Letusan Besar Gunung Sinabung 19 Februari 2018

Letusan Gunung Sinabung adalah rutinitas yang telah dijalani Indonesia dalam lima tahun terakhir, tepatnya semenjak 2013 TU (Tarikh Umum). Ini adalah bagian dari episode Letusan Sinabung 2013. Itu adalah letusan magmatis berkepanjangan yang masih terus berlangsung hingga kini. Letusan-letusan itu umumnya berskala kecil, diawali dengan magma segar menumpuk di puncak. Kubah lava pun terbentuk dan kian lama menggemuk. Kubah lava akhirnya longsor menjadi awan panas guguran yang meluncur ke lereng sektor tertentu. Demikian hal ini berlangsung berulang-ulang dan dalam salah satu letusannya sempat merenggut korban.

Gambar 1. Saat-saat rempah letusan dalam kolom letusan besar Sinabung membumbung tinggi mendaki ke langit. Nampak jelas adanya awan Wilson, produk kondensasi uap air di udara akibat penurunan tekanan setempat seiring melintasnya kolom letusan. Diabadikan dari lokasi SPBU Jalan Jamin Ginting kota Kabanjahe, 14 kilometer dari Gunung Sinabung. Sumber: Anonim, 2018 dalam Sutopo Purwo Nugroho, 2018.

Namun tidak demikian pada kejadian Senin pagi 19 Februari 2018 TU. Sinabung lagi-lagi meletus, akan tetapi kali ini bukan letusan biasa. Pada pukul 08:53 WIB Sinabung mendadak meraung. Dari puncaknya rempah letusan nan pekat tersembur hebat pada tekanan cukup tinggi, menghasilkan pemandangan mirip kepalan tangan raksasa yang membumbung tinggi seakan hendak meninju langit. Bersamanya terdengar pula suara gemuruh berkepanjangan yang menakutkan. Panorama menggidikkan ini mengandung hampir semua ciri khas yang hanya terjadi dalam letusan-letusan besar.

Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) mencatat Gunung Sinabung saat itu menyemburkan kolom letusannya hingga setinggi 5.000 meter di atas puncak, atau hingga 7.500 meter dpl (dari paras air laut rata-rata). Ketinggian tersebut adalah sebelum kolom letusan mulai terpecah dan tersebar mengikuti arah angin. Dalam letusan-letusan sebelumnya, Gunung Sinabung tak pernah disertai suara gemuruh.

Gambar 2. Salah satu potret ikonis dalam peristiwa letusan besar Sinabung 19 Februari 2018. Gunung Sinabung di latar belakang sedang mementaskan drama babak utama dengan mulai runtuhnya kolom letusan ke lereng hingga menjadi awan panas letusan. Di latar depan nampak kepanikan siswa-siswi sebuah sekolah dasar di kaki gunung, di luar zona merah. Sumber: Anonim, 2018 dalam Sutopo Purwo Nugroho, 2018.

Fenomena lain yang juga tak pernah terjadi sebelumnya adalah terbentuknya awan panas letusan (APL). Saat sebagian kolom letusan mulai berjatuhan kembali ke paras Bumi seiring gravitasi, mereka menuruni lereng Gunung Sinabung sektor selatan dan timur sebagai awan panas letusan. Ke arah selatan-tenggara, awan panas letusan ini meluncur hingga sejauh 4.900 meter dalam arah mendatar dari puncak. Sementara ke arah ke arah timur-tenggara, awan panas letusan menyambar hingga sejauh 3.500 meter dari puncak, juga dalam arah mendatar.

Selain awan panas, hujan debu vulkanik pekat dan pasir mengguyur kawasan kaki Gunung Sinabung, menyelimuti sedikitnya tujuh desa di Kabupaten Karo. Selama hampir 2 jam pasca letusan, guyuran debu vulkanik menyebabkan jarak pandang di desa-desa tersebut hanya sebatas 5 hingga 7 meter saja. Suasana pun berubah gulita layaknya malam. Luncuran awan panas dalam skala yang belum pernah terjadi sebelumnya dan hujan debu yang membuat gelap gulita sontak mengagetkan penduduk di sekitar kaki Gunung Sinabung khususnya yang berdekatan dengan zona merah. Kepanikan besar yang belum pernah dialami sebelumnya pun sempat terjadi. Untungnya tak ada korban yang berjatuhan, baik korban luka-luka apalagi korban jiwa.

Sementara itu sisa kolom letusan yang ringan seperti debu vulkanik terus membumbung dan kemudian menyebar ke arah baratlaut-utara dibawah pengarih hembusan angin regional. Debu vulkanik menyebar hingga ke wilayah propinsi Aceh, situasi yang juga belum pernah terjadi sebelumnya. Melimpahnya jumlah debu vulkanik di udara memaksa dibatasinya lalu lintas penerbangan yang lewat di ruang udara sekitar Gunung Sinabung. Sektor barat laut dan sektor utara dari Gunung Sinabung sempat dinyatakan terlarang untuk dilintasi pesawat terbang dalam beberapa jam. Untungnya lalu lintas pesawat terbang di kedua sektor tersebut relatif lengang, tak sepadat sektor timur. Sehingga letusan Sinabung itu tak berdampak pada penutupan bandara Kuala Namu di dekat Medan.

Gambar 3. Zona larangan lalu lintas penerbangan seiring letusan besar Sinabung 19 Februari 2018 seperti dikeluarkan oleh VAAC Darwin. Warna hitam berlaku mulai pukul 16 WIB, warna hijau mulai pukul 22:00 WIB, warna jingga mulai hari berikutnya pukul 04:00 WIB dan warna merah juga mulai hari berikutnya pukul 10:00 WIB. nampak lalu lintas penerbangan di sekitar Gunung Sinabung berdasarkan data FlightRadar24. Sumber: FlightRadar24.com, 2018.

Berubah Sifat?

Tak ada keraguan, hari itu Gunung Sinabung meletus besar. Peristiwa ini didahului rentetan gempa vulkanik sejak 2 hari sebelumnya. PVMBG mencatat jumlah gempa vulkanik Sinabung pada 17 Februari 2018 TU mencapai 17 kejadian, yang terdiri atas gempa vulkanik dalam dan dangkal. Sehari berikutnya jumlah gempa vulkaniknya meroket menjadi 49 kejadian hanya untuk gempa vulkanik dalam saja. Dan pada 19 Februari 2018 TU antara pukul 00:00 hingga 06:00 WIB saja terekam adanya 30 kejadian gempa vulkanik dalam.

Gambar 4. Gunung Sinabung dan lingkungan sekitarnya sehari pasca letusan besar, berdasarkan citra satelit penginderaan jauh Planet Dove milik PlanetLab. Nampak luasnya sebaran debu vulkanik letusan besar ini serta daerah yang terlanda awan panas. Sumber: PlanetLab, 2018.

Sebagai pembanding, sepanjang bulan Desember 2017 TU lalu PVMBG mencatat setiap harinya Gunung Sinabung mengalami gempa vulkanik sebanyak rata-rata 15 kejadian (gempa vulkanik dalam dan dangkal). Maka selama tiga hari berturut-turut menjelang letusan besarnya, gempa vulkanik Sinabung cukup intensif melampaui angka rata-ratanya. Gempa vulkanik selalu berhubungan dengan gerak fluida (magma segar dan gas vulkanik) dari perutbumi menuju kawah atau lubang letusan sebuah gunung berapi.

Intensifnya gempa vulkanik Sinabung selama tiga hari berturut-turut itu mencerminkan tingginya kuantitas fluida yang merangsek ke atas. Semua itu menyebabkan tekanan di dasar kubah lava terbaru Sinabung sangat kuat. Hingga mampu membobol dan menghancurkan kubah lava sekaligus membentuk lubang letusan yang cukup besar di puncak. Pengamatan langsung PVMBG terhadap bentuk puncak Sinabung menegaskan hal tersebut.

Gambar 5. Perubahan panorama puncak Gunung Sinabung akibat letusan besar 19 Februari 2018 TU, diabadikan PVMBG dari lokasi yang sama. Sebelum letusan besar, puncak Sinabung dihiasi kubah lava yang mengandung 1,6 juta meter3 lava segar. Pasca letusan besar, segenap kubah lava tersebut lenyap, digantikan oleh lubang letusan yang cukup besar yang masih berasap. Sumber: PVMBG, 2018.

Letusan besar Sinabung itu demikian bertenaga. Sehingga desing suara infrasonik yang diproduksinya menjalar demikian jauh sampai bisa terdeteksi dari tepian Laut Merah, yang berjarak 6.100 kilometer dari Gunung Sinabung. Tepatnya di Djibouti, pada stasiun infrasonik IS-19 yang menjadi bagian dari jejaring CTBTO (Comprehensive nuclear Test Ban Treaty Organization), lembaga pengawas penegakan larangan ujicoba nuklir global dalam segala matra yang berada di bawah payung Perserikatan Bangsa-Bangsa.

Meski dirancang untuk mengendus gelombang infrasonik produk ledakan nuklir, namun stasiun yang sama juga bisa mendeteksi gelombang sejenis dari sumber lain, baik alamiah maupun buatan. Selain Djibouti, letusan besar Sinabung juga terdeteksi oleh stasiun infrasonik IS-52 di pulau Diego Garcia (Inggris) yang terletak di tengah-tengah Samudera Indonesia. Dan terdeteksi juga oleh stasiun infrasonik IS-6 di pulau Cocos (Australia), yang berjarak 1.600 kilometer dari Gunung Sinabung. Hasil deteksi ini memperlihatkan seperti apa besarnya letusan Sinabung.

Gambar 6. Bagaimana desing infrasonik letusan besar Sinabung 19 Februari 2018 terekam oleh tiga stasiun infrasonik CTBTO, masing-masing di pulau Cocos, pulau Diego Garcia dan yang terjauh di Djibouti. Di bawah nampak infrasonogram dari stasiun pulau Cocos. Dipublikasikan oleh CTBTO Preparatory Commission. Sumber: CTBTO, 2018.

Selain lewat gelombang infrasonik, kedahsyatan letusan besar Sinabung juga tercermin lewat sejumlah liputan satelit. Baik yang memang bertugas di kawasan Asia timur dan tenggara maupun yang kebetulan lewat. Misalnya satelit Himawari-8, satelit cuaca milik Jepang yang menetap pada orbit geostasioner di atas garis bujur 140,7º BT. Citra-citra dari satelit ini, yang diambil setiap 15 menit, memperlihatkan bagaimana debu vulkanik dalam letusan besar Sinabung itu berkembang dan meluas ke arah barat laut dan utara. Hingga menjangkau wilayah propinsi Aceh, hal yang belum pernah terjadi sebelumnya.

Gambar 7. Letusan besar Sinabung seperti diabadikan pada rangkaian citra satelit Himawari-8 dalam warna nyata (true) sejak pukul 09:00 WIB hingga 12:00 WIB. Nampak debu vulkanik dengan warna kecoklatannya cukup kontras dibandingkan tebaran awan disekitarnya yang putih. Nampak pula bagaimana bentuk dan ukuran debu vulkanik Sinabung yang meluas dari waktu ke waktu. Dipublikasikan oleh Japan Meteorology Agency. Sumber: JMA, 2018.

Analisis Volcanic Ash Advisory Centre (VAAC) Darwin, tim pakar yang bekerja di bawah badan penerbangan sipil internasional dari Perserikatan bangsa Bangsa, menyimpulkan debu vulkanik produk letusan besar ini membumbung hingga ketinggian 16.500 meter dpl. Kesimpulan yang sedikit berbeda dikemukakan tim evaluasi pasca letusan yang berbasis satelit CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation). Satelit dikelola bersama oleh NASA (Amerika Serikat) dan CNES (Perancis) menunjukkan lima jam pasca letusan besar, puncak debu vulkaniknya bahkan sempat menjangkau ketinggian 18.000 meter dpl. Ketinggian sebesar ini belum pernah terjadi dalam letusan-letusan Sinabung sebelumnya.

Gambar 8. Atas = lintasan satelit Aqua di atas kawasan Gunung Sinabung dalam 5 jam pascaletusan, menyajikan citra dalam warna nyata dari radas MODIS dan hasil pengukuran kadar gas Belerang (SO2). Bawah = Bagaimana debu vulkanik dalam letusan besar Sinabung membumbung tinggi hingga 18.000 meter dpl diungkap lewat penyelidikan satelit CALIPSO yang lewat di atas Sinabung beberapa saat setelah satelit Aqua. Garis hitam menunjukkan tropopause (batas antara lapisan troposfer dan stratosfer). Sumber: Andrew Prata, 2018.

Sebelum letusan besar terjadi, kubah lava yang menduduki ujung lubang letusan Sinabung memiliki volume sedikitnya 1,6 juta meter3. Letusan besar Sinabung menghilangkan seluruhnya. Seperti terlihat pada Letusan Kelud 2014, volume letusan merupakan kombinasi dari volume kubah lava yang nampak di permukaan dengan volume magma segar yang merangsek deras dari perutbumi. Sehingga cukup beralasan untuk mengatakan letusan besar Sinabung menghamburkan setidaknya 2 juta meter3 magma segar. Penyelidikan lebih lanjut akan lebih memastikannya.

Letusan besar Sinabung mengindikasikan ada yang berubah dari gunung berapi yang tak pernah meletus lagi dalam 1.200 tahun terakhir itu. Awalnya erupsi magmatis Sinabung bersifat efusif. Ia ditandai pembentukan kubah lava yang berlanjut ke guguran lava pijar di lereng sekaligus terbentuknya awan panas guguran. Letusan semacam ini dikenal sebagai letusan tipe Merapi. Namun dalam setahun terakhir, Gunung Sinabung mulai memperlihatkan tanda-tanda erupsi eksplosif. Kolom letusan kerap terbentuk dan menyembur hingga ketinggian tertentu, yang dikenal sebagai letusan tipe vulkanian. Letusan besar Sinabung kemarin adalah pemuncak dari erupsi eksplosif tersebut, hingga saat ini. Letusan besar itu memiliki tipe plinian (subplinian).

Apakah Gunung Sinabung sedang berubah?

Referensi

PVMBG. 2018. erupsi Gunung Sinabung tanggal 19 Februari 2018 pukul 08:53 WIB. Pusat Vulkanologi da Mitigasi Bencana Geologi, Badan Geologi, Kementerian Energi dan Sumberdaya Mineral RI. Diakses 21 Februari 2018 TU.

Devy Kamil Syahbana. 2018. komunikasi pribadi.

Andrew Prata. 2018. komunikasi pribadi.

Sutopo Purwo Nugroho. 2018. komunikasi pribadi.

Iklan

Roket Terkuat Sejagat yang Menerbangkan Mobil Termahal

Sebuah sejarah baru nan ganjil tercipta pada Rabu 7 Februari 2018 Tarikh Umum (TU) antara pukul 03:45 WIB hingga 09:30 WIB lalu. Sebuah mobil sport komersial bertenaga listrik berwarna merah melayang di antariksa dekat Bumi. Mobil bermerk Tesla Roadster produksi tahun 2008 TU ini mengedari planet biru kita pada sebentuk orbit lonjong dengan ketinggian bervariasi mulai 184 kilometer hingga 6.953 kilometer, semuanya dari paras air laut rata-rata (dpl). Kemiringan bidang orbitnya terhadap bidang ekuator Bumi, atau inklinasi orbit, adalah 29º. Periode orbitalnya 165 menit, bermakna setiap 2,75 jam sekali mobil sport ini menyelesaikan sekali putaran mengelilingi Bumi.

Gambar 1. Mobil listrik Tesla Roadster dan boneka Starman sesaat setelah mulai meninggalkan lingkungan pengaruh gravitasi Bumi pada Rabu 7 Februari 2018 TU pukul 09:30 WIB. Foto ikonis ini diabadikan dari salah satu kamera yang turut serta dalam penerbangan antariksa Tesla Roadster. Bumi nampak di latar belakang. Sumber: SpaceX, 2018.

Dummy Payload

Mobil sport di beredar orbit Bumi laksana satelit saja sudah cukup ganjil. Ini belum pernah terjadi sepanjang sejarah penerbangan antariksa. Namun keganjilan itu masih ditambah lagi oleh hadirnya sesosok manekin/boneka berjuluk Starman yang mengenakan baju antariksawan dan duduk di sisi pengemudi pada mobil dengan setir kiri ini. Sejumlah kamera, minimal tiga buah, menyoroti Tesla Roadster dan Starman-nya dari berbagai sisi. Semuanya memiliki massa sekitar 1,4 ton. Tatkala sudah mengangkasa, kamera-kamera ini pun menyajikan tayangan liputan langsung yang diunggah ke laman video populer. Seperti terlihat berikut ini :

Tak pelak kehebohan besar pun tercipta dan membelah dunia. Sebagian melihatnya keren dan unik. Sementara sebagian lagi mencibirnya, beranggapan hanya membuang-buang duit sembari menciptakan jenis baru sampah antariksa. Kalangan cendekiawan pun demikian. Sebagian mereka mengkritisi aksi Tesla Roadster dan Starman. Mulai dari mengapa tidak mengirim muatan lebih berharga yang bisa membantu menyokong peradaban manusia modern seperti halnya satelit-satelit buatan, mengingat banyak diantaranya yang masih antri menunggu terbang. Hingga kekhawatiran potensi kontaminasi benda langit lain oleh bakteri bandel yang terbawa dari Bumi, mengingat baik Tesla Roadster dan Starman tidak disterilkan lebih dulu sebelum terbang.

Dalam khasanah penerbangan antariksa, mobil Tesla Roadster dan boneka Starman itu sejatinya hanyalah dummy payload atau muatan inert. Mereka dipilih sebagai bagian unjuk kebolehan penerbangan perdana roket angkut berat Falcon Heavy milik perusahaan Space Exploration Technologies, atau SpaceX. Target uji terbang ini adalah mendemonstrasikan kemampuan roket Falcon Heavy untuk lepas landas, lantas tingkat terbawah (booster) bisa mendarat kembali dengan selamat pada landasan pendaratan masing-masing. Selanjutnya roket tingkat teratas (upperstage) bisa dimatikan dan dinyalakan ulang sesuai kebutuhan berdasarkan orbit tujuan yang ditargetkan. Dengan kemampuan seperti itu, upperstage mampu mengantar muatannya menuju berbagai tingkat orbit. Mulai dari orbit geostasioner hingga orbit heliosentris.

Gambar 2. Roket berat Falcon Heavy saat lepas landas dari landasan nomor 39A yang bersejarah di kompleks Tanjung Canaveral, Florida (AS) pada Kamis 7 Februari 2018 TU pukul 03:45 WIB. Dalam penerbangan antariksa bersejarah ini nampak bagian-bagian struktur roket tingkat dua ini, yang ditambahkan kemudian. Sumber: SpaceX, 2018.

Pilihan Elon Musk, pendiri sekaligus direktur utama dan pemegang saham terbesar SpaceX, akan dummy payload nampaknya bersandar pada pengalaman buruk SpaceX masa silam. Kala mengembangkan roket Falcon 1, SpaceX harus menelan pil pahit saat uji terbang perdana 24 Maret 2006 TU gagal. Meski berhasil lepas landas, namun mesin roket Falcon 1 mendadak mati hanya setengah menit pasca meluncur. Akibatnya muatan mahal berupa satelit FalconSAT-2 milik Departemen Pertahanan AS terpaksa jatuh berdebum mencium Bumi tanpa bisa digunakan lagi. Kegagalan juga menghampiri Falcon 1 pada dua peluncuran berturut-turut berikutnya, masing-masing 21 Maret 2007 TU dan 3 Agustus 2008 TU. Dalam dua peluncuran tersebut roket hancur di udara, membuat satelit-satelit milik Departemen Pertahanan AS dan badan antariksa AS (NASA) turut remuk.

Tidak Dari Nol

Falcon Heavy adalah roket angkut berat produk pengembangan evolutif semenjak 2004 TU. Dalam rancangan terakhirnya ia ditargetkan memiliki kapasitas muatan dalam skala luar biasa. Ia berkemampuan mengangkut 68,3 ton muatan ke orbit rendah (tinggi kurang dari 2.000 kilometer dpl) pada inklinasi 28º. Ke orbit transfer geostasioner (tinggi maksimum 35.900 kilometer dpl) pada inklinasi 27º, Falcon Heavy sanggup mengangkut 26,7 ton muatan. Ke orbit heliosentris (mengelilingi Matahari) dengan tujuan akhir ke orbit Mars, Falcon Heavy sanggup membawa 16,8 ton muatan. Bahkan bila tujuan akhirnya ke orbit Pluto sekalipun, tentu dalam orbit heliosentris, Falcon Heavy masih sanggup mengangkut 3,5 ton muatan. Jadi pada dasarnya ini jenis roket yang mampu mengantar muatan ke bagian manapun tata surya kita.

Kemampuan ini jelas mengesankan, mengingat pesawat ulang-alik AS yang melegenda, kini sudah pensiun, ‘hanya’ sanggup mendorong 27,5 ton muatan ke orbit rendah. Sedangkan bila dibandingkan dengan kapasitas angkut roket-roket berat serupa yang masih aktif pada saat ini seperti Delta IV Heavy, Ariane 5 dan Proton-M, Falcon Heavy masih jauh lebih unggul. Demikian halnya dengan ongkos peluncuran untuk setiap kilogram massa muatan, Falcon Heavy tetap jauh lebih unggul.

Ada dua faktor yang membuat roket Falcon Heavy jauh lebih murah dalam hal ongkos peluncuran ketimbang roket-roket berat sejawatnya. Yang pertama, Falcon Heavy tidaklah dibangun dari nol. Akan tetapi melanjutkan pengembangan roket Falcon 9, kuda beban SpaceX saat ini. Komponen-komponen roket Falcon 9, yang sebagian diantaranya diproduksi industri berskala kecil dan menengah, dapat digunakan juga dalam Falcon Heavy. Struktur Falcon Heavy sendiri pada dasarnya serupa Falcon 9, yakni sebagai roket bertingkat dua. Keduanya sama-sama memiliki booster (lowerstage) dan upperstage. Keduanya juga sama-sama hanya memiliki satu upperstage. Bedanya booster Falcon Heavy berjumlah tiga buah, terdiri dari dua side booster di samping dan satu core booster di tengah. Sementara Falcon 9 hanya memiliki sebiji booster. Namun booster Falcon Heavy sejatinya adalah tiga booster Falcon 9 yang digandeng paralel menjadi satu.

Gambar 3. Roket Falcon 9, tepatnya Falcon 9 FT (Full Thrust), saat mulai mengangkasa dari landasan nomor 40 di kompleks Tanjung Canaveral pada 14 Agustus 2016 TU silam dengan membawa muatan komersial satelit komunikasi JCSAT-16. Sebulan kemudian upperstage-nya mengalami reentry di atas Jawa Timur dan sisa-sisanya jatuh di pulau Madura. Roket berat Falcon Heavy dikembangkan dari roket Falcon 9 ini. Sumber: SpaceX, 2016.

Penggunaan komponen yang sama membuat biaya perakitan Falcon Heavy lebih murah. Namun hal itu juga tak terlepas dari faktor kedua, yakni konsep daya pakai ulang. Selagi Falcon Heavy dirancang di atas kertas, SpaceX juga bereksperimen dengan konsep daya pakai ulang bagi roket Falcon 9. Sejara penerbangan antariksa hingga 2015 TU memperlihatkan daya pakai ulang tak pernah meraup sukses sesuai harapan. Di masa lalu wantariksa (wahana antariksa) ulang-alik menerapkan konsep ini secara parsial. Komponen yang bisa dipakai lagi berulang-ulang adalah dua booster berbahan bakar padat dan pesawat ulang-alik. Sementara tanki bahan bakar eksternal dirancang hanya sekali pakai untuk kemudian dibuang dan hangus dalam proses reentry di ketinggian atmosfer.

Aplikasi konsep daya pakai ulang pada wantariksa ulang-alik merupakan jawaban atas begitu mahalnya ongkos peluncuran roket-roket Saturnus 5 yang menjadi pendahulunya. Akan tetapi wantariksa ulang-alik juga mengemban misi antariksa berawak, yang bisa mengangkut hingga 7 astronot, membuat biaya keamanannya melonjak. Terlebih pasca tragedi meledaknya wantariksa Challenger pada 28 Januari 1986 TU. Maka penghematan yang diidam-idamkan pada wantariksa ulang-alik pun meredup. Peluncuran wantariksa ulang-alik pun akhirnya sama mahalnya dengan Saturnus 5.

Era Baru Penerbangan Antariksa

SpaceX juga menyiasati konsep daya pakai ulang secara parsial, awalnya pada booster. Booster SpaceX memang nampak seperti roket-roket lain umumnya, yakni berupa tabung panjang yang volumenya sangat didominasi bahan bakar dan bahan pengoksid. Bedanya, SpaceX berinovasi menjadikan booster bisa mendarat kembali secara vertikal ke landasan pendaratan tertentu usai menjalankan tugas. Caranya mulai dari membalikkan arah terbang booster menggunakan semburan nitrogen dingin usai menjalani tahap pelepasan (staging). Lantas mengendalikan arah terbangnya melalui empat sirip jala-jala yang bisa dibuka-tutup-putar hingga mereduksi kecepatan lewat penyalaan ulang sebagian mesin roket Merlin 1D. Dan akhirnya memasang empat buah kaki pendarat untuk menyokong booster tetap tegak begitu telah mendarat.

Gambar 4. Diagram implementasi konsep daya pakai ulang (reusability) parsial pada roket Falcon 9. Booster akan didaratkan kembali setelah bertugas, sementara upperstage hanya bisa sekali pakai untuk kemudian dibuang. Roket berat Falcon Heavy juga mengadaptasi konsep daya pakai ulang parsial yang mirip. Bedanya Falcon Heavy harus mendaratkan ketiga booster-nya sekaligus dan mendaratkan pula cangkang-cangkang sungkup muatan dengan selamat. Sumber: SpaceX, 2016.

Ujicoba konsep daya pakai ulang dilakukan dalam sejumlah penerbangan komersial roket Falcon 9 sebagai eksperimen tambahan pasca setiap roket menunaikan tugas utamanya. Setelah mencoba berulang-ulang dengan sejumlah kegagalan, akhirnya SpaceX mencetak sukses lewat variannya, roket Falcon 9 FT (Full Thrust) penerbangan ke-20. Dimana booster mendarat selamat di landasan darat pada 22 Desember 2015 TU pasca mengantar muatan komersial 11 satelit Orbcomm-OG2 ke orbit rendah. Sementara sukses pendaratan misi antariksa ke orbit geostasioner diperoleh dalam penerbangan ke-24 pada 6 Mei 2016 TU lewat peluncuran satelit komunikasi JCSAT-14. Booster mendarat di tengah laut pada sebuah kapal bekas yang didesain ulang sebagai landasan landasan bargas (droneship). Peluncuran satelit geostasioner berikutnya, yakni JCSAT-16, tercatat di Indonesia karena upperstage-nya mengalami reentry di atas Jawa Timur dan sisa-sisanya mendarat di selatan Pulau Madura.

Hingga dua tahun kemudian, tepatnya hingga awal Februari 2018 TU, SpaceX telah sukses mendaratkan 21 buah booster Falcon 9 FT dalam 20 misi antariksa berbeda. Enam diantaranya telah diterbangkan kembali dalam misi antariksa yang lain. Konsep daya pakai ulang pun mulai menjadi rutinitas. Ongkos peluncuran pun mulai bisa ditekan, dimana untuk roket Falcon 9 FT menjadi 30 % lebih murah. Era baru penerbangan antariksa yang menjanjikan biaya lebih murah pun dimulai.

Gambar 5. Momen pendaratan booster roket Falcon 9 FT di landasan bargas di perairan Samudera Atlantik, dalam misi antariksa penerbangan ke-23 yang mengantar muatan kargo CRS-8 ke stasiun antariksa internasional pada 8 April 2016 TU. Keterangan bagian-bagian penting dari komponen kendali pendaratan ditambahkan kemudian. Sumber: SpaceX, 2016.

Kombinasi dua faktor itu membuat biaya pengembangan Falcon Heavy relatif kecil bila dibandingkan roket-roket berat sejenis. Elon Musk dalam satu kesempatan menyatakan SpaceX merogoh kocek hingga sedikit di atas US $ 500 juta guna membangun Falcon Heavy. Seluruhnya dibiayai dari kocek SpaceX sendiri tanpa bantuan pendanaan dari luar.

Meski demikian upaya pengembangan Falcon Heavy harus tertunda berkali-kali. Saat memperkenalkan Falcon Heavy ke publik 2011 TU silam, Musk menyatakan roket berat ini akan siap terbang dua tahun kemudian. Namun beragam masalah teknis menghinggapinya. Pada saat yang sama, berbagai problem juga berkali-kali menerpa pengembangan roket Falcon 9 dan variannya (termasuk Falcon 9 FT). Sementara Falcon Heavy dikembangkan secara paralel dengan Falcon 9. Pada akhirnya, penundaan berlangsung hingga 5 tahun lamanya sebelum Falcon Heavy benar-benar siap diluncurkan.

SpaceX menyiapkan lokasi peluncuran di landasan nomor 39A kompleks Tanjung Canaveral, Florida (AS). Ini adalah lokasi bersejarah yang digunakan dalam peluncuran roket-roket Saturnus 5 (1967-1973 TU) dan selanjutnya digunakan pula dalam peluncuran wantariksa ulang-alik (1981- 2011 TU). SpaceX menyewanya dari badan aeronotika dan antariksa AS (NASA) selama 20 tahun penuh terhitung sejak 2014 TU.

Setelah melewati hari-hari terakhir yang menegangkan, akhirnya roket berat Falcon Heavy pun siap mengangkasa. Saat berdiri tegak di landasan nomor 39A, massa total roket berat Falcon Heavy adalah 1.421 ton. Bagian bawah adalah tiga booster, masing-masing bermesin roket 9 buah, sehingga seluruhnya terdapat 27 buah mesin roket. Jumlah ini hanya bisa dikalahkan oleh roket N1, roket berat era Uni Soviet yang dibangun guna meluncurkan manusia Uni Soviet pertama ke Bulan. Tingkat pertama roket N1 itu memiliki 30 buah mesin roket.

Dua side booster Falcon Heavy ini merupakan booster Falcon 9 FT yang pernah diterbangkan dalam misi antariksa sebelumnya. Sedangkan core boosternya adalah baru, demikian halnya upperstage-nya. Di pucuk upperstage, bertumpu pada sebuah adapter khusus, bertengger muatan Tesla Roadster dan Starman beserta kamera-kameranya. Harga jual Tesla Roadster sekitar US $ 100 ribu. Dengan ongkos peluncuran sekitar US $ 2.200 per kilogram, maka secara keseluruhan Tesla Roadster itu berharga sekitar US $ 3 juta, menjadikannya mobil termahal sejagat. Muatan ini dilindungi oleh sungkup (fairing), sepasang cangkang yang mengatup menjadi satu dan melindungi muatan didalamnya selama penerbangan menembus lapisan atmosfer yang lebih padat.

Saat lepas landas, ke-27 buah mesin roket Merlin 1D menyala penuh menghasilkan daya dorong sekuat lebih dari 2.300 ton. Dorongan ini adalah yang terkuat di antara roket-roket berat aktif pada saat ini. Sepanjang sejarah penerbangan antariksa, daya dorong roket berat Falcon Heavy adalah yang yang terkuat kelima sejagat, setelah roket berat N1, Saturnus 5, Energia dan wantariksa ulang-alik. Hanya saja seluruh roket berat itu telah purna tugas. Ini menjadikan Falcon Heavy sebagai roket terkuat sejagat saat ini.

Menyinkronkan kinerja 27 buah mesin roket berbeda adalah tugas sulit. Sejarah penerbangan antariksa memiliki beberapa pengalaman tak menyenangkan. Paling menonjol adalah yang dialami roket N1. Dalam empat ujicoba penerbangannya, sebagian hingga seluruh 30 mesin roket tingkat pertamanya berjumpa beragam masalah. Mulai dari seluruh mesin mati mendadak hingga sejumlah mesin meledak. Ini berujung pada gagal terbangnya roket secara keseluruhan.

Bahkan dalam satu ujicobanya, tepatnya 3 Juli 1969 TU atau hanya dua minggu sebelum peluncuran Apollo 11, gagalnya mesin-mesin tingkat pertama roket N1 berujung jatuhnya roket berbahan bakar penuh di landasannya. Ledakan dahsyat pun terjadilah, salah satu ledakan non-nuklir terbesar yang pernah tercatat, dengan pelepasan energi sekitar 1 kiloton TNT. Buntutnya program roket N1 dibatalkan dan kelak mesin-mesinnya dijual ke AS). Akan tetapi SpaceX nampaknya telah sanggup mengatasi persoalan tersebut sehingga roket Falcon Heavy pun lepas landas dengan mulus.

Gambar 6. Detik-detik pendaratan dua side booster roket Falcon Heavy pasca menjalani penerbangan perdananya. Keduanya mendarat di landasan daratan dalam kompleks Tanjung Canaveral hanya beberapa kilometer dari landasan nomor 39A tempat Falcon Heavy lepas landas. Keduanya mendarat pada masing-masing titik yang ditentukan, yang berjarak 170 meter satu dengan yang lain. Sumber: SpaceX, 2018.

Dua setengah menit pasca lepas landas, yakni saat mencapai ketinggian kurang dari 100 kilometer dpl, Falcon Heavy mematikan dan melepaskan kedua side booster-nya. Selanjutnya kedua side booster membalik dan mengendalikan arah penerbangan selagi turun kembali ke lapisan atmosfer lebih rendah. Pada setiap booster, 3 dari 9 mesin roketnya dinyalakan ulang selama beberapa saat untuk mengurangi kecepatannya selagi masih di ketinggian. Langkah serupa dilakukan kembali disertai membukanya kaki-kaki pendarat saat side-side booster itu sudah mendekati paras Bumi. Maka hanya dalam 8 menit pasca lepas landas, koreografi manis kedua side booster membuatnya mendarat dengan selamat di landasan darat . Keduanya mendarat di dua titik berbeda yang hanya terpisah jarak 170 meter.

Langkah serupa juga dijalani core booster. Tiga menit setelah lepas landas, pada ketinggian lebih dari 100 kilometer dpl, core booster melepaskan diri dari Falcon Heavy dan mengikuti koreografi serupa side booster tadi. Hanya, karena melepaskan diri di ketinggian lebih tinggi dengan kecepatan lebih besar, maka core booster harus mendarat di landasan bargas yang mengapung di perairan Samudera Atlantik. Sayangnya pengalaman side booster tak terulang. Mengeringnya cairan pematik khusus guna penyalaan ulang mesin roket membuat core booster hanya sanggup menyalakan 1 mesin roketnya saja. Tak cukuplah untuk mengerem. Akibatnya core booster menumbuk paras Samudera Atlantik secepat 500 km/jam yang mematikan. Ia jatuh terhempas sejarak hanya 100 meter dari bargas. Hempasan tumbukan dan puing-puingnya bahkan membuat bargas mengalami kerusakan ringan.

Pasca boosterbooster-nya melepaskan diri mengikuti prinsip dasar penerbangan roket bertingkat, kini Falcon Heavy hanya terdiri dari upperstage dan muatannya saja. Di titik ini sungkup melepaskan diri sembari membuka, menjadi sepasang cangkang. Keduanya lantas mengatur arah dan sikap menggunakan roket-roket kecil yang tertanam di setiap cangkang. Sehingga ketika menurun kembali ke lapisan atmosfer lebih rendah, kedua cangkang sungkup itu memiliki sikap yang benar sehingga tidak hancur. Pada akhirnya keduanya melepaskan parasut supersonik sebagai pengerem, membuatnya cukup pelan kala mendarat di paras air Samudera Atlantik sehingga masing-masing cangkang sungkup tetap utuh dan mengapung. Langkah ini masih menjadi bagian dari jargon daya pakai ulang SpaceX, karena pembuatan sungkup muatan saja bisa menelan ongkos US $ 6 juta.

Lewat di Atas Indonesia

Tiga seperempat menit pasca lepas landas, upperstage menyalakan mesin roketnya selama 5,25 menit penuh. Membuat dirinya beserta Tesla Roadster dan Starman berpindah dari semula mengikuti lintasan balistik menjadi menyusuri orbit sirkular takstabil setinggi 185 kilometer dpl. Dan 28,5 menit pasca lepas landas, kala tiba di atas Afrika Selatan, mesin roket upperstage dinyalakan kembali. Kali ini hanya selama 30 detik, namun cukup untuk mendorong Tesla Roadster dan Starman ke orbit parkir nan lonjong dengan ketinggian bervariasi antara 184 kilometer hingga 6.953 kilometer. Praktis tinggi orbit Tesla Roadster dan Starman menembus sabuk van Allen yang penuh radiasi sebagai pengorbanannya dalam melindungi Bumi. Sejak itu pula Tesla Roadster dan Starman menyedot perhatian dunia. Siaran langsung akan keduanya berjalan selama 4 jam penuh. Meski sesungguhnya Tesla Roadster membawa batere yang sanggup memasok arus listrik mencukupi hingga 12 jam pasca lepas landas.

Gambar 7. Peta lintasan upperstage Falcon Heavy beserta muatannya (Tesla Roadster dan Starman) kala masih menghuni orbit parkir pada 7 Februari 2018 TU antara pukul 03:45 hingga 09:30 WIB. Pada lintasannya yang kedua, mereka sempat lewat di atas Indonesia tepatnya di antara pukul 08:00 WIB hingga 08:30 WIB. Peta digambar oleh Marco Langbroek, astronom amatir Belanda. Sumber: Langbroek, 2018.

Selama menyusuri orbit parkirnya, Tesla Roadster dan Starman sempat lewat di atas Indonesia. Tepatnya di antara pukul 08:00 hingga 08:30 WIB. Tesla Roadster dan Starman melintas dari barat daya menuju timur laut. Awalnya Tesla Roadster dan Starman melintas di atas pulau Lombok (propinsi Nusa Tenggara Barat) sekitar pukul 08:04 WIB. Beberapa menit kemudian tepatnya sekitar pukul 08:15 WIB keduanya sudah melejit jauh sehingga ada di atas pulau Buru (propinsi Maluku). Dan sekitar pukul 08:20 WIB Tesla Roadster dan Starman sudah tiba di atas perairan Raja Ampat (propinsi Irian Jaya Barat) nan elok.

Melintasnya Tesla Roadster dan Starman di atas Indonesia adalah momen terakhir keduanya berada di dekat Bumi. Sebab berselang sejam kemudian SpaceX kembali menyalakan ulang mesin roket upperstage-nya. Kali ini durasinya cukup lama, hingga lebih dari 8 menit, pada tahap yang disebut SOI (Solar Orbit Injection). Dorongan kuat membuat Tesla Roadster dan Starman memiliki kecepatan mencukupi untuk lepas dari kungkungan gravitasi Bumi dan berubah menjadi benda langit buatan pengorbit Matahari dengan orbit heliosentris. Tahap SOI ini dapat disaksikan langsung oleh sebagian benua Amerika khususnya pantai barat AS, negara-negara Amerika Tengah dan Brazil. Mesin roket yang menyala dalam tahap ini nampak sebagai bintik cahaya besar yang cukup terang, lebih terang dari Venus, dan nampak laksana sorot lampu yang bergerak.

Seperti terlihat berikut, berdasarkan rekaman dari Observatorium MMT di University of Arizona (AS), upperstage Falcon Heavy dalam tahap SOI terlihat bergerak dari arah barat ke selatan :

upperstage Falcon Heavy beserta muatannya (Tesla Roadster dan Starman) lalu menempati orbit lonjong dengan periode 1,53 tahun, inklinasi 1º, perihelion 0,986 SA (147,5 juta kilometer) dan aphelion 1,664 SA (248,9 juta kilometer). Ini menempatkan mereka berkeliaran mulai dari lingkungan sekitar orbit Bumi di perihelionnya hingga melambung ke bagian dalam kawasan Sabuk Asteroid Utama di aphelionnya, melampaui orbit Mars. Meski demikian perhitungan menunjukkan mereka takkan singgah dekat-dekat baik ke Mars maupun Bumi hingga berdekade-dekade mendatang. Diperhitungkan pada Kamis 8 Februari 2018 TU pukul 11:20 WIB, Tesla RoadsterStarmanupperstage telah lebih jauh dari orbit Bulan. Pada Senin dinihari 12 Februari 2018 TU pukul 01:00 WIB, Tesla RoadsterStarmanupperstage telah meninggalkan ruang pengaruh gravitasi sistem Bumi-Bulan. Sekitar bulan Juli 2018 TU mendatang Tesla RoadsterStarmanupperstage akan melintasi orbit Mars (namun berjarak puluhan juta kilometer dari planet merah itu) dan pada bulan November 2019 TU akan mencapai titik aphelionnya.

Siaran langsung Tesla Roadster dan Starman berakhir menjelang tahap SOI, meski arus listrik dari baterenya masih mencukupi. Masalahnya adalah jarak yang kian menjauh, sehingga kuat sinyal elektromagnetiknya merosot drastis sebagai fungsi kuadrat terbalik dari pertambahan jarak. Sehingga kekuatan sinyalnya telah merosot dibawah ambang batas yang bisa diterima antenna-antenna SpaceX. Mulai saat itu giliran para astronom mengambil alih, memelototi gerak-geriknya dengan bersenjatakan teleskop-teleskop modern di sejumlah observatorium.

Misalnya observasi dari tim Elecnor Deimos, perusahaan teknologi aeronotika dan antariksa yang bermarkas di Spanyol.Elecnor Deimos merekam gerak Tesla RoadsterStarmanupperstage pada hari Kamis 8 Februari 2018 TU pukul 13:10 WIB pada jarak 520.000 kilometer dari Bumi. Ada juga timVirtual Telescope, mengamati pada hari yang sama mulai pukul 18:10 WIB hingga sejam kemudian dengan memanfaatkan teleskop robotik di Observatorium Tenagra, Arizona (AS). Selanjutnya ada Observatorium Las Cumbres di Cerro Tololo (Chile) yang turut berpartisipasi. Dan masih banyak lagi.

Hasil observasiElecnor Deimos :

Hasil observasiVirtual Telescope:

Hasil observasi Marco Langbroek:

Observasi-observasi para astronom tersebut memperlihatkan bahwa Tesla RoadsterStarmanupperstage kini telah sangat redup, lebih redup ketimbang Pluto. Magnitudo semunya bervariasi antara +17 hingga +18. Variasi ini disebabkan oleh rotasi Tesla RoadsterStarmanupperstage pada sumbunya (tepatnya pada sumbu upperstage) dengan periode rotasi 4,7 menit. Rotasi ini umumnya disebut sebagai barbecue roll, yang biasa dilakukan wantariksa antarplanet sebagai upaya untuk menjaga agar tidak ada bagian yang terpapar sinar Matahari terlalu lama.

Gambar 8. Plot variasi kecerlangan Tesla RoadsterStarmanupperstage berdasarkan observasi Erik Dennihiy (University of North Carolina Chapel Hill) pada 11 Februari 2018 TU. Dari plot ini diketahui bahwa Tesla RoadsterStarman-uperstage berputar pada sumbunya dengan pola barbecue roll pada periode rotasi 4,7 menit. Sumber: Dennihiy, 2018.

Layaknya hal-hal populer lainnya, keputusan SpaceX untuk menerbangkan Tesla Roadster dan Starman ke antariksa dalam uji terbang perdana roket berat Falcon Heavy tak lepas dari pro dan kontra. Meski peran utama Tesla Roadster dan Starman sejatinya hanyalah dummy payload. Akan tetapi di atas pro dan kontra tersebut, ini adalah keputusan yang jenius. Animo besar dunia terhadap tayangan langsung Tesla Roadster dan Starman mengapung di antariksa tak pelak menjadi iklan gratis, atau setidaknya berbiaya cukup murah, dalam memperkenalkan roket Falcon Heavy sebagai roket baru. Ini sangat berbeda dengan langkah-langkah pengenalan roket baru lainnya yang sudah pernah dilakukan, yang terkesan lebih formal dengan standar agak membosankan sehingga jarang menggamit perhatian publik.

Kini praktis sebagian besar dunia mengetahui bahwa telah ada roket Falcon Heavy. Roket berat yang mampu melayani pengantaran muatan untuk beragam jenis orbit, mulai dari orbit rendah dan orbit geostasioner di Bumi hingga ke orbit heliosentris ke sudut manapun dalam tata surya kita. Roket berat ini juga mampu melayani penerbangan antariksa berawak. Jenis penerbangan antariksa yang kini hanya dilayani oleh wantariksa Soyuz (Russia) dan (sedikit diantaranya) oleh wantariksa Shenzou, sementara pesawat ulang-alik sudah purna tugas. Dan yang lebih mengesankan lagi, adalah tawaran biaya penerbangan antariksa yang jauh lebih murah, bahkan termurah untuk saat ini.

Referensi :

SpaceX. 2011. SpaceX Brochure : Falcon Heavy, 9 Agustus 2011. Diakses 10 Februari 2018 TU.

SpaceX. 2018. Falcon Heavy Demonstration Mission, Press Kit, 6 Februari 2018. Diakses 10 Februari 2018 TU.

Biru Gerhana Bulan Perigean 31 Januari 2018

Dua fenomena alam yang berbeda akan terjadi pada saat yang hampir bersamaan pada Rabu 31 Januari 2018 TU (Tarikh Umum). Yang pertama adalah Gerhana Bulan yang selalu mempesona. Dan yang kedua adalah Bulan purnama perigean atau dkenal juga dengan nama supermoon. Ini melahirkan sebuah istilah baru, Gerhana Bulan Total Perigean.

Gambar 1. Wajah Bulan dalam Gerhana Bulan 7-8 Agustus 2017 yang lalu, yang berjenis Gerhana Bulan Sebagian. Panorama semacam ini akan bisa disaksikan lagi dalam peristiwa Gerhana Bulan Total 31 Januari 2018. Sumber: Sudibyo, 2017.

Konfigurasi

Pada dasarnya Gerhana Bulan terjadi tatkala Matahari, Bulan dan Bumi tepat berada dalam satu garis lurus, konfigurasi yang normalnya menghasilkan fase Bulan purnama. Namun kali ini konfigurasi tersebut bersifat syzygy, yakni segaris lurus ditinjau dari segenap arah tiga dimensi. Di tengah-tengah konfigurasi tersebut bertenggerlah Bumi. Sementara Bulan menempati salah satu dari dua titik nodal, yakni titik potong orbit Bulan dengan ekliptika (bidang orbit Bumi mengelilingi Matahari). Akibatnya pancaran sinar Matahari yang seharusnya tiba di paras Bulan menjadi terhalangi Bumi.

Mengingat diameter Matahari jauh lebih besar ketimbang Bumi kita, yakni 109 kali lipat lebih besar, maka Bumi tak sepenuhnya menghalangi pancaran cahaya Matahari. Sehingga terbentuk umbra dan penumbra. Umbra adalah kerucut bayangan inti, yakni kerucut imajiner di belakang Bumi yang sepenuhnya tak mendapat pencahayaan Matahari. Sedangkan penumbra adalah kerucut bayangan samar/tambahan, yakni kerucut imajiner di belakang Bumi kita yang ukurannya jauh lebih besar ketimbang umbra dan masih mendapatkan cukup banyak pencahayaan Matahari.

Gambar 2. Bulan dalam fase umbra Gerhana Bulan 7-8 Agustus 2017 yang lalu, dalam citra overeksposur untuk memperlihatkan bagian umbra pada cakram Bulan yang berwarna kemerah-merahan. Pemandangan yang lebih memukau akan kita saksikan pada Gerhana Bulan Total 31 Januari 2018. Sumber: Sudibyo, 2017.

Dalam Gerhana Bulan Total, cakram Bulan sepenuhnya berada dalam lingkup umbra Bumi. Namun bukan berarti ia sepenuhnya menghilang. Ia masih ada meski kehilangan pancaran sinar Matahari yang menuju padanya. Ia tidak ‘menghilang’ di gelap malam, melainkan nampak nampak kemerah-merahan (merah darah). Sebab meskipun tak terpapar cahaya Matahari secara langsung, sepanjang saat puncak gerhana terjadi Bulan tetap menerima pencahayaan tak langsung dari sinar Matahari yang dibiaskan atmosfer Bumi. Khususnya cahaya dalam spektrum warna merah atau inframerah.

Sementara Bulan purnama perigean adalah peristiwa dimana fase Bulan purnama terjadi berdekatan dengan saat Bulan menempati titik perigee, yakni titik terdekat ke Bumi dalam orbit Bulan yang ellips. Bulan purnama perigeaan merupakan fenomena tahunan, yang selalu terjadi dalam dua atau tiga purnama di setiap akhir tahun dan berlanjut pada awal tahun Tarikh Umum. Bupan purnama perigeaan kali ini terjadi karena Bulan berada di titik perigee pada Selasa 30 Januari 2018 TU pukul 16:55 WIB, yakni dengan jarak 358.995 kilometer (dari pusat Bumi ke pusat Bulan). Sebaliknya fase Bulan purnama terjadi pada Rabu 31 Januari 2018 TU pukul 20:30 WIB, atau berselang 27 jam kemudian. Fenomena ini merupakan penutup dari trio Bulan purnama perigeaan yang telah bermula sejak awal Desember 2017 TU lalu.

Musim Gerhana 2018

Gambar 3. Perbandingan ukuran Bulan antara saat Bulan purnama perigean (supermoon) dengan saat purnama jelang Gerhana Bulan 7-8 Agustus 2017. Diabadikan dengan instrumen yang sama. Nampak Bulan saat purnama perigean sedikit lebih besar. Sumber: Sudibyo, 2017.

Tidak setiap kejadian Bulan purnama bersamaan dengan peristiwa Gerhana Bulan. Sebaliknya suatu peristiwa Gerhana Bulan pasti bersamaan waktunya dengan Bulan purnama. Musababnya adalah orbit Bulan yang tak berimpit dengan bidang edar Bumi mengelilingi Matahari, melainkan menyudut sebesar 5o. Hanya ada dua titik dimana Bulan berpeluang tepat segaris lurus syzygy dengan Bumi dan Matahari, yakni di titik nodal naik (ascending) dan titik nodal turun (descending). Dan dalam kejadian Bulan purnama, mayoritas terjadi tatkala Bulan tak berdekatan ataupun berada dalam salah satu dari dua titik nodal tersebut. Inilah sebabnya mengapa tak setiap saat Bulan purnama kita bersua dengan Gerhana Bulan.

Bagaimana Bulan berperilaku terhadap umbra dan penumbra Bumi menentukan jenis gerhananya. Ada tiga jenis Gerhana Bulan. Pertama Gerhana Bulan Total (GBT), terjadi kala cakram Bulan sepenuhnya memasuki umbra Bumi tanpa terkecuali. Kedua Gerhana Bulan Sebagian (GBS), terjadi kala umbra tak sepenuhnya menutupi cakram Bulan. Akibatnya pada puncak gerhananya Bulan hanya akan lebih redup (ketimbang saat GBT) dan ‘robek’ di salah satu sisinya. Dan yang terakhir adalah Gerhana Bulan Penumbral (GBP) atau gerhana Bulan samar, yang bisa terjadi kala hanya penumbra Bumi yang menutupi cakram Bulan baik sepenuhnya maupun hanya separuhnya. Tiada umbra Bumi yang turut menutupi. Dalam gerhana Bulan yang terakhir ini, Bulan masih tetap mendapatkan sinar Matahari sehingga sekilas nampak tak berbeda dibanding Bulan purnama umumnya.

Gambar 4. Parameter dua dari lima gerhana yang menjadi bagian dari Musim Gerhana 2018.

Gerhana Bulan 31 Januari 2018 ini adalah peristiwa Gerhana Bulan Total. Ia menjadi babak pembuka dari musim gerhana tahun 2018 TU ini. Musim Gerhana 2018 TU terdiri dari lima peristiwa gerhana, masing-masing tiga Gerhana Matahari dan dua Gerhana Bulan. Semua peristiwa Gerhana Bulan itu dapat disaksikan dari Indonesia mengingat negeri ini berada dalam cakupan wilayah gerhana-gerhana tersebut. Kabar baiknya, kedua gerhana tersebut merupakan Gerhana Bulan Total. Sebaliknya seluruh Gerhana Matahari di musim 2018 ini tak berkesempatan disaksikan manusia Indonesia.

Gerhana Bulan Total 31 Januari 2018 merupakan Gerhana Bulan Total pertama yang menyentuh wilayah Indonesia dalam tiga tahun terakhir, pasca Gerhana Bulan Total 4 April 2015. Akan tetapi gerhana ini merupakan Gerhana Bulan Total Perigean pertama kali bagi Indonesia dalam 35 tahun terakhir. Terakhir kali peristiwa langit kombinasi semacam ini terjadi adalah pada Gerhana Bulan Total 30 Desember 1982 silam.

Tahap Gerhana dan Wilayah Gerhana

Gerhana Bulan Total 31 Januari 2018 terdiri atas tujuh tahap. Tahap pertama adalah awal gerhana yang berupa kontak awal penumbra (P1), diperhitungkan akan terjadi pada pukul 17:51 WIB. Lalu tahap kedua adalah awal gerhana kasat mata yang berupa kontak awal umbra (U1), diperhitungkan akan terjadi pukul 18:48 WIB. Lantas tahap ketiga, yang adalah awal totalitas gerhana yang berupa kontak awal total (U2), diperhitungkan akan terjadi pukul 19:52 WIB.

Sebagai puncaknya adalah puncak gerhana, diperhitungkan akan terjadi pada pukul 20:30 WIB. Usai puncak gerhana berlangsung, maka Bulan berangsur-angsur ‘membuka’ diri dengan berakhirnya totalitas gerhana melalui tahap kelima berupa kontak akhir total (U3), yang diperhitungkan akan terjadi pada pukul 21:08 WIB. Berikutnya disusul dengan tahap keenam berupa akhir gerhana kasat mata, dalam bentuk kontak akhir umbra (U4) pada pukul 22:11 WIB. Dan yang terakhir adalah tahap ketujuh, berupa akhir gerhana yang berupa kontak akhir penumbra (P4), diperhitungkan akan terjadi pada pukul 23:08 WIB.

Bulan Biru Toska

Satu aspek istimewa Gerhana Bulan adalah bahwa tahap-tahap gerhananya secara umum terjadi pada waktu yang sama pada titik-titik manapun yang tercakup dalam wilayah gerhana. Jika ada perbedaan antara satu titik dengan titik lainnya hanyalah dalam orde detik. Dengan demikian durasi gerhana Bulan di setiap titik pun dapat dikatakan adalah sama. Dengan tahap-tahap tersebut maka kita tahu bahwa Gerhana Bulan Total 31 Januari 2018 memiliki durasi gerhana 5 jam 17 menit. Dari durasi sepanjang itu, durasi kasat mata terjadi selama 3 jam 23 menit. Dan dari durasi kasat mata tersebut, durasi totalitas gerhana adalah selama 1 jam 16 menit. Durasi totalitas ini tergolong yang cukup panjang untuk abad ke-21 TU ini.

Sedikit berbeda dengan Gerhana Matahari, Gerhana Bulan memiliki wilayah gerhana cukup luas meliputi lebih dari separuh bola Bumi yang sedang berada dalam situasi malam hari. Wilayah Gerhana Bulan Total 31 Januari 2018 melingkupi seluruh benua Asia, Australia, sebagian Amerika, sebagian kecil Afrika dan sebagian besar Eropa. Wilayah gerhana terbagi menjadi tiga, yakni wilayah yang mengalami gerhana secara utuh, wilayah yang mengalami gerhana secara tak utuh (saat Bulan mulai terbenam maupun mulai terbit) dan yang terakhir wilayah yang tak mengalami gerhana sama sekali.

Gambar 5. Peta wilayah Gerhana Bulan Total 31 Januari 2018 dalam lingkup global. Perhatikan bahwa segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara utuh. Sehingga seluruh tahap gerhana bisa disaksikan, sepanjang langit cerah. Sumber: Sudibyo, 2018 dengan basis NASA, 2018.

Segenap tanah Indonesia juga tercakup ke dalam wilayah gerhana ini. Kabar baiknya, segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara utuh, kecuali sebagian pulau Jawa dan segeap pulau Sumatra. Di kedua tempat tersebut, gerhana (tepatnya kontak awal penumbra) telah dimulai selagi Bulan belum terbit setempat (karena Matahari belum terbenam).

Satu hal yang menjadi pembeda antara peristiwa Gerhana Bulan Total dengan Gerhana Bulan yang lainnya adalah (potensi) munculnya Bulan berwarna kebiruan. Bukan, ini bukan blue moon sebagaimana yang acap disematkan sejumlah kalangan menjelang Gerhana Bulan Total ini. Blue moon hanyalah anggapan untuk Bulan purnama kedua yang terjadi dalam satu bulan Tarikh Umum yang sama. Sementara gejala fisisnya tak ada sama sekali. Bagi Januari 2018 TU ini blue moon terjadi karena purnama pertama telah berlangsung pada 2 Januari 2018 TU pukul 09:00 WIB silam.

Namun Bulan kebiruan ini adalah fenomena fisis. Ia berpotensi terjadi beberapa saat menjelang awal totalitas, ataupun sebaliknya dalam beberapa saat setelah akhir totalitas gerhana. Warna kebiruan pada Bulan di saat itu merupakan hasil pembiasan cahaya Matahari pada lapisan Ozon, sehingga menghasilkan warna biru toska tipis yang khas.

Shalat Gerhana

Gerhana Bulan Total ini bertepatan dengan tanggal 14 Jumadal Ula 1439 H dan merupakan gerhana Bulan yang kasat mata. Sehingga dapat kita amati tanpa bantuan alat optik apapun, sepanjang langit cerah. Namun penggunaan alat bantu optik seperti kamera dan teleskop akan menyajikan hasil yang lebih baik. Sepanjang dilakukan dengan pengaturan (setting) yang tepat sesuai dengan tahap-tahap gerhana. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :

Bagi Umat Islam terdapat anjuran untuk menyelenggarakan shalat gerhana baik di kala terjadi peristiwa Gerhana Matahari maupun Gerhana Bulan. Hal tersebut juga berlaku dalam kejadian Gerhana Bulan Total ini. Musababnya Gerhana Bulan ini dapat diindra dengan mata manusia secara langsung. Sementara dasar penyelenggaraan shalat gerhana adalah saat peristiwa tersebut dapat disaksikan (kasat mata), seperti dinyatakan dalam hadits Bukhari, Muslim dan Malik yang bersumber dari Aisyah RA. Pendapat ini pula yang dipegang oleh dua ormas Islam terbesar di Indonesia, yakni Nahdlatul ‘Ulama dan Muhammadiyah.

Mengingat durasi gerhana yang kasatmata adalah dari tahap U1 hingga tahap U4, yakni dari pukul 18:48 WIB hingga pukul 22:11 WIB, maka shalat Gerhana Bulan seyogyanya juga diselenggarakan pada rentang waktu tersebut. Dari sudut pandang fikih, pelaksanaan shalat Gerhana Bulan hanya bisa diselenggarakan jika gerhana benar-benar bisa disaksikan secara kasat mata dari lokasi pelaksanaan shalat. Atau, apabila gerhana tak bisa disaksikan, maka terdapat kabar / informasi yang sahih dan berterima bahwa gerhana memang benar-benar disaksikan di tempat lain oleh saksi mata yang tepercaya.

Berikut adalah infografis tatacara pelaksanaan shalat gerhana

Dalam peristiwa Gerhana Matahari dan Gerhana Bulan dianjurkan untuk mengerjakan shalat gerhana, karena baik Matahari maupun Bulan merupakan dua benda langit yang menjadi bagian dari tanda-tanda kekuasaan Alloh SWT. Dan peristiwa gerhana merupakan peristiwa langit yang menakjubkan (sekaligus menerbitkan rasa takut) bagi sebagian kalangan. Namun peristiwa ini adalah bagian dari tanda-tanda kekuasaan-Nya dan tidak terkait dengan kematian seseorang. Di sisi lain, shalat gerhana mendorong umat Islam untuk lebih dekat dengan-Nya. Terlebih mengingat peristiwa Gerhana pada khususnya (baik Gerhana Bulan maupun gerhana Matahari) serta fase Bulan baru dan Bulan purnama pada umumnya ternyata mampu memicu salah satu gaya endogen dalam sistem kerja Bumi kita, yakni gempa bumi tektonik.

Mengenal Erupsi Gunung Berapi: Freatik, Freatomagmatik dan Magmatik

Gunung Agung akhirnya membuktikan bahwa dirinya tak ingkar dari janjinya sebagai gunung berapi aktif. Setelah lebih dari dua bulan mencekam lewat drama krisis seismik yang ditandai lonjakan kegempaan vulkanik dan tektonik, pada Selasa 21 November 2017 TU (Tarikh Umum) Agung akhirnya meletus.

Gambar 1. Letusan awal Gunung Agung pada Minggu 21 November 2017 TU sore. Tekanan gas vulkanik di letusan ini tergolong sedang, sehingga debu hanya menyembur setinggi 700 meter di atas puncak. Semula dikira erupsi freatik, namun analisis sampel debu produk letusan ini menunjukkan saat itu Gunung Agung sudah memasuki tahap erupsi freatomagmatik. Sumber: PVMBG, 2017.

Letusan awal Agung tergolong sedang. Ia menyemburkan debu vulkanik hingga setinggi maksimal 700 meter di atas puncak, atau 4.100 meter dpl (dari paras air laut rata-rata). Letusan berlangsung singkat dan Gunung Agung kembali tenang hingga 4 hari kemudian. Namun kejadian letusan itu sendiri dipandang mengagetkan bagi sebagian kalangan. Mengingat sejak krisis seismik Gunung Agung dimulai pada 13 September 2017 TU, kegempaan harian Agung justru menunjukkan kecenderungan mulai menurun pada 37 hari kemudian.

Dengan patokan 20 Oktober 2017 TU, bila dicermati sebelum tanggal tersebut jumlah gempa vulkanik-tektonik Gunung Agung melampaui 600 kejadian per hari dan bahkan pada puncaknya sempat menyentuh lebih dari 1.000 kejadian per hari. Namun selepas tanggal itu jumlahnya anjlok secara drastis menjadi di bawah 400 kejadian per hari. Bahkan sehari sebelum letusan, jumlah gempa Gunung Agung sudah anjlok drastis di bawah angka 100 kejadian per hari. Tak heran banyak yang beranggapan Gunung Agung telah melempem, kehabisan tenaga sebelum saatnya meletus.

Gambar 2. Panorama kawah Gunung Agung dalam beberapa hari pasca letusan awal, diabadikan dengan PUNA/pesawat udara nir-awak (drone). Nampak lubang letusan awal (yang merupakan erupsi freatomagmatik) menganga di tengah dasar kawah. Sementara gas belerang nampak mengepul pada zona retakan di sisi timur laut. Sumber: PVMBG, 2017.

Setelah tenang kembali selama 4 hari, Gunung Agung kembali beraksi pada Sabtu 25 November 2017 TU. Kali ini letusannya lebih besar dan durasinya lebih lama karena berlangsung hingga berhari-hari kemudian. Awalnya kolom debu letusan disemburkan setinggi 4.600 meter dpl (lebih dari 15.000 kaki). Namun terus berlangsungnya pasokan magma segar membuat debu vulkanik membumbung kian tinggi hingga akhirnya mencapai ketinggian lebih dari 6.000 meter dpl (hampir 18.000 kaki).

Dengan ketinggian hingga 18.000 kaki itu, maka tebaran debu vulkanik Agung sudah memasuki area lalulintas penerbangan pesawat-pesawat komersial. Larangan terbang di ruang udara sekitar Gunung Agung pun ditegakkan untuk keselamatan penerbangan. Meski konsekuensinya dua bandara, masing-masing Denpasar (Bali) dan Mataram (Nusa Tenggara Barat), terpaksa ditutup untuk sementara. Akibatnya ratusan penerbangan dari dan ke pulau Bali dan pulau Lombok pun terpaksa dibatalkan. Beruntung penutupan ini tidak berlangsung lama. Di sisi lain, lonjakan ini membuak status Gunung Agung kembali dinaikkan ke Awas (Level IV) mulai 27 November 2017 TU.

Kubah Lava

Gambar 3. Letusan Gunung Agung pada 29 November 2017 TU dinihari. Warna kemerahan pada satu sisi di bagian bawah kolom letusan merupakan cahaya yang dipancarkan dari magma segar yang telah keluar dan mulai mengisi dasar kawah. Inilah pertanda tak langsung letusan Gunung Agung sudah memasuki fase erupsi magmatik yang efusif. Sumber: PVMBG, 2017.

Semenjak itu Gunung Agung terus berkibar dengan aktivitasnya. Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMB) mencatat hingga akhir tahun 2017 TU, Gunung Agung telah mengalami 21 kejadian letusan dan 843 kejadian hembusan. Bila dirata-ratakan maka terjadi satu letusan setiap 2 hari dan setiap harinya terjadi 21 hembusan. Kejadian letusan adalah semburan dengan kolom berwarna abu-abu/gelap sebagai pertanda dominasi debu vulkanik. Sementara hembusan adalah semburan yang mirip namun lebih cerah atau putih, indikasi dominannya uap air.

Selain kejadian letusan dan hembusan, sejak letusan beruntun 25 November 2017 juga terdeteksi terjadinya muntahan magma segar. Awalnya berdasarkan indikasi tak langsung, dimana dasar kolom letusan nampak merah membara laksana tersinari sesuatu di malam hari. Indikasi langsungnya baru diketahui berhari-hari kemudian lewat pencitraan satelit sumberdaya Bumi (baik dalam spektrum cahaya tampak maupun radar), terutama manakala tutupan awan di atas Gunung Agung relatif jarang.

Gambar 4. Panorama kubah lava di dasar kawah Gunung Agung, diabadikan dengan PUNA PVMBG dan satelit penginderaan jauh PlanetLab masing-masing pada pertengahan dan awal Desember 2017 TU. Orientasi arah mataangin keduanya adalah sama. Nampak jelas kubah lava yang unik dengan tepian bergelombang dan lubang letusan di bagian tengah. Sumber: PVMBG, 2017 & Planet, 2017.

Magma keluar sebagai lava segar yang terakumulasi di dasar kawah sebagai kubah lava nan unik. Bentuknya melebar datar mirip telur dadar atau martabak. Terdapat pola bergelombang di tepinya, yang mengesankan terbentuk saat lava masih cukup encer dan mendadak terjadi letusan cukup kuat hingga membentuk gelombang di permukaan sebelum kemudian mulai mendingin dan membeku. Bentuknya yang melebar datar menunjukkan lava letusan Agung kali ini relatif encer, setidaknya dibanding lava letusan 1963-1964.

Secara akumulatif terdapat 20 hingga 30 juta meter3 lava di dasar kawah Agung. Volume kawah Agung sendiri adalah 60 juta meter3, sehingga jumlah lava yang keluar dalam letusan ini baru mengisi sepertiga hingga setengah kawah saja. Belum tumpah. Ini membuat fenomena khas letusan gunung berapi bagi lereng gunung seperti aliran lava pijar maupun awan panas guguran tidak terjadi.

Ada perdebatan apakah akumulasi lava Agung merupakan kubah lava atau fenomena lain, misalnya danau lava. Mengutip VolcanoDiscovery.com, sulit menyebutnya sebagai danau lava. Sebab danau lava memerlukan lava yang lebih encer lagi dan mampu mempertahankan diri untuk tetap cair (dalam waktu tertentu) sehingga proses konveksi dapat terjadi. Hal tersebut tak dijumpai pada tumpukan lava Agung saat ini. Maka fenomena dalam kawah Agung lebih merupakan kubah lava. Lavanya relatif lebih encer dibanding lava penyusun kubah-kubah lava lainnya di gunung-gemunung berapi Indonesia. Sehingga bentuknya mendatar. Kubah lava yang mirip dijumpai pula di Gunung Popocatepetl (Meksiko) saat letusan 2015-2016 lalu.

Gambar 5. Panorama kubah lava Agung dan Popocatepetl. Dua kubah lava yang berbeda ini memiliki sejumlah kemiripan, yakni bentuknya relatif datar dan memiliki pola bergelombang di tepinya. Sumber: PVMBG, 2017 & CENAPRED, 2016.

Freatik, Freatomagmatik dan Magmatik

Banyak yang menganggap (termasuk saya) letusan Gunung Agung kali ini dimulai dengan peristiwa erupsi freatik. Tepatnya pada letusan awal 21 November 2017. Namun PVMBG, melalui analisis sampel debu letusan, mementahkan anggapan itu dan menyatakan letusan awal Agung bukan lagi erupsi freatik namun sudah merupakan erupsi freatomagmatik.

Apa sih erupsi freatik dan freatomagmatik itu?

Dalam hal pergerakan magma dari sebelum hingga sesudah keluar dari lubang letusan, dikenal adanya tiga jenis erupsi. Masing-masing erupsi freatik, erupsi freatomagmatik dan erupsi magmatik. Seperti diketahui manakala sebuah gunung berapi hendak meletus maka dapur magmanya mulai mengalirkan magma segar yang telah bertekanan cukup tinggi (oleh sebab apapun) ke atas. Pergerakan ini menciptakan retakan-retakan pada bebatuan yang menyumbat saluran, batuan yang sejatinya merupakan bekuan dari magma tua (magma sisa letusan sebelumnya). Pembentukan retakan ini menghasilkan getaran yang terdeteksi sebagai gempa-gempa vulkanik.

Gambar 6. Skema sederhana erupsi freatik, freatomagmatik dan magmatik. A = Situasi menjelang erupsi freatik, dimana air bawah tanah sekitar puncak (2) terpanaskan intensif oleh magma segar yang masih jauh di kedalaman (5) sehingga membentuk uap air yang terakumulasi (4) di bawah penutup dasar kawah (3). B = saat erupsi freatik terjadi. Erupsi ini menciptakan jalan bebas hambatan bagi magma segar untuk lebih cepat naik, sehingga erupsi freatomagmatik juga berkemungkinan terjadi. C = saat erupsi magmatik terjadi, magma segar sudah keluar dari lubang letusan dan mengalir sebagai lava pijar maupun awan panas di lereng. Sumber: Sudibyo, 2014.

Saat magma segar kian dekat ke paras tanah dan siap memasuki tubuh gunung, mulailah ia berinteraksi dengan air bawah tanah. Gas-gas vulkanik panas yang dilepaskan magma segar di kedalaman bersentuhan dengan air bawah tanah sehingga penguapan terjadi, meskipun magma segar itu sendiri belum menyentuh air. Intensitas penguapan kian meningkat seiring kian naiknya magma segar. Sebagian uap bisa meloloskan diri ke udara melalui retakan-retakan yang sudah ada menuju kawah. Akan tetapi sebagian lagi tetap tersekap, berkumpul kian banyak hingga tekanannya kian meningkat. Erupsi freatik terjadi manakala akumulasi uap air ini memiliki tekanan yang cukup tinggi sehingga mampu membobol bebatuan pembekuan magma tua yang menyumbat kawah. Terciptalah jalur bebas hambatan ke udara.

Karena itu material vulkanik yang disemburkan oleh erupsi freatik lebih didominasi uap air bercampur gas-gas vulkanik lainnya. Sementara debu, pasir hingga kerikil produk pembobolan magma tua merupakan komponen sekunder. Produk letusannya pun relatif dingin. Saat baru keluar dari lubang letusan, material vulkaniknya memiliki suhu kurang dari 200º C dan saat tiba di kaki gunung sudah setara suhu lingkungan. Erupsi freatik sama sekali tidak memuntahkan magma segar. Intensitas erupsinya juga umumnya kecil. Namun ia menghasilkan jalan bebas hambatan yang membuat jenis-jenis erupsi berikutnya menjadi lebih mudah terjadi.

Gambar 7. Suasana panik sesaat setelah erupsi freatik di Kawah Sileri, kompleks vulkanik Dieng, Banjarnegara (Jawa Tengah) pada 2 Juli 2017 TU silam. Uap air nampak mengepul dari kawah, salah satu ciri khas erupsi freatik. Sumber: BNPB/Sutopo Purwo Nugroho, 2017.

Pada letusan Agung kali ini tidak terdeteksi terjadinya erupsi freatik. Erupsi freatik kadangkala menjadi babak pembuka sebuah episode letusan gunung berapi. Misalnya seperti pada Letusan Sinabung 2010. Namun juga dapat berdiri sendiri, yakni langsung berhenti tanpa diikuti jenis letusan yang lain. Misalnya seperti peristiwa Letusan Kawah Sileri 2017.

Jenis erupsi berikutnya adalah erupsi freatomagmatik. Umumnya erupsi ini terjadi setelah erupsi freatik berlalu. Erupsi freatomagmatik terjadi manakala magma segar, yang kian naik saja ke dalam tubuh gunung namun belum mencapai lubang letusan, mulai bersentuhan langsung dengan air bawah tanah. Persentuhan dengan air yang lebih dingin membuat permukaan magma segar sontak mendingin cepat, membentuk butiran-butiran pasir hingga kerikil dengan komposisi khas. Sebaliknya air bawah tanah langsung menguap secara brutal.

Gambar 8. Foto langka yang menunjukkan tahap awal Letusan Krakatau 1883, yakni saat puncak Perbuwatan menyemburkan debu vulkaniknya pada Mei 1883 TU. Letusan ini merupakan erupsi freatomagmatik. Sumber : Simkin & Fiske, 1983.

Produksi uap air yang berlebihan berujung pada letusan. Selain menyemburkan uap air dan gas-gas vulkanik lainnya, erupsi freatomagmatik pun menyemburkan debu, pasir hingga kerikil. Namun kali ini mayoritas berasal dari magma segar yang membeku cepat. Intensitas erupsinya akan lebih besar dari erupsi freatik dan material vulkanik yang dimuntahkannya pun lebih panas. Letusan Agung 21 November 2017 adalah erupsi jenis ini. Demikian halnya erupsi-erupsi awal dari episode Letusan Krakatau 1883.

Gambar 9. Menit-menit awal Letusan Sangeang Api 2014 seperti diabadikan fotografer Sofyan Efendi. Letusan pada 30 Mei 2014 TU ini merupakan contoh erupsi magmatik yang eksplosif. Saat itu Gunung Sangeang Api menyemburkan debu vulkaniknya hingga setinggi sekitar 20.000 meter dpl. Sumber: Effendi, 2014 dalam Mail Online, 2014.

Dan jenis erupsi yang terakhir adalah erupsi magmatik. Erupsi ini adalah pemuncak dari episode letusan gunung berapi, dengan magma segar sudah keluar dari lubang letusan. Erupsi magmatik secara umum terbagi menjadi dua: eksplosif (ledakan) dan efusif (leleran). Erupsi magmatik eksplosif umumnya melibatkan magma segar yang bersifat asam karena banyak mengandung silikat (SiO2). Sehingga ia lebih kental dan lebih banyak menyekap gas-gas vulkanik. Saat hendak keluar atau tepat keluar dari lubang letusan, gas-gas vulkanik ini terbebaskan sehingga menciptakan kolom letusan cukup besar dan menyembur tinggi. Manakala kekuatan semburan gas tak lagi mampu mempertahankan material vulkanik ini di udara maka ia akan berjatuhan kembali ke Bumi. Mayoritas diantaranya (yakni fraksi yang lebih berat) jatuh kembali ke tubuh gunung dan mengalir menuruni lereng sebagai Awan Panas Letusan (APL). Hal ini misalnya bisa disaksikan dalam kejadian Letusan Merapi 2010, Letusan Kelud 2014 dan Letusan Sangeang Api 2014.

Gambar 10. Letusan Sinabung pada 9 Februari 2015 TU, diabadikan fotografer Hendi Syarifuddin. Letusan ini merupakan contoh erupsi magmatik yang efusif, dimana terbentuk awan panas guguran yang mengalir ke lereng. Sumber: Syarifuddin, 2015 dalam geomagz, Maret 2015.

Sebaliknya erupsi magmatik yang efusif terjadi karena magma segar yang lebih bersifat basa (basaltik). Maka ia lebih encer dan kurang mengandung gas. Kurangnya gas vulkanik membuat magma segar cenderung menumpuk disekeliling lubang letusan saat keluar. Membentuk kubah lava. Pasokan magma segar yang berkesinambungan membuat kubah lava kian membesar dan kian takstabil, sehingga bisa longsor sebagian. Longsoran ini menghasilkan Awan Panas Guguran (APG) dan leleran lava pijar. Keduanya bergerak menuruni lereng hingga jarak tertentu. Hal ini misalnya bisa disaksikan pada Letusan Sinabung 2013 yang masih berlangsung hingga kini.

Referensi :

Martanto. 2017. Letusan Gunung Agung 21 November 2017 pukul 17:05 WITA. Pusat Vulkanologi dan Mitigasi Bencana Geologi, diakses 22 November 2017 TU.

Kasbani. 2017. Perkembangan Terkini Aktivitas Gunung Agung (1 Desember 2017 21:00 WITA). Pusat Vulkanologi dan Mitigasi Bencana Geologi, diakses 3 Desember 2017 TU.

VolcanoDiscovery. 2017. Gunung Agung volcano (Bali, Indonesia): Flat Lava Dome Occupying Summit Crater. Publikasi 13 Desember 2017 TU, diakses 30 Desember 2017 TU.

VolcanoDiscovery. 2017. Popocatépetl volcano (Mexico): Growing Lava Dome has Filled Inner Crater. Publikasi 29 Januari 2016 TU, diakses 30 Desember 2017 TU.

Gempa Tasikmalaya 15 Desember 2017 dan Narasi Gempa Intralempeng Merentang Masa

Gempa (nyaris) besar itu meletup tatkala hari Jumat 15 Desember 2017 TU (Tarikh Umum) hampir menutup. Getaran utamanya terjadi pada pukul 23:48 WIB pada suatu titik di pesisir Cipatujah, Kabupaten Tasikmalaya (Jawa Barat). Rilis awal BMKG (Badan Meteorologi Klimatologi dan Geofisika) menempatkan magnitudonya 7,3 yang kemudian diperbaiki lewat rilis pembaharuan menjadi magnitudo 6,9. Pembaharuan magnitudo sebuah gempa adalah hal wajar, biasa dilakukan oleh institusi-institusi geofisika dimanapun. Gempa dengan magnitudo 7 atau lebih tergolong gempa besar, sehingga Gempa Tasikmalaya 15 Desember 2017 (begitu mudahnya kita namakan) tergolong gempa (nyaris) besar. Dibandingkan Gempa Yogyakarta 27 Mei 2006 (magnitudo 6,4) maka gempa ini 6 kali lebih energetik.

Gambar 1. Peta intensitas getaran akibat Gempa Tasikmalaya 15 Desember 2017. Angka II, III dan seterusnya menunjukkan intensitas getaran (masing-masing 2 MMI, 3 MMI dan seterusnya). Tanda bintang menunjukkan episentrum gempa sekaligus lokasi intensitas maksimum (6 MMI). Sumber: USGS/PAGER, 2017.

Sumber gempa terletak pada kedalaman sekitar 100 kilometer. Sehingga wajar ia menggetarkan lebih dari separuh pulau Jawa, mengejutkan penduduk setempat yang sebagian besar sudah terlelap. Dalam catatan sistem otomatis PAGER (Prompt Assessment of Global Earthquakes for Response) dari USGS (BMKG-nya Amerika Serikat), getaran gempa ini membangunkan setidaknya 63 juta jiwa dari tidur lelapnya dengan getaran keras mulai dari intensitas 4 MMI (Modified Mercalli Intensity). Getaran 4 MMI adalah getaran yang setara dengan getaran yang kita rasakan saat berada di pinggir jalan dan sebuah truk tronton yang melintas mendadak menubruk bangunan di seberang. Jumlah 63 juta jiwa itu setara dengan lebih dari seperempat penduduk Indonesia. Di antara jumlah itu sekitar 580 ribu diantaranya merasakan getaran terkeras, yakni 6 MMI, yang bisa berdampak pada kerusakan ringan dan jatuhnya benda-benda yang digantung.

Nir-tsunami

Meski secara umum getaran maksimum akibat gempa ini adalah 6 MMI, namun rupanya gempa ini tetap berdampak jatuhnya korban dan kerusakan. Rilis BNPB (Badan Nasional Penanggulangan Bencana) menyebutkan hingga dua hari pasca gempa tercatat 1.905 rumah rusak ringan dan 579 rumah rusak sedang. Terdapat pula 451 rumah yang rusak berat, meliputi ambruk sebagian maupun keseluruhan. Selain kerusakan bangunan juga terdapat korban manusia, meliputi 4 orang tewas, 11 orang luka berat dan 25 orang luka ringan. Salah satu korban tewas bahkan tinggal di kota Pekalongan yang berjarak 150 kilometer lebih dari episentrum. Kerusakan-kerusakan ini bisa berarti dua hal: terjadi penguatan getaran (amplifikasi) akibat kondisi tanah lokal, atau bangunan-bangunan tersebut memang bermutu buruk sehingga getaran sedikit saja sudah merusaknya.

Gambar 2. Prakiraan sumber Gempa Tasikmalaya 15 Desember 2017 berdasarkan analisis back-projection pada frekuensi antara 0,05 Hertz hingga 0,25 Hertz dari stasiun-stasiun seismometer di seluruh penjuru dalam jaringan IRIS. Nampak sumber gempa cenderung mngarah ke timurlaut. Sumber: IRIS, 2017.

Karena dalam rilis awalnya magnitudo gempa ini adalah 7,3 maka sistem peringatan dini tsunami BMKG di bawah payung InaTEWS (Indonesia Tsunami Early Warning System) pun teraktifkan. Melalui pemodelan matematis semi-otomatis yang berbasis masukan parameter gempa (magnitudo, koordinat episentrum, kedalaman sumber, jenis pematahan sumber gempa), maka sistem InaTEWS menerbitkan peringatan dini bagi sebagian pesisir selatan pulau Jawa, mulai dari Kab. Sukabumi di ujung barat hingga Kab. Bantul di ujung timur.

Dari garis pantai sepanjang itu sebagian besar diantaranya berstatus Waspada (zona kuning) karena memiliki perkiraan tinggi tsunami maksimal 0,5 meter. Status waspada ini meliputi pesisir Kab . Kulonprogo, Kab. Purworejo, Kab. Kebumen, Kab. Cilacap, Kota. Cilacap dan Kab. Garut. Sementara sebagian kecil diantaranya berstatus Siaga (zona jingga) dengan perkiraan tinggi tsunami antara 0,5 hingga 3 meter. Status siaga ini meliputi pesisir Kab. Ciamis dan Kab. Tasikmalaya.

Gambar 3. Atas: rekaman paras air laut pada stasiun pasang surut di pulau Christmas (Australia) pada hari terjadinya Gempa Tasikmalaya 15 Desember 2017 (magnitudo 6,9). Bawah: rekaman serupa di stasiun pasang surut pada pelabuhan Padang (Sumatra Barat) pada hari terjadi Gempa Padang 30 September 2009 (magnitudo 7,6). Garis hitam vertikal menunjukkan waktu kejadian gempa bumi di lokasi masing-masing. Perhatikan dinamika paras air laut di Cilacap tidak mengandung usikan khas tsunami (kecil) sebagaimana di Padang. Sumber: IOC, 2017.

Saat sistem InaTEWS menyatakan status Waspada untuk suatu daerah, penduduk yang tinggal di kawasan pesisir daerah itu sesungguhnya tak perlu mengungsi. Cukup menjauhi garis pantai dan tepi sungai. Evakuasi baru dilaksanakan bilamana sistem InaTEWS menyatakan status Siaga, terutama untuk penduduk yang bertempat tinggal di dalam zona merah dalam peta bahaya tsunami sebuah kabupaten/kota. Akan tetapi dalam kejadian Gempa Tasikmalaya 25 Desember 2017, penduduk yang ada di pesisir berstatus Waspada pun mengungsi. Misalnya seperti di Cilacap. Hal ini terjadi karena dua hal. Pertama, sosialiasi kewaspadaan tsunami mungkin belum intensif terutama ke para pengambil keputusan. Sehingga informasi tentang tingkatan-tingkatan status InaTEWS dan implikasi setiap tingkat status bagi proses evakuasi penduduk setempat belum diterima dengan baik. Dan yang kedua, perasaan traumatik mungkin lebih mengemuka dalam benak publik setempat, mengingat kosakata tsunami senantiasa terhubung dengan kejadian bencana Gempa akbar Sumatra Andaman 26 Desember 2004 (magnitudo 9,3) yang melumat Aceh serta bencana Gempa Pangandaran 17 Juli 2006.

Hingga dua jam pascagempa tidak terdeteksi usikan khas tsunami pada paras air laut di stasiun-stasiun pasang surut pesisir selatan pulau Jawa. Sehingga disimpulkan Gempa Tasikmalaya 15 Desember 2017 tidak memproduksi tsunami. Karena itu peringatan dini tsunami pun dicabut sesuai prosedur. Ketiadaan tsunami dalam gempa ini tidak mengejutkan mengingat sumbernya yang cukup dalam. Meski demikian peringatan dini tsunami tetap dibutuhkan dalam kejadian seperti ini, karena berdasarkan pengalaman, tsunami di pesisir selatan pulau Jawa tak hanya murni bersumber dari kejadian gempanya sendiri (dalam bentuk deformasi dasar laut setempat). Namun juga bisa disebabkan oleh dampak ikutan dalam bentuk longsoran besar dasar laut sekitar sumber gempa (yang amat sulit diprediksi).

Gambar 4. Bagaimana tsunami menerjang kolam PLTU Bunton (Cilacap) seperti terekam kamera sirkuit tertutup (CCTV) menyusul peristiwa Gempa Pangandaran 17 Juli 2006 (magnitudo 7,7). Gempa ini bertipe gempa-senyap sehingga memproduksi tsunami yang kelewat besar dibanding seharusnya. Sistem peringatan dini tsunami salah satunya untuk mengantisipasi kejadian semacam ini. Sumber: PLTU Bunton, 2006 dalam Lavigne dkk, 2007.

Ilmu kegempaan mengenal apa yang disebut gempa-senyap (slow earthquake atau tsunami earthquake), yakni gempa dengan getaran yang tak terasa ringan namun kemudian disusul terjangan tsunami cukup merusak. Atau dalam istilah formalnya gempa yang memproduksi tsunami dengan magnitudo tsunami jauh lebih besar ketimbang magnitudo gempanya sendiri. Dan pesisir selatan pulau Jawa telah mengalami kejadian gempa-senyap semacam ini hingga dua kali. Masing-masing dalam kejadian Gempa Banyuwangi 3 Juni 1994 dan gempa Pangandaran 17 Juli 2006. Sementara pada saat ini belum ada satu institusi geofisika pun yang bisa memodelkan sifat-sifat tsunami yang diproduksi sebuah kejadian gempa-senyap. Sehingga membangkitkan kewaspadaan terhadap tsunami (melalui kabar peringatan dini tsunami) dalam kejadian gempa besar yang episentrumnya di dasar laut adalah dipandang lebih baik.

Intralempeng

Gempa Tasikmalaya 15 Desember 2017 bersumber dari pematahan anjak miring (oblique thrust) pada kedalaman sekitar 100 kilometer. Sumber gempanya, berdasarkan analisis back-projection oleh IRIS (Incorporated Research Institutions for Seismology) adalah segmen batuan sepanjang sekitar 50 kilometer dengan lebar sekitar 25 kilometer yang melenting sejauh (rata-rata) 0,8 meter. Tebal kerak bumi yang menjadi landasan pulau Jawa adalah 30 kilometer. Sehingga hampir pasti sumber gempa tersebut bukanlah di zona subduksi. Melainkan hanya dari bagian lempeng Australia saja yang telah menelusup di bawah pulau Jawa. Gempa yang semacam ini disebut gempa intralempeng (intraslab earthquake).

Gambar 5. Penampang pulau Jawa yang disederhanakan dengan lempeng Australia mendesak dari selatan (panah kuning). Nampak posisi suatu sumber gempa intralempeng (tanda bintang) dalam lempeng Australia yang melekuk ke lapisan mantel. Gelombang gempa intralempeng ini merambat lewat medium padat (panah merah) dan medium plastis (panah putih). Sumber: Sudibyo, 2016.

Kita telah mengenal gempa yang bersumber dari zona subduksi yang kadang disebut pula gempa antarlempeng, meski kosakata ini tidak begitu populer. Pada zona subduksi, dua lempeng tektonik yang berinteraksi saling bersentuhan, menghasilkan bidang kontak yang pada dasarnya adalah sebuah zona sesar anjak nan panjang dan besar (megathrust). Di pulau Jawa, zona subduksi dibentuk oleh interaksi mikrolempeng Sunda (bagian dari lempeng Eurasia) dan lempeng Australia. Banyak gempa legendaris lahir dari zona ini, yang kerap memproduksi tsunami manakala magnitudonya cukup besar. Termasuk Gempa Banyuwangi 3 Juni 1994 (magnitudo 7,8) dan Gempa Pangandaran 17 Juli 2006 (magnitudo 7,7). Selain itu kita juga mengenal gempa di daratan, yang tidak bersumber dari zona subduksi dan mempunyai sumber sangat dangkal. Misalnya Gempa Yogyakarta 27 Mei 2006 di pulau Jawa, maupun Gempa Pidie Jaya 7 Desember 2016 (magnitudo 6,5) di pulau Sumatra.

Dalam kedua jenis gempa tersebut sejumlah ciri khasnya telah kita ketahui. Misalnya deformasi kerak buminya, yang di era modern diukur melalui radas GPS (Global Positioning Systems) berketelitian tinggi. Dengan demikian bagaimana pergerakan titik-titik paras bumi di zona subduksi maupun di sekitar suatu sesar aktif dapat diketahui. Termasuk apakah zona subduksi/sesar aktif tersebut sedang menumpuk energi yang siap dilepaskan dalam peristiwa gempa mendatang. Sejarah kegempaannya pada suatu rentang waktu tertentu (misalnya selama 1.000 tahun) juga dapat diketahui, misalnya berdasarkan jejak-jejak yang tertinggal dalam tanah sekitar sesar tersebut maupun pada pola pertumbuhan khas mikroatol di pantai/pulau-pulau kecl zona subduksi. Meski prediksi kejadian gempa bumi berketilian tinffi masih jauh dari harapan ilmu pengetahuan masa kini, namun berbekal informasi-informasi tersebut maka bagaimana potensi kejadian gempa bumi berikut dengan magnitudo maksimum tertentu pada suatu daerah bisa dideduksi.

Gambar 6. Diagram sederhana mekanisme pembentukan gempa pada zona subduksi, khususnya gempa besar/akbar. Bagian lempeng yang terdesak sebelum gempa dan lantas melenting begitu gempa terjadi bisa diukur melalui radas GPS maupun karang mikroatol, ‘kemewahan’ yang tak dimiliki gempa intralempeng. Sumber: Sudibyo, 2014.

‘Kemewahan seismik’ semacam itu tidak dimiliki gempa intralempeng. Misalnya, bagaimana mau mengetahui deformasi kerak jika sumber gempanya saja sedalam 100 kilometer? Juga bagaimana bisa mengetahui sejarah kegempaannya jika si intra ini tak meninggalkan jejak khas di paras Bumi? Celakanya, di sisi lain si intra juga kerap mendatangkan korban manusia dan kerugian materi yang cukup besar. Terutama tatkala ia merupakan gempa besar.

Dalam sejarah masakini, gempa intralempeng yang paling banyak merenggut korban di Indonesia adalah Gempa Padang 30 September 2009 (magnitudo 7,6). Bersumber dari kedalaman 76 kilometer, getaran kerasnya merenggut nyawa lebih dari 1.100 orang. Sementara hampir 3.000 orang dibuat luka-luka dengan ratusan ribu rumah dirusakkannya. Bagi pulau Jawa, nestapa serupa dalam skala dan angka yang lebih kecil terjadi saat meletup Gempa Tasikmalaya 2 September 2009 (magnitudo 7). Episentrumnya berdekatan dengan Gempa Tasikmalaya 15 Desember 2017, namun sumbernya lebih dangkal (yakni kedalaman 50 kilometer). Sehingga getaran kerasnya menewaskan 79 orang dengan ratusan orang lainnya luka-luka serta merusak belasan ribu rumah. Beruntung bahwa sejumlah gempa intralempeng lainnya di pulau Jawa, misalnya Gempa Laut Jawa 7 Agustus 2007 (magnitudo 7,5 kedalaman sumber 290 kilometer) dan Gempa Kebumen 25 Januari 2014 (magnitudo 6,2 kedalaman 79 kilometer) tidak berdampak berarti.

Gambar 7. Peta prakiraan intensitas getaran Gempa Jakarta 5 Januari 1699 (magnitudo 8) yang merupakan gempa intralempeng (sumber kedalaman 120 kilometer). Lingkaran-lingkaran menunjukkan intensitas getaran di satu tempat, yang diderivasikan dari dampak kerusakan. Nampak pesisir utara Banten, DKI Jakarta dan Jawa Barat menderita getaran terparah (intensitas 7 hingga 9 MMI). Jika gempa serupa terjadi di masakini, korban jiwa bisa mencapai 100.000 orang dengan 76 juta jiwa mengungsi. Sumber: Geoscience Australia, 2015.

Apa yang menggelisahkan dari kisah-kisah gempa intralempeng adalah kejadian seperti ini bukan hanya di masa kini saja. Di masa silam, ada sejumlah indikasi bahwa si intra telah berulang-ulang terjadi di pulau Jawa. Dan memproduksi dampak cukup merusak untuk ukuran zamannya. Misalnya saja Gempa Jakarta 5 Januari 1699. Analisis Geoscience Australia memperlihatkan gempa besar ini mungkin merupakan gempa intralempeng dengan magnitudo 8 yang bersumber dari kedalaman 120 kilometer. Sumber gempanya sendiri membentang mulai dari bawah Bogor hingga Anyer (sepanjang 140 kilometer). Gempa ini menghasilkan getaran sangat keras di sekujur pantai utara Banten, Jakarta dan Jawa Barat dengan prakiraan intensitas getaran 7 hingga 9 MMI. Padahal getaran berintensitas 8 MMI saja sudah cukup kuat untuk menyebabkan kehancuran menyeluruh bangunan-bangunan masakini di sebuah pusat pemukiman di Indonesia.

Demikian halnya Gempa Yogyakarta 10 Juni 1867. Analisis yang sama menunjukkan gempa besar ini mungkin merupakan gempa intralempeng dengan magnitudo 7,7 yang bersumber dari kedalaman 105 kilometer. Sumber gempanya membentang mulai dari bawah Cilacap hingga Kediri (sepanjang 350 kilometer). Gempa ini menghasilkan getaran sangat keras di sekujur pantai selatan Jawa Tengah, DIY dan sebagian Jawa Timur. Prakiraan intensitas getaran di sepanjang daerah itu antara 7 hingga 9 MMI. Korban jiwa yang jatuh di Yogyakarta saja mencapai 500 orang lebih.

Gambar 8. Peta prakiraan intensitas getaran Gempa Yogyakarta 10 Juni 1867 (magnitudo 7,7) yang merupakan gempa intralempeng (sumber kedalaman 105 kilometer). Lingkatan-lingkaran menunjukkan intensitas getaran di satu tempat, yang diderivasikan dari dampak kerusakan. Nampak pesisir selatan Jawa Tengah, DIY dan sebagian Jawa Timur menderita getaran terparah (intensitas 7 hingga 9 MMI). Jika gempa serupa terjadi di masakini, korban jiwa bisa mencapai 60.000 orang dengan 125 juta jiwa mengungsi. Sumber: Geoscience Australia, 2015.

Apa yang akan terjadi bilamana gempa serupa meletup pada masa kini di lokasi yang sama? Analisis lanjutan berbasis perangkat lunak InaSAFE yang dikembangkan BNPB memperlihatkan, jika Gempa Jakarta 5 Januari 1699 terjadi dengan parameter persis sama, potensi korban jiwa yang dapat direnggutnya mencapai 100.000 orang. Sementara tak kurang dari 76 juta jiwa lainnya berpotensi menjadi pengungsi akibat rusak hingga hancurnya rumah-rumah penduduk. Di sisi lain bila gempa serupa Gempa Yogyakarta 10 Juni 1867 yang terjadi, potensi korban jiwanya bisa mencapai 60.000 orang. Sedangkan potensi jumlah pengungsi akibat rusaknya rumah-rumah penduduk jauh lebih besar, yakni bisa mencapai 125 juta jiwa.

Jelas sudah, gempa intralempeng bisa mendatangkan kerusakan dan kerugian yang cukup besar. Dan bila gempa besar dari zona subduksi hanya akan berdampak pada sisi selatan pulau Jawa saja, baik dalam hal getaran maupun tsunaminya, getaran akibat gempa besar dari gempa intralempeng akan berdampak baik di sisi selatan maupun sisi utara pulau Jawa. Sehingga seluruh pulau ini menjadi sama rentannya.

Referensi :

BMKG. 2017. Magnitudo 6.9 SR, 11 km Baratdaya Kab. Tasikmalaya-Jabar 15-Dec-2017 Jam 23:47:58 WIB, diakses 16 Desember 2017 TU.

USGS. 2017. M 6.5 – 0km ESE of Cipatujah, Indonesia, PAGER, diakses 16 Desember 2017 TU.

IRIS. 2017. Back Projections for Mww 6.5 Java, Indonesia, diakses 17 Desember 2017 TU.

Nguyen et.al. 2015. Indonesia’s Historical Earthquakes, Modelled Examples for Improving the National Hazard Map. Record 2015/23. Geoscience Australia, Canberra.

Asteroid Phaethon yang Lewat Dekat dan Hujan Meteor Terderas

Harinya hari Minggu 17 Desember 2017 TU (Tarikh Umum), jamnya jam 06:00 WIB. Itulah kala sebongkah batu raksasa yang luar biasa berada pada titik terdekatnya dengan Bumi kita dalam perjalanannya mengembara angkasa sebagai anggota tata surya. Jaraknya ke Bumi kita saat itu adalah 10,3 juta kilometer. Atau nyaris 27 kali lebih jauh ketimbang posisi Bulan (rata-rata). Untuk ukuran kita manusia, jarak ini tergolong jauh. Namun dalam perspektif astronomi, mendekatnya bongkah batu raksasa ini tergolong ‘sangat dekat.’ Untungnya ia tak membawa potensi bahaya (baca : tumbukan kosmik dengan Bumi), setidaknya hingga 400 tahun ke depan.

Gambar 1. Wajah buram asteroid Phaethon saat melintas di dekat Bumi pada 10 Desember 2007 TU silam pada jarak 18 juta kilometer dalam citra radar dari teleskop radio Arecibo di Puerto Rico (AS). Gangguan instrumen dan pendeknya waktu pengamatan membuat resolusi citra cukup rendah dan penuh derau (noise). Garis putus-putus ditambahkan untuk menyajikan kesan bentuk asteroid. Sumber: Arecibo/Cornell, 2007 dalam Sky & Telescope, 2017.

Bongkah batu segedhe gunung itu bernama asteroid Phaethon, formalnya (3200) Phaethon. Angka 3200 adalah nomor urut asteroid tersebut berdasarkan tatanama IAU (International Astronomical Union). Diameternya 5,1 kilometer. Jika bentuknya dianggap berbentuk bola sempurna dan strukturnya batuan (dengan massa jenis antara 2 hingga 4 gram/cm3), maka massanya antara 139 hingga 278 milyar ton. Saat melintas pada titik terdekatnya, asteroid Phaethon melesat dengan kecepatan hampir 115.000 km/jam. Sehingga ia mengangkut energi potensial sebesar antara 19 juta hingga 38 juta megaton TNT. Itu setara dengan 1,3 milyar hingga 2,6 milyar butir bom nuklir Hiroshima yang diledakkan serentak. Beruntung asteroid ini tidak meluncur menuju Bumi dalam perjalanannya, karena pelepasan energi sebesar itu di Bumi akan berujung pada malapetaka kehidupan yang amat kolossal berskala global. Peristiwa semacam itu terakhir terjadi pada 65 juta tahun silam yang menyapu bersih kehidupan kawanan dinosaurus.

Aasteroid Phaethon kerap dijuluki asteroid aneh karena dua alasan. Pertama, karena bentuk orbitnya yang demikian lonjong membuatnya memintas empat orbit planet sekaligus. Dan yang kedua, karena hingga sejauh ini asteroid Phaethon adalah satu diantara hanya dua asteroid yang menjadi induk dari peristiwa hujan meteor utama. Dalam hal ini asteroid Phaethon adalah sumber dari peristiwa hujan meteor Geminids yang aktif setiap bulan Desember. Sementara asteroid satunya lagi, yakni asteroid (196256) 2003 EH, adalah sumber hujan meteor Quadrantids yang aktif setiap bulan Januari.

Asteroid Phaethon ditemukan pada 11 Oktober 1983 TU melalui observasi teleskop landas-antariksa IRAS (Infra Red Astronomical Satellite). Adalah duo astronom Simon F. Green dan John K. Davies yang pertama menyaksikannya kala menganalisis citra-citra bidikan IRAS untuk mencari benda-benda langit yang bergerak relatif cepat. Penemuan ini sekaligus menjadikan Phaethon sebagai asteroid pertama yang ditemukan lewat teleskop landas-antariksa. Asteroid-asteroid yang ditemukan sebelumnya melulu merupakan produk observasi landas-bumi.

Sedari awal disadari asteroid Phaethon adalah unik. Orbitnya sangat lonjong dengan kelonjongan orbit (eksentrisitas) sebesar 0,889. Perihelionnya saja hanya sejarak 0,14 SA (satuan astronomi) atau 21 juta kilometer dari Matahari. Ini jauh lebih dekat ke sang surya ketimbang orbit Merkurius (0,4 SA). Sementara aphelionnya menjulur demikian jauh hingga sejarak 2,4 SA (359 juta kilometer) dari Matahari, atau sudah berada di dalam kawasan Sabuk Asteroid Utama yang menjadi kawasan hunian asteroid pada umumnya.

Dengan orbit begitu lonjong, yang tidak umum untuk kalangan asteroid namun sebaliknya banyak dijumpai di kalangan komet, ada dugaan bahwa asteroid Phaethon semula adalah komet. Setelah kehabisan materi mudah menguap ia lantas bertransformasi menjadi asteroid. amun ada pula yang menduga bahwa asteroid ini adalah salah satu bongkahan hasil pemecah-belahan asteroid yang lebih besar, yakni asteroid Pallas purba. Bongkahan terbesar dari asteroid purba itu masih ada pada saat ini sebagai asteroid Pallas (diameter 544 kilometer).

Orbit yang sangat lonjong juga membuat asteroid ini pada dasarnya memintas orbit empat planet sekaligus. Masing-masing orbit Merkurius, Venus, Bumi dan Mars. Untungnya inklinasi orbit Phaethon juga cukup besar, yakni 22,5º terhadap ekliptika. Sementara orbit planet-planet Merkurius, Venus, Bumi dan Mars mengumpul di bidang ekliptika. Karenanya potensi untuk berbenturan dengan salah satu planet tersebut adalah cukup kecil.

Gambar 2. Asteroid Phaethon saat berada di sekitar perihelionnya pada 2009 TU silam, diamati oleh satelit STEREO. Meski resolusinya cukup rendah, dapat dilihat bahwa Phaethon nampak lonjong. Garis-garis memperlihatkan kontur kelonjongan tersebut. Analisis menunjukkan bagian lonjong ini adalah ‘ekor’ Phaethon, yang merentang sepanjang 250.000 kilometer dengan massa total debu didalamnya mencapai 300 ton. Sumber: NASA/STEREO, 2013 dalam Sky & Telescope, 2017.

Asteroid Phaethon membutuhkan waktu 524 hari (1,43 tahun) untuk menyusuri orbitnya sekali putaran. Saat ia berada di sekitar perihelionnya, penyinaran Matahari sangat intensif memanasi pemukaannya demikian hebat hingga suhu parasnya mencapai lebih dari 700º Celcius. Ini hampir menyamai titik leleh beberapa logam tertentu. Sebagai akibatnya paras Phaethon menjadi retak-retak, persis seperti tanah sawah yang mengering retak-retak di musim kemarau. Retakan-retakan ini membuat debu-debu halus yang ada di bawah parasnya tersembur keluar seiring tekanan angin Matahari.

Fenomena inilah yang teramati melalui satelit pengamat Matahari STEREO pada 2009 TU dan 2012 TU silam. Meski digolongkan sebagai asteroid, saat itu Phaethon (yang sedang berada di dekat perihelionnya) menampakkan panorama mirip-komet dengan ekornya yang khas. Analisis memperlihatkan panjang ‘ekor’ Phaethon saat itu adalah 250.000 kilometer dengan massa total ‘ekor’ sekitar 300.000 kilogram (jika tersusun dari butir-butir debu berdiameter 1 mikron). Debu-debu inilah yang kelak di kemudian hari, melalui evolusi orbital nan dinamis, memasuki Bumi sebagai meteor-meteor Geminids.

Geminids

Hujan meteor adalah masuknya meteoroid seukuran debu hingga butir pasir dalam jumlah tertentu ke atmosfer Bumi pada rentang waktu tertentu yang tetap dalam setiap tahunnya. Ukuran meteoroid cukup kecil sehingga kala sudah masuk ke atmosfer Bumi, ia sepenuhnya habis tersublimasi pada ketinggian 70 hingga 90 kilometer sembari menyajikan pemandangan meteor. Kita di permukaan Bumi menyaksikan meteor-meteor tersebut seakan-akan datang dari satu titik yang terletak dalam rasi bintang tertentu. Itulah sebabnya nama hujan meteor mengacu kepada nama rasi bintang yang (seakan) menjadi titik kemunculannya.

Meteoroid-meteoroid dalam suatu hujan meteor umumnya merupakan remah-remah yang dilepaskan suatu komet tatkala mendekati Matahari dalam perjalanan menyusuri orbitnya. Tekanan angin Matahari memanasi paras inti komet sehingga retak-retak di bagian yang paling lemah. Akibatnya materi mudah menguap yang ada dibawahnya tersublimasi menjadi gas dan menyembur keluar sembari mengangkut butir-butir debu dan pasir, kadang malah bongkahan batu. Mekanisme ini serupa dengan letusan gunung berapi.

Gambar 3. Orbit asteroid Phaethon terhadap orbit keempat planet terdalam tata surya kita secara 3-dimensi. Nampak meski orbit asteroid ini memintas orbit keempat planet tersebut, besarnya inklinasi orbit Phaethon membuatnya membentuk sudut yang cukup besar terhadap bidang orbit keempat planet tersebut. Sehingga peluangnya untuk berbenturan dengan satu dari mereka menjadi sangat kecil. Sumber: Sky & Telescope, 2017.

Tekanan angin Matahari membuat gas yang tersembur lantas menuju arah berlawanan dengan Matahari. Sementara butir-butir debu dan pasir yang ikut tersembur terserak di lintasan komet sebagai remah-remah komet. Oleh gangguan gravitasi Bumi dan planet-planet tetangga, remah-remah komet ini lantas berevolusi secara dinamis. Bilamana orbit kometnya berdekatan dengan orbit Bumi, maka terbuka peluang remah-remah komet ini tertarik gravitasi Bumi sehingga memasuki atmosfer menjadi meteor.

Dari dua belas hujan meteor utama pada setiap tahunnya, dua diantaranya bersumber bukan dari remah-remah komet. Melainkan dari remah-remah asteroid. Hujan meteor Geminids adalah salah satunya. Disebut Geminids karena ia (seakan-akan) berasal dari rasi Gemini. Hujan meteor Geminids aktif setiap 4 hingga 17 Desember dengan puncaknya pada 13 dan 14 Desember. Pada puncaknya, meteor-meteor Geminids bisa sebanyak 120 meteor/jam, menjadikannya salah satu hujan meteor paling intensif selain Quadrantids dan Perseids. Meteor-meteor Geminids melesat secepat 35 km/detik. Dengan elemen orbital meteor rata-rata relatif sama dengan elemen orbital asteroid Phaethon, inilah bukti bahwa meteor-meteor Geminids berasal dari remah-remah asteroid tersebut.

Terdekat

Sebagai asteroid yang memintas orbit Bumi, jarak terdekat antara orbit asteroid Phaethon terhadap orbit Bumi atau MOID (minimum orbit intersection distance) adalah sebesar 2,9 juta kilometer. Dengan demikian asteroid Phaethon tergolong ke dalam kelompok asteroid berpotensi Bahaya bagi Bumi atau PHA (potentially hazardous asteroids) karena MOID-nya lebih kecil dari ambang batas 7,5 juta kilometer. Meski demikian dengan orbit yang telah diketahui cukup baik seiring rentang waktu pengamatan yang panjang, yakni 30 tahun lebih, maka telah diketahui bahwa tidak ada potensi bagi asteroid Phaethon untuk berbenturan dengan Bumi hingga kurun 400 tahun mendatang.

Gambar 4. Proyeksi lintasan asteroid Phaethon di paras Bumi pada 16-17 Desember 2017 TU waktu Indonesia, mulai dari pukul 23 WIB hingga 13 WIB hari berikutnya. Nampak titik terdekat asteroid ke Bumi ada di Samudera Atlantik bagian barat berdekatan dengan kawasan Karibia. Sumber: Sudibyo, 2017 berbasis NASA Solar System Dynamics, 2017.

Pada 17 Desember 2017 TU asteroid Phaethon akan berada pada jarak terdekatnya ke Bumi. Ini adalah jarak terdekat kedua bagi asteroid di sepanjang abad ini, setelah jarak terdekat pada 14 Desember 2093 TU kelak dimana saat itu Phaethon hanya berjarak 2,9 juta kilometer dari Bumi. Lintasan Phaethon tidak berpotongan dengan lintasan Bumi, sehingga tidak ada potensi tubrukan antara keduanya. Maka kejadian mendekatnya asteroid Phaethon dikategorikan sebagai perlintasan-dekat atau papasan-dekat (apparition) yang teramat langka. Asteroid ini jauh lebih kecil daripada Bumi, sehingga kala melintas pada jarak 10,3 juta kilometer itu tidak ada dampak yang Bumi rasakan. Sebaliknya Bumi justru mengenakan gravitasi besarnya kepada sang asteroid, membuat orbit asteroid ini bisa sedikit berubah dari semula meski perubahan itu relatif kecil.

Saat berada pada jarak terdekatnya ke Bumi, asteroid Phaethon secara harfiah ada di atas kawasan Samudera Atlantik bagian barat tepatnya di atas titik koordinat 27º 30′ LU 65º 30′ BB. Dalam jarak tersebut, magnitudo semunya diprakirakan sebesar +10,8. Maka ia hanya bisa disaksikan dengan menggunakan teleskop. Itupun dengan diameter lensa obyektif (untuk teleskop reflektor) atau cermin obyektif (untuk teleskop refraktor) minimal 100 mm. Namun pengalaman observasi komet Siding Spring pada 2014 TU silam menunjukkan obyek seredup itu masih bisa difoto oleh kamera DSLR berlensa 80 mm, asal mengikuti gerak langit dan waktu paparannya cukup lama.

Gambar 5. Posisi asteroid Phaethon di langit pada 12-17 Desember 2017 TU pukul 21:00 WIB. Nampak posisi asteroid ke Bumi ada di langit bagian utara, dengan sejumlah bintang terang disekitarnya. Sumber: Sudibyo, 2017 berbasis NASA Solar System Dynamics, 2017 dan Starry Night Backyard 3.0.

Selain bakal diamati dengan teleskop-teleskop optik yang bekerja pada spektrum cahaya tampak, asteroid Phaethon juga bakal menjadi target pengamatan teleskop-teleskop radio yang bekerja pada spektrum gelombang radar. Langkah ini pernah dilakukan melalui teleskop radio Arecibo di Puerto Rico (Amerika Serikat) pada saat asteroid Phaethon juga mendekati Bumi sepuluh tahun silam. Namun saat itu resolusinya cukup rendah. Kini harapan untuk melakukan observasi serupa dengan tingkat resolusi jauh lebih tinggi dibebankan kepada dua teleskop radio, masing-masing teleskop radio Arecibo dan Goldstone. Teleskop Arecibo diharapkan memperoleh citra dengan resolusi hingga 15 m/piksel. Sementara teleskop Goldstone yang menjadi bagian fasilitas NASA di California (Amerika Serikat) dengan antenna parabola 70 meter diharapkan mendapatkan resolusi hingga 75 m/piksel. Kedua teeskop radio ini akan mengamati asteroid Phaethon dalam rentang waktu 11 hingga 21 Desember 2017 TU.

King. 2017. Asteroid 3200 Phaethon: Geminid Parent at Its Closest and Brightest!. Sky & Telescope Online, 29 November 2017, Diakses 1 Desember 2017.

Singgahnya Asteroid A/2017 U1, Sang Alien Pengelana Semesta

Sebuah benda langit baru ditemukan dalam tata surya kita. Ia kecil saja, hanya seukuran antara 150 hingga 500 meter, setara sebuah bukit kecil. Semula ia diidentifikasi sebagai komet, namun belakangan diklasifikasikan ulang menjadi asteroid. Meski kecil mungil, laksana sebutir pasir di tengah keluasan tata surya kita, kini semua mata memelototinya lekat-lekat. Sebab inilah asteroid alien, asteroid yang tak lahir atau berasal dari tata surya kita. Asteroid yang tak terikat pada satu bintang induk pun dalam galaksi ini, alias asteroid yatim. Inilah asteroid pengelana, yang hanya singgah sebentar dalam tata surya kita lantas pergi lagi untuk seterusnya.

Gambar 1. Asteroid A/2017 U1, nampak sebagai bintik putih kecil di tengah-tengah citra (foto) dengan latar belakang garis-garis putih. Diabadikan dengan teleskop William Herschell (4,2 meter) di Observatorium La Palma, Canary (Spanyol) pada 25 Oktober 2017 TU. Teleskop disetel mengikuti gerak asteroid, sementara gerak asteroid tidak sama dengan gerak semu bintang-bintang di latarbelakang. Sehingga bintang-bintang tersebut terlihat sebagai garis-garis. Sumber: Observatorium La Palma, 2017.

Para Yatim di Langit

Asteroid dan komet adalah benda langit berukuran mini, jauh lebih kecil ketimbang kelompok planet dan planet-kerdil, namun menjadi bagian integral tata surya kita. Seperti halnya penduduk tata surya kita umumnya, asteroid dan komet terbentuk dari awan gas (nebula) raksasa kaya gas Hidrogen (H2). Nebula ini mungkin sebesar Nebula Waluku (Orion) yang legendaris itu. Akibat gangguan eksternal, mungkin hempasan gelombang kejut peristiwa bintang meledak (supernova) didekatnya, nebula mulai mengerut, memadat dan berpilin hingga terpecah-belah menjadi ribuan pecahan. Masing-masing pecahan itu terus berpilin, memadat dan memipih layaknya cakram.

Salah satu pecahan nebula itu, dengan diameter sekitar 200 SA (satuan astronomi, 1 SA = 149,6 juta kilometer), adalah cikal bakal tata surya kita. Pusat cakram yang terus memadat dan memanas lantas berkembang menjadi Matahari pada sekitar 4,6 milyar tahun silam. Sementara sisanya, dengan massa total antara seperseribu hingga sepersepuluh Matahari, berupa butir-butir planetisimal. Sebagian diantaranya bergabung dengan sesamanya hingga terus membesar menjadi protoplanet. Dari protoplanet inilah terbentuk planet dan planet-kerdil dengan sejumlah satelit alamiahnya. Sementara sisanya, yang gagal menjadi protoplanet, tetap terserak sebagai planetisimal dan kometisimal (calon inti komet). Total massa planetisimal dan kometisimal diperkirakan mencapai 35 kali massa Bumi.

Gambar 2. Migrasi planet-planet besar dalam masa bayi tata surya kita, dalam simulasi dengan rentang waktu sejak 20 juta tahun sebelum hingga 30 juta tahun sesudah migrasi. Sebelum migrasi nampak lima planet besar berdesakan di tempat sempit. Urutannya dari yang terdekat ke Matahari: Jupiter purba, Saturnus purba, planet tak dikenal, Neptunus purba dan Uranus purba. Pasca migrasi, planet tak dikenal terlempar keluar sementara Neptunus dan Uranus saling bertukar posisi. Sehingga urutannya menjadi Jupiter purba, Saturnus purba, Uranus purba dan Neptunus purba. Sumber: David Nesvorny/SWRI, 2016.

Saat itu rentang jarak antara 5,5 hingga 17 SA dari Matahari dijejali lima planet purba raksasa. Sementara planetisimal dan kometisimal terserak sejak radius 17 SA hingga 35 SA. Empat dari planet purba ini di kemudian hari menjadi Jupiter, Saturnus, Uranus dan Neptunus yang kita kenal. Jupiter purba berkedudukan paling dekat ke Matahari, disusul Saturnus purba. Yang paling ganjil adalah Uranus purba dan Neptunus purba, dimana orbit Neptunus purba justru lebih dekat ke Matahari. Hal yang berkebalikan dibanding masakini.

Satu hal penting saat itu adalah Jupiter purba dan Saturnus purba saling berinteraksi gravitasi dengan planetisimal dan kometisimal di sekelilingnya masing-masing. Sehingga Jupiter purba perlahan mulai menjauhi Matahari sementara Saturnus purba sebaliknya, perlahan malah mendekat. Mulailah keduanya menunjukkan tanda-tanda saling tertarik (secara gravitasi). Hingga tibalah kesempatan, sekitar 500 hingga 600 juta tahun pasca lahirnya tata surya kita, Jupiter purba beresonansi orbital dengan Saturnus purba. Saat itu bilamana Jupiter purba tepat dua kali mengelilingi Matahari, maka Saturnus purba pun tepat sekali melakukannya. Hal itu terjadi kala orbit Jupiter purba 5,5 SA dari Matahari sementara orbit Saturnus purba 8,7 SA. Resonansi orbital menghancurkan keseimbangan rapuh yang selama ini menjaga kelima planet besar itu di lokasinya masing-masing. Terjadilah migrasi planet.

Jupiter purba terlempar lebih mendekati Matahari, menempati orbitnya sekarang (5,2 SA). Sebaliknya Saturnus purba terdorong menjauh, kini berada pada orbit 9,6 SA. Gerak berlawanan arah dua planet raksasa ini berdampak dramatis pada Neptunus dan Uranus purba. Keduanya terdorong menjauh. Neptunus purba terdorong dahsyat hingga melampaui orbit Uranus dan menjadi planet terluar (sejauh 30 SA). Sementara Uranus purba terdorong keluar pula namun tidak seberapa jauh dan kini menempati orbit 19 SA. Sebaliknya planet besar kelima terdorong demikian dahsyat hingga menempati orbit yang sangat jauh atau malah bahkan terusir keluar dari tata surya kita.

Migrasi planet-planet raksasa juga membuat planetisimal dan kometisimal ibarat kawanan milyaran lebah yang mendadak digebah. Mereka terdorong lintang pukang, dipaksa mencari posisi baru yang lebih stabil. Sebagian kecil terdorong mendekat ke Marahari hingga ‘bersarang’ di antara orbit Mars dan Jupiter. Inilah Sabuk Asteroid Utama, hunian mayoritas asteroid yang kita kenal. Sebagian kecil lainnya didorong menjauh hingga menempati dua ‘sarang’ baru, yang adalah hunian calon komet di tata surya. Masing-masing Sabuk Kuiper-Edgeworth dan awan komet Opik-Oort. Sabuk Kuiper-Edgeworth mirip cakram Sabuk Asteroid Utama, namun lebih besar dan merentang dari orbit Neptunus hingga sejauh 50 SA dari Matahari. Sedangkan awan komet Opik-Oort berbentuk donat (torus) hingga bulat membola, yang merentang dari 2.000 SA hingga sejauh 50.000 SA. Sedangkan sebagian besar planetisimal dan kometisimal justru terdorong sangat jauh hingga terusir keluar dari lingkungan tata surya kita.

Gambar 3. Orbit asteroid A/2017 U1 pada 25 Oktober 2017 TU terhadap orbit planet-planet inferior. Nampak asteroid berasal dari belahan langit sebelah utara ekliptika dan bergerak secara retrograde atau berlawanan arah dengan arah gerakan planet-planet inferior pada umumnya. Sumber: NASA, 2017.

Planet, planetisimal dan kometisimal yang terusir itu melanglang buana di ruang antar bintang. Mereka tak terikat pada satu bintang induk pun. Planet yang terusir dikenal sebagai planet yatim. Sementara planetisimal dan kometisimal terusir menjadi asteroid yatim dan komet yatim. Bilamana tata surya kita saja pernah mengusir mereka dari dalam sejarahnya, maka tata surya non-Matahari (yang kini bejibun banyaknya yang telah diketahui) pun bisa berperilaku serupa. Dan terbuka peluang tata surya kita dilintasi oleh planet/asteroid/komet yatim yang terusir dari suatu tata surya non-Matahari.

Karakteristik

Pada 18 Oktober 2017 TU (Tarikh Umum), sistem teleskop Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) yang berpangkalan di Observatorium Haleakala, Hawaii (Amerika Serikat) merekam sebuah benda langit sangat redup. Magnitudo semunya hanya +21, 630 kali lipat lebih redup ketimbang Pluto. Magnitudo absolutnya + 22,2. Jika diasumsikan kemampuan permukaannya memantulkan kembali sinar Matahari adalah 10 %, maka diameternya 160 meter. Belakangan diameternya diprakirakan sekitar 500 meter. Awalnya ia memperlihatkan ketampakan coma (kepala) khas komet. Maka ia diklasifikasikan sebagai komet dengan kode C/2017 U1 Panstarrs sesuai tatanama yang berlaku (C = comet). Namun begitu bukan diameternya maupun sifat kometnya yang segera menyedot perhatian, melainkan orbitnya. C/2017 U1 Panstarrs ternyata menyusuri orbit hiperbolik dengan nilai kelonjongan (eksentrisitas) cukup besar, yakni di sekitar 1,2. Maka sebersit curiga pun muncul, benda langit ini mungkin bukan penduduk asli tata surya.

Gambar 4. Asteroid A/2017 U1, nampak sebagai bintik putih kecil sangat redup yang ditandai sepasang garis rambut (garis vertikal dan horizontal) di tengah citra (foto). Diabadikan dengan teleskop Schmidt (0,4 meter) di Observatorium Great Shefford (Inggris) pada 27 Oktober 2017 TU. Perhatikan, teleskop disetel mengikuti gerak asteroid dan kamera dibuka selama total waktu 1 jam 45 menit. Sehingga asteroid yang sangat redup bisa dicitra sementara bintang-bintang nampak sebagai garis-garis. Sumber: Observatorium Great Shefford, 2017.

Kita telah melihat ratusan komet dengan orbit hiperbola sepanjang sejarah peradaban. Komet seperti ini selalu memliki kelonjongan lebih dari 1. Ia hanya sekali melintasi titik perihelion (titik terdekat dalam orbitnya ke Matahari) untuk kemudian meluncur keluar dari tata surya kita. Akan tetapi seluruh komet itu memiliki kelonjongan kurang dari 1,06. Analisis lebih lanjut dengan memperhitungkan titik barisenter Matahari dan Jupiter menunjukkan seluruh komet itu pada dasarnya masih terikat dengan tata surya kita. Sehingga ditafsiri sebagai komet yang berasal dari tata surya kita sendiri, khususnya dari awan komet Opik-Oort. Akan tetapi C/2017 U1 Panstarrs ini berbeda.

Observasi demi observasi memproduksi bejibun data yang kian memperjelas karakter benda langit ini. Melalui teleskop VLT/Very Large Telescope (diameter cermin obyektif 8,2 meter) yang dioperasikan ESO (European Southern Observatory) di Gurun Atacama, Chile, pada 25 Oktober 2017 TU diketahui benda langit ini tidak lagi menampakkan coma. Sehingga ia diklasifikasikan ulang sebagai asteroid dan dikodekan sebagai A/2017 U1 (A = asteroid). Secara akumulatif hingga 26 Oktober 2017 TU telah terkumpul 59 data sehingga karakter asteroid unik ini bisa lebih terungkap.

Asteroid A/2017 U1 memiliki orbit dengan kelonjongan 1,19 atau tak jauh berbeda dengan data awal. Inklinasi orbitnya 122,4º, menandakan ia bergerak secara retrograde. Perihelionnya cukup dekat, yakni 0,25 SA (37 juta kilometer) dari Matahari yang dicapainya pada 9 September 2017 TU pukul 18:09 WIB lalu. Terhadap orbit Bumi, orbitnya memiliki jarak terdekat (MOID) sebesar 0,095 SA (14 juta kilometer). Namun demikian titik terdekat asteroid ini ke posisi Bumi direngkuh pada 15 Oktober 2017 TU pukul 00:51 WIB, dalam jarak 24 juta kilometer. Pada saat itu pula asteroid A/2017 U1 telah terdeteksi lewat sistem penyigi langit Catalina Sky Survey. Meski pengelolanya baru menyadarinya dalam 12 hari kemudian.

Ada tiga hal yang menjadi indikasi kuat asteroid A/2017 U1 adalah asteroid yatim. Pertama, nilai kelonjongan orbitnya. Kecuali ada kekeliruan dalam astrometrinya, kelonjongan orbit A/2017 U1 terhadap titik barisenter Matahari dan Jupiter adalah 1,18 baik sebelum maupun sesudah lewat perihelion. Sehingga ia tidaklah terikat dengan tata surya kita. Besarnya kelonjongan orbit berimplikasi pada kecepatan yang cukup besar pula. Saat lewat di titik terdekatnya ke Bumi, asteroid A/2017 U1 melesat dengan kecepatan relatif 60 km/detik. Maka kecepatan-lebih hiperboliknya, yakni kecepatan benda langit di ruang bebas dalam orbit hiperbolik, berkisar 26 km/detik. Bandingkan dengan komet Bowell (C/1980 E1), benda langit dengan kelonjongan terbesar sebelumnya (yakni 1,06), dengan kecepatan-lebih hiperbolik hanya 3 km/detik.

Gambar 5. Spektrum asteroid A/2017 U1 sebagaimana diabadikan Observatorium La Palma pada 25 Oktober 2017 TU dalam kanal inframerah dan cahaya tampak. Tidak terdeteksi satu fitur khas pun di sini. Sementara kemiringannya mirip dengan benda langit anggota Sabuk Kuiper yang berwarna merah normal. Sumber: Observatorium La Palma, 2017.

Yang kedua adalah arah kedatangannya. Asteroid A/2017 U1 datang dari arah yang hanya berselisih 6º terhadap Solar apex. Solar apex adalah titik arah gerak Matahari (beserta segenap tata surya kita) relatif terhadap bintang-bintang tetangganya. Sehingga Solar apex, secara statistik, menjadi titik yang paling memungkinkan bagi planet/asteroid/komet alien untuk masuk berkunjung ke tata surya kita.

Dan yang ketiga adalah warnanya. Pada waktu yang hampir sama dengan observasi teleskop VLT, teleskop WHT/William Herschell Telescope (diameter cermin obyektif 4,2 meter) di Observatorium La Palma di pulau Canary (Spanyol) juga menatap A/2017 U1 lekat-lekat. Spektrum yang ditangkapnya menunjukkan asteroid A/2017 U1 cenderung berwarna merah. Lebih mirip dengan karakter paras benda langit penduduk Sabuk Kuiper-Edgeworth dan sama sekali tak mirip asteroid penduduk cakram Sabuk Asteroid Utama.

Potensi

Gambar 6. Hasil simulasi dimensi kawah produk tumbukan bilamana asteroid A/2017 U1 jatuh ke Jakarta (titik Gedung DPR-MPR) pada kecepatan awal 60 km/detik dan asteroid dianggap sebagai batu berpori dengan diameter 400 meter. Lebar kawah adalah 3,7 kilometer dengan kedalaman 440 meter. Energi tumbukan mencapai 18.100 megaton TNT. Sumber: DowntoEarth, 2017.

Dengan perihelion kurang dari ambang batas 1,3 SA maka asteroid A/2017 U1 diklasifikasikan sebagai asteroid-dekat Bumi. Namun karena jarak terdekatnya ke Bumi masih lebih besar dibanding ambang batas 0,05 SA maka A/2017 U1 tidak tergolong asteroid berpotensi bahaya (bagi Bumi). Sehingga peluangnya untuk bertubrukan dengan Bumi adalah nol.

Kabar ini tentu melegakan. Sebab jika ia tepat menuju ke Bumi, maka dampaknya dahsyat. Simulasi dengan Down2Earth memperlihatkan bila diameternya 400 meter, komposisi berpori-pori (massa jenis 1.500 kg/m3) dan melesat secepat 60 km/detik ke Bumi, tepat sebelum memasuki atmosfer energi kinetiknya sebesar 21.600 megaton TNT. Sepanjang menembus atmosfer, kecepatannya akan berkurang sedikit sehingga kala tiba di paras Bumi masih secepat 54,9 km/detik dengan energi tumbukan setara 18.100 megaton TNT.

Itu hampir menyamai kandungan energi pada segenap hululedak nuklir yang pernah ada di Bumi pada puncak Perang Dingin. Pelepasan energi sebesar itu akan menyebabkan dampak spontan yang bisa dirasakan hingga radius 580 kilometer dari titik tumbuk, berdasarkan simulasi ledakan nuklir. Akan tetapi secara global juga bisa memicu fenomena perubahan iklim yang populer sebagai musim dingin tumbukan (impact winter), analog dari musim dingin nuklir. Yakni turunnya suhu paras Bumi akibat tebaran aerosol sulfat dan jelaga produk tumbukan di lapisan stratosfer.

Gambar 7. Hasil simulasi dampak gelombang kejut dan paparan panas bilamana asteroid A/2017 U1 jatuh di Jakarta dan melepaskan energi tumbukan 18.100 megaton TNT. Seluruh bangunan yang ada dalam lingkaran 5 psi akan runtuh akibat menerima tekanan-lebih yang setara 5 psi atau lebih besar lagi. Sementara seluruh manusia yang ada di dalam lingkaran lukabakar-3 akan mengalami luka bakar tingkat 3, yakni luka bakar yang menembus segenap lapisan kulit hingga merusak syaraf dan berpotensi mematikan. Sumber: Sudibyo, 2017 berdasarkan scaling law dengan Nukemap.com, 2017.

Asteroid A/2017 U1 kini terus melaju dalam lintasannya meninggalkan tata surya kita. Dari sisi astronomi, singgahnya asteroid A/2017 U1 membuktikan bahwa galaksi Bima Sakti kita memang memiliki benda-benda langit yang tak terikat ke satu bintang tertentu. Sejak 1998 TU kita sudah mengenal adanya kelompok planet yatim. Meski hingga saat ini baru dua saja yang telah benar-benar dikonfirmasi. Dan kini kita mengenal adanya asteroid yatim. Singgahnya asteroid yatim ke dalam tata surya kita membuka jendela peluang baru untuk mengeksplorasi benda-benda langit tetangga tata surya kita. Namun di sisi lain, juga membuka peluang resiko baru terhadap tata surya kita pada umumnya dan Bumi pada khususnya. Sebab dalam khasanah tumbukan benda langit (yang berpotensi memusnahkan kehidupan), kini tak hanya asteroid dan komet penduduk tata surya kita saja yang perlu dipertimbangkan. Namun juga asteroid dan komet yatim, yang perilakunya jauh lebih sulit diprediksi.

Referensi :

NASA. 2017. Small Asteroid or Comet Visit from Beyond the Solar System. NASA Jet Propulsion Laboratory News, diakses 26 Oktober 2017.

Beatty. 2017. Astronomers Spot First-Known Interstellar Comet. Sky & Telescope, diakses 26 Oktober 2017.