Yogyakarta dan Kepungan Gunung-Gemunung Berapi Purba

Uap panas mengepul dari satu sudut di dusun Kayen desa Sampang, kecamatan Gedangsari, Kabupaten Gunungkidul (DIY) mulai Kamis pagi 15 Februari 2017 (TU) Tarikh Umum lalu. Hingga beberapa hari kemudian uap masih mengepul. Bersamanya menguar pula aroma Belerang yang khas. Khalayak setempat pun dibuat resah. Terlebih setelah salah satu penyebab potensial, yakni arus listrik melalui grounding yang bocor, telah dapat dikesampingkan mengingat saat aliran listrik ke rumah pak Trisno Wiyono dimatikan, uap panas itu tetap mengepul dari sudut pekarangannya.

Apalagi titik keluarnya uap panas tersebut tidak terlalu jauh dari Gunung Nglanggeran, kompleks gunung berapi purba yang kini menjadi obyek wisata. Tersebar cerita yang konon dari masa silam, bahwa kawah Gunung Nglanggeran pada masanya adalah berada di dusun itu. Maka saat saling dikait-kaitkan, mudah saja mendatangkan kesan bahwa kepulan uap tersebut ada hubungannya dengan Gunung Nglanggeran.

Gambar 1. Lokasi titik kepulan uap panas di dusun Kayen desa Sampang kecamatan Gedangsari, Gunungkidul. Uap tersebut keluar di dekat sudut bangunan di latar depan. Uap lantas disalurkan ke ketinggian dengan pipa logam, setelah pipa PVC yang digunakan sebelumnya rusak dan melengkung oleh panasnya uap. Sumber: Kabar Handayani, 2017.

Gambar 1. Lokasi titik kepulan uap panas di dusun Kayen desa Sampang kecamatan Gedangsari, Gunungkidul. Uap tersebut keluar di dekat sudut bangunan di latar depan. Uap lantas disalurkan ke ketinggian dengan pipa logam, setelah pipa PVC yang digunakan sebelumnya rusak dan melengkung oleh panasnya uap. Sumber: Kabar Handayani, 2017.

Apakah gunung berapi purba itu aktif lagi?

BPPTKG (Balai Penyelidikan dan Pengembangan Teknik Kebencanaan Geologi), lembaga yang berkedudukan di Yogyakarta dan berada di bawah payung Badan Geologi Kementerian Energi dan Sumberdaya Mineral RI pun menerjunkan timnya ke desa Sampang. Tim ini sangat berkompeten mengingat tugas BPPTKG salah satunya adalah mengamati segenap perilaku Gunung Merapi, baik dalam kondisi normal maupun meletus. Pengukuran temperatur menunjukkan tepat di titik keluarnya uap, suhu mencapai 68º C.

Suhu ini tergolong tinggi sehingga mampu melengkungkan pipa PVC yang dipasang warga untuk menyalurkan uap hingga ke ketinggian tertentu. Sebalikya dalam radius 2 meter dari titik tersebut, suhu telah merosot drastis menjadi tinggal 30º C atau hampir sama dengan suhu rata-rata setempat. Sementara pengukuran gas menunjukkan adanya konsentrasi gas CO2 yang sedikit lebih besar dibanding normal, yakni mencapai 1 % (pada udara normal 0,3 %). Analisis lebih lanjut dikerjakan dalam laboratorium setelah tim mengambil sampel air hasil kondensasi uap tersebut.

Apakah sebuah gunung berapi purba dapat ‘bangun’ kembali setelah mati?

Tanpa mendahului kerja tim BPPTKG, dapat dikatakan bahwa peluang ‘bangun’ kembalinya sebuah gunung berapi purba adalah serupa dengan peluang hidupnya kembali seekor dinosaurus di masa kini (setelah mereka terbabat habis 65 juta tahun silam). Dengan kata lain, amat sangat kecil sehingga praktis bisa dikatakan mustahil. Gunung berapi purba pada dasarnya adalah fosil gunung berapi. Sebagai fosil, ia dapat disetarakan dengan fosil dinosaurus.

Dulu, dulu sekali nun jauh di masa silam, pada waktu berjuta hingga berpuluh juta tahun silam, gunung berapi purba itu adalah gunung berapi yang aktif. Tentu saat itu ia rajin meletus layaknya Gunung Merapi masa kini.Namun pada satu waktu, gunung berapi itu mati seiring usianya. terutama setelah pasokan magma dari dapur magmanya terputus total oleh sebab tertentu. Sehingga magma yang masih tersisa dalam diatrema (saluran magma utama)-nya pun kehilangan dorongan untuk ke atas. Apalagi keluar lewat kawah.

Perlahan-lahan sisa magma ini mulai membeku, membentuk batuan beku seperti granit atau diorit atau sejenisnya secara perlahan-lahan. Pada saat yang sama keseimbangan alamiah yang selama ini menopang tubuh gunung berapi itu dalam menjaga bentuknya, yakni antara pasokan magma yang menyeruak sebagai lava dengan kikisan air sebagai erosi, pun berantakan. Tinggal satu sisi yang terus bekerja, yakni yang secara perlahan-lahan menyayat, mengukir dan mengikis selapis demi selapis tubuh gunung.

Proses perusakan tubuh gunung itu terus berlangsung selama ratusan ribu hingga jutaan tahun kemudian. Sehingga sebagian besar tubuhnya pun habis dikikis. Yang masih nampak hanyalah bukit batuan beku keras eks-diatrema yang disebut leher vulkanik atau sumbat vulkanik. Dan sisa-sisa kakinya. Inilah fosil gunung berapi.

Gambar 2. Perbandingan penampang melintang antara gunung berapi aktif (atas) dengan gunung berapi purba. Penampang gunung berapi purba terbagi lagi menjadi gunung berapi purba yang tererosi dalam tingkat dewasa (tengah) dan yang tererosi tingkat lanjut (bawah). Jika hanya dilihat sekilas, maka sangat sulit untuk membedakan gunung berapi purba baik tingkat dewasa maupun lanjut dengan bukit-bukit non vulkanik pada umumnya. Sumber: Bronto, 2012.

Gambar 2. Perbandingan penampang melintang antara gunung berapi aktif (atas) dengan gunung berapi purba. Penampang gunung berapi purba terbagi lagi menjadi gunung berapi purba yang tererosi dalam tingkat dewasa (tengah) dan yang tererosi tingkat lanjut (bawah). Jika hanya dilihat sekilas, maka sangat sulit untuk membedakan gunung berapi purba baik tingkat dewasa maupun lanjut dengan bukit-bukit non vulkanik pada umumnya. Sumber: Bronto, 2012.

Gunung berapi purba jelas berbeda dengan gunung berapi tidur (dorman). Berbeda dengan gunung berapi purba, gunung berapi tidur tidaklah mati. Ia hanya tertidur panjang, namun masih tetap terhubung dengan dapur magmanya. Meski diatrema-nya umumnya tersumbat oleh magma sisa yang masih setengah plastis dan panas (meski beberapa bagian mulai membeku dan membatu). Perubahan dalam dapur magma (misalnya akibat guncangan gempa) akan membuat magma segar mengandung lebih banyak gas sehingga bertekanan sangat tinggi.

Maka sumbat diatrema pun bisa ditembus dan magma segar akan keluar sebagai lava yang penuh gas dari kawah. Inilah yang terjadi dalam letusan-letusan dahsyat gunung berapi, termasuk tiga peristiwa legendaris: Letusan Samalas-Rinjani 1257, Letusan Tambora 1815, Letusan Krakatau 1883. Pada umumnya sebuah gunung berapi dikatakan ‘tertidur’ jika letusan terakhirnya terjadi kurang dari 10.000 tahun terakhir. Terkecuali dalam kasus gunung-gemunung berapi super seperti Gunung Toba yang bisa tertidur jauh lebih lama lagi sebelum beraksi.

Sebaliknya gunung berapi purba sudah benar-benar putus hubungan dengan dapur magmanya. Andaikata jauh dibawahnya masih terdapat dapur magma, maka peluang bagi magma segar untuk bisa menyeruak ke paras Bumi telah tertutup oleh keberadaan sumbat sangat keras dan sangat panjang yang mengisi diatremanya. Bila dapur magmanya terletak di kedalaman 10 kilometer, maka sepanjang itu pulalah diatrema tersumbat total oleh batuan beku yang sangat keras.

Gunung Nglanggeran

Tidak jauh dari desa Sampang terdapat bukit-bukit yang berdinding terjal dan tersusun oleh batuan pejal. Bukit-bukit tersebut menempati area seluas 48 hektar yang berada di desa Nglanggeran, kecamatan Patuk (Gunungkidul). Inilah Gunung Nglanggeran. Bukit-bukit batu pejal itu sesungguhnya leher vulkanik. Ilmu kebumian menyebutnya tersusun oleh batuan beku terobosan (intrusi), karena sesungguhnya magma yang membentuk leher vulkanik ini tidak pernah tersingkap di paras Bumi kala dalam proses pembentukannya. Ia sepenuhnya mendingin hingga membeku di dalam tanah, tatkala segenap tubuh gunung ini masih ada.

Gambar 3. Rekonstruksi kasar bentuk tubuh Gunung Nglanggeran pada saat masih sebagai gunung berapi aktif, tanpa skala dan dianggap berbentuk kerucut sempurna dengan kawah di puncaknya. Lokasi kawah segaris lurus dengan kompleks Gunung Nglanggeran masakini. Pada masa aktifnya, sebagian tubuh gunung berapi ini berada di bawah paras air laut. Dibuat berdasarkan citra Google StreetView dari satu titik di desa Serut, kec. Gedangsari (Gunungkidul) yang terletak di sebelah utara Gunung Nglanggeran. Sumber: Sudibyo, 2017 dengan basis Google StreetView, 2017.

Gambar 3. Rekonstruksi kasar bentuk tubuh Gunung Nglanggeran pada saat masih sebagai gunung berapi aktif, tanpa skala dan dianggap berbentuk kerucut sempurna dengan kawah di puncaknya. Lokasi kawah segaris lurus dengan kompleks Gunung Nglanggeran masakini. Pada masa aktifnya, sebagian tubuh gunung berapi ini berada di bawah paras air laut. Dibuat berdasarkan citra Google StreetView dari satu titik di desa Serut, kec. Gedangsari (Gunungkidul) yang terletak di sebelah utara Gunung Nglanggeran. Sumber: Sudibyo, 2017 dengan basis Google StreetView, 2017.

Dimanakah letak kawah gunung berapi purba ini (atau setidaknya sisa kawahnya)? Pada umumnya kawah gunung berapi terletak di puncak gunung sekaligus menjadi muara dari diatrema. Mengingat bukit-bukit batu itu adalah leher vulkanik Nglanggeran, maka logikanya kawah gunung berapi purba tersebut ada di ujung atas leher vulkaniknya. Hal ini sesuai dengan hasil penelitian Sutikno Bronto (2009, 2010), vulkanolog legendaris Indonesia, bahwa sebagian besar bukit-bukit batu itu tersusun oleh aglomerat.

Aglomerat adalah batuan produk letusan gunung berapi yang banyak mengandung bom gunung berapi, yakni bongkahan batuan beku yang ukurannya besar. Saat sebuah gunung berapi meletus, bom gunung berapi akan dilontarkan kuat-kuat dari dalam lubang letusan atau kawah, lantas jatuh bebas di sekitar kawah dalam jarak yang tak jauh. Sisa-sisa bom gunung berapi Nglanggeran ditemukan berbentuk mirip buah salak, dengan bagian runcing di sebelah atas sementara bagian yang besar dan berat di sisi bawah.

Maka anggapan bahwa kawah gunung berapi purba Nglanggeran berada di desa Sampang, yang berjarak beberapa kilometer dari leher vulkanik Nglanggeran, menjadi kurang tepat. Memang pada saat Gunung Nglanggeran masih aktif dalam berpuluh juta tahun silam, area yang kini menjadi desa Sampang kemungkinan merupakan bagian dari tubuh gunung berapi itu. Namun area ini bukanlah bagian dari kawasan yang bersinggungan atau berdekatan dengan diatrema gunung berapi tersebut, dengan segala dinamikanya.

Pengukuran umur batuan beku menunjukkan Gunung Nglanggeran adalah gunung berapi aktif pada masa sekitar 58 juta tahun silam. Jika dikaitkan dengan sejarah geologi pulau Jawa, jelas Gunung Nglanggeran merupakan gunung berapi laut. Bagian kakinya berdiri di atas dasar Samudera Indonesia (Indian Ocean) dengan sebagian tubuhnya mungkin terbasuh permanen dalam air laut. Apakah puncaknya menyembul di atas paras laut dan menjadi sebuah pulau vulkanis? Kita tidak tahu. Namun yang jelas, dalam kurun 58 juta tahun terakhir Gunung Nglanggeran telah mati. Pergerakan tektonik seiring dorongan lempeng Australia yang oseanik lantas mendorongnya lebih ke utara, untuk kemudian terangkat dari dasar samudera seiring terbentuknya pulau Jawa dan akhirnya menyatu dengan kompleks Pegunungan Selatan di sisi selatan Jawadwipa.

Isu Gunung Nglanggeran aktif kembali sebenarnya bukan hal yang baru. Saat Gunung Merapi meletus besar dalam Letusan Merapi 2010 di bulan November 2010 TU, sejumlah orang yang bertempat tinggal di sekitar Gunung Nglanggeran mengaku merasa ada getaran dan mendengar suara gemuruh. Bahkan ada juga yang mengaku melihat kepulan asap dari bukit-bukit batu itu. Evaluasi lebih lanjut memperlihatkan getaran dan suara gemuruh itu sejatinya berasal dari Gunung Merapi, yang berjarak sekitar 40 kilometer dari Gunung Nglanggeran. Letusan Merapi 2010 itu memang luar biasa dan berbeda dengan letusan-letusan Merapi sebelumnya. Sehingga suara gemuruhnya pun terdengar hingga jarak yang cukup jauh, demikian halnya getaran-getaran gempa vulkaniknya.

Gambar 4. Bebatuan mirip pilar-pilar yang saling bertumpuk di ujung Tanjung Karangbata, Kebumen (Jawa Tengah). Bebatuan ini kemungkinan adalah bagian dari leher vulkanik Gunung Manganti, salah satu gunung berapi purba di Tanjung Karangbolong. Bebatuan khas semacam ini dinamakan kekar kolom dan acap dijumpai di lingkungan gunung berapi purba khususnya di eks-diatrema dan cabang-cabangnya. Diabadikan oleh geolog Bambang Mertani. Sumber: Mertani, 2013.

Gambar 4. Bebatuan mirip pilar-pilar yang saling bertumpuk di ujung Tanjung Karangbata, Kebumen (Jawa Tengah). Bebatuan ini kemungkinan adalah bagian dari leher vulkanik Gunung Manganti, salah satu gunung berapi purba di Tanjung Karangbolong. Bebatuan khas semacam ini dinamakan kekar kolom dan acap dijumpai di lingkungan gunung berapi purba khususnya di eks-diatrema dan cabang-cabangnya. Diabadikan oleh geolog Bambang Mertani. Sumber: Mertani, 2013.

Dalam kondisi Gunung Nglanggeran seperti sekarang ini, apakah ia bisa aktif lagi? Peluangnya sangat kecil sehingga secara teknis bisa dikatakan mustahil. Leher vulkanik Nglanggeran merupakan ujung yang kasatmata dari batuan beku pejal sangat panjang yang menyumbat total diatrema gunung berapi purba tersebut. Mustahil bagi magma segar untuk bisa menjebolnya. Apalagi sebagai fluida, magma juga lebih menyukai untuk menembus/melewati titik-titik yang lebih lemah di kerak Bumi. Ketimbang harus bersusah-payah membobol batuan beku pejal yang sangat panjang yang menyumbat total diatrema Gunung Nglanggeran, mengapa tidak mencari titik yang lebih lemah disekitarnya?

Dalam bahasa yang lebih sederhana, andaikata saya adalah magma segar nun jauh di bawah Nglanggeran (pada kedalaman misalnya 30 kilometer), maka ketimbang susah-susah harus berjuang membobol sumbat sangat keras dan panjang di Nglanggeran, mengapa saya tidak sedikit beringsut ke utara saja dan keluar lewat Gunung Merapi?

Kepungan Gunung Berapi Purba

Pada aras yang lain, diskusi seputar Gunung Nglanggeran terkini dengan kepulan uap panas didekatnya membuat kita mau tak mau membuat kita menekuri kembali bumi Yogyakarta pada khususnya dan pulau Jawa bagian selatan pada umumnya dengan lebih cermat. Terutama terkait gunung berapi purba. Luar biasanya, dari perspektif ilmu kebumian, Yogyakarta boleh dikata sebagai kota yang ‘dikepung’ oleh gunung-gemunung berapi purba !

Gambar 5. Salah satu sudut Gunung Watuadeg, yakni gunung berapi purba yang berjarak cukup dekat dengan kota Yogyakarta. Diabadikan dari tepi timur Sungai Opak, nampak singkapan lava bantal di sisi barat dasar sungai dengan tampilan khasnya sebagai bongkah-bongkah batuan beku kehitaman yang saling terhubung. Diabadikan oleh Nova Aristianto pada 2014 TU. Sumber: Aristianto, 2014.

Gambar 5. Salah satu sudut Gunung Watuadeg, yakni gunung berapi purba yang berjarak cukup dekat dengan kota Yogyakarta. Diabadikan dari tepi timur Sungai Opak, nampak singkapan lava bantal di sisi barat dasar sungai dengan tampilan khasnya sebagai bongkah-bongkah batuan beku kehitaman yang saling terhubung. Diabadikan oleh Nova Aristianto pada 2014 TU. Sumber: Aristianto, 2014.

Mari lihat dua contoh berikut. Dari Yogyakarta, sempatkanlah menengok sudut kecil di sebelah tenggara Bandara Adisucipto dalam jarak tak lebih dari 5 kilometer. Susurilah jalan raya Berbah-Prambanan dari arah barat menuju lokasi situs Candi Abang. Di jalan ini anda akan melintasi jembatan Sungai Opak yang memiliki nama unik: Jembatan Gemblung. Lihatlah ke dasar sungai yang juga adalah batas antara desa Kalitirto (sisi barat) dan Jogotirto (sisi timur) di kecamatan Berbah (Sleman). Jika air surut, akan terlihat panorama bebatuan gamping di sisi timur sebaliknya di sisi barat terhampar bongkah-bongkah batuan beku membulat kehitaman yang saling terhubung. Bebatuan ini adalah lava bantal, maka lokasi ini populer sebagai Lava Bantal Geoheritage. Saat menatapnya, sadarkah bahwa anda sesungguhnya sedang berdiri di gunung berapi purba?

Gunung berapi purba itu adalah Gunung Watuadeg. Lava Bantal Geoheritage merupakan bagian dari tubuh gunung. Seluruh lava bantal itu memancar dari satu titik yang kini berupa bukit seukuran 75 x 50 meter2 dengan tinggi sekitar 15 meter yang terletak sejarak 150 meter di sebelah barat jembatan. Sisa-sisa sumbat vulkanik dijumpai di sisi selatan bukit yang bernama Bukit Sumberkulon ini. Analisis memperlihatkan Gunung Watuadeg aktif pada masa 57 juta tahun silam, atau sezaman dengan masa aktif Gunung Nglanggeran. Ia juga tumbuh di dasar Samudera Indonesia dan berdasar keberadaan lava bantalnya maka seluruh tubuhnya mungkin terendam air laut. Namun ukuran Gunung Watuadeg jauh lebih kecil ketimbang Gunung Nglanggeran.

Gambar 6. Bukit Gede (kiri) dan Bukit Gedang (kanan) di kecamatan Godean, Sleman (DIY). Dua bukit ini adaah bagian dari jejak gunung berapi purba yang dinamakan Gunung Godean. Diabadikan pada citra Google StreetView dari satu titik di jalan raya Godean-Seyegan. Sumber: Google StreetView, 2017.

Gambar 6. Bukit Gede (kiri) dan Bukit Gedang (kanan) di kecamatan Godean, Sleman (DIY). Dua bukit ini adaah bagian dari jejak gunung berapi purba yang dinamakan Gunung Godean. Diabadikan pada citra Google StreetView dari satu titik di jalan raya Godean-Seyegan. Sumber: Google StreetView, 2017.

Kembali ke Yogyakarta, dari tugu pal putih yang menjadi simbol kota ini, susurilah jalan raya ke arah barat hingga memasuki Jalan Godean. Susurilah terus ke barat hingga sejauh 6 kilometer, sampai bersua dengan sebuah pertigaan yang mengarah ke kiri dan ke kanan. Anda akan tiba di sebuah tempat yang juga bernama Godean dan menjadi bagian dari Kabupaten Sleman. Di sini anda akan bersua dengan sedikitnya 6 buah bukit yang letaknya saling berdekatan dan relatif lebih tinggi dibanding bukit-bukit kecil yang ada di sisi utaranya. Sekilas pandang tak ada yang istimewa dari keenam bukit ini. Namun bukit-bukit yang terlihat biasa saja ini sejatinya adalah sumbat vulkanik yang telah melapuk sebuah gunung berapi purba yang dinamakan Gunung Godean. Kapan Gunung Godean aktif di masa silam belum dapat diketahui dengan pasti.

Ada banyak gunung berapi purba yang bertebaran di sekitar Yogyakarta. Jika dibatasi pada yang telah diketahui umurnya seperti halnya Gunung Nglanggeran dan Gunung Watuadeg, kita bisa mulai dengan Gunung Parangtritis. Sesuai namanya, gunung berapi purba ini ‘duduk’ di lokasi obyek wisata pantai Parangtritis yang terkenal itu. Gunung berapi purba ini jauh lebih muda ketimbang Nglanggeran, yakni aktif sekitar 26 juta tahun silam. Namun ukuran tubuh gunungnya nampaknya serupa. Meski demikian dimana posisi sumbat vulkaniknya belum jelas. Lalu di sebelah utara Gunung Nglanggeran terserak jejak gunung berapi purba bertubuh raksasa, yang disebut Gunung Baturagung. Gunung berapi purba ini aktif antara 14 hingga 40 juta tahun silam. Di sebelah timur Gunung Baturagung, pada tempat yang kini menjadi bagian dari kota Wonogiri terdapat jejak gunung berapi purba lainnya yang tak kalah besarnya. Yakni Gunung Gajahmungkur, yang aktif antara 10 hingga 22 juta tahun silam.

Gambar 7. Lokasi gunung-gemunung berapi purba yang telah terpetakan dan dianalisis oleh sejumlah ilmuwan hingga saat ini. Gunung-gemunung berapi purba ditandai dengan lingkaran-lingkaran. Besar kecilnya lingkaran bergantung kepada dimensi tubuh gunung berapi purba yang bersangkutan. Pada sebagian gunung berapi purba tersebut disajikan pula umur relatifnya berdasarkan sampel batuan beku Sumber: Bronto, 2010 dalam Verdiansyah & Hartono, 2016.

Gambar 7. Lokasi gunung-gemunung berapi purba yang telah terpetakan dan dianalisis oleh sejumlah ilmuwan hingga saat ini. Gunung-gemunung berapi purba ditandai dengan lingkaran-lingkaran. Besar kecilnya lingkaran bergantung kepada dimensi tubuh gunung berapi purba yang bersangkutan. Pada sebagian gunung berapi purba tersebut disajikan pula umur relatifnya berdasarkan sampel batuan beku Sumber: Bronto, 2010 dalam Verdiansyah & Hartono, 2016.

Dari Gunung Gajahmungkur, jika kita bergerak ke selatan sejajar dengan garis tegak lurus sumbu orientasi pulau Jawa, kita akan bersirobok dengan Gunung Batur. Gunung berapi purba yang ‘duduk’ di obyek wisata Pantai Wediombo ini aktif sekitar 13 juta tahun silam dengan ukuran tubuh gunung setara Gunung Nglanggeran. Jajaran gunung-gemunung berapi purba pun menghiasi kaki langit Yogyakarta bagian barat. Dari Gunung Godean ke arah barat, kita akan bersua dengan Pegunungan Menoreh. Pegunungan ini sejatinya merupakan kompleks gunung berapi purba yang mencakup tiga gunung sekaligus. Masing-masing Gunung Menoreh, Gunung Ijo dan Gunung Gajah. Aktivitas vulkanik pada gunung-gunung tersebut terjadi dalam kurun antara 47 hingga 8 juta tahun silam. Dibanding gunung-gemunung berapi purba yang telah disebut sebelumnya, gunung berapi purba di Pegunungan Menoreh memiliki ukuran tubuh terbesar.

Sementara jika gunung-gemunung berapi purba yang belum diketahui umurnya seperti halnya Gunung Godean ditelusuri, jumlahnya akan membengkak lagi. Di antara Gunung Parangtritis dan Gunung Baturagung saja tercatat ada 4 gunung berapi purba yang belum diketahui umurnya. Salah satunya adalah Gunung Imogiri. Sementara di antara Gunung Gajahmungkur dan Gunung Batur terdapat 5 gunung berapi purba, salah satunya dinamakan Gunung Panggang.

Gambar 8. Busur vulkanik Jawa tua (garis merah putus-putus), yang terdiri dari gunung-gemunung berapi purba. Di sebelah utaranya terdapat busur vulkanik Jawa muda (garis kuning putus-putus), tempat gunung-gemunung berapi modern di pulau Jawa berada dengan sebagian besar diantaranya aktif. Sumber: Hall & Smyth, 2008 dalam Satyana, 2014.

Gambar 8. Busur vulkanik Jawa tua (garis merah putus-putus), yang terdiri dari gunung-gemunung berapi purba. Di sebelah utaranya terdapat busur vulkanik Jawa muda (garis kuning putus-putus), tempat gunung-gemunung berapi modern di pulau Jawa berada dengan sebagian besar diantaranya aktif. Sumber: Hall & Smyth, 2008 dalam Satyana, 2014.

Mayoritas gunung berapi purba di sekitar Yogyakarta pada masanya merupakan bagian dari busur vulkanik Jawa tua. Yakni jajaran gunung-gemunung berapi yang menjadi wajah aktivitas vulkanik pulau Jawa sejak 45 juta tahun silam. Aktivitas busur vulkanik tua itu dan mendadak berakhir pada masa sekitar 20 juta tahun silam, tanpa sebab yang jelas. Gunung-gemunung berapi yang lebih muda lantas terbentuk lebih ke utara dan membentuk busur vulkanik Jawa muda. Dalam busur vulkanik yang mulai aktif semenjak 5 juta tahun silam hingga kini terdapat 45 buah kerucut gunung berapi, yang membentang mulai dari Gunung Karang-Pulasari di barat (Banten) hingga Gunung Ijen di timur (Jawa Timur).

Selain menjadi artefak atas aktivitasnya sendiri di masa silam, gunung-gemunung berapi purba di sekitar Yogyakarta juga menjadi saksi bisu bagaimana sisi selatan pulau Jawa terangkat layaknya terdongkrak. Sehingga banyak dari gunung-gemunung purba yang semula tersembunyi dalam sepi di dasar Samudera Indonesia lantas terangkat dan muncul ke daratan. Selain sebagai bagian dari pengembangan ilmu pengetahuan terutama ilmu kebumian, eksistensi gunung-gemunung berapi purba juga bisa dikembangkan untuk menggamit minat publik akan eksotismenya. Gunung-gemunung berapi purba juga berpotensi memiliki nilai ekonomis tersendiri, mengingat sejumlah mineral barang tambang yang berharga (termasuk tembaga dan emas) berasosiasi dengan magma dan cairan hidrotermal dengan karakter tertentu yang telah membeku.

Referensi :

Kabar Handayani. 2017. Uap Panas Muncul dari Tanah di Gedangsari. Laman Kabar Handayani, diakses pada 21 Februari 2017.

Aristianto. 2014. Berhujan-hujan Ria ke Lava Bantal Berbah. Blog Tulisan Aris, diakses pada 21 Februari 2017.

DetikNews. 2010. BPPTK: Kecil Kemungkinan Gunung Purba Nglanggeran Meletus Kembali. Detik.com 11 November 2010, diakses pada 21 Februari 2017.

Bronto dkk. 2014. Longsoran Raksasa Gunung Api Merapi Yogyakarta-Jawa Tengah. Jurnal Geologi dan Sumberdaya Mineral, vol. 15 no. 4 November 2014, hal. 165-183.

Verdiansyah & Hartono. 2016. Alterasi Hidrotermal Dan Mineralisasi Logam Berharga Di Cekungan Yogyakarta, Sebuah Pemikiran dari Kehadiran Sistem Hidrotermal Daerah Godean. Seminar Nasional ke-3 Fakultas Teknik Geologi Universitas Padjadjaran, Bandung.

Gerhana Matahari dan Kisah Kenabian: Yusya’ AS dan Rasulullah SAW

Gerhana kerap membawa kisah menarik yang mengiringi kehadirannya. Baik pada peristiwa Gerhana Matahari maupun Gerhana Bulan. Baik di masa kini, apalagi masa silam kala kehadiran gerhana kerap dianggap sebagai pertanda dari langit. Termasuk dalam peristiwa sejarah yang menentukan nasib sebuah negeri.

Di masa Yunani Kuno, kota Syracuse dikepung rapat oleh pasukan Athena selama Perang Peloponnesia. Mereka hampir kalah. Namun sebuah titik balik tak terduga datang pada 28 Agustus 413 STU (Sebelum Tarikh Umum) saat Bulan purnama mendadak meredup, ‘robek’ dan bahkan bersalin warna menjadi merah darah sangat redup hanya dalam 2 jam setelah terbit. Pasukan Athena, yang dihinggapi tahayul, menganggap gerhana itu pertanda buruk dan memutuskan menunda serangan ke posisi-posisi pasukan Syracuse. Syracuse pun memanfaatkan kesempatan ini dengan baik, sehingga gantian mereka yang melancarkan serangan dadakan ke pasukan Athena. Athena pun hancur lebur.

Delapan belas abad kemudian kisah yang mirip pun berulang. Selagi pasukan besar Utsmaniy mengepung kota Konstantinopel, ibukota kekaisaran Romawi Timur (Byzantium), pada 22 Mei 1453 TU Bulan terbit dalam kondisi setengah ‘robek’ sebagai Gerhana Bulan Sebagian di kaki langit timur kota. Saat itu Bulan menampakkan wajahnya dengan sekitar 70 % cakram Bulan tertutupi oleh umbra Bumi. Saat itu Konstantinopel sudah dikepung pasukan Utsmaniy sebulan lamanya. Gerhana ini menerbitkan rasa takut dan merosotkan moral penduduk Konstantinopel. Apalagi tersiar legenda bahwa kejatuhan kekaisaran mereka telah lama diramalkan dan akan ditandai oleh gerhana. Benar, tujuh hari kemudian kota itu takluk dan imperium Byzantium yang pernah perkasa itu pun tinggal sejarah.

Gambar 1. Beberapa bagian tahap Gerhana Matahari, seperti yang diabadikan dalam peristiwa Gerhana Matahari Total 9 Maret 2016. Sejumlah peristiwa gerhana, termasuk Gerhana Matahari, kerap bersesuaian dengan peristiwa-peristiwa penting dalam sejarah sebuah negeri. Sumber: Sudibyo, 2016.

Gambar 1. Beberapa bagian tahap Gerhana Matahari, seperti yang diabadikan dalam peristiwa Gerhana Matahari Total 9 Maret 2016. Sejumlah peristiwa gerhana, termasuk Gerhana Matahari, kerap bersesuaian dengan peristiwa-peristiwa penting dalam sejarah sebuah negeri. Sumber: Sudibyo, 2016.

Dalam tulisan ini fenomena gerhana di masa silam dibatasi pada peristiwa Gerhana Matahari di masa kenabian, yakni di era Nabi Yusya’ AS dan Rasulullah Muhammad SAW.

Gerhana dan Legenda Berhentinya Matahari

Pertempuran menentukan itu nampaknya terjadi sekitar 32 abad silam. Ringkasnya: pasukan Bani Israil yang sedang berjuang memasuki negeri Kanaan yang dijanjikan harus berhadapan dengan pasukan suku Hivit (bagian dari sukubangsa Amorit) yang berkekuatan besar pada suatu tempat di luar kota al-Jib (Gibeon). Suku Hivit adalah orang-orang yang berbadan besar dan perkasa, yang mendiami dataran luas di sisi barat Laut Mati hingga ke pesisir Laut Tengah. Tak tanggung-tanggung, di hari itu orang-orang Hivit mengerahkan kekuatan dalam jumlah besar dari lima negara kota sekaligus, kekuatan yang sanggup menggetarkan siapapun .

Pertempuran al-Jib pun meletus hari itu hingga ke rembang petang. Dan tak ada yang mengira kalau pasukan Bani Israil ternyata berhasil mengangkangi keperkasaan pasukan Hivit yang semula dikenal tak terkalahkan. Di bawah pimpinan Yusya’, yang  merupakan seorang nabi, pasukan Bani Israil pun menghancurkan pasukan Hivit dalam pertempuran al-Jib. Jalan bagi Bani Israil untuk menancapkan kakinya di negeri Kanaan yang dijanjikan pun kian terbuka. Pertempuran ini juga mewariskan kisah legendaris, yang menuturkan Yusya’ berseru kepada Matahari dan Bulan untuk berdiam di posisinya masing-masing hingga pertempuran usai. Atau dalam kata-kata lain, inilah nabi yang menahan gerak Matahari (dan juga Bulan).

Gambar 2. Ilustrasi artistik yang menggambarkan Nabi Yusya' AS (Joshua) menghentikan Matahari di atas kota al-Jib (Gibeon) pada saat pertempuran berlangsung, menurut lukisan John Martin pada 1816 TU. Riset terbaru memperlihatkan peristiwa 'berhentinya Matahari' tersebut sesungguhnya mungkin merupakan Gerhana Matahari Cincin. Sumber: John Martin, 1816 dalam Wikipedia, 2017.

Gambar 2. Ilustrasi artistik yang menggambarkan Nabi Yusya’ AS (Joshua) menghentikan Matahari di atas kota al-Jib (Gibeon) pada saat pertempuran berlangsung, menurut lukisan John Martin pada 1816 TU. Riset terbaru memperlihatkan peristiwa ‘berhentinya Matahari’ tersebut sesungguhnya mungkin merupakan Gerhana Matahari Cincin. Sumber: John Martin, 1816 dalam Wikipedia, 2017.

Kini, kapan Pertempuran al-Jib itu terjadi nampaknya sudah bisa ditetapkan tanggalnya. Riset multidisiplin ilmu oleh tim cendekiawan Universitas Ben Gurion (Israel) yang dipimpin Hezi Yitzhak menyimpulkan Pertempuran al-Jib itu mungkin terjadi pada 30 Oktober 1207 STU (Sebelum Tarikh Umum), bertepatan dengan peristiwa Gerhana Matahari Cincin. Dan lokasi dimana pertempuran tersebut berlangsung merupakan bagian dari zona antumbra (zona yang mampu melihat bentuk cincin/anularitas pada puncak gerhana) dalam wilayah Gerhana Matahari Cincin 30 Oktober 1206 STU tersebut.

Kisah kenabian Yusya’ atau Yosua (Joshua) lebih banyak tersurat dalam alkitab Ibrani dan alkitab Kristiani Perjanjian Lama, bahkan beliau menjadi tokoh sentral Kitab Yosua di kedua alkitab tersebut. Sebaliknya al-Qur’an tidak secara eksplisit menyebut nama Nabi Yusya’ AS. Beliau hanya disebut sebagai murid Nabi Musa AS khususnya yang menyertai Nabi Musa AS selama dalam perjalanan mencari Nabi Khidir AS seperti ternyata dalam surat al-Kahfi ayat 60-62. Namun sabda Rasulullah SAW yang diriwayatkan dari Ubay ibn Ka’ab RA memastikan bahwa murid yang dimaksud dalam ayat-ayat tersebut memang sosok Nabi Yusya’ AS.

Yusya’ AS merupakan sosok kepercayaan Nabi Musa AS. Namanya mulai muncul selepas eksodusnya Bani Israil dari negeri Mesir menuju negeri Kanaan, tanah yang dijanjikan Allah SWT seperti yang diwahyukan-Nya kepada Musa AS. Begitu lolos dari kejaran Firaun dan pasukannya lewat mukjizat terbelahnya Laut Merah, Bani Israil segera beringsut melangkahkan kakinya menuju negeri Kanaan. Namun lama-kelamaan terbit rasa gentar dalam kalbu mereka seiring tersiarnya kabar bahwa negeri yang hendak mereka tuju dan taklukkan itu ternyata dihuni sukubangsa Amorit, orang-orang yang terkenal bertubuh perkasa tanpa tanding dalam setiap medan pertempuran. Rasa gentar itu kian meluap hingga akhirnya mencapai puncaknya, menjangkiti hampir semua orang. Mereka pun memutuskan untuk berhenti, enggan melanjutkan perjalanan ke negeri Kanaan meski telah dijanjikan kemenangan. Upaya Yusya’ dan Qalib untuk menyemangati mereka tiada henti tidak juga membuahkan hasil.

Akibatnya Bani Israil pun mendapat murka Allah SWT dan dihukum untuk terjebak di gurun pasir di antara negeri Mesir dan Kanaan hingga 40 tahun kemudian. Selama masa hukuman ini Yusya’ menjadi pengawal Nabi Musa AS yang setia. Sehingga menjelang wafatnya, Nabi Musa AS pun mewariskan kepemimpinan Bani Israil ke tangan Yusya’. Segera setelah menerima tampuk kepemimpinan, Yusya’ pun menjadi nabi setelah menerima wahyu Illahi yang memerintahkannya menyeberangi Sungai Yordan untuk memulai penaklukan negeri Kanaan yang telah dijanjikan-Nya. Dari kamp pasukannya di Gilgal, secara berturut-turut Yusya’ AS menggerakkan pasukannya menaklukkan negeri Ariha (Jericho) dan Ai. Selepas itu, setelah menggerakkan pasukannya diam-diam di tengah malam menempuh jarak 30 kilometer hingga tiba di perkemahan pasukan Hivit di dekat kota Yerusalem, maka Pertempuran al-Jib pun berkobar dahsyat mulai keesokan paginya.

Gambar 3. Matahari yang berbentuk menyerupai sabit dalam puncak sebuah peristiwa Gerhana Matahari Cincin, yang hanya terlihat sebagai gerhana sebagian di lokasi pemotretan. Meski dalam berawan tebal dan hampir mendung, namun bentuk sabit tersebut mudah dilihat terutama tatkala sinar Matahari berhasil menerobos sela-sela awan. Jika langit cerah, Gerhana Matahari pada puncaknya tentu lebih mudah diidentifikasi dan menarik perhatian khalayak, baik di masa kini maupun silam. Baik di masa damai maupun peperangan. Sumber: Sudibyo, 2009.

Gambar 3. Matahari yang berbentuk menyerupai sabit dalam puncak sebuah peristiwa Gerhana Matahari Cincin, yang hanya terlihat sebagai gerhana sebagian di lokasi pemotretan. Meski dalam berawan tebal dan hampir mendung, namun bentuk sabit tersebut mudah dilihat terutama tatkala sinar Matahari berhasil menerobos sela-sela awan. Jika langit cerah, Gerhana Matahari pada puncaknya tentu lebih mudah diidentifikasi dan menarik perhatian khalayak, baik di masa kini maupun silam. Baik di masa damai maupun peperangan. Sumber: Sudibyo, 2009.

Tim cendekiawan Ben Gurion tersebut tiba pada kesimpulan mengenai tanggal Pertempuran al-Jib setelah melalui pendekatan astronomi dan reinterpretasi teks ayat Yoshua 10:12. Terjemah dalam Bahasa Indonesia dari ayat tersebut adalah “…Matahari, berhentilah di atas Gibeon dan engkau, Bulan, di atas lembah Ayalon !” Namun tim cendekiawan Ben Gurion berpendapat bahwa kata Ibrani “dom (do.wm)” (yang secara tradisional diterjemahkan sebagai “berhenti”) juga bisa diterjemahkan sebagai “menjadi gelap.” Sehingga terjemahannya bisa menjadi “…Matahari, menjadi gelap di atas Gibeon dan engkau, Bulan, di atas lembah Ayalon !” Dari terjemah ini muncul kesan bahwa pada saat itu Matahari dan Bulan hadir bersamaan di langit dengan Matahari menjadi gelap.

Dari sisi astronomi ada satu peristiwa langit yang bersesuaian dengan deskripsi tersebut, yakni Gerhana Matahari. Dengan kata lain, Pertempuran al-Jib yang mengambil tempat di dekat kota Yerusalem itu nampaknya bertepatan dengan peristiwa Gerhana Matahari dengan Yerusalem dan sekitarnya menjadi bagian dari wilayah gerhana, khususnya zona umbra atau antumbra.

Tim cendekiawan Ben Gurion lantas memutuskan menggali data Gerhana Matahari masa silam, khususnya melalui basisdata badan antariksa Amerika Serikat (NASA) yang legendaris di bawah tajuk Five Millenium (-1999 to +3000) Canon of Solar Eclipse Database. Basisdata ini memuat segala peristiwa Gerhana Matahari dalam kurun 5.000 tahun mulai dari tahun 2000 STU hingga tahun 3000 TU. Selama rentang waktu tersebut Bumi kita akan mengalami 11.898 peristiwa Gerhana Matahari, yang terdiri dari 4.200 Gerhana Matahari Sebagian, 3.956 Gerhana Matahari Cincin, 3.173 Gerhana Matahari Total dan 569 Gerhana Matahari Hibrid. Tim memutuskan untuk berkonsentrasi pada rentang waktu antara 1500 STU hingga 1000 STU. Mereka mendapati bahwa dalam rentang waktu tersebut, hanya ada tiga peristiwa Gerhana Matahari yang menjadikan kota Yerusalem dan sekitarnya dilintasi zona umbra atau antumbra. Yakni satu kejadian Gerhana Matahari Total dan dua kejadian Gerhana Matahari Cincin.

Dalam rentang waktu tersebut, peristiwa Gerhana Matahari yang paling menarik adalah Gerhana Matahari Cincin 30 Oktober 1207 STU. Dari kota Yerusalem dan sekitarnya, peristiwa langit ini terjadi pada sore hari dan dapat disaksikan hampir pada seluruh tahapnya. Awal gerhana terjadi pada pukul 15:07 waktu setempat saat Matahari berkedudukan 23,0º di atas horizon barat. Anularitas gerhana, yakni periode ketampakan bentuk cincin, mulai terjadi pada pukul 16:26 waktu setempat dan berlangsung hingga 5 menit kemudian (lebih detilnya 5 menit 13 detik). Puncak gerhana terjadi pada pukul 16:28 waktu setempat dengan tinggi Matahari 7,0º di atas horizon barat. Gerhana masih berlangsung kala Matahari terbenam pada pukul 17:05 waktu setempat, karena akhir gerhana terjadi pada pukul 17:39 waktu setempat. Durasi tampak dari Gerhana Matahari ini di kota Yerusalem dan sekitarnya adalah 1 jam 58 menit.

Gambar 4. Peta zona antumbra dalam wilayah Gerhana Matahari Cincin 30 Oktober 1207 STU. Nampak zona antumbra (lebar 360 kilometer) melintasi kota Yerusalem dan lingkungan sekitarnya, termasuk lokasi pertempuran al-Jib (Gibeon). Atas dasar inilah tim cendekiawan Universitas Ben Gurion menyimpulkan bahwa Pertempuran al-Jib terjadi pada tanggal itu. Sumber: Xavier Jubier, 2017 dengan basis NASA, 2006.

Gambar 4. Peta zona antumbra dalam wilayah Gerhana Matahari Cincin 30 Oktober 1207 STU. Nampak zona antumbra (lebar 360 kilometer) melintasi kota Yerusalem dan lingkungan sekitarnya, termasuk lokasi pertempuran al-Jib (Gibeon). Atas dasar inilah tim cendekiawan Universitas Ben Gurion menyimpulkan bahwa Pertempuran al-Jib terjadi pada tanggal itu. Sumber: Xavier Jubier, 2017 dengan basis NASA, 2006.

Peristiwa Gerhana Matahari Cincin ini membuat langit sore 30 Oktober 1207 STU di kota Yerusalem dan sekitarnya meremang lebih awal dibanding hari-hari normal. Langit setempat akan mulai terasa lebih gelap pada, katakanlah, pukul 16:30 waktu setempat. Puncak gerhana ini memang tidak menjadikan kota Yerusalem dan sekitarnya menjadi gelap gulita. Namun dengan intensitas sinar Matahari yang tiba di paras Bumi setempat tinggal 5 % dari normal pada saat puncak gerhana, jelas situasinya cukup remang-remang. Puncak gerhana juga akan menyajikan panorama unik saat Matahari terlihat sebagai cincin bercahaya yang ganjil, bukan sebagai lingkaran sangat terang yang menyilaukan mata. Jelas pemandangan ganjil ini akan menarik perhatian, termasuk pada kedua belah pasukan yang sedang bertempur di medan al-Jib.

Bagaimana peristiwa Gerhana Matahari pada Pertempuran al-Jib lantas ditafsirkan sebagai peristiwa ‘berhenti’-nya Matahari di jauh kemudian hari? David Dickinson, jurnalis di Universe Today, menduga persoalannya ada pada paham geosentrisme yang mendominasi dunia hingga abad ke-16 TU. Paham tersebut bertumpu pada Bumi sebagai pusat semesta dan pusat pergerakan segala benda langit. Demikian mendalamnya dominasi paham ini sehingga dua agama besar, yakni Kristen dan Islam, pun mengadopsinya di masa itu. Gereja mengadopsi geosentrisme karena, selain menyajikan tujuh buah langit yang ditempati setiap planet (termasuk Matahari dan Bulan) dengan masing-masing langit berbentuk bola sempurna sebagai refleksi kesempurnaan ilahiah, juga karena menyediakan ruang di luar bola bintang-bintang tetap untuk lokasi surga dan neraka. Maka ‘berhenti’-nya Matahari menjadi salah satu ‘bukti’ yang menyokong paham geosentrisme.

Gerhana Pagi di Kotasuci Madinah

Peristiwa gerhana dalam kisah kenabian juga terjadi pada era lebih kemudian, yakni pada masa Rasulullah Muhammad SAW. Tepatnya hanya beberapa bulan sebelum beliau wafat. Gerhana tersebut terjadi pada hari yang sama dengan wafatnya Ibrahim, putra Rasulullah SAW yang masih bayi. Wafatnya Ibrahim yang bersamaan dengan menggelapnya langit membuat sebagian penduduk kotasuci Madinah menduga-duga bahwa kedua peristiwa itu berhubungan. Ada juga yang menduga bahwa alam raya turut berduka. Mendengar hal itu, usai memakamkan putranya Rasulullah SAW pun menjelaskan peristiwa gerhana tidaklah berhubungan dengan hidup matinya seseorang. Karena Bulan dan Matahari adalah dua dari sekian banyak tanda-tanda kekuasaan Allah SWT. Dan Umat Islam agar segera berzikir dengan menunaikan shalat gerhana tatkala menyaksikan peristiwa gerhana.

Gambar 5. Perbandingan situasi lingkungan pada saat tahap awal sebuah gerhana (kiri) dengan pada saat puncak gerhana (kanan). Kejadian ini diabadikan pada peristiwa Gerhana Matahari Total 9 Maret 2016, dimana di lokasi pemotretan di Karanganyar (Kebumen) hanya nampak sebagai gerhana sebagian. Situasi langit cerah. Peredupan semacam ini mudah dikenali khalayak ramai dalam gerhana, baik di masa kini maupun silam. Sumber: Sudibyo, 2016.

Gambar 5. Perbandingan situasi lingkungan pada saat tahap awal sebuah gerhana (kiri) dengan pada saat puncak gerhana (kanan). Kejadian ini diabadikan pada peristiwa Gerhana Matahari Total 9 Maret 2016, dimana di lokasi pemotretan di Karanganyar (Kebumen) hanya nampak sebagai gerhana sebagian. Situasi langit cerah. Peredupan semacam ini mudah dikenali khalayak ramai dalam gerhana, baik di masa kini maupun silam. Sumber: Sudibyo, 2016.

Gerhana yang terjadi pada saat wafatnya Ibrahim adalah Gerhana Matahari. Analisis astronomi, juga dengan menelaah Five Millenium (-1999 to +3000) Canon of Solar Eclipse Database memperlihatkan satu-satunya peristiwa Gerhana Matahari yang terjadi pada masa Rasulullah SAW tinggal di Madinah hingga wafatnya adalah Gerhana Matahari Cincin 27 Januari 632 TU. Kotasuci Madinah dan sekitarnya menjadi bagian dari wilayah gerhana ini, tepatnya bagian dari zona penumbranya. Sehingga yang terlihat hanyalah gerhana sebagian. Dari kotasuci Madinah dan lingkungan sekitarnya, gerhana ini akan dapat dilihat hanya dalam beberapa saat pasca terbitnya Matahari. Basisdata di atas memperlihatkan bahwa awal gerhana di kotasuci Madinah dan sekitarnya terjadi pada pukul 07:16 waktu setempat, saat Matahari hanyalah setinggi 0,9º dari horizon timur. Puncak gerhana terjadi pada pukul 08:29 waktu setempat, saat Matahari sudah setinggi 16,0º dari horizon timur.Dan gerhana berakhir pada pukul 09:54 waktu setempat kala Matahari sudah berkedudukan cukup tinggi, yakni 31,8º dari horizon timur. Persentase penutupan cakram Matahari di saat puncak gerhana mencapai 76,4 %. Sehingga intensitas sinar Matahari yang tiba di kotasuci Madinah dan sekitarnya tinggal 24 % saja dari normalnya pada saat puncak gerhana. Situasi ini jelas membuat suasana menjadi remang-remang yang mudah diindra oleh orang-orang.

Gambar 6.  Peta zona antumbra dalam wilayah Gerhana Matahari Cincin 27 Januari 632 TU. Nampak zona antumbra (lebar 70 kilometer) melintas jauh di selatan dari lokasi kotasuci Madinah. Garis kuning menandakan garis yang menghubungkan titik-titik yang mengalami Matahari terbit tepat pada saat awal gerhana. Kotasuci Madinah dan lingkungan sekitarnya hanya melihat gerhana sebagian yang dimulai hanya beberapa saat dari terbitnya Matahari. Sumber: Xavier Jubier, 2017 dengan basis NASA, 2006.

Gambar 6. Peta zona antumbra dalam wilayah Gerhana Matahari Cincin 27 Januari 632 TU. Nampak zona antumbra (lebar 70 kilometer) melintas jauh di selatan dari lokasi kotasuci Madinah. Garis kuning menandakan garis yang menghubungkan titik-titik yang mengalami Matahari terbit tepat pada saat awal gerhana. Kotasuci Madinah dan lingkungan sekitarnya hanya melihat gerhana sebagian yang dimulai hanya beberapa saat dari terbitnya Matahari. Sumber: Xavier Jubier, 2017 dengan basis NASA, 2006.

Konversi kalender memperlihatkan tanggal 27 Januari 632 TU bertepatan dengan tahun 10 H, yakni tahun terjadinya haji wada’ (haji perpisahan). Dalam haji wada’ itu Rasulullah SAW menerima sejumlah wahyu, salah satunya adalah perintah untuk menjadikan kalender Umat Islam (yang dikemudian hari dinamakan kalender Hijriyyah) sebagai kalender lunar murni, kalender yang sepenuhnya berbasis pergerakan Bulan. Sehingga setahun kalender Hijriyyah selalu terdiri dari 12 bulan tanpa ada lagi interkalasi (bulan kabisat atau bulan sisipan) yang dipraktikkan sebagai Naasi’ seperti sebelumnya.

Maka dapat disimpulkan bahwa tahun 10 H terdiri dari 12 bulan saja seperti tahun-tahun berikutnya sehingga 27 Januari 632 TU ekivalen dengan 29 Syawwal 10 H. Tarikh ath-Thabari menyebutkan Ibrahim lahir di sekitar bulan Zulhijjah 8 H, demikian halnya menurut Ibn Katsir dengan mengutip Ibn Saad. Maka pada saat wafatnya, Ibrahim berusia 21 bulan, angka yang sesuai dengan Tarikh ath-Thabari.

jib_tabel-gm-rasulullahsawSepanjang masa kenabiannya, Rasulullah SAW bersua dengan sembilan peristiwa Gerhana Matahari. Yakni empat Gerhana Matahari Total dan lima Gerhana Matahari Cincin. Lima peristiwa Gerhana Matahari terjadi tatkala Rasulullah SAW masih tinggal di kotasuci Makkah, sementara empat lainnya terjadi setelah berhijrah ke kotasuci Madinah.

Dan seluruh peristiwa gerhana tersebut menjadikan kotasuci Makkah dan Madinah hanya sebagai bagian dari zona penumbra saja. Namun dari sembilan Gerhana Matahari tersebut, kemungkinan besar hanya lima diantaranya yang benar-benar bisa diindra oleh orang-orang pada saat itu. Karena hanya kelima Gerhana Matahari inilah yang memiliki nilai persentase tutupan cakram Matahari yang cukup besar pada saat puncak gerhana terjadi. Dari kelimanya hanya satu yang terjadi pada saat Rasulullah SAW sudah tinggal di kotasuci Madinah, yakni Gerhana Matahari Cincin 27 Januari 632 TU. Sementara empat lainnya, masing-masing Gerhana Matahari Total 23 Juli 413 TU, Gerhana Matahari Cincin 21 Mei 616 TU, Gerhana Matahari Cincin 4 November 617 TU dan Gerhana Matahari Total 2 September 620 TU terjadi tatkala Rasulullah SAW masih tinggal di kotasuci Makkah.

Referensi :

Fred Espenak & Jean Meeus. 2006. Five Millenium (-1999 to +3000) Canon of Solar Eclipse Database. NASA/TP-2006-214141, Oktober 2006.

Dickinson. 2017. Ancient Annular, Dating Joshua’s Eclipse. Universe Today, 6 Feb 2017.

Gerhana Bulan 11 Februari 2017 yang Pemalu

Sabtu 11 Februari 2017 Tarikh Umum (TU) jelang Matahari terbit. Bilamana langit cerah dan anda tinggal di pulau Jawa bagian barat, atau di pulau Kalimantan bagian barat, atau di pulau Sumatra dan pulau-pulau kecil disekelilingnya, arahkan pandangan ke langit barat. Bila pandangan tak terhalang, Bulan akan nampak bertengger di atas kaki langit barat sebagai Bulan purnama. Wajahnya sesungguhnya bulat bundar penuh, namun kedudukannya yang rendah di atas kaki langit membuatnya nampak terdistorsi menjadi sedikit lonjong.

 Gambar 1. Bulan dalam peristiwa Gerhana Bulan Penumbral 16-17 September 2016, diabadikan dengan teleskop yang terangkai kamera. Secara kasat mata penggelapan wajah Bulan dalam Gerhana Bulan Penumbral sangat sulit untuk diamati. Sumber: Sudibyo, 2016.


Gambar 1. Bulan dalam peristiwa Gerhana Bulan Penumbral 16-17 September 2016, diabadikan dengan teleskop yang terangkai kamera. Secara kasat mata penggelapan wajah Bulan dalam Gerhana Bulan Penumbral sangat sulit untuk diamati. Sumber: Sudibyo, 2016.

Mulai pukul 05:34 WIB, suatu peristiwa terjadi pada Bulan. Namun secara kasat mata sangat sulit bagi anda yang tinggal di tiga lokasi tadi untuk mendeteksinya. Inilah peristiwa Gerhana Bulan Penumbral atau disebut juga Gerhana Bulan samar. Gerhana Bulan Penumbral 11 Februari 2017 merupakan gerhana yang paling awal di musim gerhana tahun 2017 TU. Dalam peristiwa Gerhana Bulan Penumbral ini, bundaran cakram Bulan akan memasuki zona bayangan tambahan (penumbra) Bumi akibat konfigurasi posisi Bulan, Bumi dan Matahari yang nyaris hampir segaris lurus dalam segala arah (syzygy) dengan Bulan di antara kedua benda langit lainnya. Meski memiliki konfigurasi yang serupa dengan peristiwa Gerhana Bulan Total maupun Gerhana Bulan Sebagian, namun masuknya cakram Bulan hanya ke dalam bayangan tambahan Bumi membuat Bulan masih tetap akan terlihat layaknya Bulan purnama. Ia masih tetap mendapatkan sinar Matahari meski intensitasnya sedikit lebih rendah dibanding seharusnya.

Seperti halnya peristiwa Gerhana Bulan pada umumnya, tidak setiap saat Bulan purnama terjadi diiringi dengan peristiwa Gerhana Bulan. Sebaliknya suatu peristiwa Gerhana Bulan pasti terjadi bertepatan dengan saat Bulan purnama. Musababnya adalah orbit Bulan yang tak berimpit dengan bidang edar Bumi mengelilingi Matahar), melainkan menyudut sebesar 5o. Hanya ada dua titik dimana Bulan berpeluang tepat segaris lurus syzygy dengan Bumi dan Matahari, yakni di titik nodal naik dan titik nodal turun. Dan dalam kejadian Bulan purnama, mayoritas terjadi tatkala Bulan tak berdekatan ataupun berada dalam salah satu dari dua titik nodal tersebut. Inilah sebabnya mengapa tak setiap saat Bulan purnama kita bersua dengan Gerhana Bulan.

Gerhana Bulan Penumbral 11 Februari 2017 hanya terdiri dari tiga tahap. Tahap pertama adalah awal gerhana/kontak awal penumbra (P1) yang akan terjadi pada pukul 05:34 WIB. Sementara tahap kedua adalah puncak gerhana, yang bakal terjadi pada pukul 07:33 WIB dengan magnitudo saat puncak adalah 0,99. Artinya pada saat itu 99 % cakram Bulan tertutupi oleh bayangan tambahan Bumi. Dan yang terakhir adalah tahap akhir gerhana/kontak akhir penumbra (P4) yang bakal berlangsung pada pukul 09:53 WIB. Dengan demikian durasi Gerhana Bulan Penumbral 11 Februari 2017 ini adalah 4 jam 19 menit.

Gambar 2. Peta wilayah Gerhana Bulan Penumbral 11 Februari 2017 dalam lingkup global. Perhatikan Indonesia dibelah oleh garis P1 , yakni garis dimana awal gerhana bertepatan dengan terbenamnya Bulan (terbitnya Matahari). Dengan demikian hanya sebagian Indonesia berkesempatan menyaksikan Gerhana Bulan yang samar ini, sepanjang langit cerah. Sumber: NASA, 2016.

Gambar 2. Peta wilayah Gerhana Bulan Penumbral 11 Februari 2017 dalam lingkup global. Perhatikan Indonesia dibelah oleh garis P1 , yakni garis dimana awal gerhana bertepatan dengan terbenamnya Bulan (terbitnya Matahari). Dengan demikian hanya sebagian Indonesia berkesempatan menyaksikan Gerhana Bulan yang samar ini, sepanjang langit cerah. Sumber: NASA, 2016.

Wilayah gerhana bagi Gerhana Bulan Penumbral 11 Februari 2017 melingkupi hampir segenap paras Bumi, kecuali sebagian kecil benua Asia (yakni Asia timur jauh dan sebagian Asia tenggara) serta segenap benua Australia. Sebagian besar Indonesia tidak tercakup ke dalam wilayah gerhana ini. Secara umum Indonesia terbelah menjadi dua oleh garis P1, yakni himpunan titik-titik yang mengalami momen terbenamnya Bulan bersamaan dengan awal gerhana. Garis P1 tersebut melintas melalui pulau Kalimantan dan pulau Jawa. Hanya daerah-daerah yang berada di sebelah barat dari garis P1 inilah yang berkesempatan tercakup ke dalam wilayah Gerhana Bulan Penumbral 11 Februari 2017. Dengan demikian wilayah gerhana ini di Indonesia hanya mencakup sebagian pulau Jawa (propinsi Banten, DKI Jakarta, Jawa Barat dan Jawa Tengah), sebagian pulau Kalimantan (propinsi Kalimantan Barat dan Kalimantan Tengah) serta segenap pulau Sumatra dan pulau-pulau kecil disekitarnya. Di daerah-daerah tersebut, Gerhana Bulan Penumbral ini pun takkan bisa dinikmati secara utuh karena terjadi kala Bulan sedang dalam proses terbenam. Maka dapat dikatakan peristiwa Gerhana Bulan ini merupakan gerhana yang pemalu, karena Bulan tak menampakkan seluruh tahap gerhananya.

Sesuai dengan namanya, Gerhana Bulan Penumbral ini nyaris tak dapat dibedakan dengan Bulan purnama biasa. Butuh teleskop dengan kemampuan baik untuk dapat melihatnya. Untuk memotretnya, butuh kamera dengan pengaturan (setting) yang lebih kompleks dan bisa disetel secara manual. Dalam puncak gerhana Bulan samar, jika cara pengaturan kamera kita tepat maka Bulan akan terlihat menggelap di salah satu sudutnya. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :

Bagi Umat Islam ada anjuran untuk menyelenggarakan shalat gerhana baik di kala terjadi peristiwa Gerhana Matahari maupun Gerhana Bulan. Tapi hal tersebut tak berlaku dalam kejadian Gerhana Bulan Penumbral ini. Musababnya gerhana Bulan samar dapat dikatakan mustahil untuk bisa diindra dengan mata manusia secara langsung. Padahal dasar penyelenggaraan shalat gerhana adalah saat gerhana tersebut dapat dilihat, seperti dinyatakan dalam hadits Bukhari, Muslim dan Malik yang bersumber dari Aisyah RA. Pendapat ini pula yang dipegang oleh dua ormas Islam terbesar di Indonesia, yakni Nahdlatul ‘Ulama dan Muhammadiyah. Keduanya sepakat saat gerhana tak bisa disaksikan (secara langsung), maka shalat gerhana tak dilaksanakan.

Bom, Ledakan dan Dampak Gelombang Kejutnya

Sebuah peledak rakitan dalam rupa bom pressure cooker atau lebih populer dengan nama bom panci ditemukan polisi dalam penggerebekan di Bekasi (propinsi Jawa Barat) pada Sabtu 10 Desember 2016 Tarikh Umum (TU) lalu. Peledak atau bom rakitan tersebut mendapat nama demikian karena desain dasarnya menggunakan panci tekan (pressure cooker) sebagai wadah untuk muatan primer dan muatan sekundernya. Muatan primernya disebut-sebut sebagai bahan peledak TATP (tri aseton tri peroksida) dengan berat 3 kilogram. Sementara muatan sekundernya disebut-sebut berupa paku dan bola-bola kecil (gotri).

Hanya muatan primer yang telah dipasang dalam wadahnya. Untuk menghindari kemungkinan terjadinya ledakan yang tak terduga saat barang-barang bukti ini diangkut dari lokasi penemuan, maka tim penjinak bahan peledak memutuskan untuk memusnahkan muatan primer dengan meledakkannya melalui teknik tertentu. Sehingga dampak ledakannya disebu-sebut tinggal seperlima dari normal.  Begitupun penduduk di sekitar lokasi hingga radius 500 meter dari titik pemusnahan harus dievakuasi untuk menghindari hal-hal yang tak diinginkan. Polisi menyebut peledak rakitan ini bisa berdampak hingga radius 300 meter dari titik ledak.

Gambar 1. Penampakan bom pressure cooker yang disita polisi dalam penggerebekan di Bekasi. Nampak panci tekan yang akan menjadi wadah. Nampak juga muatan primer berupa TATP seberat 3 kg (warna merah bata) yang telah dipasangi detonator (terlihat dari kabel yang menjulur). Sumber: Detikcom, 2016.

Gambar 1. Penampakan bom pressure cooker yang disita polisi dalam penggerebekan di Bekasi. Nampak panci tekan yang akan menjadi wadah. Nampak juga muatan primer berupa TATP seberat 3 kg (warna merah bata) yang telah dipasangi detonator (terlihat dari kabel yang menjulur). Sumber: Detikcom, 2016.

Benarkah demikian ?

Low Explosive dan High Explosive

Pada dasarnya ledakan adalah peristiwa pelepasan energi dalam jumlah cukup besar pada volume ruang yang sempit dalam tempo singkat. Energi tersebut bisa berupa energi kimia, energi gas yang tertekan atau bahkan energi nuklir. Ledakan bisa disebabkan oleh pembakaran bahan peledak ataupun bahan mudah meledak, baik secara sengaja maupun tidak. Salah satu dampak dari ledakan adalah penjalaran gelombang kejut (shockwave), yakni tekanan kuat tak-kasat mata yang melebihi tekanan atmosfer setempat sebagai hasil dorongan amat sangat kuat gas-gas maupun plasma produk ledakan ke udara sekitar. Namun sebelum mengupas lebih lanjut perihal gelombang kejut, mari kita tinjau dulu klasifikasi bahan peledak.

Berdasarkan kecepatan awal pelepasan gelombang kejutnya, atau disebut sebagai kecepatan peledakan, maka dikenal ada dua kelompok bahan peledak. Kelompok pertama adalah kelompok bahan peledak berdaya tinggi atau high explosive. Ia mendapatkan namanya karena memiliki kecepatan peledakan yang lebih besar ketimbang kecepatan suara di udara. TATP tergolong kelompok ini karena kecepatan peledakannya sebesar 5,3 km/detik atau setara 19.000 km/jam. Segolongan dengannya adalah TNT (trinitrotoluena) yang legendaris. Selain menjadi standar untuk mendeskripsikan energi ledakan, TNT juga digunakan sebagai bahan racikan campuran untuk membentuk bahan-bahan peledak berdaya tinggi lainnya (misalnya Composition B, Composition H6, Amatol dan lain-lain). TNT memiliki kecepatan peledakan 6,9 km/detik atau setara 24.800 km/jam. Sebagai pembanding, kecepatan suara di paras Bumi pada suhu dan tekanan standar adalah ‘hanya’ 340 meter/detik atau setara 1.200 km/jam. Peristiwa ledakan yang disebabkan oleh kelompok bahan peledak ini memiliki nama khas sendiri: detonasi.

Kelompok kedua adalah kelompok bahan peledak berdaya rendah atau low explosive. Dinamakan demikian karena memiliki kecepatan peledakan yang lebih kecil ketimbang kecepatan suara. Kelompok bahan peledak ini memiliki kecepatan peledakan mulai dari hanya beberapa sentimeter per detik hingga maksimum 400 meter/detik. Bubuk petasan/mercon dan juga kembang api tergolong ke dalam kelompok ini. Seperti halnya detonasi, peristiwa ledakan yang disebabkan kelompok bahan peledak ini pun memiliki nama tersendiri: deflagrasi.

Ledakan melepaskan energi yang secara praktis disebut energi ledakan. Ia dinyatakan dalam TNT dengan standar 1 kilogram TNT = 4,18 Mega Joule (MJ). Jika energinya sangat besar, ia bisa juga dinyatakan dalam ton TNT (1 ton TNT = 1.000 kilogram TNT), kiloton TNT (1 kiloton TNT = 1.000 ton TNT) atau bahkan megaton TNT (1 megaton TNT = 1.000.000 ton TNT). Ledakan terbesar yang pernah diproduksi umat manusia hingga saat ini adalah yang dilakukan eks-Uni Soviet dalam ujicoba nuklir Tsar Bomba (RDS-220) pada 30 Oktober 1961 TU. Ujicoba bom hidrogen yang diledakkan di ketinggian 4.000 meter dpl (dari paras air laut rata-rata) itu melepaskan energi 50 megaton TNT. Atau 2.500 kali lipat lebih dahsyat ketimbang bom Hiroshima.

Gambar 2. Panorama pasca ledakan Oklahoma (Amerika Serikat) 19 April 1995 TU. Nampak kawah yang tercipta saat peledak rakitan berbasis pupuk dan minyak dengan kandungan energi setara 1,8 ton TNT didetonasikan. Hempasan gelombang kejut membuat sebagian gedung federal ambruk dan menelan banyak korban jiwa. Sumber: Associated Press, 1995.

Gambar 2. Panorama pasca ledakan Oklahoma (Amerika Serikat) 19 April 1995 TU. Nampak kawah yang tercipta saat peledak rakitan berbasis pupuk dan minyak dengan kandungan energi setara 1,8 ton TNT didetonasikan. Hempasan gelombang kejut membuat sebagian gedung federal ambruk dan menelan banyak korban jiwa. Sumber: Associated Press, 1995.

Dalam persepsi umum, bahan peledak berdaya tinggi memiliki komposisi rahasia dan hanya digunakan di kalangan militer. Itu tidak sepenuhnya benar. Banyak bahan peledak berdaya tinggi yang bisa dirakit sendiri di luar kalangan militer. Dalam aksi pengeboman gedung federal Oklahoma (Amerika Serikat) pada 19 April 1995 TU, dua tersangka yakni Timothy McVeigh dan Terry Nichols menggunakan bahan yang umum dijumpai di lingkungan pertanian: pupuk dan minyak. Peledak rakitan berdaya ledak tinggi seberat 2,2 ton yang ditaruh pada truk sewaan itu sungguh dahsyat sehingga tatkala diledakkan melepaskan energi setara 1,8 ton TNT. Ledakan dahsyat itu menewaskan 169 orang dan melukai lebih dari 680 orang. Ia juga memproduksi kawah selebar 8 meter dengan kedalaman 2 meter di titik ledakan, sementara gelombang kejutnya merusak segala bangunan hingga radius 500 meter dari titik ledakan.

Dampak Gelombang Kejut

Bagaimana jika sebuah peledak berdaya tinggi didetonasikan di udara bebas?

Gambar 3. Berbagai dampak hempasan gelombang kejut dari Peristiwa Chelyabinsk 2013 di kota Yemanzhelinsk (Russia). Mulai dari kaca-kaca jendela yang pecah dan jendela yang rusak (A, B, D, E, F, H), kerangka jendela yang terdorong masuk (C ) hingga eternit yang jebol (G). Semua kerusakan ini disebabkan oleh pelepasan energi tinggi mirip-ledakan dari sebutir asteroid kecil yang memasuki atmosfer Bumi menjadi boloid. Sumber: Popova dkk, 2013.

Gambar 3. Berbagai dampak hempasan gelombang kejut dari Peristiwa Chelyabinsk 2013 di kota Yemanzhelinsk (Russia). Mulai dari kaca-kaca jendela yang pecah dan jendela yang rusak (A, B, D, E, F, H), kerangka jendela yang terdorong masuk (C ) hingga eternit yang jebol (G). Semua kerusakan ini disebabkan oleh pelepasan energi tinggi mirip-ledakan dari sebutir asteroid kecil yang memasuki atmosfer Bumi menjadi boloid. Sumber: Popova dkk, 2013.

Gelombang kejut adalah dampak yang paling dominan. Gelombang kejut senantiasa terbentuk saat bahan peledak apapun, baik berdaa rendah apalagi berdaya tinggi, diledakkan. Gelombang kejut juga senantiasa terbentuk dalam peristiwa mirip-ledakan. Baik mulai dari kecelakaan industri seperti misalnya dalam peristiwa ledakan kompleks pelabuhan Tianjin (Cina) pada 12 Agustus 2015 TU hingga letusan eksplosif gunung berapi seperti misalnya Letusan Merapi 2010. Bahkan peristiwa langit pun kerap melepaskan gelombang kejut, misalnya saat jatuhnya meteor di Chelyabinsk (Russia) pada 13 Februari 2013 TU.  Dalam kejadian yang disebut Peristiwa Chelyabinsk 2013 itu sebanyak 7.320 bangunan pecah kaca-kaca jendelanya akibat hempasan gelombang kejut. Pecahan kaca-kaca jendela itu beterbangan dan melukai orang-orang didekatnya. Akibatnya 1.613 orang terpaksa mendatangi rumah sakit dan klinik terdekat dengan luka-luka iris akibat hantaman pecahan kaca.

Gelombang kejut merupakan tekanan tak-kasat mata yang diekspresikan oleh nilai tekanan-lebih atau overpressure, yakni selisih antara tekanan gelombang kejut terhadap tekanan atmosfer standar (diidealkan pada paras air laut rata-rata). Nilai overpressure itu bisa mulai dari sekecil 200 Pascal (Pa, 1 Pa = 1 Newton/meter2) dengan dampak minimal yakni hanya menggetarkan kaca jendela dan berkemungkinan meretakkan kisi-kisinya. Namun bisa juga sebesar 1 MegaPascal (1.000.000 Pa) dengan dampak sangat mematikan bagi manusia, karena mampu memutilasi tubuh kita tanpa ampun. Bahkan jika overpressure-nya mencapai 2,5 MegaPascal, dampaknya sanggup melubangi tanah dan menciptakan cekungan kawah yang khas. Semua bergantung kepada jarak terhadap titik ledakan. Karena overpressure berbanding terbalik dengan bertambahnya jarak dan dalam kondisi tertentu dapat berbanding terbalik dengan kuadrat jarak dari titik ledakan.

Menjalarnya gelombang kejut menyebabkan titik-titik yang dilintasinya memiliki tekanan udara lebih besar dibanding lingkungan sekitar untuk sesaat. Dan perbedaan tekanan udara menyebabkan berhembusnya angin. Maka penjalaran gelombang kejut pun diikuti dengan hembusan angin dri arah titik ledakan menuju keluar. Kuat lemahnya hembusan angin akibat ledakan bergantung kepada besar kecilnya overpressure yang terjadi. Maka ia bisa berhembus dengan kecepatan hanya 13 km/jam (pada overpressure 200 Pascal). Namun bisa juga secepat lebih dari 2.200 km/jam (pada overpressure 1 MegaPascal).

Gambar 4. Contoh dampak gelombang kejut pada medium dari dua peristiwa berbeda, yakni ujicoba detonasi 500 kilogram TNT Angkatan Laut AS dalam Operation Sailor Hat 1965 di pulau Kahoolawe, Hawaii (AS) dan bencana industrial terbakarnya pabrik amonium perklorat PEPCON di Nevada (AS) pada 4 Mei 1988 TU yang menghasilkan peristiwa mirip-ledakan dengan energi 1 kiloton TNT. TL = titik ledak, 1 = medium (air atau tanah) yang tepat dilintasi gelombang kejut, 3 = medium yang belum terlintasi gelombang kejut. Perhatikan perubahan fisis pada medium sebelum dan saat terlintasi gelombang kejut. Sumber: AL AS, 1965 & Discovery Channel, 2010.

Gambar 4. Contoh dampak gelombang kejut pada medium dari dua peristiwa berbeda, yakni ujicoba detonasi 500 kilogram TNT Angkatan Laut AS dalam Operation Sailor Hat 1965 di pulau Kahoolawe, Hawaii (AS) dan bencana industrial terbakarnya pabrik amonium perklorat PEPCON di Nevada (AS) pada 4 Mei 1988 TU yang menghasilkan peristiwa mirip-ledakan dengan energi 1 kiloton TNT. TL = titik ledak, 1 = medium (air atau tanah) yang tepat dilintasi gelombang kejut, 3 = medium yang belum terlintasi gelombang kejut. Perhatikan perubahan fisis pada medium sebelum dan saat terlintasi gelombang kejut. Sumber: AL AS, 1965 & Discovery Channel, 2010.

Bagaimana dampak ledakan bom panci dengan muatan primer TATP 3 kilogram?

Mari kita simulasikan. Beberapa referensi menyebut kandungan energi TATP setara dengan 80 hingga 90 % TNT. Artinya TATP 3 kilogram sama dahsyatnya dengan TNT 2,4 hingga 2,7 kilogram. Mari keluarkan TATP dari wadahnya (panci) dan singkirkan muatan sekundernya (paku dan bola-bola besi), lalu detonasikan di udara terbuka. Penjalaran gelombang kejutnya dan dampaknya (dalam hal overpressure) dapat ditelaah melalui persamaan-persamaan simultan yang disajikan Kinney & Graham dalam buku  “Explosive Shocks in Air”  (1985). Persamaan-persamaan yang sama banyak diterapkan dalam mengevaluasi dampak gelombang kejut dari peristiwa ledakan entah dari peledak konvensional berdaya tinggi bahkan hingga peledak nuklir. Disini diasumsikan bahwa energi ledakan TATP tersebut setara dengan 3 kg TNT. Asumsi lainnya, tinggi titik ledakan adalah 1 meter dari permukaan tanah, atau sesuai dengan ketinggian pinggang rata-rata manusia dewasa saat berdiri.

Hasilnya menakjubkan. Dalam jarak 18 meter, gelombang kejut ledakan TATP 3 kilogram menghasilkan overpressure sebesar 8.500 Pascal yang dampaknya sanggup menjatuhkan orang yang sedang berdiri tegak. Tentu saja orang tersebut akan jatuh berdebam dengan keras sehingga diikuti patah tulang di berbagai tempat dan kemungkinan gegar otak. Dalam jarak 25 meter, overpressure-nya masih sebesar 5.500 Pascal sehingga kaca jendela masih bisa dibikin remuk. Yang lebih mengerikan, pecahan-pecahan kaca jendela ini lantas akan dilesatkan dengan kecepatan tinggi laksana peluru hingga jarak 54 meter. Orang yang berada dalam rentang jarak ini bisa mengalami luka tembus laksana diberondong peluru. Hingga jarak 82 meter, kaca jendela masih bisa dibikin pecah sebagian akibat overpressure sebesar 1.200 Pascal. Orang yang kebetulan berada didekatnya bisa mengalami luka iris. Bahkan hingga jarak 432 meter, tepi kaca jendela masih bisa dibikin retak akibat overpressure sebesar 200 Pascal.

Bagaimana dampak bagi manusia? Uraian di atas memperlihatkan bahwa jika anda berdiri hingga jarak 25 meter dari titik ledak, maka anda kemungkinan besar akan tewas. Baik akibat terjatuh sangat keras (terlebih bila tak segera ditangani) maupun dihujani remukan kaca dalam jumlah tak kepalang banyaknya yang melesat secepat peluru, bak tembakan mitraliur. Jika anda berdiri pada jarak 50 meter, anda masih akan terluka (sedang hingga berat) akibat semburan puing-puing. Dan di jarak 82 meter, anda masih akan terluka (ringan) khususnya jika berada di dekat jendela.

Gambar 5. Dampak gelombang kejut ledakan TATP 3 kg yang dipilih untuk lima overpressure dengan dampak tertentu. Titik ledakan hipotetik ini diasumsikan berada di satu titik di sebelah utara landasan pacu FASI di kawasan pantai Parangtritis, Bantul (DI Yogyakarta). Sumber: Sudibyo, 2016.

Gambar 5. Dampak gelombang kejut ledakan TATP 3 kg yang dipilih untuk lima overpressure dengan dampak tertentu. Titik ledakan hipotetik ini diasumsikan berada di satu titik di sebelah utara landasan pacu FASI di kawasan pantai Parangtritis, Bantul (DI Yogyakarta). Sumber: Sudibyo, 2016.

Harus digarisbawahi bahwa perhitungan ini dikerjakan dalam kondisi ideal dengan titik ledak di udara terbuka tanpa muatan sekunder. Jika paku dan bola-bola besi turut disertakan, maka saat TATP meledak gelombang kejutnya akan mendorong paku dan bola-bola besi tersebut melesat dengan kecepatan tinggi seperti peluru. Mereka bisa melesat hingga sejauh 100 meter dari titik ledak. Jelas bahwa jika ada seseorang yang berdiri dalam jarak kurang dari 100 meter dari titik ledak. ia bisa mengalami luka tembus dan luka tusuk layaknya terkena peluru senapan. Tingkat keparahan luka jenis ini lebih tinggi ketimbang luka akibat tembusan atau irisan pecahan kaca. Maka dapat dikatakan bahwa penambahan muatan sekunder membuat daya hancur bom ini lebih besar.

Muatan sekunder dalam bentuk potongan-potongan logam acap dijumpai dalam persenjataan militer. Misalnya dalam sistem rudal antipesawat udara, yang memandaatkan potongan-potongan logam dengan geometri tertentu untuk bisa menembus badan pesawat. Sehingga pesawat sasaran akan tetap rusak berat dan rontok dibobol oleh potongan-potongan logam berkecapatn tinggi meskipun rudal meledak dalam jarak tertentu, katakanlah 10 meter, dari pesawat tersebut. Jenis rudal seperti inilah yang tempo hari menjatuhkan pesawat Boeing-777 Malaysia Airlines penerbangan MH17 di Ukraina timur.

Dapat dilihat bahwa dengan hasil perhitungan dampak gelombang kejut, pernyataan polisi bahwa peledak rakitan berbasis TATP 3 kilogram itu bisa berdampak hingga radius 300 meter dari titik ledak tidaklah berlebihan. Jadi bom pressure cooker itu  bukan bom mainan, bukan mercon. Dampaknya bisa mengerikan. Apalagi jika muatan sekundernya, seperti paku maupun gotri, turut dipasang. Sebab saat detonasi terjadi, muatan sekunder itu akan melejit secepat peluru. Jarak 150 meter dari titik ledak pun belum tentu aman.

Perbandingan

Sebagian kita ada yang mencoba membandingkan kemampuan TATP 3 kilogram ini dengan bom kelas berat seperti MOAB dan FOAB. Tujuannya untuk mendiskreditkan temuan peledak rakitan di Bekasi. Disebut bahwa dampak ledakan bom MOAB adalah 150 meter sementara dampak ledakan FOAB mencapai 300 meter. Sementara peledak rakitan Bekasi juga bisa berdampak 300 meter, padahal bobotnya jauh lebih kecil ketimbang MOAB (11 ton TNT) maupun FOAB (44 ton TNT). Satu hal yang mustahil, begitu kesimpulan mereka.

Bagaimana perbandingan yang sebenarnya?

Bom MOAB (Mother of All Bombs) memiliki nama resmi GBU-43/B Massive Ordnance Air Blast. Ini adalah jenis bom pintar atau bom yang dipandu untuk menuju ke sasaran tertentu tanpa penggerak aktif (GBU = guided bomb unit) yang juga berfungsi sebagai bom psikologis, senjata untuk meratakan lahan berhutan dan bom pemusnah ladang ranjau. Amerika Serikat (AS) mengembangkan bom kelas berat berbobot 10.300 kilogram dengan bahan peledak Composition H6 seberat 8.500 kilogram ini pada 2003 TU sebagai pengganti dari bom sejenis (yang lebih ringan) yakni BLU-82 Daisy Cutter. Saat ini dalam gudang senjata militer AS hanya tersedia 15 unit bom MOAB .

Dengan kandungan energi 11 ton TNT, bom MOAB memiliki blast radius 150 meter. Blast radius adalah radius dimana kerusakan berat dan kerusakan total akibat hempasan gelombang kejut ledakan terjadi. Dalam blast radius inilah pepohonan di hutan akan tumbang, dan ranjau-ranjau yang ditanam pada ladang ranjau akan meledak akibat overpressure hebat (sebesar 21.700 Pascal).

Sementara bom FOAB (Father of All Bombs) dikembangkan oleh militer Russia sejak 2007 TU dengan nama resmi ATBIP (Aviation Thermobaric Bomb of Increased Power). Ini juga merupakan bom pintar dan bom psikologis yang berpinsip termobarik (memanfaatkan oksigen di udara) dengan bobot 9.000 kilogram. Dengan kandungan enerfi 44 ton TNT, bom kelas berat ini memiliki blast radius 300 meter. Berbeda dengan MOAB, saat ini tersedia 100 buah bom FOAB dalam arsenal militer Russia sekaligus menjadikannya bom non nuklir terkuat yang pernah ada. Baik bom MOAB maupun FOAB memiliki kesamaan, yakni tak satupun yang pernah digunakan dalam medan pertempuran.

Gambar 6. Perbandingan dampak gelombang kejut antara ledakan TATP 3 kg, MOAB (11 ton TNT) dan FOAB (44 ton TNT). Perbandingan dibatasi pada blast radius dan dampak yang memecahkan kaca jendela. Titik ledakan hipotetik ini diasumsikan berada di dalam kawasan dataran pantai Ambal, Kebumen (Jawa Tengah). Sumber: Sudibyo, 2016.

Gambar 6. Perbandingan dampak gelombang kejut antara ledakan TATP 3 kg, MOAB (11 ton TNT) dan FOAB (44 ton TNT). Perbandingan dibatasi pada blast radius dan dampak yang memecahkan kaca jendela. Titik ledakan hipotetik ini diasumsikan berada di dalam kawasan dataran pantai Ambal, Kebumen (Jawa Tengah). Sumber: Sudibyo, 2016.

Bagaimana dampak gelombang kejut produk ledakannya? Perhitungan pada bom MOAB dengan asumsi titik ledak setinggi 1 meter dan ledakan di udara terbuka memperlihatkan ledakan bom ini menciptakan blast radius hingga jarak 150 meter dari titik ledak. Lebih jauh lagi, ia sanggup menjatuhkan seseorang yang berdiri sejauh 276 meter dari titik ledak. Gelombang kejutnya juga masih bisa meremukkan kaca jendela pada jarak 376 meter dari titik ledak. Kian jauh lagi, gelombang kejutnya juga masih mampu menyebarkan puing-puing hingga sejauh 821 meter dari titik ledak. Bahkan gelombang kejutnya masih sanggup meretakkan kaca jendela yang terletak sejauh 6.670 meter dari titik ledak.

panci-tabelHal serupa berlaku juga pada bom FOAB. Hanya harus digarisbawahi bahwa bom termobarik memproduksi gelombang kejut dengan durasi lebih lama ketimbang bom non-termobarik. Sehingga radius dampak gelombang kejut ledakan bom termobarik akan lebih besar. Ini terlihat dari blast radius-nya. Perhitungan dampak gelombang kejut bom FOAB dengan asumsi titik ledak setinggi 1 meter dan ledakan di udara terbuka memperlihatkan blast radius-nya (yakni overpressure 21.700 Pascal) hingga sejauh 240 meter dari titik ledak. Tetapi dlam praktiknya blast radius bom FOAB adalah sebesar 300 meter. Sehingga terdapat faktor multiplikasi (pengali) sebesar 1,25. Dengan mempertimbangkan hal ini maka dapat diperhitungkan bahwa seseorang yang berdiri sejauh 548 meter dari titik ledak akan jatuh terhempas dengan keras. Gelombang kejut masih berkemampuan meremukkan kaca jendela pada jarak 745 meter dari titik ledak. Gelombang kejut juga masih mampu menyebarkan puing-puing hingga sejauh 1.629 meter dari titik ledak. Dampak terlemahnya, yakni retaknya kaca jendela akibat paparan gelombang kejut, akan terjadi hingga jarak 13.214 meter dari titik ledak.

Baik bom MOAB maupun FOAB tak pernah dipakai dalam medan pertempuran. Namun ada peledak rakitan yang hampir sama dahsyatnya yang pernah didetonasikan pada masa silam. Datanglah ke Beirut (Lebanon) pada 1983 TU, negeri indah pada masa Kahlil Gibran namun dirobek-robek kesumat nan kisut  antara tahun 1975 hingga 1990 TU. Sedemikian dalam angkara yang membara sehingga pernah pada satu masa penduduk Beirut menyimpan stok granat dalam jumlah lebih banyak ketimbang payung. Di tengah-tengah kekacauan inilah pada 23 Oktober 1983 TU pagi sebuah truk berbobot 19 ton melaju di kompleks bandara internasional Beirut. Ia bergerak ke arah Hilton Beirut, nama tak-resmi bagi markas Batalyon ke-1 Marinir ke-8 Amerika Serikat yang menjadi bagian dari pasukan penjaga perdamaian internasional di Lebanon. Setelah memaksa masuk ke dalam kompleks dengan menerjang kawat berduri yang mengelilingi markas, truk berhenti tepat di lobi gedung bertingkat 4 tersebut. Pengemudinya, bagian dari milisi Hezbollah, lantas menekan tombol maut.

Gambar 7. Kepulan asap tebal membumbung tinggi dari kompleks markas Batalyon ke-1 Marinir ke-8 Amerika Serikat sesat setelah dihantam detonasi peledak rakitan termobarik dengan energi setara 9,5 ton TNT. Secara keseluruhan 255 orang tewas akibat ledakan ini. Sumber; US Marine Corps, 1983.

Gambar 7. Kepulan asap tebal membumbung tinggi dari kompleks markas Batalyon ke-1 Marinir ke-8 Amerika Serikat sesat setelah dihantam detonasi peledak rakitan termobarik dengan energi setara 9,5 ton TNT. Secara keseluruhan 255 orang tewas akibat ledakan ini. Sumber; US Marine Corps, 1983.

Ledakannya sungguh dahsyat. Peledak rakitan termobarik itu melepaskan energi setara 9,5 ton TNT, ledakan non-nuklir terbesar sepanjang sejarah sejak berakhirnya Perang Dunia 2. Ledakan itu menciptakan kawah selebar 10 meter. Seluruh bagian truk tersebut hilang menguap tak berbekas, kecuali blok mesinnya saja. Bangunan Hilton Beirut pun dibikin remuk bertumpuk, laksana diangkat ke udara untuk kemudian dibanting sangat keras ke tanah. 242 orang didalamnya  yang terdiri dari 220 Marinir, 18 pelaut, 3 tentara dan 1 sipil sontak meregang nyawa, sementara 128 orang lainnya mengalami luka-luka berat. Di antara korban luka-luka, 13 diantaranya akhirnya tewas. Sehingga secara keseluruhan jumlah korban tewas mencapai 255 orang. Inilah korban jiwa terbesar yang dialami Marinir AS semenjak pertempuran Iwo Jima (Januari 1945 TU) dalam Perang Dunia 2. Detonasi peledak rakitan inilah faktor utama yang mendorong Ronald Reagan, Presiden AS saat itu, untuk menarik mundur seluruh pasukannya dari Lebanon tanpa terkecuali.

Referensi :

Amelia. 2016. Ini Penampakan Bom Panci yang Diamankan Polisi di Bintara Bekasi. Detik.com, diakses 10 Desember 2016.

Painter. 2007. The Forensic Analysis of Triacetone Triperoxide (TATP) Precursors and Synthetic Byproducts. Tesis. Florida: Dept. of Science, College of Sciences, University of Central Orlando.

Kinney & Graham. 1985. Explosive Shocks in the Air. Springer-Verlag, New York, 2nd edition.

Gempa di Swarnadwipa bagian Utara, Bumi Tanah Rencong yang Tercabik (Tektonik)

Getaran itu datang tanpa persiapan, tanpa ada peringatan. Selagi azan Shubuh bersahut-sahutan berkumandang di bumi tanah rencong bagian timur pada Rabu pagi 7 Desember 2016 Tarikh Umum (TU), sebuah getaran sangat keras mengguncang Kabupaten Pidie Jaya dan sekitarnya pada pukul 05:04 WIB. Getaran keras tersebut, yang berlangsung selama sekitar 20 detik, adalah getaran terkeras yang pernah dirasakan daratan ujung utara pulau Sumatra itu dalam tiga tahun terakhir. Tepatnya sejak peristiwa Gempa Aceh Tengah 2013 silam. Stasiun-stasiun pengukur gempa di sebagian besar penjuru Bumi pun dengan riuh mencatat getaran dari swarnadwipa tersebut.

Gambar 1. Lokasi episentrum Gempa Pidie Jaya 2016 menurut rilis awal BMKG serta USGS dan GFZ dalam peta struktur pulau Sumatra bagian utara. Sumber: Barber & Crow, 2005 dengan penambahan oleh Sudibyo, 2016.

Gambar 1. Lokasi episentrum Gempa Pidie Jaya 2016 menurut rilis awal BMKG serta USGS dan GFZ dalam peta struktur pulau Sumatra bagian utara. Sumber: Barber & Crow, 2005 dengan penambahan oleh Sudibyo, 2016.

Berselang beberapa hari kemudian kita mencermati dengan pilu dampak Gempa Pidie Jaya 2016 ini, demikian ia bisa dinamakan. Berdasarkan data yang dihimpun Badan Penanggulangan Bencana Daerah (BPBD) Pidie Jaya, tercatat 101 orang tewas. Sementara korban luka-luka tercatat sebanyak 724 orang. Kerugian material tak kepalang banyaknya. Tercatat 105 buah bangunan tempat tinggal atau pertokoan yang ambruk, disamping ada 10.534 buah rumah yang rusak. Tercatat pula sebanyak 55 buah masjid ikut roboh, demikian halnya 1 unit sekolah dan 1 bangunan RSUD Pidie Jaya. Sebanyak 11.142 orang dipaksa mengungsi. Selain itu tak kurang dari 14.000 meter jalan raya dibikin rusak, disamping 50 buah jembatan juga dibikin retak-retak.

Angka-angka tersebut hanyalah sementara, tetap terbuka kemungkinan untuk meningkat lagi. Dengan angka sementara ini pun, Gempa Pidie Jaya 2016 telah menabalkan dirinya sebagai gempa paling mematikan di propinsi Aceh dalam 12 tahun terakhir, tepatnya semenjak malapetaka gempa akbar Sumatra-Andaman 26 Desember 2004 yang memilukan.

Parameter

Pusat Gempa Bumi dan Tsunami Badan Meteorologi Klimatologi dan Geofisika (BMKG) pada awalnya menempatkan Gempa Pidie Jaya 2016 sebagai gempa kuat dengan magnitudo 6,4 dengan kedalaman sumber sangat dangkal, yakni hanya 10 kilometer. Posisi episentrumnya adalah 121 kilometer di sebelah tenggara kota Banda Aceh. Sementara lembaga sejenis di mancanegara, yakni United States Geological Survey (USGS) National Earthquake Information Center melansir gempa ini juga memiliki magnitudo 6,4  dengan sumber sedalam 17 kilometer dengan episentrum 92 kilometer sebelah tenggara Banda Aceh. Pada dasarnya setiap gempa bumi tektonik dengan kedalaman sumber kurang dari 30 kilometer merupakan gempa dangkal.

Belakangan baik USGS maupun BMKG merevisi besaran magnitudo dan kedalaman sumbernya. Dalam versi BMKG, Gempa Pidie Jaya 2016 memiliki magnitudo 6,5 dengan sumber sedalam 15 kilometer. Posisi episentrumnya juga direvisi menjadi 105 kilometer sebelah tenggara kota Banda Aceh. Sementara dalam versi USGS, magnitudo gempanya juga direvisi menjadi 6,5 dengan kedalaman sumber menjadi tinggal 8 kilometer. Sangat dangkal. Sebaliknya posisi episentrum versi USGS relatif tak berubah banyak.

Gambar 2. Distribusi episentrum gempa-gempa susulan dalam Gempa Pidie Jaya 2016 yang direkam stasiun pengamat gempa Indonesian Tsunami Early Warning Systems BMKG. Dalam 48 jam pasca gempa utama, telah terjadi 69 kali gempa susulan dengan kecenderungan jumlah gempa kian menurun dari hari ke hari. Sumber: BMKG/Daryono, 2016.

Gambar 2. Distribusi episentrum gempa-gempa susulan dalam Gempa Pidie Jaya 2016 yang direkam stasiun pengamat gempa Indonesian Tsunami Early Warning Systems BMKG. Dalam 48 jam pasca gempa utama, telah terjadi 69 kali gempa susulan dengan kecenderungan jumlah gempa kian menurun dari hari ke hari. Sumber: BMKG/Daryono, 2016.

Revisi parameter gempa adalah hal yang biasa dilakukan badan-badan seismologi dimanapun. Informasi awal sebuah gempa pada umumnya merupakan informasi sementara, yang didasarkan pada data terbatas dari stasiun seismometer (pengukur gempa) yang terbatas pula. Informasi awal ini ditujukan sebagai bagian dari peringatan dini, terutama jika sumber gempanya di laut sehingga memiliki potensi tsunami, serta untuk mengestimasi dampak kerusakan yang terkait dengan intensitas getarannya. Seiring waktu, dengan kian banyaknya data yang terkumpul dari stasiun-stasiun seismometer yang semula belum tercakup membuat parameter gempa bisa dipertajam lagi sehingga mengalami revisi.

Contoh revisi parameter gempa masa silam misalnya pada peristiwa Gempa Yogyakarta 2006. Rilis awal BMKG menempatkan episentrum Gempa Yogyakarta 2006 di dasar Samudera Indonesia (Indian Ocean), sementara rilis awal USGS memosisikannya di pantai Parangtritis. Kedua lokasi tersebut merupakan bagian dari sesar Opak nan legendaris. Namun setelah sejumlah seismometer tambahan dipasang pascagempa di kawasan Yogyakarta-Bantul-Gunungkidul guna memonitor gempa-gempa susulan dan parameternya, diketahui bahwa episentrum Gempa Yogyakarta 2006 berada di daratan. Yakni di sisi barat Kabupaten Gunung Kidul. Survei pergeseran tanah melalui sistem pemosisian global (GPS/global positioning system) dan teknik interferometri radar berbasis satelit (InSAR/interferometry synthetic apperture radar) di kemudian hari memastikan bahwa episentrum Gempa Yogyakarta 2006 memang ada di daratan, tepatnya di sesar Oya yang paralel namun berada 10 kilometer di sisi timur sesar Opak. Berkaca pada pengalaman tersebut, maka revisi parameter Gempa Pidie Jaya 2016 sejatinya bukanlah hal yang aneh.

Gambar 3. Sumber Gempa Yogyakarta 2006 di lembah sungai Oya, ekspresi paras bumi dari sesar Oya yang sebelumnya tak dikenal. Lokasi ini didasarkan atas analisis distribusi gempa-gempa susulan, pengukuran deformasi permukaan berbasis GPS dan analisis interferometri radar.  Sebelumnya rilis awal lembaga-lembaga seperti BMKG dan USGS menempatkan sumber gempa ini di sesar Opak, 10 km sebelah barat sesar Oya. Sumber: Tsuji dkk, 2009 digambar ulang oleh Sudibyo, 2015.

Gambar 3. Sumber Gempa Yogyakarta 2006 di lembah sungai Oya, ekspresi paras bumi dari sesar Oya yang sebelumnya tak dikenal. Lokasi ini didasarkan atas analisis distribusi gempa-gempa susulan, pengukuran deformasi permukaan berbasis GPS dan analisis interferometri radar. Sebelumnya rilis awal lembaga-lembaga seperti BMKG dan USGS menempatkan sumber gempa ini di sesar Opak, 10 km sebelah barat sesar Oya. Sumber: Tsuji dkk, 2009 digambar ulang oleh Sudibyo, 2015.

Gempa Pidie Jaya disebabkan oleh patahnya segmen batuan sepanjang sekitar 30 kilometer dengan lebar sekitar 15 kilometer secara mendadak. Begitu patah, ia melenting (bergeser mendadak) sejauh rata-rata 80 sentimeter. Pelentingan tersebut memiliki arah menuju ke salah satu dari dua kemungkinan: barat daya (strike menuju azimuth 243 derajat) atau tenggara (strike menuju azimuth 147 derajat). Lentingan yang melibatkan segmen batuan yang cukup luas itu menyebabkan terlepasnya energi. Yang merambat sebagai gelombang gempa bumi saja diprakirakan mencapai 85 kiloton TNT, atau 4 kali lipat lebih hebat ketimbang letusan bom nuklir Hiroshima.

Mirip Gempa Yogyakarta 2006 ?

Kombinasi sumber gempa yang sangat dangkal dan besarnya pelepasan energi membuat Gempa Pidie Jaya 2016 ini menghasilkan getaran yang sangat merusak. Getaran terkeras memiliki intensitas 8 MMI (modified mercalli intensity), tingkat getaran yang sanggup merubuhkan banyak bangunan di suatu pemukiman di Indonesia. Getaran 8 MMI terutama dirasakan di paras Bumi yang tepat berada di atas sumber gempa dan area sekitarnya. Segenap Kabupaten Pidie, Kabupaten Pidie Jaya dan kota Sigli diguncang oleh getaran berintensitas  7 MMI, yang tergolong getaran sangat keras. Getaran 7 MMI adalah jenis getaran yang sanggup meruntuhkan bangunan khususnya yang bermutu rendah. Kota Banda Aceh diguncang oleh getaran dengan intensitas 5 MMI. Ini adalah jenis getaran yang cukup kuat untuk dirasakan oleh semua orang dan sanggup membuat orang-orang yang  sedang tidur menjadi terbangun, namun belum cukup kuat untuk merusak bangunan. Sementara sisa propinsi Aceh lainnya digoyang oleh getaran berintensitas 4 MMI, yang tergolong getaran ringan.

Gambar 4. Salah satu desa yang terkena dampak Gempa Pidie Jaya 2016, yakni desa Paru Keude kec. Bandar Baru kab. Pidie Jaya. Distribusi kerusakan bangunan telah dipetakan dengan pesawat udara nir awak (PUNA/drone) hasil kerjasama BIG, BNPB dan sejumlah lembaga. Sumber: BIG/Hasanudin Z Abidin, 2016

Gambar 4. Salah satu desa yang terkena dampak Gempa Pidie Jaya 2016, yakni desa Paru Keude kec. Bandar Baru kab. Pidie Jaya. Distribusi kerusakan bangunan telah dipetakan dengan pesawat udara nir awak (PUNA/drone) hasil kerjasama BIG, BNPB dan sejumlah lembaga. Sumber: BIG/Hasanudin Z Abidin, 2016

USGS melalui PAGER (Prompt Assessment of Global Earthquake for Response) memprakirakan sekitar 4,78 juta jiwa tinggal di daerah yang merasakan dampak getaran dari Gempa Pidie Jaya 2016 ini mulai dari getaran berintensitas 4 MMI ke atas. Diantara jumlah tersebut, 371 ribu jiwa diantaranya tinggal di daerah yang merasakan getaran sangat keras dengan intensitas 7 MMI. Dan pemuncaknya, 179 ribu jiwa merasakan getaran berintensitas 8 MMI yang menghancurkan. Kota-kota seperti Sigli dan Meureudu dihajar dengan getaran 7 MMI, sementara kota-kota seperti Bireun, Lhokseumawe dan Banda Aceh merasakan getaran setingkat lebih rendah yakni 6 MMI. Dengan karakteristik semacam ini maka  peluang ambruknya bangunan-bangunan yang menelan korban jiwa dan kerugian material pun terbuka lebar. USGS memprakirakan terdapat peluang 44 % jatuhnya korban jiwa hingga 10 orang dan peluang 38 % untuk jorban jiwa hingga 100 orang. Sementara untuk kerugian material, peluangnya adalah 52 % untuk kerugian hingga Rp 130 milyar.

Gambar 5. Peta intensitas guncangan dan distribusi populasi penduduk setempat (berdasar USGS Landscan 2005) serta daftar kota-kota tertentu yang mengalami getaran (pada intensitas tertent) akibat Gempa Pidie Jaya 2016. Disajikan oleh USGS PAGER. Sumber: USGS, 2016.

Gambar 5. Peta intensitas guncangan dan distribusi populasi penduduk setempat (berdasar USGS Landscan 2005) serta daftar kota-kota tertentu yang mengalami getaran (pada intensitas tertent) akibat Gempa Pidie Jaya 2016. Disajikan oleh USGS PAGER. Sumber: USGS, 2016.

Dalam beberapa hal Gempa Pidie Jaya 2016 mirip dengan peristiwa Gempa Yogyakarta 2006 silam. Diantaranya dalam hal magnitudonya, dimana Gempa Pidie Jaya 2016 memiliki magnitudo momen 6,5 atau hanya sedikit di atas Gempa Yogyakarta 2006 yang bermagnitudo momen 6,4. Juga dalam hal kedalaman sumbernya, dimana kedua gempa sama-sama merupakan gempa dangkal. Kedua gempa juga memiliki sumber yang berdekatan dengan sebuah kota.

Kemiripan lainnya mungkin dalam hal moletrack. Pada gempa bumi tektonik dengan sumber dangkal atau sangat dangkal, pelentingan yang terjadi salam sumber gempanya umumnya akan muncul di paras Bumi tepat di atas sumber gempa sebagai retakan-retakan berpola yang disebut moletrack. Moletrack menjadi indikasi dari surface rupture sebuah gempa bumi tektonik dangkal, sebagai cerminan dari sumber gempa yang ada dibawahnya. Bagaimana dengan Gempa Pidie Jaya 2016 in?  Simulasi yang dikerjakan Aditya Gusman, salah satu peneliti gempa bumi di Indonesia, menunjukkan Gempa Pidie Jaya 2016 mungkin menyebabkan pergeseran permukaan tanah sebesar maksimum 5 sentimeter secara vertikal dan juga 5 sentimeter secara horizontal. Ini pergeseran yang kecil, sehingga mungkin tidak menghasilkan moletrack. Meski untuk memastikan ada tidaknya surface rupture  Gempa Pidie Jaya 2016 masih diselidiki lewat survei lapangan.

Gambar 6. Contoh moletrack yang menandai surface rupture sebuah sumber gempa tektonik dangkal, dalam hal ini adalah kejadian Gempa ganda Sumatra 6 Maret 2007 yang magnitudonya hampir sama dengan Gempa Pidie Jaya 2016. Moletrack ini terletak di lintasan sesar besar Sumatra pada segmen Sumani yang berada di Kasiak (Sumatra Barat). Dari moletrack ini diketahui bahwa lokasi di latar depan (ditandai dengan panah ke kiri) telah mengalami pergeseran mendatar 30 cm bersamaan dengan penurunan (subsidens) 20 cm. Sumber: Daryono dkk, 2012.

Gambar 6. Contoh moletrack yang menandai surface rupture sebuah sumber gempa tektonik dangkal, dalam hal ini adalah kejadian Gempa ganda Sumatra 6 Maret 2007 yang magnitudonya hampir sama dengan Gempa Pidie Jaya 2016. Moletrack ini terletak di lintasan sesar besar Sumatra pada segmen Sumani yang berada di Kasiak (Sumatra Barat). Dari moletrack ini diketahui bahwa lokasi di latar depan (ditandai dengan panah ke kiri) telah mengalami pergeseran mendatar 30 cm bersamaan dengan penurunan (subsidens) 20 cm. Sumber: Daryono dkk, 2012.

Pertanyaan awamnya, bagaimana gempa ini bisa terjadi? Dan pelajaran apa yang bisa diambil Indonesia darinya?

Teriris

Bukalah aplikasi ataupun program komputer geografis yang populer dari apapun gawai (gadget) anda, seperti Google Maps maupun Google Earth. Bukalah peta pulau Sumatra dan perbesar di bagian ujung utara swarnadwipa ini. Pilih moda peta berupa satellite, kemudian lanjutkan dengan medan. Akan dapat kita lihat betapa kompleksnya tatanan tektonik di sini. Andaikata bumi tanah rencong dapat berkata-kata dan bermain media sosial, ia akan memasang status  “rumit.”

Gambar 7. Estimasi deformasi pada paras bumi di lokasi dan sekitar sumber Gempa Pidie Jaya 2016 secara mendatar/horizontal (kiri) maupun vertikal (kanan). Nampak jika model sumber gempanya berorientasi tenggara-barat laut, maka di kota Sigli dan sekitarnya terjadi pergeseran mendatar hingga 5 cm dan pada saat yang sama juga mengalami pengangkatan sebesar 5 cm pula. Disimulasikan oleh Aditya Gusman. Sumber: Gusman, 2016.

Gambar 7. Estimasi deformasi pada paras bumi di lokasi dan sekitar sumber Gempa Pidie Jaya 2016 secara mendatar/horizontal (kiri) maupun vertikal (kanan). Nampak jika model sumber gempanya berorientasi tenggara-barat laut, maka di kota Sigli dan sekitarnya terjadi pergeseran mendatar hingga 5 cm dan pada saat yang sama juga mengalami pengangkatan sebesar 5 cm pula. Disimulasikan oleh Aditya Gusman. Sumber: Gusman, 2016.

Ujung utara Swarnadwipa dibentuk oleh aktivitas tiga lempeng tektonik yang berbeda. Di sebelah barat ada lempeng India yang merupakan lempeng laut (oseanik) sehingga berat jenisnya lebih tinggi. Lempeng India mengalasi sebagian dasar Samudera Indonesia (Indian Ocean) dan dulu sempat dikira sebagai satu kesatuan dengan lempeng Australia (yang mengalasi sebagian dasar Samudera Indonesia dan membentuk benua Australia). Belakangan disadari bahwa lempeng India dan lempeng Australia adalah dua lempeng yang berbeda dan saling terpisah, yang salah satunya tecermin dari peristiwa gempa ganda Samudera Indonesia 11 April 2012 (magnitudo 8,6 dan 8,2). Sementara di sisi timur bertengger lempeng Sunda, bagian dari lempeng Eurasia. Lempeng Sunda adalah lempeng yang mengalasi kepulauan Indonesia bagian barat.

Terjepit di tengah-tengah lempeng India dan lempeng Sunda di ujung swarnadwipa adalah lempeng Burma, yang mendapat popularitasnya karena bencana gempa akbar Sumatra-Andaman 26 Desember 2004 (magnitudo 9,3) silam. Lempeng Burma  merupakan lempeng mikro karena ukurannya yang kecil, hanya mencakup segenap Kepulauan Andaman, Kepulauan Nicobar, sebagian Laut Andaman dan bagian barat propinsi Aceh. Lempeng mikro Burma semula adalah bagian dari lempeng Eurasia. Namun subduksi lempeng India terhadap lempeng Eurasia di tempat yang sekarang menjadi busur kepulauan Andaman dan Nicobar menyebabkan terbitnya salah satu gejala khas tektonik lempeng, yakni pembentukan cekungan busur belakang (back-arc). Subduksi membuat kerak bumi di bagian belakang busur kepulauan Andaman dan Nicobar, yakni di sisi timurnya, menipis sehingga membentuk cekungan yang tergenangi air laut.

Gambar 8. Peta struktur ujung utara pulau Sumatra yang kompleks, sebagai hasil interaksi nan rumit antara lempeng India, lempeng Sunda dan lempeng mikro Burma. Interaksi ini menyebabkan terbentuknya sejumlah sesar aktif di daratan, yang bakal menjai sumber gempa potensial mendatang. Sumber: Natawidjaja, 2006.

Gambar 8. Peta struktur ujung utara pulau Sumatra yang kompleks, sebagai hasil interaksi nan rumit antara lempeng India, lempeng Sunda dan lempeng mikro Burma. Interaksi ini menyebabkan terbentuknya sejumlah sesar aktif di daratan, yang bakal menjai sumber gempa potensial mendatang. Sumber: Natawidjaja, 2006.

Lama-kelamaan di tengah cekungan ini terbentuk sesar-sesar turun sebagai retakan panjang, tempat meluapnya cairan panas sangat kental dari lapisan selubung yang membentuk lempeng baru di kedua sisinya. Inilah pusat pemekaran lantai samudera.  Sehingga Laut Andaman pada hakikatnya adalah bayi samudera baru yang masih sangat muda, serupa dengan misalnya Laut Merah di Timur Tengah. Jika proses pemekaran ini berlanjut terus, maka dalam berjuta-juta tahun mendatang Laut Andaman akan bertransformasi menjadi samudera yang baru. Terbentuknya retakan dasar laut Andaman sekaligus memproduksi lempeng mikro Burma, yang mulai terpisah dari lempeng Eurasia sekitar 3 hingga 4 juta tahun silam.

Eksistensi ketiga lempeng tektonik tersebut membuat bumi tanah rencong tercabik-cabik, ibarat kue yang telah dibelah-belah pisau tektonik. Banyak sesar aktif berkembang di sini. Sesar utama adalah sistem sesar besar Sumatra, yang dahulu disebut sesar Semangko. Sesar besar Sumatra adalah sesar aktif sepanjang 1.900 kilometer yang membentang mulai dari kawasan Selat Sunda di selatan hingga Laut Andaman di utara, ‘membelah’ pulau Sumatra menjadi dua bagian yang asimetris. Di daratan Aceh sesar besar ini bercabang dua mulai dari satu lokasi di dekat kota Takengon. Satu cabang adalah segmen Aceh (panjang 230 kilometer) yang melintas tepat di sebelah barat kota Banda Aceh. Sementara cabang kedua adalah segmen Seulimeum (panjang 120 kilometer), yang melintas di sisi timur kota Sabang dan bertanggung jawab pada terjadinya Gempa Aceh 1964 (magnitudo 7,0). Kedua cabang ini sama-sama menerus ke barat laut untuk kemudian bergabung dengan zona retakan dasar Laut Andaman.

Di luar dua cabang utama itu, dari dekat kota Takengon pula berkembang sesar lain yang berbelok ke arah utara sebagai lengkungan mirip sabit. Di sekitar kota Takengon ia dikenal sebagai sesar Takengon yang bersifat sesar naik (thrust). Sementara bagian utaranya dinamakan sesar Samalanga-Sipopok yang pergerakannya bersifat mendatar (strike slip). Lebih jauh ke selatan di sekitar kota Kutacane berkembang pula sesar yang menerus ke arah kota Lhokseumawe. Di bagian selatan sesar ini dikenal sebagai sesar Lokop-Kutacane. Dan di bagian utara dinamakan sesar Lhokseumawe.  Baik sesar Samalanga-Sipopok maupun sesar Lhokseumawe sama-sama menerus ke dasar Laut Andaman dan bergabung dengan sejumlah sesar aktif disana.  Selain sesar-sesar yang tergolong panjang tersebut, bumi tanah rencong juga masih memiliki sejumlah sesar lainnya yang relatif pendek.

Gambar 9. Citra pendahuluan interferometri radar (inSAR) Gempa Pidie Jaya 2016 dari satelit Sentinel-1A dan Sentinel-1B lewat radas ARIA automatic interferogram. Meski resolusi citranya jelek karena koherensinya sangat rendah (sehingga pola-pola interferensinya tidak terlalu jelas), namun terkesan bahwa deformasi terbesar akibat gempa ini berada di sekitar lintasan sesar Samalanga-Sipopok di dekat kota Meureudu. Sumber: Fielding, 2016.

Gambar 9. Citra pendahuluan interferometri radar (inSAR) Gempa Pidie Jaya 2016 dari satelit Sentinel-1A dan Sentinel-1B lewat radas ARIA automatic interferogram. Meski resolusi citranya jelek karena koherensinya sangat rendah (sehingga pola-pola interferensinya tidak terlalu jelas), namun terkesan bahwa deformasi terbesar akibat gempa ini berada di sekitar lintasan sesar Samalanga-Sipopok di dekat kota Meureudu. Sumber: Fielding, 2016.

Dengan bumi yang tercabik-cabik tektonik demikian rupa, maka dapat dikatakan bahwa segenap penjuru daratan tanah rencong merupakan kawasan rawan gempa. Baik pesisir barat maupun pesisir timur.  Inilah yang membedakan Aceh dengan bagian pulau Sumatra lainnya dimana kawasan rawan gempa terlokalisir hanya di pesisir barat dan di sepanjang Pegunungan Bukit Barisan tempat lintasan sesar besar Sumatra.

Pelajaran

Sumber Gempa Pidie Jaya 2016 berada di dekat lintasan sesar Samalanga-Sipopok, sehingga sejumlah pihak menduga bahwa sesar itulah yang bertanggung jawab atas peristiwa gempa tersebut. Meskipun revisi parameter gempa baik oleh BMKG maupun USGS tidak lagi menempatkan episentrumnya persis di atas lintasan sesar Samalanga-Sipopok. Analisis interferometri radar berbasis citra radar dari satelit Sentinel-1A dan Sentinel-1B yang dikerjakan Eric Fielding, cendekiawan kebumian dari California Institute of Technology (Amerika Serikat) mengindikasikan bahwa lokasi sumber gempa memang berhubungan dengan sesar Samalanga-Sipopok. Namun ini pun masih sementara. Butuh survei lapangan untuk memastikan hal tersebut. Misalnya dengan mengukur pergerakan titik-titik tertentu melalui sistem pemosisian global (GPS).

Gambar 10. Lokasi stasiun-stasiun pemantau GPS dalam jejaring AGNeSS (Aceh GPS Network for Sumatran fault System). Profile A dan profile B menunjukkan dua baris kelurusan yang sengaja ditentukan dalam pemasangan stasiun pantau tersebut. Lewat pergerakan yang direkam jejaring ini diketahui masih ada potensi gempa besar di daratan propinsi Aceh bagian selatan. Sumber: Ito dkk, 2012.

Gambar 10. Lokasi stasiun-stasiun pemantau GPS dalam jejaring AGNeSS (Aceh GPS Network for Sumatran fault System). Profile A dan profile B menunjukkan dua baris kelurusan yang sengaja ditentukan dalam pemasangan stasiun pantau tersebut. Lewat pergerakan yang direkam jejaring ini diketahui masih ada potensi gempa besar di daratan propinsi Aceh bagian selatan. Sumber: Ito dkk, 2012.

Pasca 2004 TU, muncul pertanyaan besar di kalangan cendekiawan kebumian tentang apakah tekanan sangat besar yang ditimbulkan peristiwa gempa akbar Sumatra-Andaman 26 Desember 2004 terhantar ke daratan dan memberikan beban tambahan tekanan kepada sesar-sesar aktif di ujung utara pulau Sumatra ataukah tidak. Untuk menjawabnya maka telah digelar jejaring AGNeSS (Aceh GPS Network for Sumatran fault System) sejak 2005 TU. Jejaring ini ‘menanam’ 7 stasiun pengamatan GPS kontinu dan 20 stasiun pengamatan episodik. ‘Penanaman’ stasiun-stasiun pemantauan yang rapat membuat pergerakan yang disebabkan oleh Gempa Pidie Jaya 2016 bisa diukur dan dianalisis, meski butuh waktu.

Ada dua pelajaran yang bisa diambil dari peristiwa memilukan ini. Yang pertama, bagi tanah rencong Gempa Pidie Jaya 2016 bukanlah peristiwa terakhir. Potensi gempa tektonik di daratan Aceh masih tetap terbuka. Jejaring AGNeSS menunjukkan bahwa sesar besar Sumatra di bagian selatan propinsi Aceh menunjukkan tanda-tanda potensi untuk memproduksi gempa besar (magnitudo ~7) di masa depan. Belum sesar-sesar yang lain. Sementara bagi Indonesia, gempa ini kembali menjadi pengingat bahwa banyak kawasan yang rawan gempa di negeri ini. Sekurangnya 60 % kota di Indonesia didirikan di atas sesar, sehingga kemungkinan terjadinya peristiwa gempa bumi yang menyerang kota masih tetap terbuka. Kewaspadaan dan kesiapsiagaan tetap perlu dipertahankan.

Referensi :

Barber & Crow. 2005. Sumatra, Geology Resources and Tectonic Evolution, in Chapter 4: Pre-Tertiary Stratigraphy. Geological Society, London, Memoirs, 31 pp 24-53.

USGS. 2016. M6.5 – 19 km SE of Sigli, Indonesia. USGS National Earthquake Information Center

Ito dkk. 2012. Isolating Along-strike Variations in the Depth Extent of Shallow Creep and Fault Locking on the Northern Great Sumatran Fault. Journal of the Geophysical Research, vol. 117 B06409.

Daryono, 2016, komunikasi pribadi.

Aditya Gusman, 2016, komunikasi pribadi.

Eric Fielding, 2016, komunikasi pribadi.

Kupas-Hoax: Bila Bumi Datar, Maka Arah Kiblat di Indonesia (Hampir) ke Utara

Ada sebuah riakan yang sedang mencoba menggeliat pada  semesta Indonesia dalam setahun terakhir. Riakan tersebut bertajuk Bumi datar. Ya Bumi datar, gagasan yang sejatinya telah demikian lama ditinggalkan peradaban manusia seiring melimpahnya bukti-bukti ilmiah gagasan oposannya (yakni Bumi bulat) dalam rentangan masa. Terlebih di masakini, tatkala penerbangan antariksa sudah menjadi rutinitas khususnya bagi sejumlah bangsa dan ilmu pengetahuan telah melangkah demikian jauh keluar dari Bumi kita dan lingkungannya mengeksplorasi semesta yang seakan tak bertepi. Kini kita tak lagi memahami Bumi sebagai raksasa di jagat raya yang kecil, namun hanyalah setitik debu di sudut alam raya yang demikian luas.

Gagasan Bumi datar sejatinya tak pernah benar-benar hilang meski telah tersisih sepenuhnya dari dunia ilmu pengetahuan semenjak berabad silam. Ia tetap hidup dan mendapat asupan nutrisi memadai dalam sejumlah komunitas kecil yang ultra konservatif dan cenderung antisains. Terutama pada sekte-sekte Kristiani tertentu yang tumbuh subur di daratan Amerika Serikat. Gagasan itu hidup dalam lingkungan yang dipenuhi nada konspirasi akan segala hal, termasuk perkembangan ilmu pengetahuan. Dalam lingkungan tersebut, segala perkembangan maju ilmu pengetahuan yang diraih umat manusia pada zaman ini diklaim tak lebih dari pembohongan massif hasil konspirasi para cendekiawan sejagat.

Di tahun 1893 Tarikh Umum (TU), seorang konservatif bernama Orlando Ferguson menggambar peta Bumi datar. Peta inilah yang menjadi pijakan gagasan Bumi datar pada saat ini. Bedanya, Orlando Ferguson mengklaim Bumi datar berbentuk kotak dengan cekungan Bulat di tengahnya. Sementara gagasan Bumi datar masa kini secara diam-diam menghilangkan bentuk kotak itu.

Gambar 1. Peta Bumi datar menurut Orlando Ferguson, berangka tahun 1893 TU. Dalam peta yang bernafas Kristiani ini, seperti tersurat dari kutipan ayat-ayat Injil, Bumi dianggap berbentuk persegi panjang yang masing-masing sudutnya dijaga sesosok malaikat. Namun seluruh daratan dan lautan terletak dalam cekungan berbentuk lingkaran di dalam kotak. Sumber: Ferguson, 1893 dalam arsip Library of Congress, United States.

Gambar 1. Peta Bumi datar menurut Orlando Ferguson, berangka tahun 1893 TU. Dalam peta yang bernafas Kristiani ini, seperti tersurat dari kutipan ayat-ayat Injil, Bumi dianggap berbentuk persegi panjang yang masing-masing sudutnya dijaga sesosok malaikat. Namun seluruh daratan dan lautan terletak dalam cekungan berbentuk lingkaran di dalam kotak. Sumber: Ferguson, 1893 dalam arsip Library of Congress, United States.

Revolusi teknologi informasi dengan hadirnya internet di awal abad ke-21 membuat gagasan tersebut pun mulai tersebar keluar dalam aneka rupa cerita dan multimedia. Ia pun mulai disambut oleh kalangan di luar komunitas klasiknya, termasuk sejumlah pemeluk Islam. Bagi sejumlah kalangan Muslim, gagasan Bumi datar dirasa cocok dengan terjemah literal sejumlah ayat dalam al-Qur’an. Ia juga dianggap bersesuaian dengan pendapat sejumlah penafsir (mufassirin) Qur’an era klasik. Lebih lanjut lagi, gagasan Bumi datar dianggap bisa melengkapi gagasan aneh lainnya, yakni Matahari mengelilingi Bumi, sekaligus memperkukuh sikap ‘anti hegemoni Barat’ yang selama ini digaungkan.

Gagasan Bumi datar zaman ini mendeskripsikan bahwa Bumi adalah datar. Yup datar seperti papan raksasa. Titik pusat papan adalah kutub utara, sementara kutub selatan berupa tembok es yang membatasi bidang Bumi. Tembok es ini diklaim dijaga sangat ketat oleh sejumlah negara. Sementara langit berbentuk kubah dengan ketinggian tertentu. Matahari hanya berjarak 5.000 kilometer di atas paras Bumi datar. Matahari beredar dalam lintasannya yang mengelilingi proyeksi vertikal kutub utara menuju kubah langit. Demikian halnya Bulan dan benda-benda langit lainnya. Baik Bulan maupun Matahari diklaim tidaklah berukuran besar. Bersama bintang dan benda-benda langit lainnya, Matahari dan Bulan diklaim sebagai serakan api di dalam kubah langit.

Penggambaran akan bentuk Bumi yang datar dan dilingkupi (ditutupi) oleh kubah langit itu sekilas mengingatkan kita pada dongeng mitologis rakyat Jermania tentang raksasa Ymir. Ymir sang raksasa yang kemudian tewas dan tubuhnya membentuk daratan (datar). Sedangkan batok kepalanya menjadi kubah raksasa yang menutupi daratan. Sehingga daratan itu gelap sepenuhnya. Demikian halnya deskripsi Matahari, Bulan, bintang dan benda-benda langit sebagai serakan api untuk menghias dan menerangi kubah langit, yang sekali lagi mirip sekali dengan penggambaran mitologi yang sama. Dongeng rakyat Jermania itu menuturkan, agar daratan (Bumi) tidak kegelapan maka para dewa memungut api Muspelheim dan menyebarkannya ke dalam kubah batok kepala Ymir hingga menjadi percikan-percikan.

Gambar 2. Peta Bumi datar modern. Sejatinya ini adalah peta Bumi dalam proyeksi azimuthal sama-jarak (equidistant), namun oleh pemuja model Bumi datar dibajak dan diklaim sebagai gambaran sesungguhnya tentang Bumi. Perhatikan bahwa bentuk peta ini hampir sama persis dengan Peta Ferguson 1893, hanya saja pemuja model Bumi datar modern diam-diam menghilangkan bentuk persegi panjang di luar lingkaran. Sumber: Anonim, 2016.

Gambar 2. Peta Bumi datar modern. Sejatinya ini adalah peta Bumi dalam proyeksi azimuthal sama-jarak (equidistant), namun oleh pemuja model Bumi datar dibajak dan diklaim sebagai gambaran sesungguhnya tentang Bumi. Perhatikan bahwa bentuk peta ini hampir sama persis dengan Peta Ferguson 1893, hanya saja pemuja model Bumi datar modern diam-diam menghilangkan bentuk persegi panjang di luar lingkaran. Sumber: Anonim, 2016.

Baiklah, tulisan ini hanya ingin menekankan pada satu aspek semata. Yakni bagaimana arah kiblat Umat Islam khususnya di Indonesia dan Asia tenggara pada umumnya terkait gagasan Bumi datar. Riset yang saya lakukan, yang akan dipaparkan secara ringkas di bawah ini, menyimpulkan dengan gamblang betapa Umat Islam di Indonesia harus dipaksa menghadapkan wajah lebih ke utara pada saat menunaikan ibadah shalat jika mempercayai gagasan Bumi datar. Konsekuensinya sangat serius, sebab dengan demikian maka arah kiblat di Indonesia akan dipaksa melenceng mulai dari sebesar +14° di Banda Aceh hingga sebesar +38° di Merauke. Dalam kata-kata lain, jika kita mempercayai gagasan Bumi datar maka kita harus memaksa arah kiblat untuk melenceng sejauh antara 1.800 kilometer (Banda Aceh) hingga 4.300 kilometer (Merauke) dari lokasi Ka’bah yang sesungguhnya.

Konsep Arah Kiblat Bumi Datar

Menghadap kiblat merupakan satu hal yang esensial bagi Umat Islam sejagat. Sebab merupakan bagian dari syarat sahnya shalat. Dan menghadap kiblat sangat erat hubungannya dengan arah kiblat. Dalam situasi darurat yakni tatkala seorang Muslim mengalami kondisi buta arah, terdapat keringanan untuk menentukan arah kiblat sendiri ke arah manapun yang diyakini. Namun tidak demikian halnya bila ia tahu kedudukan dan arah mataangin yang tepat di lokasinya. Teladan dan tutur dari Rasulullah SAW menjadi pegangan betapa pentingnya menentukan arah kiblat secara tepat hingga ke tingkatan tertentu.

Gambar 3. Ilustrasi peristiwa pemindahan kiblat pada saat perintah berkiblat ke Ka'bah diturunkan, dengan latar belakang citra satelit Masjid Qiblatain masakini di kotasuci Madinah (Saudi Arabia). Sebelum surat al-Baqarah ayat 144 diturunkan, Rasulullah SAW dan para sahabat menunaikan shalat Dhuhur berjamaah dengan menghadap ke Masjidil Aqsha (utara). Namun begitu ayat tersebut diturunkan, mereka beralih dengan menghadap ke Ka'bah/Masjidil Haram (selatan) tanpa membatalkan shalat. Sumber: Sudibyo, 2012.

Gambar 3. Ilustrasi peristiwa pemindahan kiblat pada saat perintah berkiblat ke Ka’bah diturunkan, dengan latar belakang citra satelit Masjid Qiblatain masakini di kotasuci Madinah (Saudi Arabia). Sebelum surat al-Baqarah ayat 144 diturunkan, Rasulullah SAW dan para sahabat menunaikan shalat Dhuhur berjamaah dengan menghadap ke Masjidil Aqsha (utara). Namun begitu ayat tersebut diturunkan, mereka beralih dengan menghadap ke Ka’bah/Masjidil Haram (selatan) tanpa membatalkan shalat. Sumber: Sudibyo, 2012.

Hal itu dapat dilihat misalnya dalam peristiwa berbaliknya Rasulullah SAW dan para sahabat di Madinah dari semula menghadap ke utara menjadi menghadap ke selatan tatkala menunaikan ibadah shalat Dhuhur bersamaan dengan turunnya ketetapan  Ka’bah adalah kiblat Umat Islam. Begitu halnya dengan perintah Rasulullah SAW kepada sahabat Wabir ibn Yuhannas al-Khuza’i RA yang hendak berangkat ke Yaman. Perintah tersebut menekankan bahwa arah kiblat bagi penduduk kota adalah dengan jalan memandang lurus ke arah Gunung Jabal Dayn tatkala mereka berdiri di Bathan, salah satu bagian kota yang saat itu berupa taman. Pengukuran modern di lokasi tersebut melalui fenomena Istiwa’ Azzam memperlihatkan kebenaran sabda Rasulullah SAW, dimana antara taman Bathan dengan Gunung Jabal Dayn dan Ka’bah tepat berada dalam satu garis lurus.

Gambar 4. Citra satelit yang menggambarkan bagaimana jika penduduk kota San'a berdiri di taman Bathan (kini Masjid Jami' al-Kabir) dengan menghadap ke arah Gunung Jabal Dayn (atas), maka pada hakikatnya mereka tepat menghadap ke Ka'bah (bawah). Garis lurus merupakan garis sepanjang 815 kilometer yang menghubungkan taman Bathan dengan Ka'bah, dimana garis tersebut tepat melintas di lokasi Gunung Jabal Dayn. Sumber: Sudibyo, 2012.

Gambar 4. Citra satelit yang menggambarkan bagaimana jika penduduk kota San’a berdiri di taman Bathan (kini Masjid Jami’ al-Kabir) dengan menghadap ke arah Gunung Jabal Dayn (atas), maka pada hakikatnya mereka tepat menghadap ke Ka’bah (bawah). Garis lurus merupakan garis sepanjang 815 kilometer yang menghubungkan taman Bathan dengan Ka’bah, dimana garis tersebut tepat melintas di lokasi Gunung Jabal Dayn. Sumber: Sudibyo, 2012.

Arah kiblat pada dasarnya merupakan arah menuju ke kiblat yang mengikuti jarak terpendek antara sebuah tempat terhadap kiblat. Pengertian arah disini sejatinya merupakan pengertian umum. Misalnya seseorang yang sedang berada di kota Bandung hendak mencari arah Jakarta. Maka arah yang logis ditempuhnya adalah ke barat laut, sebab itulah jarak terpendek antara Bandung dengan Jakarta  secara geometris. Jika ia mengambil arah yang berlawanan, yakni ke tenggara, maka ia justru mengambil jarak yang terjauh. Apabila tetap memaksakan diri ke tenggara, ia tetap akan tiba di Jakarta namun dalam waktu tempuh yang amat sangat lama. Sebaliknya jika ia mengambil arah ke utara atau ke selatan maka sampai kapanpun ia mustahil tiba di Jakarta. Karena arahnya keliru.

Dalam perspektif geometri, cara menentukan arah dari suatu titik menuju ke suatu tempat adalah dengan menggunakan segitiga. Baik di permukaan datar (seperti halnya gagasan Bumi datar) maupun di permukaan lengkung. Dari segitiga tersebut, maka arah dapat ditentukan sebagai sebuah sudut yang dihitung dari garis referensi universal (misalnya arah Utara sejati). Nilai arah diturunkan dari persamaan-persamaan trigonometri, dimana untuk permukaan datar berlaku trigonometri segitiga planar (datar) sementara pada permukaan melengkung seperti bola berlaku trigonometri segitiga bola. Cendekiawan Muslim di era keemasannya memberikan sumbangan yang sangat signifikan dalam pembentukan pengetahuan trigonometri yang kini kita pahami dalam geometri.

Gambar 5. Ilustrasi arah ke Jakarta jika hendak berangkat dari Bandung dalam peta. Panah kuning utuh menunjukkan jarak terdekat Bandung-Jakarta yang menjadikannya arah ke Jakarta paling rasional, yakni ke barat laut. Panah kuning putus-putus menunjukkan jarak terjauh Bandung-Jakarta, rute yang tidak rasional namun masih akan tiba di Jakarta dalam waktu yang sangat lama (ke tenggara). Sebaliknya kedua panah merah utuh menunjukkan arah ke Jakarta yang mustahil, karena sampai kapanpun bila mengikuti kedua arah tersebut maka takkan tiba di tempat tujuan. Sumber: Sudibyo, 2016 dengan basis Google Maps.

Gambar 5. Ilustrasi arah ke Jakarta jika hendak berangkat dari Bandung dalam peta. Panah kuning utuh menunjukkan jarak terdekat Bandung-Jakarta yang menjadikannya arah ke Jakarta paling rasional, yakni ke barat laut. Panah kuning putus-putus menunjukkan jarak terjauh Bandung-Jakarta, rute yang tidak rasional namun masih akan tiba di Jakarta dalam waktu yang sangat lama (ke tenggara). Sebaliknya kedua panah merah utuh menunjukkan arah ke Jakarta yang mustahil, karena sampai kapanpun bila mengikuti kedua arah tersebut maka takkan tiba di tempat tujuan. Sumber: Sudibyo, 2016 dengan basis Google Maps.

Dalam hal arah kiblat, baik di permukaan datar maupun melengkung, kita membutuhkan informasi tentang tiga titik. Yakni titik lokasi yang hendak kita tentukan arah kiblatnya, lalu titik Kutub Utara dan selanjutnya titik Makkah (dimana Ka’bah berada). Informasi terkait titik-titik tersebut dicerminkan oleh koordinat geografisnya. Dalam gagasan Bumi datar, masalah koordinat geografis ini lumayan ribet mengingat koordinat garis lintang dan garis bujur yang tersaji pada saat ini adalah yang bertumpu pada konsep Bumi bulat. Karena itu saya mengembangkan sistem koordinat tersendiri dengan bertumpu pada koordinat Cartesian, yang lantas dikorelasikan (disetarakan) dengan koordinat garis lintang dan garis bujur.

Dengan telah diketahuinya koordinat titik-titik Kutub Utara dan Makkah, maka tinggal berkonsentrasi pada penentuan nilai sudut arah. Dalam gagasan Bumi datar (atau secara matematis disebut model Bumi datar), karena berbasis trigonometri segitiga planar maka digunakan aturan cosinus sebagai berikut :

Gambar 6. Geometri segitiga planar, koordinat dan persamaan aturan cosinus untuk menghitung arah kiblat model Bumi datar. Sumber: Sudibyo, 2016.

Gambar 6. Geometri segitiga planar, koordinat dan persamaan aturan cosinus untuk menghitung arah kiblat model Bumi datar. Sumber: Sudibyo, 2016.

Sedangkan pada konsep Bumi bulat (atau secara matematis disebut model Bumi bulat), maka basisnya adalah trigonometri segitiga bola dengan salah satu rumus yang digunakan sebagai berikut :

Gambar 7. Geometri segitiga bola, koordinat dan persamaan untuk menghitung arah kiblat model Bumi bulat. Sumber: Sudibyo, 016 dengan basis Google Earth.

Gambar 7. Geometri segitiga bola, koordinat dan persamaan untuk menghitung arah kiblat model Bumi bulat. Sumber: Sudibyo, 016 dengan basis Google Earth.

Penelitian

Area penelitian dibatasi pada  bagian Bumi yang terletak di antara garis lintang 15° LU hingga 15° LS dan di antara garis bujur 90° BT hingga 150° BT. Area tersebut mencakup segenap Indonesia dan sejumlah negara tetangga seperti Malaysia, Brunei Darussalam, Filipina, Singapura, sebagian Papua Nugini, sebagian Thailand, sebagian Myanmar, sebagian Vietnam, sebagian India (khususnya kepulauan Andaman dan Nicobar) dan sedikit Australia bagian utara.

Nilai arah kiblat dalam penelitian ini adalah nilai sudut antara arah Utara sejati dengan arah menuju kiblat di lokasi tersebut. Nilai itu lantas dinyatakan sesuai standar astronomi sebagai nilai azimuth. Azimuth adalah busur yang ditarik dari arah Utara sejati menuju ke timur hingga tiba di posisi arah kiblat yang dimaksud. Dalam sistem ini, Utara sejati memiliki azimuth 0 (nol) atau 360, sementara Timur berazimuth 90, Selatan berazimuth 180 dan Barat berazimuth 270. Jika misalnya arah kiblat adalah 25° ke sebelah utara dari arah Barat, maka dalam sistem azimuth dinyatakan sebagai azimuth kiblat 295.

Hasil perhitungan azimuth kiblat model Bumi datar dan perbandingannya dengan azimuth kiblat model Bumi bulat untuk area penelitian dinyatakan dalam tabel berikut :fe-tabel1_perbandingan-aq

Terlihat jelas ada selisih yang signifikan antara azimuth kiblat model Bumi datar dengan azimuth kiblat dalam konsep Bumi bulat. Dimana seluruh nilai azimuth kiblat Bumi datar adalah lebih besar. Selisihnya berkisar mulai yang terkecil +8,3° di koordinat 15° LU 105° BT hingga yang terbesar  +46,3° di koordinat 15° LS 150° BT (tanda + menunjukkan nilai azimuth kiblat Bumi datar lebih besar ketimbang azimuth kiblat Bumi bulat).

Temuan menarik lainnya adalah pola pada garis-garis isokiblatnya. Garis isokiblat adalah sebuah garis yang menghubungkan titik-titik di paras Bumi yang memiliki nilai azimuth kiblat yang persis sama. Garis-garis isokiblat untuk area penelitian baik dalam model Bumi datar maupun model Bumi bulat disajikan sebagai berikut :

Gambar 8. Perbandingan garis-garis isokiblat untuk area penelitian antara model Bumi datar (atas) dan model Bumi bulat (bawah). Perhatikan kedua model menghasilkan garis-garis isokiblat dengan orientasi yang sangat berbeda. Perbedaan tersebut menjadi indikasi bahwa arah kiblat dalam model Bumi datar memiliki perbedaan dengan arah kiblat dalam model Bumi bulat. Sumber: Sudibyo, 2016.

Gambar 8. Perbandingan garis-garis isokiblat untuk area penelitian antara model Bumi datar (atas) dan model Bumi bulat (bawah). Perhatikan kedua model menghasilkan garis-garis isokiblat dengan orientasi yang sangat berbeda. Perbedaan tersebut menjadi indikasi bahwa arah kiblat dalam model Bumi datar memiliki perbedaan dengan arah kiblat dalam model Bumi bulat. Sumber: Sudibyo, 2016.

Terlihat jelas bahwa pola garis-garis isokiblat model Bumi datar jauh berbeda dengan garis isokiblat model Bumi bulat. Dalam model Bumi datar, orientasi garis isokiblatnya adalah seragam dari barat daya menuju timur laut. Sementara dalam model Bumi bulat, orientasi garis isokiblatnya bervariasi dan unik. Sebagian berorientasi dari selatan dan tenggara menuju barat laut. Sebagian lagi dari utara dan timur laut menuju barat laut. Bahkan ada yang berorientasi dari selatan menuju tenggara dan juga dari utara menuju tenggara. Keunikan ini terjadi karena Indonesia menjadi salah satu dari hanya dua tempat unik di Bumi terkait arah kiblat. Yakni karena memiliki lokasi di garis khatulistiwa yang tepat berjarak 90° (seperempat belahan bola Bumi) dari Ka’bah. Lokasi tersebut berada di Indonesia bagian timur , tepatnya di garis bujur 130° BT yang terletak di dekat pulau Waigeo dan termasuk ke dalam kawasan kabupaten Raja Ampat (Papua Barat). Satu titik istimewa lainnya terletak di muara Sungai Amazon (Brazil) di benua Amerika bagian selatan.

Selisih angka yang signifikan dalam nilai azimuth kiblat dan perbedaan mendasar orientasi garis-garis isokiblatnya memperlihatkan bahwa arah kiblat model Bumi datar adalah berbeda dibandingkan dengan arah kiblat model Bumi bulat. Dengan kata lain, meski sama-sama berkiblat ke titik yang satu dalam hal ini Ka’bah atau Masjidil Haram atau wilayah tanah haram Makkah al-Mukarramah jika mengacu pada klasifikasi kiblat (lihat Sudibyo, 2012), namun arah kiblat model Bumi datar ternyata berbeda dibanding arah kiblat model Bumi bulat. Perbedaan antara keduanya berimplikasi pada satu konsekuensi pahit: tentu ada model yang benar sementara model lainnya keliru.

Maka, mana yang benar? Apakah arah kiblat model Bumi datar? Ataukah arah kiblat model Bumi bulat?

Bumi Datar Keliru

Astronomi atau ilmu falak tak hanya sekedar berkemampuan menghasilkan model dan menyajikan perhitungan matematis terkait azimuth kiblat, baik dalam model Bumi datar maupun model Bumi bulat. Melainkan juga berkemampuan mengujinya secara empiris, berdasarkan pengukuran langsung di lapangan. Ada beragam cara guna mengukur arah kiblat bagi suatu tempat. Pada prinsipnya cara pengukuran arah kiblat adalah dengan mengukur kedudukan arah-arah mataangin tertentu di lokasi tersebut, pengukuran yang bisa dilakukan misalnya dengan bantuan kompas magnetik ataupun dengan posisi benda langit.

Pengukuran dengan kompas magnetik memungkinkan kita untuk mengetahui kedudukan arah Utara sejati, tentunya setelah faktor-faktor pengganggu dieliminasi mulai dari deklinasi magnetik hingga badai Matahari. Hal serupa juga dapat dilakukan dengan pengukuran terhadap posisi benda-benda langit. Namun dalam hal benda langit, terdapat satu keistimewaan. Yakni kita bisa memperoleh langsung nilai azimuth kiblat suatu tempat manakala benda langit tersebut tepat berada di titik zenith kiblat. Atau dalam bahasa ilmu falak, saat benda langit tersebut mengalami Istiwa’ Azzam di kiblat.

Gambar 9. Citra fenomena Istiwa' Azzam di kota Surakarta (Jawa Tengah) pada 13 Oktober 2010 TU pada radas jam Matahari bencet) di Masjid Tegalsari. Jam Matahari ini memungkinkan berkas sinar Matahari masuk ke dalam masjid sehingga proyeksinya bisa disaksikan secara langsung di lantai masjid. Nampak proyeksi cakram Matahari tepat sedang menyentuh titik proyeksi zenith Surakarta, fenomena yang hanya terjadi dua kali setahun di tempat itu. Sumber: Sugeng Riyadi, 2010.

Gambar 9. Citra fenomena Istiwa’ Azzam di kota Surakarta (Jawa Tengah) pada 13 Oktober 2010 TU pada radas jam Matahari bencet) di Masjid Tegalsari. Jam Matahari ini memungkinkan berkas sinar Matahari masuk ke dalam masjid sehingga proyeksinya bisa disaksikan secara langsung di lantai masjid. Nampak proyeksi cakram Matahari tepat sedang menyentuh titik proyeksi zenith Surakarta, fenomena yang hanya terjadi dua kali setahun di tempat itu. Sumber: Sugeng Riyadi, 2010.

Salah satu benda langit yang berkemampuan seperti itu adalah Matahari. Setiap tahun Tarikh Umum, yakni pada tanggal 28 Mei pukul 12:16 waktu Arab Saudi dan tanggal 16 Juli pukul pukul 12:26 waktu Arab Saudi, Matahari akan berkedudukan di titik zenith kotasuci Makkah. Hal itu berlaku untuk tahun basitas (tahun biasa), sementara untuk tahun kabisat tanggalnya maju sehari lebih awal. Pada saat itu sebuah benda panjang (misal tiang) yang didirikan demikian rupa di kotasuci Makkah sehingga berkedudukan tegak lurus paras air rata-rata setempat akan kehilangan bayang-bayangnya tepat pada saat Matahari berada di titik zenith Makkah.

Inilah hari tanpa bayang Matahari atau Istiwa’ Azzam di kotasuci Makkah. Fenomena menghilangnya bayang-bayang akibat Istiwa’ Azzam sejatinya tidak hanya terjadi di kotasuci Makkah saja. Namun juga dialami setiap tempat dimanapun di Bumi sepanjang terletak di antara garis lintang 23° 27′ LU hingga 23° 27′ LS. Misalnya kota Kebumen (propinsi Jawa Tengah), dengan posisinya di garis bujur 7° 40′ LS maka ia juga mengalami situasi hari tanpa bayang Matahari yang terjadi setiap tanggal 1 Maret dan 13 Oktober. Jadi tak hanya titik-titik lokasi di sepanjang garis khatulistiwa’ saja yang bisa mengalaminya seperti  tuturan urban legend.

Gambar 10. Ilustrasi fenomena Hari Kiblat, yakni Istiwa' Azzam di Ka'bah. Tatkala Matahari dalam kondisi demikian, yang terjadi dua kali setiap tahunnya, maka bayang-bayang obyek yang terpasang tegaklurus paras air rata-rata setempat akan tepat berimpit dengan azimuth kiblat setempat. Fenomena ini juga menyajikan peluang pengukuran arah kiblat dengan ketelitian sangat tinggi. Sumber: Mutoha Arkanuddin, 2006.

Gambar 10. Ilustrasi fenomena Hari Kiblat, yakni Istiwa’ Azzam di Ka’bah. Tatkala Matahari dalam kondisi demikian, yang terjadi dua kali setiap tahunnya, maka bayang-bayang obyek yang terpasang tegaklurus paras air rata-rata setempat akan tepat berimpit dengan azimuth kiblat setempat. Fenomena ini juga menyajikan peluang pengukuran arah kiblat dengan ketelitian sangat tinggi. Sumber: Mutoha Arkanuddin, 2006.

Pada saat kotasuci Makkah mengalami Istiwa’  Azzam, maka pada dimanapun tempatnya di Bumi sepanjang tersinari cahaya Matahari pada saat itu akan mengalami situasi unik. Yakni bayang-bayang benda yang didirikan tegaklurus paras air rata-rata setempat akan tepat berimpit dengan arah kiblat setempat. Inilah yang kemudian menjadi populer sebagai Hari Kiblat. Hari Kiblat adalah waktu yang istimewa karena hanya pada saat itu pengukuran kiblat dapat dilaksanakan dengan akurasi sangat tinggi dengan cara yang paling sederhana. Dengan membandingkan nilai hasil pengukuran azimuth kiblat pada saat Hari Kiblat terhadap hasil perhitungan azimuth kiblat, maka akan dapat diuji mana yang lebih tepat apakah model Bumi datar ataukah model Bumi bulat.

Berdasarkan pengukuran di dua lokasi berbeda dalam waktu yang berbeda pula, diketahui bahwa arah kiblat model Bumi bulat adalah konsisten. Untuk kota Kebumen (Jawa Tengah) misalnya, hasil perhitungan menunjukkan azimuth kiblatnya 295. Pengukuran dengan menggunakan bayang Matahari pada saat Hari Kiblat juga menghasilkan azimuth kiblat 295, dalam batas ketelitian pengukuran setelah dikomparasikan dengan kompas magnetik. Demikian halnya di Jakarta. Perhitungan menunjukkan azimuth kiblatnya juga 295. Sementara pengukuran pengukuran bayang Matahari saat Hari Kiblat juga menghasilkan azimuth kiblat 295.

Sebaliknya arah kiblat model Bumi datar sangat tidak konsisten. Perhitungan di kota Kebumen menghasilkan nilai azimuth kiblat model Bumi datar sebesar 320. Namun saat diukur dengan bayang Matahari pada saat Hari Kiblat, ternyata bayang-bayang tersebut (yang berimpit dengan arah kiblat Kebumen) jatuh pada azimuth 295. Demikian halnya di Jakarta. Perhitungan menghasilkan nilai azimuth kiblat sebesar 318, namun pengukuran bayang Matahari saat Hari Kiblat menghasilkan bayang-bayang (yang adalah arah kiblat Jakarta) yang jatuh pada azimuth 295.

Gambar 11. Diagram azimuth kiblat model Bumi datar (warna biru) dan model Bumi bulat (warna merah) untuk lokasi Kebumen (propinsi Jawa Tengah) dan Jakarta (propinsi DKI Jakarta) beserta hasil perhitungan dan pengukuran pada saat Hari Kiblat. Terlihat jelas bahwa hasil pengukuran hanya bersesuaian dengan perhitungan arah kiblat dalam model Bumi bulat. Sementara perhitungan dengan model Bumi datar memiliki selisih cukup besar dibanding hasil pengukurannya. Sumber: Sudibyo, 2016.

Gambar 11. Diagram azimuth kiblat model Bumi datar (warna biru) dan model Bumi bulat (warna merah) untuk lokasi Kebumen (propinsi Jawa Tengah) dan Jakarta (propinsi DKI Jakarta) beserta hasil perhitungan dan pengukuran pada saat Hari Kiblat. Terlihat jelas bahwa hasil pengukuran hanya bersesuaian dengan perhitungan arah kiblat dalam model Bumi bulat. Sementara perhitungan dengan model Bumi datar memiliki selisih cukup besar dibanding hasil pengukurannya. Sumber: Sudibyo, 2016.

Analisis lebih lanjut memperlihatkan bahwa untuk kota Kebumen, bayang Matahari saat Istiwa’ Azzam akan berada di azimuth 320 hanya jika posisi kotasuci Makkah jauh lebih ke utara dibanding sekarang. Demikian halnya untuk kota Jakarta. Ekstrapolasi dari azimuth 320 (Kebumen) dan azimuth 318 (Jakarta) menghasilkan titik koordinat di sekitar Laut Kaspia, berdekatan dengan negara bagian  Chechnya (Rusia). Dengan kata lain, agar hasil pengukuran bayang Matahari saat Istiwa’ Azzam bersesuaian dengan hasil perhitungan azimuth kiblat model Bumi datar untuk Jakarta dan Kebumen, maka posisi Ka’bah harus berada di sekitar Laut Kaspia. Tentu ini mustahil.  Di sisi yang lain, Matahari juga tidak mungkin mengalami Istiwa’ Azzam di atas Laut Kaspia, mengingat gerak semu tahunan Matahari membatasinya hanya bisa mengalami Istiwa’ Azzam di  antara Garis Balik Utara atau Tropic of Cancer (yakni garis lintang 23° 27′ LU) hingga Garis Balik Selatan atau Tropic of Capricorn (yakni garis lintang 23° 27′ LS) saja.

Ketidakkonsistenan ini menunjukkan bahwa ada yang keliru dalam model Bumi datar. Penelitian lanjutan, yang akan dipaparkan dalam tulisan berikutnya (tidak dalam artikel ini), juga memperlihatkan besarnya inkonsistensi model Bumi datar antara perhitungan dengan hasil pengamatan/pengukuran dalam aspek-aspek ibadah Umat Islam lainnya. Yakni dalam hal waktu shalat, hilaal dan gerhana.

Implikasi dan Kesimpulan

Kelirunya model Bumi datar dalam hal arah kiblat membawa implikasi yang jauh lebih serius. Seorang Muslim yang meyakini bahwa model Bumi datar adalah benar seharusnya juga konsisten untuk mengubah arah kiblat shalatnya menjadi lebih ke utara dibanding yang dipedomani di Indonesia saat ini.

Misalnya di Kebumen, seharusnya ia mengarah ke azimuth 320 yang berarti lebih miring atau bergeser 25° ke utara dibanding arah kiblat yang tepat. Demikian halnya di Jakarta, seharusnya ia juga mengarah ke azimuth 318 atau bergeser 23° lebih ke utara.  Namun pergeseran ini  akan berimplikasi serius. Mengingat model Bumi datar adalah keliru kala ditinjau dari persoalan arah kiblat seperti diulas di atas, maka menyengaja menghadap ke azimuth 320 (Kebumen) atau azimuth 318 (Jakarta) sama halnya dengan menyengaja menyimpang dari arah kiblat sesungguhnya. Perbuatan menyengaja untuk menyimpang dari arah kiblat tentu memiliki konsekuensi syar’i tersendiri.

Seperti apa besarnya penyimpangan atau pergeseran arah terhadap azimuth kiblat yang sebenarnya sebagai akibat penerapan model Bumi datar?  Untuk area penelitian, hal tersebut dapat dilihat dalam peta berikut :

Gambar 12. Garis-garis yang menunjukkan besarnya penyimpangan arah dari arah kiblat yang sebenarnya (dalam satuan derajat) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +14° yang terjadi di Banda Aceh (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, penyimpangan arahnya kian besar. Sumber: Sudibyo, 2016.

Gambar 12. Garis-garis yang menunjukkan besarnya penyimpangan arah dari arah kiblat yang sebenarnya (dalam satuan derajat) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +14° yang terjadi di Banda Aceh (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, penyimpangan arahnya kian besar. Sumber: Sudibyo, 2016.

Dapat dilihat dalam peta bahwa untuk Indonesia, besarnya penyimpangan arah terhadap arah kiblat yang tepat akibat aplikasi model Bumi datar  adalah bervariasi. Yang terkecil adalah +14° di Banda Aceh (propinsi Aceh). Sementara yang terbesar adalah  +39° di Merauke (propinsi Papua). Khusus di pulau Jawa, besar penyimpangan arahnya bervariasi antara +26° hingga +29°.

Saat seorang Muslim menyimpang dari arah kiblat, maka pada hakikatnya ia telah bergeser dari Ka’bah hingga jarak tertentu yang bergantung kepada besarnya nilai sudut simpangannya. Semakin besar sudut penyimpangan arahnya maka semakin jauh ia bergeser dari Ka’bah. Dalam kasus kota Jakarta, dengan sudut penyimpangan arah sebesar +23° maka titik proyeksi model Bumi datar adalah bergeser sejauh 2.500 kilometer dari Ka’bah. Untuk area penelitian, besarnya jarak antara titik proyeksi model Bumi datar dengan Ka’bah dapat dilihat dalam peta berikut :

Gambar 13. Garis-garis yang menunjukkan besarnya jarak pergeseran dari Ka'bah (dalam satuan kilometer) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +1.800 kilometer di Sabang (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, jarak pergeserannya pun kian membengkak. Sumber: Sudibyo, 2016.

Gambar 13. Garis-garis yang menunjukkan besarnya jarak pergeseran dari Ka’bah (dalam satuan kilometer) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +1.800 kilometer di Sabang (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, jarak pergeserannya pun kian membengkak. Sumber: Sudibyo, 2016.

Dapat dilihat dalam peta bahwa untuk Indonesia, jarak antara titik proyeksi model Bumi datar dengan Ka’bah juga bervariasi. Yang terkecil senilai 1.800 kilometer di Sabang (propinsi Aceh). Sementara yang terbesar adalah senilai 4.300 kilometer di Merauke (propinsi Papua). Di pulau Jawa, jarak antara titik proyeksi arah kiblat Bumi datar dengan Ka’bah bervariasi antara 2.450 kilometer hingga 3.000 kilometer. Jarak penyimpangan ini sangat besar, jauh lebih besar ketimbang jarak maksimum yang dapat ditoleransi yakni maksimum 45 kilometer dari Ka’bah (lihat Sudibyo, 2012).

Jadi, berdasarkan penelitian ini, saya mengkategorikan model Bumi datar sebagai kabar-bohong atau hoax. Model tersebut sama sekali tidak konsisten dengan aspek-aspek ibadah Umat Islam yang bertumpu pada ruang dan waktu, dalam hal ini arah kiblat.

Referensi :

Sudibyo. 2012. Sang Nabi Pun Berputar, Arah Kiblat dan Tata Cara Pengukurannya. Surakarta : Tinta Medina Tiga Serangkai.

Sugeng Riyadi. 2010. Dauroh I Ilmu Falak RHI Surakarta. Blog Pak AR Guru Fisika, 23 Oktober 2010.

Drama Schiaparelli, Mimpi Eropa dan Kutukan Mars

Piring terbang raksasa itu bernama Schiaparelli, wahana antariksa pendarat eksperimental (demonstrator) milik badan antariksa Eropa (ESA) yang baru saja mendarat di Mars pada Rabu 19 Oktober 2016 Tarikh Umum (TU) lalu. Seharusnya ia sudah mulai berpesta pora, melaporkan pandangan mata (baca: sensor-sensor elektronik) dari paras planet merah nan berdebu melalui gelombang radio yang disalurkan lewat satelit-satelit buatan aktif di Mars saat ini. Seperti Mars Express yang dikelola ESA, ataupun Mars Reconaissance Orbiter (MRO) dan Mars Atmosphere and Volatile Evolution (MAVEN), keduanya dikelola badan antariksa Amerika Serikat (NASA). Namun suka ria itu tak terjadi. Sebaliknya ia membisu dan membeku. Membuat para pengendali misi ESA di Darmstadt (Jerman) cemas tak kepalang. Bencana kutukan Mars pun membayang dalam angan.

Gambar 1. Dua wahana antariksa dalam misi ExoMars 2016 saat telah dirakit dan menjalani pengujian pada November 2015 TU di fasilitas ESA. Keduanya adalah satelit Trace Gas Orbiter (TGO) di bagian bawah dan pendarat Schiaparelli (warna keemasan) di bagian atas. Sumber: ESA, 2015.

Gambar 1. Dua wahana antariksa dalam misi ExoMars 2016 saat telah dirakit dan menjalani pengujian pada November 2015 TU di fasilitas ESA. Keduanya adalah satelit Trace Gas Orbiter (TGO) di bagian bawah dan pendarat Schiaparelli (warna keemasan) di bagian atas. Sumber: ESA, 2015.

Schiaparelli adalah bagian dari misi antariksa ExoMars (Exobiology on Mars). Inilah bagian dari mimpi benua Eropa untuk mengeksplorasi paras Mars, setidaknya dalam 13 tahun terakhir. Tepatnya setelah ESA sukses mengorbitkan satelit Mars Express dan pada saat yang sama gagal mengoperasikan wahana pendarat Beagle 2. Beagle 2 berhasil mendarat dengan lembut di dataran Isidis Planitia namun ia membuka tak sempurna sehingga mati perlahan-lahan. Misi ExoMars terbagi ke dalam dua tahap. Tahap pertama adalah ExoMars 2016 yang mencakup satelit Trace Gas Orbiter (TGO) dan pendarat Schiaparelli. Satelit TGO bertujuan  mendeteksi dan memetakan distribusi gas-gas di dalam atmosfer Mars. Terutama metana (CH4). Juga uap air (H2O), higroperoksil (HO2), nitrogen dioksida (NO2), nitrogen monoksida (N2O), asetilena (C2H2), etilena (C2H4), etana (C2H6), formaldehida (HCHO), hidrogen sianida (HCN), hidrogen sulfida (H2S), karbonil sulfida (OCS), sulfur dioksida (SO2), hidrogen klorida (HCl), karbonmonoksida (CO) dan ozon (O3). Sensitivitas detektor TGO untuk gas-gas tersebut cukup tinggi, yakni mencapai tingkat 100 bagian per milyar. Bahkan dalam kondisi tertentu memungkinkan untuk ditingkatkan menjadi 10 bagian per milyar.

Sementara pendarat Schiaparelli ditujukan untuk mendemonstrasikan keandalan teknologi terbaru Eropa guna pendaratan lembut di permukaan Mars. Pengujian ini menjadi bagian penting bagi misi tahap kedua, yakni ExoMars 2020 yang direncanakan bakal mendaratkan robot penjelajah ke Mars,

Pendarat Schiaparelli memiliki bentuk layaknya piring raksasa dengan garis tengah 240 sentimeter,  tinggi 165 sentimeter dan massa 600 kg. Pendarat ini dilengkapi 2 parasut pengerem supersonik dan 9 mesin roket retro. Semua itu ditujukan guna mengurangi kecepatan dari semula 21.000 km/jam saat memasuki lapisan teratas atmosfer Mars (ketinggian 121 km) menjadi tinggal 4 km/jam saat hampir mendarat (ketinggian 2 meter).  Terdapat penyekat panas untuk menahan panas berlebih saat Schiaparelli mulai memasuki atmosfer Mars. Penyekat panas yang sama juga berfungsi menyerap getaran (shock absorber) saat mendarat. Proses pendaratan dijadwalkan akan berlangsung hanya dalam waktu 5 menit 53 detik secara otomatis. Schiaparelli bakal bertumpu pada sistem navigasi dengan sistem pandu sirkuit tertutup yang dipasok  radar Doppler sebagai radas/instrumen altimeter (pengukur ketinggian) dan radas navigasi inersial. Sistem navigasi inilah yang hendak diujicoba ESA.

Selain radas-radas tersebut, Schiaparelli juga dilengkapi dengan radas meteorologis DREAM (Dust characterization, Risk assessment and Environmental Analyser on the Martian surface). DREAM terdiri dari pengukur kecepatan dan arah angin (anemometer), pengukur kelembaban (higrometer), pengukur tekanan (barometer), pengukur suhu permukaan (termometer), pengukur kejernihan atmosfer dan pengukur aliran listrik di atmosfer Mars. Untuk komunikasinya terdapat antenna gelombang radio UHF dengan satelit TGO sebagai relai komunikasi dengan pengendali misi di Bumi. Seluruh radas ditenagai arus listrik berdaya 100 watt. Semula ESA bekerja sama dengan badan antariksa Rusia (Roscosmos) untuk menyiapkan batere bahang berbasis radioisotop atau RTG (radioisotope thermoelectric generator). Dengan batere ini Schiaparelli bisa ‘hidup’ di Mars selama minimal setahun, tanpa perlu repot memasang panel surya. ESA nampaknya menghindari pasokan listrik dari panel surya setelah berkaca pada kegagalan Beagle 2. Namun ruwetnya aturan dalam negeri Rusia terkait ekspor bahan berbasis radioisotop membuat penggunaan batere RTG dibatalkan dan ESA berpaling pada batere konvensional. Sehingga Schiaparelli hanya akan hidup selama 2 hingga 8 sol saja (1 sol = 1 hari Mars = 24,6 jam).

Pendarat ini diberi nama Schiaparelli, mengabadikan nama Giovanni Schiaparelli (1835-1910 TU) astronom Italia yang pertama kali mencoba memetakan topografi permukaan Mars dengan teleskopnya. Dialah yang pertama kali menyebut adanya ‘canali’  yang bermakna saluran dalam bahasa Italia, namun secara keliru diterjemahkan publik luas sebagai kanal (buatan). Istilah ‘canali’ Schiaparelli kemudian memicu heboh internasional terkait potensi kehidupan cerdas menyerupai manusia di Mars.

Drama

Gambar 2. Keping-keping upperstage Breeze-M seperti teramati oleh Observatorium OASI di Brazil dalam program pemantauan peluncuran ExoMars 2016 oleh ESA. Terlihat sedikitnya 9 keping berukuran besar di sini, hasil meledaknya upperstage tersebut pasca sukses mengantar satelit TGO dan pendarat Schiaparelli ke orbit tujuan. Sumber: ESA, 2016.

Gambar 2. Keping-keping upperstage Breeze-M seperti teramati oleh Observatorium OASI di Brazil dalam program pemantauan peluncuran ExoMars 2016 oleh ESA. Terlihat sedikitnya 9 keping berukuran besar di sini, hasil meledaknya upperstage tersebut pasca sukses mengantar satelit TGO dan pendarat Schiaparelli ke orbit tujuan. Sumber: ESA, 2016.

Misi ExoMars 2016 sudan membikin drama sejak hari pertama penerbangannya. Awalnya semua terlihat berjalan mulus tatkala roket Proton-M meluncur dari landasan 200/39 di kosmodrom Baikonur pada 14 Maret 2016 TU pukul 16:31 WIB. Semua juga masih terlihat normal tatkala tingkat pertama menyala hingga kehabisan bahan bakar, lantas disusul tingkat kedua dan selanjutnya tingkat ketiga. Hingga roket pendorong teratas (upperstage) Breeze-M menyala pun, yang bertugas mendorong ExoMars 2016 melepaskan diri dari pengaruh gravitasi Bumi dan selanjutnya menempuh orbit heliosentrik (mengelilingi Matahari) menuju Mars, semua masih berjalan normal.

Bencana terjadi tatkala gabungan satelit TGO dan pendarat Schiaparelli sudah melepaskan diri dari Breeze-M. Saat jaraknya masih beberapa kilometer dan Breeze-M sedang bermanuver untuk memasuki orbit kuburan agar tak terlalu lama menjadi sampah antariksa, mendadak ia meledak. Ledakan terlihat jelas dari observatorium OASI di Brazil yang ditugasi ESA untuk mengamati peluncuran ExoMars 2016.  Malfungsi Breeze-M memang sudah terjadi berulang kali dan membikin pusing Roscosmos. Salah satu malfungsi tersebut terjadi pada 6 Oktober 2012 TU, yang membuat satelit Telkom-3 milik Indonesia terkatung-katung di langit tanpa guna.

Beruntung satelit TGO dan pendarat Schiaparelli lolos dari maut. Pengecekan sistematis memperlihatkan dampak ledakan Breeze-M sama sekali tak berpengaruh terhadap keduanya. Bersama-sama mereka mengarungi antariksa dalam perjalanan 7 bulan kalender untuk menggapai Mars. Pendarat Schiaparelli baru melepaskan diri dari satelit TGO (yang menjadi kapal induknya) pada Minggu 16 Oktober 2016 TU tatkala jaraknya tinggal 900.000 km dari planet merah. Semua juga nampak berjalan normal tatkala Schiaparelli mulai menjalani proses pendaratan. Sinyal-sinyal gelombang radio yang diterima fasilitas jaringan teleskop radio di Pune (India) memperlihatkan dengan jelas saat Schiaparelli mengembangkan kedua parasutnya. Pengembangan itu dijadwalkan terjadi pada ketinggian 11 km pada kecepatan 1.700 km/jam. Terekam juga sinyal saat Schiaparelli melepaskan diri dari penyekat panas dan parasutnya, yang dijadwalkan berlangsung pada  ketinggian 1,2 km dengan kecepatan 240 km/jam.

Tetapi setelah itu ia membisu. Analisis terhadap data rekaman pendaratan sebesar 6 megabyte yang diterima satelit TGO memperlihatkan bagaimana drama Schiaparelli, secara kasar. Schiaparelli nampaknya melepaskan parasutnya lebih awal dari rencana. Selanjutnya ia sempat menyalakan roket-roket retronya, namun hanya selama 3 detik. Setelah itu tak terdeteksi apapun. Seharusnya roket-roket retro Schiaparelli menyala selama 30 detik untuk mengurangi kecepatan dari 250 km/jam menjadi 4 km/jam. Schiaparelli membisu hanya dalam waktu 50 detik sebelum seharusnya mendarat. Tepatnya ia mendadak membisu dalam 19 detik pasca parasutnya terlepas.

Dalam pendapat saya ada tiga hal yang patut dikhawatirkan di titik ini. Pertama, Schiaparelli mungkin mengalami malfungsi pada sistem navigasinya sehingga parasut terlepas lebih awal. Atau yang kedua ia mengalami gangguan pada mesin roketnya sehingga hanya menyala 3 detik untuk kemudian meledak hingga membuat struktur Schiaparelli terpecah. Atau yang ketiga mesin roketnya mendadak macet sehingga Schiaparelli terjun bebas ke Mars dengan kecepatan yang mematikan. Butuh waktu untuk bisa memastikan apa yang sebenarnya terjadi.

Gambar 3. Gambaran simulatif saat pendarat Schiaparelli melepaskan parasut supersoniknya dan mulai menyalakan roket-roket retronya. Sejauh ini ESA mengatakan pada titik inilah masalah yang diderita pendarat Schiaparelli bermula. Sumber: ESA, 2016.

Gambar 3. Gambaran simulatif saat pendarat Schiaparelli melepaskan parasut supersoniknya dan mulai menyalakan roket-roket retronya. Sejauh ini ESA mengatakan pada titik inilah masalah yang diderita pendarat Schiaparelli bermula. Sumber: ESA, 2016.

Kutukan

Membisunya Schiaparelli sedikit menutupi sukses ESA lainnya dimana satelit TGO berhasil memasuki orbit Mars dengan selamat. Satelit itu sukses menjalani pengereman dengan menyalakan mesin roketnya selama 139 menit. Pengereman ini mengurangi 1,5 km/detik (5.400 km/jam) kecepatan satelit TGO, memungkinkannya ditangkap gravitasi Mars.

TGO pun menjalani orbit awal sangat lonjong dengan periareion (titik terdekat ke Mars) setinggi 300 km dan apoarieon (titik terjauh ke Mars) sejarak 96.000 km. Sinyal-sinyal yang diterima Pune menunjukkan satelit TGO dalam kondisi baik. Kini ia sedang menjalani pengecekan seluruh radas sebelum mulai menjalani pengereman tahap kedua dengan teknik aerobraking, yakni memanfaatkan gesekan dengan lapisan udara sangat tipis di pucuk atmosfer Mars untuk memperlambat kecepatan. Setelah aerobraking ini usai, satelit TGO akan menempati orbit sirkular setinggi 400 km di atas planet merah itu dan menjalankan tugasnya.

Masuknya satelit TGO ke orbit Mars dengan selamat membuat planet merah kini dipantau oleh enam satelit aktif sekaligus. Tiga diantaranya adalah milik Amerika Serikat yakni satelit Mars Odyssey (sejak 2001 TU), satelit MRO (sejak 2006 TU) dan satelit MAVEN (sejak 2014 TU). Dua lainnya dikelola ESA, yakni satelit TGO dan satelit Mars Express (sejak 2003 TU). Sementara satunya lagi milik India yang dikelola badan antariksa India (ISRO), yakni Mangalyaan atau Mars Orbiter Mission/MOM (sejak 2014 TU). Mars Odysses menjadi satelit aktif tertua di Mars sekaligus satelit buatan terlama yang pernah bertugas di planet lain, melampaui rekor yang sebelumnya dipegang Pioneer Venus Orbiter (14 tahun 11 bulan 27 hari).

Akan tetapi di tengah semua keberhasilan tersebut, kutukan Mars selalu membayang. Kutukan Mars adalah istilah tak resmi terkait kegagalan misi-misi antariksa yang ditujukan ke Mars, baik mengorbit (orbiter) ataupun mendarat (lander), oleh sebab yang beragam. Secara akumulatif dari awal penerbangan antariksa ke Mars, yakni misi Mars 1M no. 1 (Marsnik) yang diterbangkan eks-Uni Soviet pada 10 Oktober 1960 TU, telah ada 44 misi antariksa ke planet merah yang diselenggarakan oleh enam badan antariksa terpisah. Yakni dari Amerika Serikat, gabungan negara-negara Eropa, eks-Uni Soviet (yang dilanjutkan oleh Rusia), Jepang, Cina dan India . Dan lebih dari separuh diantaranya, yakni 25 misi (56 %) menemui kegagalan, baik total maupun parsial.

Dan dua kegagalan terakhir secara berturut-turut menimpa Eropa dan Rusia, dalam rupa Beagle 2 dan Phobos-Grunt. Jika Beagle 2 gagal beroperasi meski telah mendarat dengan baik di Mars, maka Phobos-Grunt jauh lebih tragis. Wahana antariksa hasil kerjasama Rusia dan Cina itu terperangkap pada orbit parkir 207 km x 347 km dari paras Bumi setelah diluncurkan dari kosmodrom Baikonur pada 8 November 2011 TU.  Kesalahan dalam pemrograman perangkat lunak membuat komputer Phobos-Grunt berulang-ulang mengalami restart. Sehingga mesin roket tak kunjung menyala. Selama hampir tiga bulan kemudian Phobos-Grunt tetap berada di orbit Bumi dengan ketinggian terus merendah sebelum akhirnya jatuh tersungkur di Samudera Pasifik bagian timur.

ESA memang belum mendeklarasikan pendarat Schiaparelli mengalami kegagalan, meski nampaknya hanya persoalan waktu saja untuk mengatakan hal itu. Gagalnya pendarat Schiaparelli mungkin bakal berdampak pada misi ExoMars tahap kedua (yakni ExoMars 2020). Sebab ESA dan Roscosmos harus benar-benar bisa memastikan bahwa mereka bisa mendaratkan wahana (baik pendarat maupun robot penjelajah) di paras Mars dengan lembut agar bisa bekerja sesuai rencana.

Pembaharuan : Titik Jatuh dan Penyebab

Berselang seminggu pasca menghilangnya pendarat Schiaparelli, titik dimana wahana yang malang itu mendarat telah ditemukan. Schiaparelli, atau lebih tepatnya reruntuhannya, juga telah teridentifikasi. Sementara di Bumi, ESA juga sudah mengidentifikasi dan melokalisir kemungkinan  penyebab membisunya pendarat tersebut.

Gambar 4. Dua citra satelit MRO beresolusi rendah untuk kawasan di sekitar koordinat 2,07 LS 6,21 BB di Mars yang diambil dalam dua kesempatan berbeda. Nampak bahwa dalam citra 20 Oktober 2016 TU  terdeteksi adanya bintik hitam dan bintik putih yang aneh, fitur yang tak ada dalam citra 29 Mei 2016 TU. Bintik-bintik tersebut merupakan jejak yang ditinggalkan dari proses pendaratan brutal Schiaparelli. Sumber: NASA, 2016.

Gambar 4. Dua citra satelit MRO beresolusi rendah untuk kawasan di sekitar koordinat 2,07 LS 6,21 BB di Mars yang diambil dalam dua kesempatan berbeda. Nampak bahwa dalam citra 20 Oktober 2016 TU terdeteksi adanya bintik hitam dan bintik putih yang aneh, fitur yang tak ada dalam citra 29 Mei 2016 TU. Bintik-bintik tersebut merupakan jejak yang ditinggalkan dari proses pendaratan brutal Schiaparelli. Sumber: NASA, 2016.

Lokasi dimana pendarat Schiaparelli berada sebenarnya telah terdeteksi sehari pasca ia membisu. Adalah satelit MRO yang sukses mengidentifikasinya pada saat itu meski menggunakan radas kamera beresolusi rendah yang disebut radas CTX (context camera). Pendarat tersebut sebenarnya berlabuh di titik yang tepat di lingkungan Meridiani Planum, hanya berselisih 5,4 km dari titik pusat pendaratannya. Sebelum ExoMars 2016 mengangkasa, ESA memang telah memprakirakan bahwa pendarat Schiaparelli akan berlabuh di titik manapun dalam zona pendaratannya yang berbentuk bidang ellips seluas 100 x 15 kilometer persegi di lingkungan Meridiani Planum. Titik dimana pendarat Schiaparelli akhirnya benar-benar berlabuh berjarak 54 km sebelah barat laut dari Opportunity, robot penjelajah Amerika Serikat yang mendarat pada 2004 TU silam dan hingga kini masih aktif beroperasi.

Citra satelit MRO dengan resolusi 6 meter/pixel pada  20 Oktober 2016 TU memperlihatkan reruntuhan Schiaparelli tergolek pada koordinat 2,07 LS 6,21 BB. Ia tergolek dalam sebuah bintik hitam yang mengesankan sebagai kawah dalam bidang seluas 15 x 40 meter persegi. Sekitar 1 kilometer di sebelah selatannya ditemukan bintik putih, yang diinterpretasikan sebagai sisa parasut supersonik Schiaparelli. Saat dibandingkan dengan lokasi yang sama dalam citra yang dibidik dengan radas yang sama pada 29 Mei 2016 TU diketahui bahwa bintik hitam dan  putih dan bintik samar tersebut belum ada. Sehingga dapat dipastikan bahwa fitur-fitur tersebut adalah jejak yang ditinggalkan dalam proses pendaratan Schiaparelli yang tragis.

Selanjutnya pada 26 Oktober 2016 TU, satelit MRO kembali melintas di atas lokasi pendaratan Schiaparelli. Kali ini ia mengerahkan radas terkuatnya, yakni HiRISE (High Resolution Imaging Science Experiment). Dan benar, bintik hitam tersebut merupakan reruntuhan pendarat Schiaparelli. Ia tergolek berantakan dalam kawah bergaris tengah sekitar 2,4 meter yang menyipratan material tanah Mars ke sekelilingnya. Sementara bintik putih itu memang benar parasut supersonik Schiaparelli. Ia ditemukan masih terikat dengan backshell, yakni separuh-belakang sungkup penyekat panas milik Schiaparelli. Pada saat pendarat ini melepaskan parasutnya, pada hakikatnya ia melepaskan diri dari backshell-nya yang bergaris tengah 240 cm. Sementara separuh-depan sungkup penyekat panas Schiaparelli (frontshell) ditemukan sekitar 1 km sebelah timur laut kawah.

Gambar 5. Citra satelit MRO beresolusi tinggi yang diambil pada 26 Oktober 2016 TU untuk kawasan sekitar koordinat 2,07 LS 6,21 BB di Mars. Nampak jejak kawah di lokasi jatuhnya pendarat Schiaparelli. Sekitar 1 km di selatan terdapat jejak parasut supersonik dan backshell. Sementara sekitar 1 km ke timur laut terdapat jejak frontshell. Sumber: NASA, 2016.

Gambar 5. Citra satelit MRO beresolusi tinggi yang diambil pada 26 Oktober 2016 TU untuk kawasan sekitar koordinat 2,07 LS 6,21 BB di Mars. Nampak jejak kawah di lokasi jatuhnya pendarat Schiaparelli. Sekitar 1 km di selatan terdapat jejak parasut supersonik dan backshell. Sementara sekitar 1 km ke timur laut terdapat jejak frontshell. Sumber: NASA, 2016.

Analisis ESA memperlihatkan pendarat Schiaparelli jatuh menumbuk tanah Mars dengan kecepatan sekitar 300 km/jam setelah ia terjun bebas dari ketinggian antara 2 hingga 4 km. Kawah bergaris tengah 2,4 meter yang dilihat satelit MRO konsisten dengan benturan obyek seberat 300 kg (yakni massa Schiaparelli minus backshell dan frontshell-nya) di pasir kering pada kecepatan mendekati 100 meter/detik. ESA juga memperlihatkan akar masalahnya, yakni adanya cacat perangkat lunak (bug). Cacat ini membuat komputer pendarat Schiaparelli mengira ia sudah berada di ketinggian 2 meter di atas tanah Mars, padahal sejatinya masih setinggi antara 2 hingga 4 km. Akibatnya komputer Schiaparelli mematikan mesin-mesin roket retro-nya, yang baru menyala selama 3 detik saja. Ini membuat pendarat Schiaparelli jatuh bebas dan menghunjam dengan kecepatan sekitar 300 km/jam. Tanki bahan bakar roketnya, yang berisi Hidrazin, pun masih penuh. Sehingga tatkala jatuh menumbuk tanah Mars, ada dugaan bahwa Hidrazin dalam jumlah hampir 45 kg itu pun meledak. Kombinasi tumbukan pada kecepatan tinggi dan ledakan Hidrazin membuat peluang Schiaparelli untuk bertahan pasca mendarat pun lenyap.

Analisis lebih lanjut memperlihatkan cacat perangkat lunak yang sama juga menjadi penyebab parasut supersonik Schiaparelli terlepas lebih awal. Perangkat lunak yang mengalami cacat tersebut adalah yang mengontrol altimeternya. Diduga, goyangan parasut supersonik Schiaparelli yang lebih liar ketimbang yang diantisipasi membuat perangkat lunak altimeternya kebingungan dan memasok data ketinggian yang keliru kepada komputer pendarat Schiaparelli.

ESA menggarisbawahi bahwa, kecuali dalam 1 menit terakhirnya, mayoritas misi ExoMars 2016 sejauh ini dapat dikatakan sukses. Segenap perangkat kerasnya bekerja sesuai harapan, demikian halnya mayoritas perangkat lunaknya. Dan cacat pada perangkat lunak pemandu pendaratan relatif lebih mudah diatasi.

Referensi :

Clark. 2016. Last Data from Schiaparelli Mars Lander Hold Clues to What Went Wrong. SpaceflightNow, Breaking News, 20 Oktober 2016.

Blancquaert. 2016. Mars Reconaissance Orbiter Views Schiaparelli Landing Site. European Space Agency.