diakses 10 Februari 2018 TU.

SpaceX. 2018. Falcon Heavy Demonstration Mission, Press Kit, 6 Februari 2018. Diakses 10 Februari 2018 TU.

Bila Cassini Menjadi Bola Api (di Saturnus)

Saat terakhir itu terjadi pada Jumat 15 September 2017 TU (Tarikh Umum) pukul 17:32:20 WIB. Yakni kala Cassini, salah satu wantariksa (wahana antariksa) penyelidik planet nan legendaris, mengakhiri masa tugasnya. Pada saat itulah Cassini mulai menjadi kobaran api kala tiba di ketinggian 1.650 kilometer dari paras Saturnus pada garis 10º LU. Inilah perjalanan terakhir Cassini yang dilakukannya terjun bebas menembus lapisan demi lapisan udara Saturnus, planet raksasa gas bercincin eksotis yang telah dikawalnya dengan setia dalam 13 tahun terakhir. Namun gelombang elektromagnetik terakhirnya baru diterima Bumi pukul 18:55:46 WIB, seiring demikian jauhnya jarak Saturnus ke Bumi (yakni 1.500 juta kilometer).

Gambar 1. Sepasang foto terakhir hasil bidikan wantariksa Cassini dalam beberapa belas jam sebelum terjun bebasnya ke Saturnus. Kiri: Enceladus yang berfasa sabit hampir terbenam dengan Saturnus di latar depan. Kanan: bayangan struktur cincin Saturnus (sebagai jalur kehitaman di tengah foto) di badan planet raksasa tersebut. Di sebelah utara (atas) pita hitam itulah Cassini menerjunkan dirinya. Sumber: NASA/JPL/SSI, 2017.

Saat terjun bebas sebagai bola api, Cassini mencatatkan diri sebagai salah satu penyelidik planet bermasa tugas cukup lama. Ia tiba di lingkungan Saturnus pada 1 Juli 2004 TU dan terus bertahan dengan kinerja nyaris sempurna hingga 15 September 2017 TU. Jika dihitung sejak lepas landasnya, yakni pada 15 Oktober 1997 TU, maka Cassini telah berada di antariksa selama hampir 20 tahun. Sebagai pembanding Galileo, wantariksa ‘saudara’-nya yang bertugas menyelidiki Jupiter, hanya bertahan hampir 14 tahun saja di antariksa.

Purna tugasnya Cassini juga menjadi penanda bagi berakhirnya satu era menggelegak dalam khasanah penjelajahan antariksa. Yakni era wantariksa berukuran besar (dan sangat mahal) sekaligus wantariksa penyelidik planet yang lebih jauh ketimbang Mars. Era yang dipelopori oleh Pioneer 10 dan Pioneer 11 (meluncur tahun 1972 TU dan 1973 TU) dan mencapai puncaknya dengan Voyager 1 dan Voyager 2 nan fenomenal (keduanya meluncur tahun 1977 TU). Lewat dua Voyager ini praktis tak hanya Jupiter dan Saturnus yang ‘diaduk-aduk’ tetapi juga dua planet besar lainnya yakni Uranus dan Neptunus. Dalam hal ini baik Cassini maupun Galileo merupakan ‘keturunan langsung’ Voyager.

Zuhal nan Ganjil

Gambar 2. Saturnus dalam bidikan teleskop refraktor berdiameter 70 mm dari Bumi pada 4 Agustus 2014 TU silam. Meski terlihat kecil, namun bentuk cincin yang menjadi ciri khasnya terlihat jelas. Sumber: Sudibyo, 2014

Saturnus telah dikenal umat manusia sejak peradaban bermula karena dapat dilihat mata tanpa bantuan alat optik apapun. Mitologi Yunani menyebutnya Kronus dan dianggap pelindung dunia pertanian mereka, mungkin karena tampilan warna kekuningannya yang mengingatkan akan gandum. Bangsa Romawi kuno melabelinya sebagai Saturnus, dengan fungsi mirip Kronus. Di Timur, Bangsa Cina menyebutnya Tu-xing yang bermakna ‘bintang tanah.’ Tanah merupakan salah satu dari lima elemen dasar semesta dalam filosofi Cina selain air, api, logam dan kayu. Bagi bangsa Jepang kuno, planet ini dinamakan Do-sei yang juga adalah ‘bintang tanah.’ Di India kuno, Saturnus dinamakan Shani dan dikaitkan dengan pengadil segala perbuatan baik dan buruk. Dan bagi bangsa Arab, Saturnus memiliki nama Zuhal atau Zohal yang berkaitan dengan otoritas dan kekuasaan.

Meski demikian sifat-sifat fisis Saturnus baru mulai diketahui dalam empat abad terakhir. Tepatnya setelah Galileo Galilei (Italia) mengarahkan teleskop panggung rakitannya pada tahun 1610 TU. Apa yang dilihatnya mengejutkan. Saturnus seakan-akan dihiasi sepasang telinga di kiri dan kanannya. Butuh setengah abad lebih untuk menguak misteri ‘sepasang telinga’ tersebut, yakni lewat tangan Christiaan Huygens (Belanda) dengan teleskop rakitan berkemampuan pembesaran 50 kali pada tahun 1665 TU. ‘Sepasang telinga’ itu ternyata struktur cincin raksasa, sehingga kosakata planet bercincin pun sontak melekat pada Saturnus. Meski di kemudian hari, tepatnya jelang akhir abad ke-20 TU diketahui bahwa seluruh planet raksasa dalam tata surya kita (Jupiter, Saturnus, Uranus dan Neptunus) ternyata memiliki cincinnya masing-masing. Huygens juga menemukan satelit alamiah terbesar Saturnus, yang dinamakan Titan. Satelit-satelit lainnya seperti Iapetus, Rhea, Tethys dan Dione ditemukan secara berturut-turut oleh Giovanni Domenico Cassini (Italia).

Gambar 3. Saturnus dalam pandangan mata inframerah Cassini. Warna biru dan hijau masing-masing menunjukkan sinar inframerah yang berasal dari Matahari pada panjang gelombang 2 dan 3 mikron. Sementara warna merah adalah pancaran panas dari interior Saturnus, yang hanya bisa dilihat pada panjang gelombang 5 mikron. Diabadikan pada 1 November 2008 TU. Sumber: NASA/JPL/SSI, 2008.

Akan tetapi hampir semua informasi detil tentang Saturnus dan lingkungannya baru diperoleh dalam setengah abad terakhir. Yakni dalam era penerbangan antariksa, tepatnya melalui wantariksa Pioneer 11, Voyager 1 dan Voyager 2. Meski ketiganya hanya sempat berada di dekat Saturnus dalam tempo sangat singkat karena sifat misi antariksanya sebagai misi terbang-lintas dekat (flyby). Barulah Cassini, lengkapnya misi antariksa Cassini-Huygens, yang menjalankan peran sebagai misi pengorbit Saturnus dengan beredar mengelilingi planet bercincin itu lewat orbit yang senantiasa berubah seiring waktu sesuai dengan desain observasi yang telah ditentukan. Cassini-Huygens menyajikan informasi luar biasa besarnya, sehingga mendorong lahirnya lebih dari 1.000 makalah ilmiah dan sejumlah buku.

Kini kita tahu planet Saturnus adalah 9 kali lebih besar dan 95 kali lebih massif ketimbang Bumi. Ia butuh waktu 29,46 tahun untuk menyelesaikan gerak mengelilingi Matahari sekali putaran. Maka setahun bagi Saturnus setara dengan 29,46 tahun di Bumi. Akan tetapi planet ini berputar pada sumbunya pada kecepatan yang jauh lebih besar ketimbang Bumi, yakni hanya dalam tempo 10,55 jam. Jadi sehari di Saturnus adalah kurang dari setengah hari di Bumi.

Banyak hal ganjil di Saturnus. Salah satunya adalah kerapatan (densitas)-nya yang sangat kecil, yakni 690 kilogram/meter3 (rata-rata). Sebagai pembanding, densitas air murni 1.000 kilogram/meter3. Karenanya Saturnus akan terapung bilamana diletakkan dengan hati-hati di sebuah samudera mahaluas. Rendahnya densitas Saturnus disebabkan oleh dominannya Hidrogen dan Helium sebagai penyusun planet ini. Bagian yang relatif padat hanyalah inti Saturnus, berupa gumpalan padat berbatu yang 2 kali lebih besar dan 9 hingga 22 kali lebih massif ketimbang Bumi. Inti ini bersuhu sangat tinggi, hingga 11.700º C.

Gambar 4. Saturnus dan lingkungannya diabadikan Cassini jauh tinggi di atas kutub utaranya. Nampak badai raksasa unik berbentuk segienam yang mengamuk di area kutub utara Saturnus. Badai permanen ini diperkirakan telah berhembus sejak masa bayi Saturnus dengan pasokan tenaga berlimpah dari interior Saturnus. Diabadikan pada 10 Oktober 2013 TU. Sumber: NASA/JPL/SSI, 2013.

Inti Saturnus dikelilingi lapisan es dan Hidrogen/Helium metalik. Yakni lapisan dengan tekanan sangat tinggi sehingga Hidrogen/Helium tertekan hebat, membuatnya berbentuk cair dan bisa menghantarkan listrik layaknya logam. Dari lapisan inilah medan magnet Saturnus bermula. Lapisan ini diselubungi lagi oleh lapisan tebal berisi Hidrogen/Helium cair tanpa sifat metalik. Dan lapisan terluar Saturnus adalah lapisan gas Hidrogen (dengan sangat sedikit Helium) yang mempunyai ketebalan 1.000 kilometer. Interior seperti ini adalah hal yang umum pada planet raksasa gas. Jadi tidak ada permukaan padat layaknya Bumi. Apa yang disebut sebagai paras (permukaan) Saturnus merupakan himpunan titik-titik pada lapisan terluar yang memiliki tekanan 1 bar (100 kPa atau 100 kN/m2), yakni tekanan yang hampir sama dengan tekanan 1 atmosfer di Bumi.

Tekanan luar biasa besar yang diderita inti Saturnus memproduksi mekanisme Kelvin-Helmholtz yang menghasilkan panas. Pada lapisan lebih luar, tepatnya di batas antara lapisan Hidrogen/Helium metalik dengan lapisan Hidrogen/Helium cair, panas juga muncul melalui hujan Helium. Yakni saat butir-butir Helum cair dari lapisan luar jatuh (turun) menembusi Hidrogen dibawahnya, sehingga saling bergesekan. Lewat dua sumber panas ini Saturnus memancarkan energi luar biasa besar ke lingkungan sekitarnya, dalam jumlah 2,5 kali lipat lebih besar dari energi sinar Matahari yang diterimanya. Badai unik di Saturnus, yakni badai raksasa heksagonal (berbentuk segienam) permanen yang ada di kutub utara Saturnus, demikian halnya badai raksasa di kutub selatannya, diyakini mendapatkan tenaganya dari panas internal ini. Hal serupa juga dijumpai pada Jupiter. Bedanya pancaran energi dari interior Saturnus tidak berdampak pada meraksasanya medan magnet Saturnus.

Lautan Minyak dan Air Mancur Raksasa

Gambar 5. Sejumlah satelit alamiah Saturnus berada dalam satu medan pandang mata tajam Cassini. Mulai dari Titan yang terbesar, Janus (diameter 181 kilometer), Prometheus (diameter 102 kilometer) dan Mimas (diameter 397 kilometer). Sebagian Saturnus nampak di sisi kanan, dengan bayang-bayang struktur cincin dengan beberapa bagiannya tercetak jelas dibadannya. Diabadikan pada 26 Oktober 2007 TU. NASA/JPL/SSI, 2007.

Keganjilan berikutnya adalah Saturnus memiliki satelit alamiah luar biasa banyak, yakni 62 buah. Ini menjadikannya planet terkaya kedua akan satelit alamiah setelah Jupiter (dengan 69 satelit alamiah). Tetapi Saturnus juga dikitari oleh ratusan bongkahan-bongkahan berdimensi 40 hingga 500 meter yang terselip di dalam cincinnya. Mereka disebut satelit alamiah mini atau satelit mini atau moonlet. Namun diyakini moonlet tidak tergolong ke dalam satelit alamiah yang sesungguhnya. Dimensi moonlet demikian kecil sehingga mata tajam Cassini sekalipun tak dapat menyaksikannya. Moonlet hanya bisa dideteksi berdasarkan gangguannya terhadap bagian cincin Saturnus disekelilingnya, yang menampakkan panorama baling-baling (propeller).

Gambar 6. Cincin A Saturnus dalam pandangan tajam Cassini dari jarak dekat. Nampak sejumlah gejala eksistensi satelit alamiah mini (moonlet) dalam wujud panorama mirip baling-baling (propeller). Diabadikan pada 19 April 2017. Sumber: NASA/JPL/SSI, 2017.

Dari 62 satelit alamiah itu 53 diantaranya telah bernama dan 48 diantaranya memiliki diameter kurang dari 50 kilometer. Titan adalah yang paling gede (diameter 5.150 kilometer), bahkan sedikit lebih gede ketimbang Merkurius. Karenanya memiliki cukup gravitasi untuk menyekap atmosfer, menjadikannya satu-satunya satelit alamiah yang beratmosfer di tata surya kita. Atmosfer Titan cukup tebal, dua kali lipat tebal atmosfer Bumi, dan dijejali kabut merah kekuningan tak tembus pandang. Sehingga upaya eksplorasi Titan, baik dengan teleskop dari Bumi maupun dengan penerbangan antariksa sebelumnya, tidak sanggup menguak paras Titan. Barulah setelah Cassini meluncurkan pendarat Huygens ke benda langit ini di awal 2005 TU serta berulang-ulang melintasinya sembari mengamatinya dengan gelombang radar dan pencahayaan inframerah maka rahasia Titan mulai terkuak.

Gambar 7. Panorama salah satu bagian bentanglahan Titan dari dua ketinggian berbeda, diabadikan pendarat Huygens dalam perjalanannnya menuju daratan Titan. Nampak lembah besar dengan bekas delta (muara sungai) yang diapit dua perbukitan di kedua sisinya. Pada salah satu dasar anak sungai dalam bekas delta inilah Huygens mendarat. Diabadikan pada 14 Januari 2005 TU. Sumber: ESA/Huygens, 2005.

Titan ternyata memiliki paras yang mencengangkan mirip Bumi kita, bergunung-gunung dan berlembah-lembah. Sebagian lembah raksasanya terisi cairan sebagai laut dan danau yang luasnya beragam. Ada juga sungai yang panjangnya hampir menyamai Bengawan Solo. Cairan pengisi laut, danau dan sungai Titan bukanlah air, melainkan metana dan etana cair. Di Bumi kedua senyawa itu dikenal sebagai komponen minyak (bumi). Laut, danau dan sungai Titan disokong daur hidrologis mirip di Bumi, bedanya di sini melibatkan metana cair. Hujan deras yang megguyurkan metana cair kerap terjadi, juga disertai sambaran petir. Hujan membasahi daratan Titan yang tersusun dari bongkahan es bercampur minyak. Cairan minyak di Titan demikian berlimpah, sekitar 300 kali lebih banyak ketimbang cadangan minyak yang kita miliki di Bumi.

Gambar 8. Pemandangan daratan Titan di lokasi mendaratnya Huygens. Nampak bongkahan-bongkahan batu yang tersusun dari es bercapur minyak dan menampakkan tanda-tanda erosi, jejak dari aliran fluida permukaan di masa silam. Lokasi pendaratan Huygens adalah dasar sebuah sungai kering. Diabadikan pada 14 Januari 2005 TU. Sumber: ESA/Huygens, 2005.

Selain Titan, Enceladus juga cukup menarik. Dimensinya hanyalah sepersepuluh Titan, namun sajian fenomenanya tak kalah mencengangkan. Pada 2005 TU Cassini mengungkap adanya semburan luar biasa laksana air mancur raksasa, yang muncrat dari kawasan kutub selatan secara terus menerus. Materi semburan melesat secepat 4.500 kilometer/jam hingga ke ketinggian 500 kilometer. Materi tersebut adalah adalah air (sebanyak 250 kilogram/detik) berbentuk uap yang bercampur dengan karbondioksida dan beberapa senyawa karbon seperti metana, propana, asetilena dan formaldehida. Semburan raksasa ini adalah pertanda adanya samudera bawahtanah di interior Enceladus. Samudera berair asin (kadar Natrium antara 0,5 hingga 2 %) itu bagian dari lapisan selubung yang berada di bawah lapisan kerak es, yakni pada kedalaman 30 hingga 40 kilometer dari paras Enceladus. Tebal lapisan selubung ini diperkirakan 30 kilometer.

Gambar 9. Semburan dahsyat yang menyeruak dari kutub selatan Enceladus, laksana air mancur raksasa yang memuntahkan 250 kilogram air per detik secara terus menerus. Selain jejak aktivitas vulkanisme dingin, semburan ini juga pertanda eksistensi samudra bawahtanah berair asin di satelit alamiah Saturnus yang satu ini. Nampak pula daratan di lokasi semburan yang penuh retakan di sana sini. Diabadikan pada 30 November 2010 TU. Sumber: NASA/JPL/SSI, 2010.

Semburan raksasa di Enceladus merupakan pertanda aktivitas vulkanisme dingin. Selain Enceladus, jejak vulkanisme dingin juga berhasil diungkap Cassini di tempat lain. Yakni di Titan, tepatnya pada Gunung Doom dengan kaldera Sotra Patera di kakinya (lebar kaldera 7 kilometer dan kedalaman 1,7 kilometer). Di lerengnya dijumpai jejak aliran mirip lava yang berstruktur menjemari dengan ketebalan sekitar 100 meter. Lava tersebut mungkin tersusun dari air bercampur amonia dan senyawa karbon kompleks seperti polietilena, parafin dan aspal.

Planet Bercincin

Struktur cincin raksasa adalah keganjilan Saturnus yang paling menonjol. Cassini berkesempatan mengamatinya dari jarak dekat secara berulang-ulang selama bertahun-tahun. Dan di tahun terakhirnya bahkan berkesempatan lewat di antara sela-sela cincin maupun di bagian yang paling tipis.

Cincin Saturnus merentang dari ketinggian 7.000 kilometer hingga 420.000 kilometer di atas khatulistiwa’. Namun bagian terpadat hanya sampai ketinggian 80.000 kilometer. Cincin Saturnus terbagi menjadi 9 bagian berbeda. Dari yang terdekat hingga terjauh dari Saturnus masing-masing adalah cincin D (lebar 7.500 kilometer), cincin C (lebar 17.500 kilometer), cincin B (lebar 25.500 kilometer), cincin A (lebar 14.600 kilometer), cincin F (lebar 30 – 500 kilometer), cincin Janus-Epimetheus (lebar 5.000 kilometer), cincin G (lebar 9.000 kilometer), cincin Pallene (lebar 2.500 kilometer) dan yang terluar sekaligus terlebar adalah cincin E (lebar 300.000 kilometer). Cincin B dan cincin A dipisahkan oleh ruang selebar 4.700 kilometer yang disebut divisi Cassini, sementara antara cincin A dan cincin F terdapat divisi Roche (lebar 2.600 kilometer).

Gambar 10. Bumi dalam mata tajam Cassini saat mengabadikan Saturnus dan Matahari dalam garis syzygy. Saat itu Cassini berposisi 2,2 juta kilometer di ‘belakang’ Saturnus. Sehingga mampu menguak pemandangan segenap lingkungan Saturnus termasuk hampir seluruh cincinnya. Diabadikan pada 15 September 2006 TU. Sumber: NASA/JPL/SSI, 2006.

Pada dasarnya cincin Saturnus merupakan cakram raksasa yang ketebalannya bervariasi mulai dari 10 meter hingga 1.000 meter. Cakram raksasa ini didominasi oleh butir-butir es yang ukurannya mulai dari sekecil butir pasir hingga sebesar kerikil (diameter 1 hingga 10 sentimeter). Namun di tempat-tempat tertentu terdapat pula bongkahan besar lonjong mirip jarum raksasa dengan panjang hingga 2,5 kilometer. Komposisi cincin Saturnus didominasi air (99,9 %) dengan sedikit senyawa pengotor seperti silikat. Meski strukturnya luar biasa besar massa keseluruhan materi cincin Saturnus cukup kecil. Yakni hanya seper 820 massa Bulan kita.

Sebagian besar cincin Saturnus diperkirakan terbentuk pada masa bayi Saturnus. Dulu diduga ada satu satelit alamiah sebesar Titan atau lebih besar lagi. Karena orbitnya tak stabil, ia terus bergeser hingga akhirnya terlalu dekat ke Saturnus. Segera gaya tidal Saturnus meremukkannya menjadi kerikil dan debu. Bagian yang lebih ringan, yakni butir-butir es, terserak dan seiring waktu perlahan-lahan membentuk struktur cincin Saturnus. Sementara bagian lebih padat, yakni butir-butir batuan, juga terserak layaknya butir-butir esnya. Namun mereka perlahan-lahan saling menempel kembali, menggumpal hingga akhirnya membentuk gumpalan besar. Di kemudian hari gumpalan-gumpalan besar itu adalah segenap satelit alamiah yang jaraknya lebih jauh dari Tethys.

Gambar 11. Struktur unik dalam cincin Saturnus, tepatnya di tepi cincin B. Yakni jajaran bongkahan besar sangat lonjong mirip jarum-jarum raksasa yang menjulang hingga setinggi 2,5 kilometer sehingga menampakkan bayang-bayangnya di bagian cincin lainnya kala tersinari Matahari. Nampak celah Huygens dan celah Herschel yang menjadi bagian dari divisi Cassini. Diabadikan pada 26 Juli 2009 TU. Sumber: NASA/JPL/SSI, 2009.

Sementara sebagian kecil cincin Saturnus dibentuk oleh materi yang tersembur dari satelit-satelit alamiahnya. Misalnya cincin E, mendapatkan pasokan debu dari semburan Enceladus. Juga cincin Janus-Epimetheus, ditemukan pada 2006 TU, dengan pasokan debu dari Janus (diameter 200 kilometer) dan Epimetheus (diameter 130 kilometer). Janus dan Epimetheus adalah sepasang satelit alamiah yang menempati orbit yang sama sehingga bisa saling bertukar posisi. Benturan mikrometeoroid dengan Janus dan Epimetheus melesatkan debu yang membentuk cincin ini. Demikian halnya cincin G, khususnya bagian dalam, dengan pasokan debu dari Aegaeon. Baru ditemukan pada 2008 TU, Aegaeon adalah satelit alamiah Saturnus yang terkecil sekaligus terganjil karena sangat lonjong (panjang 1,4 kilometer lebar 0,5 kilometer).

Begitu pula cincin Pallene dengan pasokan debu dari Pallene (diameter 6 kilometer), satelit alamiah yang baru ditemukan pada 2004 TU. Cincin F pun demikian. Perhitungan menunjukkan cincin ini dibentuk oleh debu-debu produk benturan kosmik antara Prometheus dan Pandora di masa silam. Akibat benturan tersebut, maka baik Prometheus maupun Pandora dipahat hingga menjadi berbentuk lonjong (masing-masing memiliki panjang 136 kilometer dan 104 kilometer. Prometheus lantas berperan sebagai ‘penggembala’ agar cincin ini tetap utuh di lokasinya.

Gambar 12. Transparannya cincin Saturnus, sebagai konsekuensi dari ketebalan cincin yang kecil (sekitar 10 meter), materi yang kecil (seukuran butir pasir hingga kerikil) dan tembus pandang (air yang membeku) terlihat di sini. Bagian Saturnus di latar belakangnya pun dapat dilihat dengan mudah. Diabadikan pada 4 November 2006 TU. Sumber: NASA/JPL/SSI, 2006.

Campurtangan satelit-satelit alamiah Saturnus juga berperan membentuk keganjilan lainnya. Yakni busur cincin, bentangan materi mirip bagian cincin namun tidak sampai membentuk kurva tertutup seperti lingkaran. Cassini mengungkap Saturnus memiliki sedikitnya dua busur cincin. Yang pertama adalah busur cincin Methone, ditemukan pada September 2006 TU dengan panjang bentangan 34.000 kilometer. Busur cincin ini dibentuk oleh debu yang dilepaskan Methone (diameter 3,9 kilometer) seiring tumbukan dengan mikrometeoroid. Methone sendiri baru ditemukan saat Cassini baru tiba di Saturnus. Dan yang kedua adalah busur cincin Anthe yang jauh lebih panjang (69.000 kilometer) dan ditemukan pada Juni 2007 TU. Ia bersumber dari Anthe (diameter 2 kilometer) yang juga ditemukan pada 2007 TU. Baik busur cincin Methone maupun Anthe dikontrol sepenuhnya oleh gravitasi Mimas (diameter 396 kilometer) sehingga bentuknya tetap terjaga meski dipaksa berayun-ayun ke utara dan ke selatan secara teratur.

Opsi Uranus

Layaknya Saturnus, perjalanan Cassini menuju planet bercincin tujuannya pun tak kalah ganjilnya. Dibangun bersama oleh tiga badan antariksa, masing-masing dari Amerika Serikat (NASA), gabungan negara Eropa (ESA) dan Italia (ASI), Cassini mewujudkan diri sebagai wantariksa terberat kedua yang pernah diluncurkan. Massa Cassini adalah 2.125 kilogram dan pendarat Huygens 319 kilogram. Ditambah dengan 3.132 kilogram bahan bakar dan 132 kilogram adapter, maka massa total Cassini-Huygens mencapai 5.712 kilogram. Cassini sekaligus menjadi wantariksa termahal. Mulai dari tahap pembangunan hingga peluncurannya saja Cassini-Huygens menelan ongkos Rp 42,5 trilyun (berdasar kurs 2017 TU) dengan 80 % diantaranya ditanggung NASA.

Gambar 13. Wantariksa Cassini dan pendarat Huygens saat hendak menjalani rangkaian tes getaran dan panas di fasilitas Jet Propulsion Laboratory NASA, negara bagian California (AS) pada 31 Oktober 1996 TU. Tes ini wajib dilakukan sebelum Cassini-Huygens didorong ke langit. Sumber: NASA/JPL/SSI, 1996.

Hanya roket angkut terkuatlah yang bisa mendorong Cassini ke antariksa dan pada dekade 1990-an TU itu hanya berarti satu: roket Titan IV. Begitupun Titan IV tak cukup bertenaga untuk melontarkan Cassini langsung ke Saturnus. Kombinasi Titan IV dan upperstage Centaur hanya sanggup menghasilkan tambahan kecepatan heliosentris 4 kilometer/detik (relatif ke Matahari). Padahal untuk bisa langsung ke Saturnus butuh tambahan kecepatan heliosentris hingga 17 kilometer/detik (relatif ke Matahari). Agar bisa melejit secepat itu, maka Cassini harus mengonsumsi tak kurang 75.000 kilogram bahan bakar. Ini teramat berat sehingga tak mungkin untuk diangkut berdasarkan teknologi peroketan saat ini. Sebab untuk mengangkat massa seberat itu butuh roket angkut yang berkali lipat lebih jumbo ketimbang roket raksasa Saturnus V, roket terbesar sepanjang sejarah (kini telah pensiun). Dan jelas membuat biaya peluncuran menjadi ‘menyentuh langit’ (sangat mahal).

Untung tersedia solusi alamiah yang jauh lebih murah: daya lontar gravitasi atau ketapel gravitasi (gravity assist). Saat sebuah benda kecil (misalnya komet, asteroid atau wantariksa) lewat dalam jarak sangat dekat ke sebuah planet dan arah kedatangannya sejajar dengan arah gerak planet itu dalam mengelilingi Matahari, maka terjadi transfer momentum yang membuat kecepatan benda kecil itu (relatif ke Matahari) meningkat pesat. Ketapel ini memungkinkan sebuah wantariksa melesat cepat dengan meminjam tenaga Bumi (dan planet-planet lain) tanpa harus menyalakan mesin roketnya. Penjelajahan Cassini membutuhkan ketapel berganda yang melibatkan tiga planet: Bumi, Venus dan Jupiter. Sehingga lahirlah istilah VVEJGA (Venus-Venus-Earth-Jupiter Gravity Assist) karena Cassini harus menjalani empat daya lontar berbeda, yakni dua kali dengan Venus, satu kali dengan Bumi dan satu kali dengan Jupiter.

Maka saat Cassini meluncur dengan roket Titan IV dari Cape Canaveral, negara bagian Florida (Amerika Serikat) pada 15 Oktober 1997 TU pukul 15:43 WIB, ia justru diarahkan menuju Venus. Cassini pun melintas dalam jarak hanya 284 kilometer dari paras Venus pada 26 April 1998 TU. Daya lontar gravitasi Venus membuat Cassini kini melaju 6 kilometer/detik (relatif ke Matahari). Selanjutnya pada 24 Juni 1999 TU, Cassini kembali lewat di dekat Venus dalam jarak hanya 623 kilometer. Kembali daya lontar gravitasi Venus bekerja dan Cassini dipercepat melaju 9,5 kilometer/detik (relatif ke Matahari) sekaligus menempuh lintasan lonjong menuju Bumi. Pada 18 Agustus 1999 TU, Cassini lewat hanya dalam jarak 1.171 kilometer dari paras Bumi dan mengalami daya lontar gravitasi. Kini tambahan kecepatan heliosentrisnya meningkat pesat hingga 16 kilometer/detik dan menempuh lintasan baru ke Jupiter. Akhirnya saat melintas pada jarak 9,7 juta kilometer dari Jupiter pada 30 Desember 2000 TU, bekerjalah ketapel gravitasi yang terakhir yakni dari Jupiter. Sehingga pada akhirnya Cassini memiliki kecepatan akhir mencukupi untuk terbang ke Saturnus.

Gambar 14. Lintasan rumit yang harus ditempuh Cassini semenjak meluncur dari Bumi (1997 TU) hingga akhirnya tiba di Saturnus (2004 TU). Lintasan ini harus dijalani agar Cassini tak harus mengangkut 75.000 klogram bahan bakar, hal yang mustahil dalam teknologi peroketan saat ini. Dengan lintasan ini maka Cassini memanfaatkan daya lontar gravitasi dari tiga planet sekaligus: Venus, Bumi dan Jupiter. Sumber: NASA/JPL, 1998.

Ketapel gravitasi memang tak membutuhkan apapun. Namun agar teknik ini bekerja baik hingga ke ambang batas teknis yang diperkenankan, dibutuhkan serangkaian manuver. Dan itu mengonsumsi bahan bakar Cassini karena mesin roketnya harus dinyalakan sesuai kebutuhan. Sehingga saat tiba di Saturnus, Cassini telah menghabiskan 1.135 kilogram bahan bakarnya untuk rangkaian manuver itu. Selanjutnya agar gravitasi Saturnus bisa menangkap dan memaksanya beredar mengelilingi planet cincin itu dengan orbit tertentu, Cassini kembali harus menyalakan roketnya dan kali ini untuk mengerem. Pengeremen ini mengonsumsi sekitar 1.200 kilogram bahan bakar. Sehingga pada awal 2005 TU sisa persediaan bahan bakar Cassini tinggal sekitar seperempatnya saja (sekitar 800 kilogram).

Beruntung Saturnus memiliki Titan. Lewat teknik daya lontar gravitasi pula, Cassini berulang-ulang dilewatkan di dekat Titan. Selain menambah kecepatan dan sangat menghemat penggunaan bahan bakar, Cassini juga bisa mengubah orbitnya mengikuti desain observasi yang dibebankan padanya. Sehingga meski hanya dirancang untuk bertugas selama empat tahun, sisa bahan bakar yang masih cukup banyak memungkinkan masa tugas Cassini diperpanjang. Awalnya selama dua tahun dalam misi Cassini Equinox Mission (2008-2010 TU), dimana Cassini memusatkan perhatiannya pada momen eukinoks Saturnus (Matahari tepat di atas khatulistiwa’ Saturnus) yang terjadi pada 9 Agustus 2009 TU. Lalu diperpanjang tujuh tahun lagi di bawah tajuk Cassini Solstice Mission (2010-2017 TU) guna menyongsong momen titik balik musim panas (solstice) Saturnus yang terjadi pada 23 Mei 2017 TU. Selama dua misi tambahan itu berlangsung, Cassini lebih banyak memusatkan perhatiannya pada Titan dan Enceladus.

Gambar 15. Salah satu usulan opsi untuk perjalaan Cassini selanjutnya pasca menjalani misi utamanya di Saturnus. Dengan memanfaatkan daya lontar gravitasi Titan dan Jupiter, maka Cassini bisa diarahkan untuk meneliti Uranus dan Neptunus. Namun opsi ini ditolak NASA. Sumber: Kloster dkk, 2009.

Sejak misi utamanya berakhir pada 2008 TU, NASA telah mendiskusikan bagaimana mengoptimalkan Cassini hingga bahan bakarnya habis kelak. Beragam opsi disajikan. Salah satunya, yang paling menantang, adalah bagaimana memanfaatkan Cassini untuk mengeksplorasi dua planet raksasa terluar: Uranus dan Neptunus. Dalam opsi ini, bilamana Cassini bisa meninggalkan Saturnus pada 19 Februari 2014 TU (dengan kombinasi penyalaan mesin dan daya lontar gravitasi Titan) menuju Jupiter guna memanfaatkan daya lontar gravitasinya (yang akan terjadi pada 10 Agustus 2021 TU), maka Cassini tiba di lingkungan Uranus pada 2 Agustus 2029 TU. Dan selanjutnya dengan memanfaatkan daya lontar gravitasi Uranus, maka Cassini bisa tiba di Neptunus pada 12 Februari 2061 TU. Opsi ini membutuhkan serangkaian manuver sudah harus dilakukan sejak 2,4 hingga 1,4 tahun sebelum 19 Februari 2014 TU.

Meski sangat menantang, terlebih hingga saat ini belum ada rencana baru penerbangan antariksa untuk mengeksplorasi Uranus dan Neptunus pasca Voyager 2, namun opsi ini tidak dipilih. Dengan pertimbangan nilai ilmiah, biaya dan ketersediaan waktu, maka NASA memilih opsi untuk menjatuhkan Cassini secara terkontrol (controlled reentry) ke Saturnus. Opsi ini juga dipilih sebagai bentuk kepatuhan atas etika penerbangan antariksa yang ditegakkan Planetary Protocol, yakni agar tidak mengontaminasi benda langit yang memiliki kemungkinan untuk menyemaikan kehidupan. Untuk lingkungan Saturnus, benda langit tersebut adalah Enceladus. Jika Cassini dibiarkan terus beredar dalam orbitnya mengelilingi Saturnus dengan bahan bakar yang sudah habis, maka ia takkan lagi bisa dikendalikan dan berpeluang jatuh ke Titan maupun Enceladus (uncontrolled reentry).

Referensi :

NASA. 2017. The Saturn System Through The Eyes of Cassini.

Goodson dkk. 1998. Cassini Manuver Experience, Launch and Early Cruise. Guidance, Navigation and Control Conference, American Institute of Aeronautics and Astronautics, 10-12 August 1998.

Kloster dkk. 2009. Saturn Escape Options for Cassini Encore Missions. Journal of Spacecraft and Rockets, vol. 46 (2009) no.4, 874-882.

Bagaimana Nasibmu, (Satelit) Telkom-1 ?

Menit demi menit semburan itu terekam oleh sebuah teleskop optis dari Australia bagian timur. Teleskop itu bagian dari sebuah jaringan pemantau satelit yang beranggotakan 165 teleskop dari berbagai observatorium di segenap penjuru paras Bumi, yang dikelola oleh sebuah perusahaan pelacak satelit dari Amerika Serikat bernama ExoAnalytic Solutions. Apa yang direkamnya menakjubkan, memperlihatkan sebintik cahaya (yang adalah satelit Telkom-1) berdampingan dengan bintik cahaya lain (yang adalah satelit NSS-11, tetangga terdekat Telkom-1 pada orbit yang sama) dengan latar belakang bintang-bintang yang nampak bergaris-garis, pertanda setiap citra (foto) yang membentuk video rekaman ini dihasilkan dari pemotretan dengan waktu paparan (exposure) yang relatif panjang.

Gambar 1. Momen peristiwa semburan yang dialami satelit Telkom-1 pada 25 Agustus 2017 TU lalu seperti direkam oleh jaringan teleskop pemantau satelit di Australia timur dan dianalisis ExoAnalytic Solutions. Nampak tetangganya, satelit komunikasi NSS-11 yang juga sama-sama berusia tua. Sumber: ExoAnalytic Solutions, 2017.

Dalam satu kesempatan, yang bertepatan dengan Jumat 25 Agustus 2017 TU (Tarikh Umum) sore waktu Indonesia, bintik cahaya satelit Telkom-1 mempertontonkan perilaku ganjil. Sesuatu mendadak tersembur darinya, awalnya melejit ke dua arah berbeda namun untuk selanjutnya hanya ke satu arah. Semburan itu mirip kabut yang selanjutnya menyelubungi bintik cahaya Telkom-1 hingga membuatnya lebih redup ketimbang tetangganya. Di paras Bumi khususnya di Indonesia, momen tersebut ditandai oleh sekitar 8.000 buah titik ATM (anjungan tunai mandiri) dari beberapa bank yang mendadak keluar dari jaringan (offline) dan tak bisa digunakan, mulai pukul 18:00 WIB. Tiga hari kemudian manajemen PT Telkom Indonesia, selaku pemilik satelit, merilis kabar satelit Telkom-1 telah mengalami gangguan (anomali) yang membuat antenna-nya tidak lagi mengarah ke kawasan yang selama ini dilayaninya.

Berdasarkan rekamannya, ExoAnalytic Solutions tak hanya menegaskan terjadinya gangguan pada satelit Telkom-1 namun juga mengklaim satelit itu telah berkeping di langit. Klaim tersebut belakangan dibantah PT Telkom, terutama karena stasiun bumi Cibinong masih dapat berkomunikasi dengan satelit ini meski tak lagi bisa mengontrol gerakannya.

Orbit Geostasioner

Satelit Telkom-1 adalah sebuah satelit buatan yang dibangun untuk tujuan memperlancar telekomunikasi. Satelit ini ditempatkan pada orbit geostasioner di garis bujur 108º BT. Orbit geostasioner adalah wilayah khayali yang menghubungkan titik-titik yang yang terbentang tepat di atas garis khatulistiwa’ pada ketinggian 35.792 kilometer dari paras air laut rata-rata (dpl). Sebuah satelit buatan yang ditempatkan persis pada salah satu dari titik-titik ini akan memiliki periode revolusi (periode orbit) yang tepat sama dengan periode rotasi Bumi yakni 23 jam 56 menit 4,0906 detik (1.436,068 menit). Sehingga satelit buatan tersebut terlihat seakan-akan berada pada satu titik yang tetap (stasioner) di langit, dilihat dari paras Bumi manapun. Kondisi ini sangat menguntungkan karena antenna-antenna komunikasi yang diarahkan ke satelit buatan itu bisa diset untuk hanya menuju satu arah yang tetap, tak perlu berubah-ubah. Ini menjadikan orbit geostasioner sebagai salah satu sumberdaya antariksa yang paling berharga bagi umat manusia di era ini.

Gambar 2. Gambaran sederhana orbit geostasioner, yakni wilayah khayali dengan titik-titik yang bila ditempati oleh satelit buatan maka satelit tersebut akan memiliki periode revolusi yang tepat sama dengan periode rotasi Bumi. Sumber: Anonim.

Satelit Telkom-1 dirancang sebagai satelit geostasioner yang melanjutkan tugas satelit Palapa nan legendaris, khususnya satelit Palapa B2R. Satelit Palapa B2R, yang terkenal dengan sejarah dramatisnya dalam khasanah penerbangan antariksa, berakhir tugasnya pada bulan Desember 2000 TU setelah melayani Indonesia 10 tahun penuh. Sebagai penggantinya dibangunlah generasi satelit komunikasi yang baru yang juga mengemban nama baru. Pemilihan nama Telkom dan bukannya melanjutkan nama legendaris Palapa merupakan konsekuensi dari dialihkannya pengelolaan satelit ini dari manajemen Telkom ke Satelindo, yang di kemudian hari diakuisisi Indosat.

Berbeda dengan generasi satelit Palapa, generasi satelit Telkom ini (yang mendapat nama Telkom-1) dibangun dengan mengacu tren baru dunia persatelitan. Yakni dengan jumlah transponder lebih besar dan umur teknis lebih lama. Lockheed Martin membangun Telkom-1 dengan basis spacebus A2100A. Ia memiliki massa 2.763 kilogram dengan 1.063 kilogram diantaranya bahan bakar. Ia berbentuk kubus besar dengan sepasang ‘sayap’ di kiri-kanan, yang adalah panel surya untuk memasok 4.000 watt listrik. Ia memiliki 36 transponder berupa 24 transponder pada frekuensi C-band standar dan 12 transponder pada frekuensi C-band tambahan, dua pita frekuensi yang dikenal tangguh terhadap cuaca (khususnya hujan). Ia sengaja dirancang untuk bisa melayani titik-titik dengan antenna parabola berukuran kecil yang dikenal sebagai VSAT (very small apperture terminal), sehingga titik sekecil ATM pun dapat menggunakannya. Dan akhirnya, ia juga dirancang untuk bertugas lebih lama, dengan umur teknis 15 tahun.

Gambar 3. Satelit Telkom-1 saat selesai dibangun dan dites sebelum dikirim ke pusat peluncuran Kourou. Sumber: Lockheed Martin, 1998.

Satelit Telkom-1 meluncur ke langit dengan digendong oleh roket Ariane-42P pada 12 Agustus 1999 TU. Roket Ariane-42P meluncur mulus, mulai dari lepas landas di pangkalan peluncuran Kourou yang dikelola badan antariksa Eropa (ESA) di Guyana Perancis hingga mendorong Telkom-1 ke orbit transfer geosinkron yang bentuknya sangat lonjong. Dari titik apogee (titik terjauh dari pusat Bumi) orbit ini, Telkom-1 kemudian bermanuver dengan menggunakan mesin roketnya sendiri untuk menempati slot orbit geostasioner yang telah diatur.

Baru setelah tiba di slot lokasinya, dijumpai masalah. Yakni motor pada salah satu ‘sayap’ panel suryanya, tepatnya ‘sayap’ yang mengarah ke selatan, ternyata tidak berfungsi. Masalah yang berakar dari proses manufaktur satelit itu membuat ‘sayap’ panel surya sebelah selatan tak bisa mengikuti gerakan Matahari kala satelit beredar dalam orbitnya. Namun masalah ini tidak mengganggu pasokan daya listrik ke satelit, apalagi berdampak problem lain. Sehingga Telkom-1 pun tetap bisa berfungsi sesuai tujuan semula.

Telkom-1 berkedudukan tepat di atas titik koordinat 0º LU 108º BT (atau 0º LS 108º BT), titik yang secara geografis berada di Selat Karimata sejarak 160 kilometer sebelah barat kota Pontianak (Kalimantan Barat). Dengan demikian segenap Asia dan Australia serta sebagian kecil Afrika, Eropa dan Antartika dapat menyaksikan satelit ini di langitnya. Namun cakupan kerja Telkom-1 dibatasi hanya untuk kawasan Asia Tenggara, Papua Nugini serta sebagian Australia, sebagian India dan sebagian Cina.

Gambar 4. Saat roket Ariane-42P yang menggendong muatan satelit Telkom-1 di hidungnya mulai menyala dalam proses lepas landas di pangkalan peluncuran Kourou, pada 12 Agustus 1999 TU malam waktu setempat. Sumber: Arianespace, 1999.

Selain guna berpindah dari orbit transfer ke orbit geostasioner, bahan bakar pada Telkom-1 juga ditujukan untuk menjaga stabilitas satelit itu selama bertugas. Sebab setiap satelit buatan yang ditempatkan dalam orbit geostasioner sejatinya selalu mengalami gangguan dari tetangga Bumi kita, khususnya dari Bulan dan Matahari. Gangguan gravitasi Bulan dan Matahari menyebabkan satelit buatan di orbit geostasioner ‘berayun-ayun’ pada arah utara-selatan membentuk pola yang berulang setiap 24 jam. Gangguan juga datang dari bentuk Bumi yang menggelembung di area khatulistiwa’-nya (dan pepat di kedua kutubnya), medan gravitasi Bumi yang tidak homogen serta tekanan segala gelombang elektromagnetik dari Matahari. Tiga gangguan terakhir ini menyebabkan satelit ‘berayun-ayun’ dalam arah barat-timur, juga dalam pola yang berulang.

Telkom-1 pun menderita dua jenis ‘ayunan’ ini. Padahal secara teknis ia hanya boleh bergeser maksimal 0,05º saja dari posisinya. Artinya, Telkom-1 akan dikatakan stabil jika ia hanya bergeser-geser dalam sebuah kotak persegi yang dibatasi koordinat 0,05º LU 107,995º BT dan 0,05º LS 107,995º BT pada sisi barat serta koordinat 0,05º LU 108,05º BT dan 0,05º LS 108,05º BT di sisi timur. Menjaga stabilitas Telkom-1 membutuhkan manuver kendali sikap (attitude). Untuk itulah Telkom-1 dibekali juga dengan mesin-mesin roket mini (thruster) bagi keempat arah mataangin. Perhitungan menunjukkan setiap tahunnya Telkom-1 mengonsumsi ~ 45 kilogram bahan bakar Hidrazin untuk keperluan manuver tersebut.

Gambar 5. Cakupan tugas satelit Telkom-1 dalam frekuensi C-band standar dan C-band tambahan. Meski satelit bisa dilihat dari sepertiga belahan Bumi, namun cakupannya dibatasi hanya untuk kawasan Asia Tenggara, Papua Nugini serta sebagian Australia, sebagian India dan sebagian Cina. Sumber: SatBeam, 2017.


Perubahan Orbit

Jumlah bahan bakar Hidrazin inilah yang membatasi umur teknis sebuah satelit. Telkom-1 memiliki umur teknis 15 tahun, sebab khusus untuk melakukan manuver kendali sikap ia hanya dibekali ~ 650 kilogram bahan bakar Hidrazin. Saat tanki Hidrazin dalam Telkom-1 kosong, oleh sebab apapun, maka praktis satelit itu takank bermanfaat lagi karena tak bisa lagi dikendalikan sikapnya meskipun seluruh subsistem lainnya masih berfungsi.

Akan tetapi meski di atas kertas umur teknisnya ‘hanya’ 15 tahun, perhitungan bersama Lockheed Martin dan Telkom sebelum tahun 2014 TU berdasarkan data-data manuver kendali sikap Telkom-1 menunjukkan sisa bahan bakar Hidrazin ternyata masih banyak, yakni ~ 250 kilogram. Hal ini bisa terjadi karena dalam praktiknya konsumsi bahan bakar Hidrazin Telkom-1 lebih kecil. Sehingga disimpulkan satelit Telkom-1 masih bisa dimanfaatkan hingga tahun 2019 TU mendatang, sembari menunggu penggantinya (yakni satelit Telkom-4) yang rencananya akan diluncurkan pada 2018 TU mendatang.

Gambar 6. Bagaimana orbit satelit Telkom-1 berubah dramatis antara sebelum dan sesudah semburan. Selama 6 hari pertama (hingga 25 Agustus 2017 TU), satelit Telkom-1 sangat stabil di orbitnya dengan perigee 35.781 dan apogee 35.793 (masing-masing dalam kilometer dpl). Pasca semburan perigeenya menurun sementara apogeenya justru bertambah tinggi, indikasi bahwa orbit satelit telah lebih lonjong dan mulai takstabil. Sumber: Sudibyo, 2017 berdasar data Celestrak, 2017.

Sisa Hidrazin inilah yang menyembur keluar dalam kejadian 25 Agustus 2017 TU lalu. Semburan menandakan ada kebocoran, entah pada tanki bahan bakar, saluran bahan bakar maupun thruster satelit Telkom-1. Kebocoran ini praktis menamatkan riwayat satelit uzur tersebut. Sebab selain menghabiskan simpanan bahan bakarnya, kebocoran dalam wujud semburan juga menghasilkan dorongan gaya yang tak dikehendaki bagi satelit. Akibatnya Telkom-1 dibikin berguling-guling tanpa bisa distabilkan lagi. Tak hanya itu, gaya yang sama juga berakibat pada berubahnya orbit dan kedudukan satelit Telkom-1.

Sebelum 25 Agustus 2017 TU, satelit Telkom-1 memiliki orbit stabil dengan apogee 35.793 kilometer dpl dan perigee (titik terdekat dalam orbitnya ke Bumi) 35.781 kilometer dpl. Selisih ketinggian antara perigee dan apogee pun stabil pada angka 12 kilometer. Demikian halnya kedudukannya, yang stabil di atas koordinat 0º LU 108º BT. Namun pasca kejadian 25 Agustus 2017 TU, satelit ini mulai mengalami perubahan orbit dramatis. Sehingga delapan hari pasca kejadian, orbit Telkom-1 menjadi lebih lonjong dengan perigee lebih rendah, yakni pada 35.757 kilometer dpl. Sebaliknya apogee-nya melambung lebih tinggi, yakni setinggi 35.799 kilometer dpl. Selisih ketinggian perigee terhadap apogee pun membengkak hingga 84 kilometer. Kedudukan satelit ini juga telah bergeser jauh, kali ini di atas koordinat 0,03º LU 106,45º BT. Sehingga satelit telah bergeser 1,55º dari ke barat lokasi seharusnya. Jika dirata-ratakan maka satelit Telkom-1 telah ‘hanyut’ ke arah barat dengan kecepatan rata-rata 0,19º perhari.

Gambar 7. Perubahan kedudukan satelit Telkom-1 antara sebelum dan sesudah kejadian semburan. Pada 25 Agustus 2017 TU pagi, Telkom-1 berada lebih dekat ke pulau Kalimantan. Dalam delapan hari kemudian, satelit Telkom-1 bergeser perlahan-lahan ke barat sehingga lebih mendekat ke pulau Sumatra. Sumber: Sudibyo 2017 berdasar data Celestrak, 2017.

Maka, satelit Telkom-1 praktis sudah tak bisa diselamatkan lagi. Ia sudah menyandang status sampah antariksa. Dengan kecepatan ‘hanyut’-nya saat ini maka tinggal menunggu waktu saja bagi bangkai satelit Telkom-1 untuk melintas di slot satelit geostasioner tetangga, yakni satelit penginderaan jauh Gaofen 4 dan satelit komunikasi AsiaSat 7 (keduanya milik Cina), yang masing-masing berada di atas garis bujur 105,7º BT dan 105,45º BT pada orbit geostasioner.

Masih harus dilakukan evaluasi lebih lanjut apakah sampah antariksa terbaru ini berpotensi mengganggu satelit-satelit aktif yang ada dalam orbit geostasioner. Sebab orbit yang sangat bernilai ini seharusnya bebas dari sampah antariksa. Di sisi lain, butuh waktu hingga ribuan tahun lagi sebelum sampah antariksa Telkom-1 ini jatuh kembali ke Bumi.

Referensi :

Celestrak. 2017. Telkom-1 (Object 25580), 19 Aug 2017 to 2 Sep 2017. komunikasi pribadi.

Spaceflight101. 2017. More Trouble in GEO, Indonesia’s Telkom 1 Satellite Shed Debris Start Drifting, diakses 30 Agustus 2017 TU.

SatBeam. 2017. Telkom-1 (25580), diakses 2 September 2017.

Drama Schiaparelli, Mimpi Eropa dan Kutukan Mars

Piring terbang raksasa itu bernama Schiaparelli, wahana antariksa pendarat eksperimental (demonstrator) milik badan antariksa Eropa (ESA) yang baru saja mendarat di Mars pada Rabu 19 Oktober 2016 Tarikh Umum (TU) lalu. Seharusnya ia sudah mulai berpesta pora, melaporkan pandangan mata (baca: sensor-sensor elektronik) dari paras planet merah nan berdebu melalui gelombang radio yang disalurkan lewat satelit-satelit buatan aktif di Mars saat ini. Seperti Mars Express yang dikelola ESA, ataupun Mars Reconaissance Orbiter (MRO) dan Mars Atmosphere and Volatile Evolution (MAVEN), keduanya dikelola badan antariksa Amerika Serikat (NASA). Namun suka ria itu tak terjadi. Sebaliknya ia membisu dan membeku. Membuat para pengendali misi ESA di Darmstadt (Jerman) cemas tak kepalang. Bencana kutukan Mars pun membayang dalam angan.

Gambar 1. Dua wahana antariksa dalam misi ExoMars 2016 saat telah dirakit dan menjalani pengujian pada November 2015 TU di fasilitas ESA. Keduanya adalah satelit Trace Gas Orbiter (TGO) di bagian bawah dan pendarat Schiaparelli (warna keemasan) di bagian atas. Sumber: ESA, 2015.

Gambar 1. Dua wahana antariksa dalam misi ExoMars 2016 saat telah dirakit dan menjalani pengujian pada November 2015 TU di fasilitas ESA. Keduanya adalah satelit Trace Gas Orbiter (TGO) di bagian bawah dan pendarat Schiaparelli (warna keemasan) di bagian atas. Sumber: ESA, 2015.

Schiaparelli adalah bagian dari misi antariksa ExoMars (Exobiology on Mars). Inilah bagian dari mimpi benua Eropa untuk mengeksplorasi paras Mars, setidaknya dalam 13 tahun terakhir. Tepatnya setelah ESA sukses mengorbitkan satelit Mars Express dan pada saat yang sama gagal mengoperasikan wahana pendarat Beagle 2. Beagle 2 berhasil mendarat dengan lembut di dataran Isidis Planitia namun ia membuka tak sempurna sehingga mati perlahan-lahan. Misi ExoMars terbagi ke dalam dua tahap. Tahap pertama adalah ExoMars 2016 yang mencakup satelit Trace Gas Orbiter (TGO) dan pendarat Schiaparelli. Satelit TGO bertujuan  mendeteksi dan memetakan distribusi gas-gas di dalam atmosfer Mars. Terutama metana (CH4). Juga uap air (H2O), higroperoksil (HO2), nitrogen dioksida (NO2), nitrogen monoksida (N2O), asetilena (C2H2), etilena (C2H4), etana (C2H6), formaldehida (HCHO), hidrogen sianida (HCN), hidrogen sulfida (H2S), karbonil sulfida (OCS), sulfur dioksida (SO2), hidrogen klorida (HCl), karbonmonoksida (CO) dan ozon (O3). Sensitivitas detektor TGO untuk gas-gas tersebut cukup tinggi, yakni mencapai tingkat 100 bagian per milyar. Bahkan dalam kondisi tertentu memungkinkan untuk ditingkatkan menjadi 10 bagian per milyar.

Sementara pendarat Schiaparelli ditujukan untuk mendemonstrasikan keandalan teknologi terbaru Eropa guna pendaratan lembut di permukaan Mars. Pengujian ini menjadi bagian penting bagi misi tahap kedua, yakni ExoMars 2020 yang direncanakan bakal mendaratkan robot penjelajah ke Mars,

Pendarat Schiaparelli memiliki bentuk layaknya piring raksasa dengan garis tengah 240 sentimeter,  tinggi 165 sentimeter dan massa 600 kg. Pendarat ini dilengkapi 2 parasut pengerem supersonik dan 9 mesin roket retro. Semua itu ditujukan guna mengurangi kecepatan dari semula 21.000 km/jam saat memasuki lapisan teratas atmosfer Mars (ketinggian 121 km) menjadi tinggal 4 km/jam saat hampir mendarat (ketinggian 2 meter).  Terdapat penyekat panas untuk menahan panas berlebih saat Schiaparelli mulai memasuki atmosfer Mars. Penyekat panas yang sama juga berfungsi menyerap getaran (shock absorber) saat mendarat. Proses pendaratan dijadwalkan akan berlangsung hanya dalam waktu 5 menit 53 detik secara otomatis. Schiaparelli bakal bertumpu pada sistem navigasi dengan sistem pandu sirkuit tertutup yang dipasok  radar Doppler sebagai radas/instrumen altimeter (pengukur ketinggian) dan radas navigasi inersial. Sistem navigasi inilah yang hendak diujicoba ESA.

Selain radas-radas tersebut, Schiaparelli juga dilengkapi dengan radas meteorologis DREAM (Dust characterization, Risk assessment and Environmental Analyser on the Martian surface). DREAM terdiri dari pengukur kecepatan dan arah angin (anemometer), pengukur kelembaban (higrometer), pengukur tekanan (barometer), pengukur suhu permukaan (termometer), pengukur kejernihan atmosfer dan pengukur aliran listrik di atmosfer Mars. Untuk komunikasinya terdapat antenna gelombang radio UHF dengan satelit TGO sebagai relai komunikasi dengan pengendali misi di Bumi. Seluruh radas ditenagai arus listrik berdaya 100 watt. Semula ESA bekerja sama dengan badan antariksa Rusia (Roscosmos) untuk menyiapkan batere bahang berbasis radioisotop atau RTG (radioisotope thermoelectric generator). Dengan batere ini Schiaparelli bisa ‘hidup’ di Mars selama minimal setahun, tanpa perlu repot memasang panel surya. ESA nampaknya menghindari pasokan listrik dari panel surya setelah berkaca pada kegagalan Beagle 2. Namun ruwetnya aturan dalam negeri Rusia terkait ekspor bahan berbasis radioisotop membuat penggunaan batere RTG dibatalkan dan ESA berpaling pada batere konvensional. Sehingga Schiaparelli hanya akan hidup selama 2 hingga 8 sol saja (1 sol = 1 hari Mars = 24,6 jam).

Pendarat ini diberi nama Schiaparelli, mengabadikan nama Giovanni Schiaparelli (1835-1910 TU) astronom Italia yang pertama kali mencoba memetakan topografi permukaan Mars dengan teleskopnya. Dialah yang pertama kali menyebut adanya ‘canali’  yang bermakna saluran dalam bahasa Italia, namun secara keliru diterjemahkan publik luas sebagai kanal (buatan). Istilah ‘canali’ Schiaparelli kemudian memicu heboh internasional terkait potensi kehidupan cerdas menyerupai manusia di Mars.

Drama

Gambar 2. Keping-keping upperstage Breeze-M seperti teramati oleh Observatorium OASI di Brazil dalam program pemantauan peluncuran ExoMars 2016 oleh ESA. Terlihat sedikitnya 9 keping berukuran besar di sini, hasil meledaknya upperstage tersebut pasca sukses mengantar satelit TGO dan pendarat Schiaparelli ke orbit tujuan. Sumber: ESA, 2016.

Gambar 2. Keping-keping upperstage Breeze-M seperti teramati oleh Observatorium OASI di Brazil dalam program pemantauan peluncuran ExoMars 2016 oleh ESA. Terlihat sedikitnya 9 keping berukuran besar di sini, hasil meledaknya upperstage tersebut pasca sukses mengantar satelit TGO dan pendarat Schiaparelli ke orbit tujuan. Sumber: ESA, 2016.

Misi ExoMars 2016 sudan membikin drama sejak hari pertama penerbangannya. Awalnya semua terlihat berjalan mulus tatkala roket Proton-M meluncur dari landasan 200/39 di kosmodrom Baikonur pada 14 Maret 2016 TU pukul 16:31 WIB. Semua juga masih terlihat normal tatkala tingkat pertama menyala hingga kehabisan bahan bakar, lantas disusul tingkat kedua dan selanjutnya tingkat ketiga. Hingga roket pendorong teratas (upperstage) Breeze-M menyala pun, yang bertugas mendorong ExoMars 2016 melepaskan diri dari pengaruh gravitasi Bumi dan selanjutnya menempuh orbit heliosentrik (mengelilingi Matahari) menuju Mars, semua masih berjalan normal.

Bencana terjadi tatkala gabungan satelit TGO dan pendarat Schiaparelli sudah melepaskan diri dari Breeze-M. Saat jaraknya masih beberapa kilometer dan Breeze-M sedang bermanuver untuk memasuki orbit kuburan agar tak terlalu lama menjadi sampah antariksa, mendadak ia meledak. Ledakan terlihat jelas dari observatorium OASI di Brazil yang ditugasi ESA untuk mengamati peluncuran ExoMars 2016.  Malfungsi Breeze-M memang sudah terjadi berulang kali dan membikin pusing Roscosmos. Salah satu malfungsi tersebut terjadi pada 6 Oktober 2012 TU, yang membuat satelit Telkom-3 milik Indonesia terkatung-katung di langit tanpa guna.

Beruntung satelit TGO dan pendarat Schiaparelli lolos dari maut. Pengecekan sistematis memperlihatkan dampak ledakan Breeze-M sama sekali tak berpengaruh terhadap keduanya. Bersama-sama mereka mengarungi antariksa dalam perjalanan 7 bulan kalender untuk menggapai Mars. Pendarat Schiaparelli baru melepaskan diri dari satelit TGO (yang menjadi kapal induknya) pada Minggu 16 Oktober 2016 TU tatkala jaraknya tinggal 900.000 km dari planet merah. Semua juga nampak berjalan normal tatkala Schiaparelli mulai menjalani proses pendaratan. Sinyal-sinyal gelombang radio yang diterima fasilitas jaringan teleskop radio di Pune (India) memperlihatkan dengan jelas saat Schiaparelli mengembangkan kedua parasutnya. Pengembangan itu dijadwalkan terjadi pada ketinggian 11 km pada kecepatan 1.700 km/jam. Terekam juga sinyal saat Schiaparelli melepaskan diri dari penyekat panas dan parasutnya, yang dijadwalkan berlangsung pada  ketinggian 1,2 km dengan kecepatan 240 km/jam.

Tetapi setelah itu ia membisu. Analisis terhadap data rekaman pendaratan sebesar 6 megabyte yang diterima satelit TGO memperlihatkan bagaimana drama Schiaparelli, secara kasar. Schiaparelli nampaknya melepaskan parasutnya lebih awal dari rencana. Selanjutnya ia sempat menyalakan roket-roket retronya, namun hanya selama 3 detik. Setelah itu tak terdeteksi apapun. Seharusnya roket-roket retro Schiaparelli menyala selama 30 detik untuk mengurangi kecepatan dari 250 km/jam menjadi 4 km/jam. Schiaparelli membisu hanya dalam waktu 50 detik sebelum seharusnya mendarat. Tepatnya ia mendadak membisu dalam 19 detik pasca parasutnya terlepas.

Dalam pendapat saya ada tiga hal yang patut dikhawatirkan di titik ini. Pertama, Schiaparelli mungkin mengalami malfungsi pada sistem navigasinya sehingga parasut terlepas lebih awal. Atau yang kedua ia mengalami gangguan pada mesin roketnya sehingga hanya menyala 3 detik untuk kemudian meledak hingga membuat struktur Schiaparelli terpecah. Atau yang ketiga mesin roketnya mendadak macet sehingga Schiaparelli terjun bebas ke Mars dengan kecepatan yang mematikan. Butuh waktu untuk bisa memastikan apa yang sebenarnya terjadi.

Gambar 3. Gambaran simulatif saat pendarat Schiaparelli melepaskan parasut supersoniknya dan mulai menyalakan roket-roket retronya. Sejauh ini ESA mengatakan pada titik inilah masalah yang diderita pendarat Schiaparelli bermula. Sumber: ESA, 2016.

Gambar 3. Gambaran simulatif saat pendarat Schiaparelli melepaskan parasut supersoniknya dan mulai menyalakan roket-roket retronya. Sejauh ini ESA mengatakan pada titik inilah masalah yang diderita pendarat Schiaparelli bermula. Sumber: ESA, 2016.

Kutukan

Membisunya Schiaparelli sedikit menutupi sukses ESA lainnya dimana satelit TGO berhasil memasuki orbit Mars dengan selamat. Satelit itu sukses menjalani pengereman dengan menyalakan mesin roketnya selama 139 menit. Pengereman ini mengurangi 1,5 km/detik (5.400 km/jam) kecepatan satelit TGO, memungkinkannya ditangkap gravitasi Mars.

TGO pun menjalani orbit awal sangat lonjong dengan periareion (titik terdekat ke Mars) setinggi 300 km dan apoarieon (titik terjauh ke Mars) sejarak 96.000 km. Sinyal-sinyal yang diterima Pune menunjukkan satelit TGO dalam kondisi baik. Kini ia sedang menjalani pengecekan seluruh radas sebelum mulai menjalani pengereman tahap kedua dengan teknik aerobraking, yakni memanfaatkan gesekan dengan lapisan udara sangat tipis di pucuk atmosfer Mars untuk memperlambat kecepatan. Setelah aerobraking ini usai, satelit TGO akan menempati orbit sirkular setinggi 400 km di atas planet merah itu dan menjalankan tugasnya.

Masuknya satelit TGO ke orbit Mars dengan selamat membuat planet merah kini dipantau oleh enam satelit aktif sekaligus. Tiga diantaranya adalah milik Amerika Serikat yakni satelit Mars Odyssey (sejak 2001 TU), satelit MRO (sejak 2006 TU) dan satelit MAVEN (sejak 2014 TU). Dua lainnya dikelola ESA, yakni satelit TGO dan satelit Mars Express (sejak 2003 TU). Sementara satunya lagi milik India yang dikelola badan antariksa India (ISRO), yakni Mangalyaan atau Mars Orbiter Mission/MOM (sejak 2014 TU). Mars Odysses menjadi satelit aktif tertua di Mars sekaligus satelit buatan terlama yang pernah bertugas di planet lain, melampaui rekor yang sebelumnya dipegang Pioneer Venus Orbiter (14 tahun 11 bulan 27 hari).

Akan tetapi di tengah semua keberhasilan tersebut, kutukan Mars selalu membayang. Kutukan Mars adalah istilah tak resmi terkait kegagalan misi-misi antariksa yang ditujukan ke Mars, baik mengorbit (orbiter) ataupun mendarat (lander), oleh sebab yang beragam. Secara akumulatif dari awal penerbangan antariksa ke Mars, yakni misi Mars 1M no. 1 (Marsnik) yang diterbangkan eks-Uni Soviet pada 10 Oktober 1960 TU, telah ada 44 misi antariksa ke planet merah yang diselenggarakan oleh enam badan antariksa terpisah. Yakni dari Amerika Serikat, gabungan negara-negara Eropa, eks-Uni Soviet (yang dilanjutkan oleh Rusia), Jepang, Cina dan India . Dan lebih dari separuh diantaranya, yakni 25 misi (56 %) menemui kegagalan, baik total maupun parsial.

Dan dua kegagalan terakhir secara berturut-turut menimpa Eropa dan Rusia, dalam rupa Beagle 2 dan Phobos-Grunt. Jika Beagle 2 gagal beroperasi meski telah mendarat dengan baik di Mars, maka Phobos-Grunt jauh lebih tragis. Wahana antariksa hasil kerjasama Rusia dan Cina itu terperangkap pada orbit parkir 207 km x 347 km dari paras Bumi setelah diluncurkan dari kosmodrom Baikonur pada 8 November 2011 TU.  Kesalahan dalam pemrograman perangkat lunak membuat komputer Phobos-Grunt berulang-ulang mengalami restart. Sehingga mesin roket tak kunjung menyala. Selama hampir tiga bulan kemudian Phobos-Grunt tetap berada di orbit Bumi dengan ketinggian terus merendah sebelum akhirnya jatuh tersungkur di Samudera Pasifik bagian timur.

ESA memang belum mendeklarasikan pendarat Schiaparelli mengalami kegagalan, meski nampaknya hanya persoalan waktu saja untuk mengatakan hal itu. Gagalnya pendarat Schiaparelli mungkin bakal berdampak pada misi ExoMars tahap kedua (yakni ExoMars 2020). Sebab ESA dan Roscosmos harus benar-benar bisa memastikan bahwa mereka bisa mendaratkan wahana (baik pendarat maupun robot penjelajah) di paras Mars dengan lembut agar bisa bekerja sesuai rencana.

Pembaharuan : Titik Jatuh dan Penyebab

Berselang seminggu pasca menghilangnya pendarat Schiaparelli, titik dimana wahana yang malang itu mendarat telah ditemukan. Schiaparelli, atau lebih tepatnya reruntuhannya, juga telah teridentifikasi. Sementara di Bumi, ESA juga sudah mengidentifikasi dan melokalisir kemungkinan  penyebab membisunya pendarat tersebut.

Gambar 4. Dua citra satelit MRO beresolusi rendah untuk kawasan di sekitar koordinat 2,07 LS 6,21 BB di Mars yang diambil dalam dua kesempatan berbeda. Nampak bahwa dalam citra 20 Oktober 2016 TU  terdeteksi adanya bintik hitam dan bintik putih yang aneh, fitur yang tak ada dalam citra 29 Mei 2016 TU. Bintik-bintik tersebut merupakan jejak yang ditinggalkan dari proses pendaratan brutal Schiaparelli. Sumber: NASA, 2016.

Gambar 4. Dua citra satelit MRO beresolusi rendah untuk kawasan di sekitar koordinat 2,07 LS 6,21 BB di Mars yang diambil dalam dua kesempatan berbeda. Nampak bahwa dalam citra 20 Oktober 2016 TU terdeteksi adanya bintik hitam dan bintik putih yang aneh, fitur yang tak ada dalam citra 29 Mei 2016 TU. Bintik-bintik tersebut merupakan jejak yang ditinggalkan dari proses pendaratan brutal Schiaparelli. Sumber: NASA, 2016.

Lokasi dimana pendarat Schiaparelli berada sebenarnya telah terdeteksi sehari pasca ia membisu. Adalah satelit MRO yang sukses mengidentifikasinya pada saat itu meski menggunakan radas kamera beresolusi rendah yang disebut radas CTX (context camera). Pendarat tersebut sebenarnya berlabuh di titik yang tepat di lingkungan Meridiani Planum, hanya berselisih 5,4 km dari titik pusat pendaratannya. Sebelum ExoMars 2016 mengangkasa, ESA memang telah memprakirakan bahwa pendarat Schiaparelli akan berlabuh di titik manapun dalam zona pendaratannya yang berbentuk bidang ellips seluas 100 x 15 kilometer persegi di lingkungan Meridiani Planum. Titik dimana pendarat Schiaparelli akhirnya benar-benar berlabuh berjarak 54 km sebelah barat laut dari Opportunity, robot penjelajah Amerika Serikat yang mendarat pada 2004 TU silam dan hingga kini masih aktif beroperasi.

Citra satelit MRO dengan resolusi 6 meter/pixel pada  20 Oktober 2016 TU memperlihatkan reruntuhan Schiaparelli tergolek pada koordinat 2,07 LS 6,21 BB. Ia tergolek dalam sebuah bintik hitam yang mengesankan sebagai kawah dalam bidang seluas 15 x 40 meter persegi. Sekitar 1 kilometer di sebelah selatannya ditemukan bintik putih, yang diinterpretasikan sebagai sisa parasut supersonik Schiaparelli. Saat dibandingkan dengan lokasi yang sama dalam citra yang dibidik dengan radas yang sama pada 29 Mei 2016 TU diketahui bahwa bintik hitam dan  putih dan bintik samar tersebut belum ada. Sehingga dapat dipastikan bahwa fitur-fitur tersebut adalah jejak yang ditinggalkan dalam proses pendaratan Schiaparelli yang tragis.

Selanjutnya pada 26 Oktober 2016 TU, satelit MRO kembali melintas di atas lokasi pendaratan Schiaparelli. Kali ini ia mengerahkan radas terkuatnya, yakni HiRISE (High Resolution Imaging Science Experiment). Dan benar, bintik hitam tersebut merupakan reruntuhan pendarat Schiaparelli. Ia tergolek berantakan dalam kawah bergaris tengah sekitar 2,4 meter yang menyipratan material tanah Mars ke sekelilingnya. Sementara bintik putih itu memang benar parasut supersonik Schiaparelli. Ia ditemukan masih terikat dengan backshell, yakni separuh-belakang sungkup penyekat panas milik Schiaparelli. Pada saat pendarat ini melepaskan parasutnya, pada hakikatnya ia melepaskan diri dari backshell-nya yang bergaris tengah 240 cm. Sementara separuh-depan sungkup penyekat panas Schiaparelli (frontshell) ditemukan sekitar 1 km sebelah timur laut kawah.

Gambar 5. Citra satelit MRO beresolusi tinggi yang diambil pada 26 Oktober 2016 TU untuk kawasan sekitar koordinat 2,07 LS 6,21 BB di Mars. Nampak jejak kawah di lokasi jatuhnya pendarat Schiaparelli. Sekitar 1 km di selatan terdapat jejak parasut supersonik dan backshell. Sementara sekitar 1 km ke timur laut terdapat jejak frontshell. Sumber: NASA, 2016.

Gambar 5. Citra satelit MRO beresolusi tinggi yang diambil pada 26 Oktober 2016 TU untuk kawasan sekitar koordinat 2,07 LS 6,21 BB di Mars. Nampak jejak kawah di lokasi jatuhnya pendarat Schiaparelli. Sekitar 1 km di selatan terdapat jejak parasut supersonik dan backshell. Sementara sekitar 1 km ke timur laut terdapat jejak frontshell. Sumber: NASA, 2016.

Analisis ESA memperlihatkan pendarat Schiaparelli jatuh menumbuk tanah Mars dengan kecepatan sekitar 300 km/jam setelah ia terjun bebas dari ketinggian antara 2 hingga 4 km. Kawah bergaris tengah 2,4 meter yang dilihat satelit MRO konsisten dengan benturan obyek seberat 300 kg (yakni massa Schiaparelli minus backshell dan frontshell-nya) di pasir kering pada kecepatan mendekati 100 meter/detik. ESA juga memperlihatkan akar masalahnya, yakni adanya cacat perangkat lunak (bug). Cacat ini membuat komputer pendarat Schiaparelli mengira ia sudah berada di ketinggian 2 meter di atas tanah Mars, padahal sejatinya masih setinggi antara 2 hingga 4 km. Akibatnya komputer Schiaparelli mematikan mesin-mesin roket retro-nya, yang baru menyala selama 3 detik saja. Ini membuat pendarat Schiaparelli jatuh bebas dan menghunjam dengan kecepatan sekitar 300 km/jam. Tanki bahan bakar roketnya, yang berisi Hidrazin, pun masih penuh. Sehingga tatkala jatuh menumbuk tanah Mars, ada dugaan bahwa Hidrazin dalam jumlah hampir 45 kg itu pun meledak. Kombinasi tumbukan pada kecepatan tinggi dan ledakan Hidrazin membuat peluang Schiaparelli untuk bertahan pasca mendarat pun lenyap.

Analisis lebih lanjut memperlihatkan cacat perangkat lunak yang sama juga menjadi penyebab parasut supersonik Schiaparelli terlepas lebih awal. Perangkat lunak yang mengalami cacat tersebut adalah yang mengontrol altimeternya. Diduga, goyangan parasut supersonik Schiaparelli yang lebih liar ketimbang yang diantisipasi membuat perangkat lunak altimeternya kebingungan dan memasok data ketinggian yang keliru kepada komputer pendarat Schiaparelli.

ESA menggarisbawahi bahwa, kecuali dalam 1 menit terakhirnya, mayoritas misi ExoMars 2016 sejauh ini dapat dikatakan sukses. Segenap perangkat kerasnya bekerja sesuai harapan, demikian halnya mayoritas perangkat lunaknya. Dan cacat pada perangkat lunak pemandu pendaratan relatif lebih mudah diatasi.

Referensi :

Clark. 2016. Last Data from Schiaparelli Mars Lander Hold Clues to What Went Wrong. SpaceflightNow, Breaking News, 20 Oktober 2016.

Blancquaert. 2016. Mars Reconaissance Orbiter Views Schiaparelli Landing Site. European Space Agency.