Gempa dan Tsunami Donggala-Palu 2018 (2), Tsunami Tak-Biasa Itu dan Takdir Kebumian Kota Palu

Sepekan pasca peristiwa Gempa Donggala-Palu 2018, apa yang dialami pesisir Kota Palu perlahan-lahan mulai terkuak. Selagi seantero negeri berdebat akan sistem peringatan dini tsunami Indonesia yang (dianggap) memprihatinkan, kepingan demi kepingan data yang mulai terkumpul dari kawasan pesisir Teluk Palu menyajikan hasil tak terduga. Sekaligus menonjok uluhati kita.

Betapa tidak, bahkan andaikata sistem peringatan dini tsunami Indonesia bekerja sempurna dengan segenap infrastruktur pendukungnya, seperti tsunami buoy, stasiun pasangsurut, sirene menara peringatan dini tsunami hingga SMS blasting ke segenap penduduk setempat, para korban tsunami itu (mungkin) tetap takkan selamat. Takdir kebumian Kota Palu mengantar daerah itu berhadapan dengan tsunami mengerikan. Sekaligus mimpi buruk bagi sistem peringatan dini tsunami manapun. Sebab gelombang pembunuh itu adalah tsunami tak-biasa, yang datang terlalu cepat.

Data dan Pembaharuan Informasi

Badan Informasi Geospasial (BIG), yang bertanggungjawab memonitor stasiun-stasiun pasangsurut pada pelabuhan-pelabuhan Indonesia, melansir data penting pada Rabu 3 Oktober 2018 TU (Tarikh Umum) lalu. Yakni data dinamika paras air laut yang terekam stasiun pasangsurut pelabuhan Pantoloan. Pelabuhan ini terletak 20 kilometer sebelah utara Kota Palu. Semula stasiun pasangsurut Pantoloan dikira rusak atau bahkan hancur oleh terjangan tsunami. Namun ternyata hanya perangkat komunikasi datanya saja yang rusak. Sementara sebagian sensor pasangsurutnya sendiri tetap utuh dan bekerja.

Gambar 1. Grafik paras air laut Teluk Palu yang terukur di stasiun pasangsurut pelabuhan Pantoloan, 20 kilometer sebelah utara Kota Palu, pada saat peristiwa tsunami terjadi. Grafik telah dikoreksi terhadap faktor pasang surut harian setempat. Nampak tsunami mulai datang pada pukul 18:08 WITA, hanya dalam 6 menit pascagempa. Tinggi tsunami murni 1,9 meter (murni) atau 3,9 meter (dari lembah gelombang ke bukit gelombang). Sumber: BIG, 2018 diolah oleh Widjo Kongko, 2018.

Datanya mengejutkan. Tsunami tiba di pelabuhan Pantoloan hanya dalam 6 menit pascagempa atau tepatnya pada pukul 18:08 WITA. Ia ditandai oleh gelombang negatif (surut maksimum) yang disusul gelombang positif (pasang maksimum) dalam 2 menit kemudian. Tinggi tsunami maksimum, yakni dari surut maksimum hingga pasang maksimum, adalah 3,9 meter. Sementara periode gelombangnya adalah 3,5 menit, tergolong pendek bila dibanding tsunami bangkitan gempa bumi tektonik pada umumnya. Ia lebih mirip periode tsunami Krakatau 1883, produk injeksi awan panas letusan berskala massif ke dasar Selat Sunda, yang hanya 5 menit.

Pantoloan melengkapi data yang telah dipublikasikan sebelumnya, yakni dari stasiun pasangsurut pelabuhan Majene. Dari data Majene, Badan Meteorologi Klimatologi dan Geofisika (BMKG) menyampaikan pembaharuan informasi runtun waktu. Tsunami kecil terdeteksi di pelabuhan Majene pada pukul 18:27 WITA (sebelumnya disebut 18:13 WITA). Tinggi maksimumnya hanya 6 cm. BMKG juga menyampaikan informasi terjangan tsunami di pesisir Kota Palu dimulai pada pukul 18:10 hingga 18:13 WITA, atas dasar analisis rekaman video. Dengan demikian tsunami tiba di pesisir Palu hanya dalam tempo 8 hingga 11 menit pascagempa. Sangat singkat.

Selain pembaharuan informasi, BMKG juga melansir hasil survei lapangan pendahuluan terkait distribusi tinggi tsunami di sekujur Teluk Palu. Tinggi tsunami terbesar ada di Kota Palu, masing-masing Kota Palu bagian tengah (yakni di Jembatan Kuning) dan Kota Palu bagian timur (dekat kampus Universitas Tadulako). Yakni setinggi 10,9 meter dan 11,3 meter! Di sepanjang pesisir Teluk Palu bagian barat dan timur, distribusi tinggi tsunami relatif berimbang. Di pesisir barat, tinggi tsunami bervariasi dari 4 meter di Loli Dondo, Banawa (Kab. Donggala) hingga 9,5 meter di Kota Palu bagian barat. Sementara di pesisir bagian timur, tinggi tsunami bervariasi dari 3,9 meter di Toaya, Sindua (Kab. Donggala) hingga 11,3 meter di Kota Palu bagian timur.

Gambar 2. Distribusi tinggi tsunami di seantero pesisir Teluk Palu dan Selat Makassar berdasarkan survei lapangan pendahuluan oleh BMKG. Nampak tinggi tsunami terbesar berada di pesisir Kota Palu, yakni 10,9 meter (lokasi Jembatan Kuning) dan 11,3 meter (Kota Palu bagian timur). Sumber: BMKG, 2018.

Pembaharuan informasi juga disampaikan lembaga geofisika lainnya, United States Geological Survey (USGS). Analisis gabungan yang melibatkan banyak data dari sejumlah jejaring seismometer dan citra satelit terutama melalui teknik InSAR (interferometry synthethic apperture radar) menghasilkan pembaharuan tentang geometri sumber gempa. Kini sumber Gempa Donggala-Palu 2018 dipahami sebagai persegi panjang yang membentang mulai dari titik episentrum di utara hingga 150 kilometer ke selatan. Persegi panjang ini terbagi menjadi tiga sub-bagian, masing-masing utara, tengah dan selatan. Sub-bagian utara merentang dari episentrum di Lompio (Kab. Donggala) hingga sekitar Pantoloan (Kab. Donggala) dengan panjang 50 kilometer. Sub-bagian tengah membentang dari Teluk Palu melintasi Kota Palu hingga kawasan Dolo Sel (Kab.Sigi), juga sepanjang 50 kilometer. Dan sisanya adalah sub-bagian selatan, yang merentang hingga Kulawi (Kab.Sigi), pun sepanjang 50 kilometer.

Gambaran pergerakan sesar Palu-Koro di sisi barat Kota Palu dapat dilihat berikut ini :

Dalam segenap sumber gempa ini, terdeteksi lentingan / pergeseran total sebesar 5 – 6 meter (rata-rata) yang didominasi pergerakan mendatar ke arah kiri (sinistral strikeslip). Namun ada pula komponen pergerakan vertikal yang nampaknya juga dialami oleh sub-bagian sumber gempa yang terletak di dasar Teluk Palu. Di sepanjang sumber gempa ini terjadi getaran yang amat sangat keras dengan intensitas hingga mencapai intensitas 9 MMI (modified mercalli intensity). Ini jenis getaran yang mampu menggeser bangunan bermutu baik dari pondasinya sekaligus menyebabkan likuifaksi. Dengan demikian getaran di Kota Palu 1.000 kali lebih kuat ketimbang yang semula diduga lewat analisis pendahuluan (yang hanya mencantumkan 6 MMI).

Gambar 3. Sumber Gempa Donggala-Palu 2018, berdasarkan hasil analisis citra satelit menggunakan teknik InSAR (interferometry Synthethic apperture radar). Ia sepanjang 150 kilometer yang terdiri dari 3 sub-bagian, dengan satu sub-bagian diantaranya berada di Teluk Palu. Diolah oleh Sotiris Valkaniotis berbasis citra radar Sentinel-2. Sumber: Valkaniotis, 2018.

Penyebab

Jadi apa penyebab tsunami dalam Gempa Donggala-Palu 2018 ini?

Ada dua pendapat utama. Satu kubu memperkukuhi pergerakan gempa bumi murnilah yang memproduksi tsunami. Sedangkan kubu yang lain beranggapan gempa bumi semata tak cukup sehingga musti ada faktor penyebab tambahan, dalam hal ini adalah longsoran massif di dasar Teluk Palu. Khususnya di area sub-bagian tengah sumber gempa Donggala-Palu 2018.

Aneka simulasi tsunami yang telah dikerjakan sejauh ini juga belum menunjukkan kecocokan mendekati realita. Misalnya simulasi pendahuluan dari EDIM (Earthquake Disaster Information system for the Marmara), proyek penelitian yang menjadi bagian dari University of Karlsruhe (Jerman). Simulasi tsunami EDIM adalah bagian kubu pertama dan dilansir hanya sehari pascagempa. Simulasi EDIM berasumsi sumber gempa Donggala-Palu 2018 berupa persegi sepanjang 100 kilometer dengan beberapa bagiannya berada di dasar Selat Makassar – Teluk Palu. Hasil simulasinya menempatkan tinggi tsunami di Kota Palu bagian tengah sebesar 5,5 meter.

Gambar 4. Simulasi tsunami pendahuluan dari EDIM. Tsunami Palu dianggap murni diproduksi dari kenaikan dasar sebagian Teluk Palu akibat gempa. Tinggi tsunami terbesar berdasarkan simulasi adalah di pesisir Kota Palu bagian tengah, yakni setara 5,5 meter. Ini masih jauh dari realitas. Sumber: EDIM, 2018.

Sementara simulasi pendahuluan lainnya dikerjakan oleh Aditya Gusman, cendekiawan muda gempa dan tsunami yang sedang menempuh program pascadoktoralnya di Selandia Baru. Simulasi ini tergolong ke dalam kubu kedua dan dipublikasikan 2 hari pascagempa. Ia mengambil asumsi sumber gempa Donggala-Palu 2018 sebagai persegi sepanjang 60 kilometer dengan lebar 20 kilometer dan ada bagiannya yang menjorok ke dasar laut Selat Makassar. Aditya juga berasumsi telah terjadi longsoran dasar laut, yang dispekulasikannya berada di mulut Teluk Palu. Longsoran dianggap berbentuk bulat berdiameter 5 kilometer dengan amplitudo 2 meter. Hasil simulasinya menempatkan tinggi tsunami di Kota Palu bagian tengah hanyalah 2,5 meter. Jika faktor longsoran dasar laut diabaikan, simulasi Aditya menjumpai tinggi tsunami di Kota Palu bagian tengah hanyalah 0,25 meter.

Untuk memastikan apa yang menjadi pembangkit tsunami dalam Gempa Donggala-Palu 2018, maka survei lapangan pun bakal digelar. Termasuk diantaranya bakal ‘mengaduk-aduk’ dasar Teluk Palu, tentu dengan teknologi pencitra dasar laut yang berbasis sonar. Dari survei ini bakal diketahui bagaimana sebenarnya bentuk geometri sumber gempa Donggala-Palu 2018 dan bagaimana situasi di dasar Teluk Palu. Sehingga simulasi tsunami yang lebih baik dan lebih dekat ke realita dapat dikerjakan.

Gambar 5. Simulasi tsunami pendahuluan oleh Aditya Gusman. Tsunami Palu dianggap diproduksi dari gabungan kenaikan Selat Makassar akibat gempa dan terjadinya longsoran dasar laut tepat di mulut Teluk Palu. Tinggi tsunami terbesar berdasarkan simulasi adalah di pesisir Kota Palu bagian tengah, yakni setara 2,5 meter. Ini masih jauh dari realitas. Sumber: Gusman, 2018.

Meski hasil simulasi tsunami pendahuluan hingga sejauh ini belum dapat menjawab apa yang sesungguhnya terjadi, akan tetapi mereka mengungkap fakta lain. Simulasi tsunami pada dasarnya adalah pemodelan matematis penjalaran tsunami dengan menggunakan persamaan-persamaan gelombang tertentu yang dihitung secara numerik. Simulasi tsunami memperlihatkan betapa geometri Teluk Palu yang unik menjadi hal fatal manakala berhadapan dengan peristiwa tsunami.

Pada dasarnya tsunami adalah gelombang panjang. Karena sebagai gelombang transversal, ia mempunyai panjang gelombang jauh lebih besar ketimbang kedalaman perairan yang dilintasinya. Kedalaman Teluk Palu mencapai 700 meter, membuat tsunami yang terbentuk di perairan ini mampu melesat secepat sekitar 300 kilometer/jam. Dengan periode hanya 3,5 menit maka gelombang tsunami Palu memiliki panjang gelombang hingga 5.000 kilometer. Sebagai gelombang panjang, tsunami memiliki tinggi sangat kecil khususnya di tengah-tengah perairan samudera terbuka. Di lokasi tersebut tinggi tsunami mungkin hanya beberapa sentimeter hingga semeter saja.

Namun begitu memasuki perairan sempit seperti misalnya muara sungai, selat, teluk dan pantai berteluk rumit mirip pola gigi gergaji (sawtooth), tsunami mengalami proses amplifikasi atau penguatan. Oleh karena kecepatannya berkurang, maka panjang gelombangnya pun memendek dramatis. Dimana bagian depan tsunami melambat sementara bagian belakangnya masih melaju lebih cepat. Ini membuat massa air bertumpuk sehingga tingginya pun meningkat. Proses ini diperparah jika ada pasokan air lain, misalnya dari aliran sungai. Karena itu saat tiba di pesisir perairan sempit, tinggi tsunami telah demikian meningkat.

Teluk Palu pada dasarnya adalah perairan mirip estuaria (muara sungai berbentuk corong) raksasa. Kota Palu tepat berada di ujung dari corong tersebut. Sehingga manakala tsunami memasuki perairan ini, ataupun tepat terbentuk dalam perairan ini, ia akan diperkuat begitu mendekati Kota Palu. Dan saat tiba di pesisir Kota Palu, tingginya telah demikian besar sehingga cukup mampu menghasilkan kerusakan. Dan menelan korban. Inilah yang menjadikan Kota Palu sebagai kawasan paling rawan tsunami di Indonesia.

Takdir Kebumian

Data dari stasiun pasangsurut Pantoloan dan hasil analisis rekaman video tsunami yang menerpa Kota Palu menghasilkan kesimpulan sementara ibarat pisau bersisi dua. Yakni tentang sistem peringatan dini tsunami. Pada sisi yang tajam, sistem peringatan dini tsunami itu terbukti telah bekerja meskipun tak sempurna. Tsunami menerjang Kota Palu hanya dalam tempo paling lama 10 menit dari awal gempa. Meski BMKG menyampaikan peringatan dininya lebih cepat, yakni hanya 4 menit setelah gempa dimulai, namun waktu yang tersedia sangat sempit. Hanya 6 menit kemudian tsunami telah melimbur Kota Palu. Pada sisi yang tumpul disadari bahwa sebagus apapun dan sesempurna apapun sistem peringatan dini tsunami bagi Kota Palu, warga kota itu hanya memiliki peluang yang kecil untuk selamat.

Gambar 6. Peta kontur kedalaman (batimetri) dasar Teluk Palu berdasarkan rilis Badan Informasi Geospasial (BIG). Nampak lokasi Pelabuhan Pantoloan dan Kota Palu serta kandidat lokasi terjadinya longsor dasar laut yang memperparah tsunami. Sumber: BIG, 2018.

Mari kita bayangkan bagaimana menit demi menit situasi Kota Palu yang mendirikan bulu roma pada saat gempa dan tsunami melanda. Begitu gempa mulai, sesar Palu-Koro yang membelah Kota Palu bergeser 5-6 meter dari semula mengikuti prinsip dislokasi elastis. Segenap kota menjadi sub-bagian tengah sumber gempa. Getaran yang amat sangat keras terjadilah dengan intensitas hingga 9 MMI. Tak satupun insan yang sanggup berdiri tegak kala menerima getaran sekeras itu. Hujan reruntuhan mulai terjadi. Bangunan bermutu buruk remuk, sementara bangunan yang lebih baik dibikin rusak berat hingga runtuh. Mereka yang berhasil mengeluarkan diri segera berkumpul di tempat-tempat terbuka.

Selagi gempa mereda dan rasa panik masih meraja di tahta tertingginya, tak satupun menyadari perairan tenang yang selama ini mempercantik wajah kota mulai bergolak. Sebagian dasar Teluk Palu terangkat dan longsor. Laut bergolak, mengirim gelombang panjang yang awalnya kecil. Namun lama kelamaan kian membesar dan meninggi begitu mendekat ke pesisir. Hanya 10 menit setelah awal gempa, gelombang pembunuh itu tiba di pesisir. Kini ia menjadi monster setinggi hingga 11 meter. Melaju secepat (mungkin) 30 kilometer/jam, ia menerjang ke daratan, merayahi kota hingga 500 meter dari garis pantai. Menyapu apa saja yang dilintasinya. Termasuk manusia.

Takdir kebumian Kota Palu, dengan sesar Palu-Koro yang melintasinya dan teluk bergeometri unik dihadapannya, mengantar kota itu berhadapan dengan kengerian tsunami. Sekaligus mimpi buruk bagi sistem peringatan dini tsunami dimanapun. Sistem peringatan dini tsunami Indonesia adalah sebuah sistem rumit yang melibatkan banyak lembaga. Kendali memang berada di BMKG, sekaligus sebagai pemantau jejaring seismometer. Namun verifikasi terjadi tidaknya tsunami harus melalui bacaan tsunami buoy ataupun stasiun pasangsurut. Tsunami buoy ada di bawah koordinasi Badan Pengkajian dan Penerapan Teknologi (BPPT) sementara stasiun pasangsurut menjadi bagian dari BIG.

Hasilnya lantas disalurkan kepada lembaga-lembaga nasional yang berkepentingan dan pemerintah daerah berpotensi terdampak. Pada titik ini, seharusnya di daerah itu terdapat menara sirene peringatan dini tsunami. Sirene tersebut didesain untuk meraung-raung, suaranya bisa terdengar hingga berkilometer jauhnya. Juga seharusnya terdapat sistem SMS blasting, yang mampu mengirim layanan pesn singkat secara massal ke segenap pemilik telepon seluler di daerah tersebut.

Dalam kejadian tsunami Palu, sistem peringatan dini tsunami itu bekerja tak sempurna. Tak ada tsunami buoy yang memverifikasi ada tidaknya tsunami saat masih menjalar di tengah teluk, karena sudah invalid. Hanya satu stasiun pasangsurut yang melaporkan kejadian usikan khas tsunami di pantai, itupun sejarak 200 kilometer dari episentrum. Tak ada sirene yang meraung-raung dari menara peringatan dini tsunami. Pun tak ada SMS blasting ke penduduk. Meski dua hal terakhir mungkin disebabkan oleh suasana panik yang melanda Kota Palu saat gempa. Atau bahkan bisa jadi infrastrukturnya telah hancur sementara operatornya telah tiada, akibat guncangan gempa.

Akan tetapi andaikata semua bagian tersebut bekerja sempurna sekalipun, dengan tsunami melimpur kota hanya dalam tempo 10 menit pascagempa, kecil peluangnya bagi penduduknya untuk selamat.

Referensi :

Widjo Kongko. 2018. komunikasi pribadi.

Aditya Gusman. 2018. komunikasi pribadi.

Sotiris Valkaniotis. 2018. komunikasi pribadi.

Gempa dan Tsunami Donggala-Palu 2018 (1), Sebuah Catatan Singkat

Sebuah gempa besar meletup di bagian tengah pulau Sulawesi yang unik pada Jumat 28 September 2018 TU (Tarikh Umum), kala Matahari sedang beranjak menuju peraduannya di kaki langit barat. Di luar dugaan, gempa ini memproduksi tsunami yang relatif besar meski diduga bersifat lokal, yang melimbur garis pantai Kota Palu dan Kabupaten Donggala. Selain itu peristiwa Gempa Donggala-Palu 2018 ini, begitu untuk selanjutnya kita namakan, juga memproduksi kerusakan bangunan yang signifikan. Evakuasi masih terus dilakukan sehingga berapa jumlah korban jiwa yang berjatuhan dalam tragedi ini belum bisa diketahui. Akan tetapi estimasi-cepat, misalnya melalui USGS PAGER, menunjukkan prognosa yang relatif buruk.

Magnitudo dan Energi

Badan Meteorologi Klimatologi dan Geofisika (BMKG) mencatat Gempa Donggala-Palu 2018 meletup pada pukul 17:02 WIB atau 18:02 waktu setempat (WITA). Awalnya gempa dangkal ini (hiposentrum 10 km) memiliki magnitudo 7,7. Beberapa waktu kemudian dilakukan pembaharuan (update) menjadi magnitudo 7,5. Sementara itu United States Geological Survey (USGS), sejenis Badan Geologi-nya Amerika Serikat, juga melansir gempa ini bermagnitudo 7,5.

Gambar 1. Lokasi sumber Gempa Donggala-Palu 2018 dan kontur intensitas getaran disekelilingnya dinyatakan dalam satuan MMI (yakni 8 MMI, 7 MMI dan 6 MMI) berdasarkan publikasi USGS. Nampak kota Palu menerima getaran cukup kuat, yakni 6 MMI. Geometri sumber gempa berbentuk persegi panjang yang membujur utara-selatan dengan panjang sekitar 100 kilometer. Sumber: USGS, 2018.

Langkah pembaharuan seperti dilakukan BMKG adalah wajar dan dikerjakan pula oleh institusi-institusi geofisika manapun di dunia. Musababnya tidak semua data yang direkam seismometer (perekam gempa) langsung bisa diakses seketika. Di Indonesia sendiri, BMKG juga memiliki klausul tambahan : Aturan Lima Menit. Dimana setiap kali terjadi peristiwa gempa bumi, maka dalam tempo 5 menit BMKG sudah harus mengudarakan parameter awal gempa tersebut. Dalam kejadian-kejadian gempa besar, aturan 5 menit ini kerap mendatangkan kesulitan tersendiri. Sebab belum tentu dalam 5 menit pascagempa sinyal-sinyal seismik yang direkam seismometer disekeliling sumber gempa telah stabil. Sementara begitu sinyal telah stabil, analisis juga harus dilakukan kembali. Sehingga rilis awal parameter gempa besar kadangkala cukup berselisih dengan pembaharuan-pembaharuan berikutnya.

Namun di sisi lain, aturan 5 menit ini juga penting mengingat mayoritas sumber gempa potensial yang bisa memproduksi tsunami di Indonesia terletak cukup dekat dengan garis pantai. Dalam sejumlah simulasi, beberapa pesisir di Indonesia akan dilimbur tsunami dalam tempo 15 hingga 30 menit pascagempa. Sementara BMKG mengemban amanah untuk mengeluarkan peringatan dini tsunami dan pembaharuannya. Situasi ini memaksa parameter awal sebuah kejadian gempa bumi untuk segera dikeluarkan secepatnya. Mengingat parameter tersebut juga menjadi dasar untuk mengestimasi potensi tsunami.

Dengan magnitudo 7,5 maka Gempa Donggala-Palu 2018 melepaskan energi seismik 2.674 kiloton TNT, atau setara 134 kali lipat ledakan bom nuklir yang dijatuhkan di atas Hiroshima pada akhir Perang Dunia 2. Namun itu baru sebatas energi seismik, energi yang dirambatkan sebagai gelombang seismik anekarupa ke segala penjuru. Total energi yang diproduksi Gempa Donggala-Palu 2018 ini sesuai dengan momen seismiknya, yang mencapai 53 juta kiloton TNT atau setara dengan 3 juta butir bom nuklir Hiroshima !

Tsunami

Episentrum Gempa Donggala-Palu 2018 terletak di daratan tepatnya di kawasan Lompio, Kabupaten Donggala. Akan tetapi posisi episentrum hanyalah 3 kilometer dari pesisir Selat Makassar terdekat. Sehingga terbit dugaan sebagian sumber Gempa Donggala-Palu 2018, yakni segmen batuan yang terpatahkan sebagai sumber gempa tersebut dan bergeser, juga menjangkau dasar Selat Makassar. Khususnya di sepanjang lepas pantai barat pesisir Donggala.

Gambar 2. Hasil simulasi BMKG tentang potensi tsunami di kawasan Teluk Palu, yang dipublikasikan dalam 4 menit pasca awal Gempa Donggala-Palu 2018. Angka-angka dalam warna hitam menunjukkan prakiraan tinggi tsunami dalam cm dpl. Sementara angka berwarna merah adalah hasil observasi tinggi tsunami sesungguhnya dari stasiun pasangsurut Majene. Sumber: BMKG, 2018.

Parameter awal Gempa Donggala-Palu 2018 menjadi basis BMKG mengerjakan simulasi tsunami (modelling) berdasarkan sistem yang telah menjadi standar bagi lembaga-lembaga geofisika sejenis di dunia. Dari informasi episentrum dan magnitudo gempa (yang awalnya 7,7) diperoleh prakiraan geometri sumber gempa, dimana sebagian diantaranya terletak di dasar laut. Meski mekanisme sumber gempa ini adalah pematahan mendatar (strike slip), namun terdapat komponen kecil pematahan naik (uplift). Tsunami selalu dihasilkan dari naik atau turunnya dasar laut setempat dalam skala tertentu, dimana makin besar kenaikan/penurunannya maka kian dahsyat pula tsunaminya. Secara kasar, geometri sumber Gempa Donggala-Palu 2018 adalah persegi panjang sepanjang 100 kilometer yang berorientasi utara-selatan.

Hasil simulasi BMKG memperlihatkan pesisir Teluk Palu bagian barat dan selatan, yang mencakup sebagian Kabupaten Donggala dan Kota Palu, berpotensi dilanda tsunami dengan prakiraan ketinggian 60 cm. Sementara pesisir timur Teluk Palu berpotensi dilanda tsunami yang prakiraan ketinggiannya 40 cm. Sedangkan pesisir Kabupaten Mamuju berpotensi dilimbur tsunami yang tingginya diprakirakan 30 cm (sebelah utara) dan 10 cm atau kurang (sebelah selatan).

Gambar 3. Dinamika paras air laut sebagaimana yang terekam di stasiun pasangsurut pelabuhan Majene, sekitar 200 kilometer dari episentrum Gempa Donggala-Palu 2018. Nampak usikan khas tsunami dengan tinggi hanya 6 cm yang mulai terekam pada pukul 18:13 WIB. Sumber: BMKG, 2018.

Peringatan Dini Tsunami diudarakan pada pukul 18:06 WITA atau hanya dalam 4 menit pascagempa. Menyebal dari kebiasaan sebelumnya, dalam kejadian Gempa Donggala-Palu 2018 ini BMKG langsung mengeluarkan peringatan dini tsunami tanpa didahului informasi gempanya. Keputusan ini nampaknya didasarkan oleh tingginya resiko tsunami di Teluk Palu dan geometri teluk yang bisa memperkuat (mengamplifikasi) gelombang tsunami sehingga tingginya akan meningkat. Dalam peringatan dini ini, pesisir barat Teluk Palu dinyatakan berstatus Siaga (Zona Jingga) sementara pesisir sisanya mulai dari Kabupaten Majene di selatan hingga Kabupaten Donggala di utara berstatus Waspada (Zona Kuning).

Pada pukul 18:13 WITA, terdeteksi adanya usikan paras air laut khas tsunami di stasiun pasangsurut pelabuhan Majene, sejauh sekitar 200 kilometer dari episentrum gempa. Usikan berpola tsunami ini kecil, hanya setinggi 6 cm. Angka ini berdekatan dengan hasil simulasi tsunami BMKG untuk daerah itu (yang menyimpulkan kurang dari 10 cm). Sebaliknya pada stasiun pasangsurut Lahat Datu, negara bagian Sabah (Malaysia) tidak terekam usikan apapun. Kedua data pengukuran itu menyajikan kesan memang terjadi tsunami, namun kecil. Dan pada pukul 18:36 WITA Peringatan Dini Tsunami pun diakhiri.

Dalam realitanya, tsunami besar melimbur pesisir kota Palu mulai pukul 18:27 WITA. Tinggi tsunami di sejumlah titik yang berdekatan dengan pesisir kota tercatat 1,5 hingga 2 meter dari paras tanah. Sehingga tinggi tsunami saat tiba di pesisir berkisar antara 3 hingga 5 meter dari paras air laut (dpl). Tsunami menerjang daratan dan menggenang hingga sejauh sekitar 700 meter dari garis pantai. Kecuali di alur Sungai Palu yang menjangkau hingga sekitar 1.000 meter dari muara. Putusnya aliran listrik dan jalur komunikasi serta tidak berfungsinya stasiun pasangsurut di pelabuhan Palu (akibat terjangan tsunami) membuat informasi terjadinya tsunami di kota Palu tidak segera diterima.

Gambar 4. Simulasi tsunami dengan sumber hipotetik di mulut Teluk Palu yang disajikan sebagaimana dipaparkan geolog hamzah Latief pada Pemkot Palu dan FMIPA Universitas Tadulako pada 2012 TU silam. Sumber simulasi hipotetik tersebut dilabelkan dengan angka 2012. Lokasi prakiraan longsor dasarlaut penyebab tsunami dalam Gempa Donggala-Palu 2018 terletak di sebelah utaranya. Perhatikan gelombang yang memasuki Teluk Palu berwarna merah, menandakan gelombang positif sehingga tsunami tidak didului oleh surut laut. Sumber: Latief, 2018.

Terjadinya tsunami besar di kota Palu, yang bertolakbelakang dengan prakiraan tinggi tsunami maksimum produk simulasi BMKG (ketinggian 60 cm) memperlihatkan ada mekanisme lain yang bekerja dalam membangkitkan tsunami ini. Karena jika hanya murni berasal dari pergerakan kerak bumi akibat gempa, tentunya tinggi tsunaminya tidak sebesar itu. Mekanisme lain tersebut kemungkinan besar adalah kejadian longsor massif di dasar laut yang dipicu oleh gempa bumi. Kemungkinan besar terdapat tebing-tebing curam di dasar laut lepas pantai barat Kabupaten Donggala bagian timur. Tebing-tebing curam itu dipahat oleh aktifnya sesar geser Palu-Koro nan legendaris, yang tepat melintas di sini.

Manakala gempa mengguncang, tebing-tebing tersebut menderita getaran sangat keras hingga melampaui ambang batas getaran yang bisa ditahannya, yakni dalam skala intensitas 6 hingga 7 MMI (Modified Mercalli Intensity). Analisis USGS memperlihatkan tebing dasar laut di sebelah barat episentrum gempa mengalami getaran hingga sekeras 7 – 8 MMI. Getaran sangat keras itu membuat tebing-tebing runtuh melorot sebagai longsor dasar laut dalam volume massif. Peristiwa longsor besar itu membuat kolom air laut setempat bergolak dan sebagai upaya untuk memulihkannya maka perairan itu menjalarkan olakan tersebut ke segenap arah sebagai tsunami.

Tsunami yang diproduksi oleh longsor massif di dasar laut bukanlah hal yang aneh meski tergolong jarang. Bencana Tsunami Banyuwangi 3 Juni 1994 dan Tsunami Pangandaran 17 Juli 2006 merupakan peristiwa tsunami seperti itu. Demikian halnya bencana Tsunami Krakatau 1883, meski dalam hal ini peristiwa longsor dasar laut digantikan oleh injeksi material awan panas nan massif ke dasar Selat Sunda. Tsunami produk longsor massif di dasar laut memiliki karakter unik. Di dekat sumbernya, ketinggiannya bisa besar hingga sangat besar. Sebaliknya kian menjauh dari sumbernya, ketinggiannya sontak merosot dramatis. Inilah yang terlihat dalam kejadian tsunami yang mengiringi Gempa Donggala-Palu 2018. Di Kota Palu, tsunaminya setinggi hingga 5 meter dpl, sementara di pesisir Mamuju bagian selatan hanya setinggi 6 cm dpl.

Potensi Korban

Selain akibat tsunami, korban jiwa dan luka-luka dalam Gempa Donggala-Palu 2018 disebabkan oleh getarannya yang cukup keras terutama di kawasan propinsi Sulawesi Tengah. Evaluasi cepat USGS melalui Prompt Assessment of Global Earthquake for Response (PAGER) memperlihatkan ada sekitar 23 juta penduduk yang merasakan getaran gempa ini, yakni yang terpapar getaran berintensitas 3 MMI atau lebih. Mereka tersebar di Pulau Sulawesi dan Kalimantan. Dari jumlah tersebut, sebanyak 900 ribu orang diantaranya mengalami getaran yang sangat keras yakni mulai dari intensitas 6 MMI yang terkategori getaran kuat. Diantara hampir sejuta orang tersebut terdapat 44.000 jiwa yang tinggal di daerah dengan getaran parah (yakni intensitas 8 MMI) dan 10.000 jiwa yang terpapar getaran sangat parah (yakni intensitas 9 MMI).

Gambar 5. Peta distribusi penduduk dan intensitas getaran gempa (dalam satuan MMI) yang disajikan USGS PAGER. Lewat peta dan analisis ini dapat diketahui ada sekitar 44.000 jiwa yang terpapar getaran berintensitas 8 MMI dan 10.000 jiwa terpapar getaran 9 MMI. Prakiraan korban jiwa yang jatuh dalam peristiwa ini diantara 1 hingga 1.000 jiwa. Sumber: USGS, 2018.

Di Indonesia, pada umumnya bangunan tempat tinggal sudah mulai mengalami kerusakan ringan hingga sedang saat terpapar getaran berintensitas 6 MMI. Pada getaran 7 MMI, terjadi kerusakan berat hingga keruntuhan bangunan. Pada getaran yang lebih keras lagi seperti 8 MMI hingga 9 MMI, bangunan yang berkualitas baik pun akan terdampak. Dengan mengacu pola demikian, USGS memperkirakan (dengan probabilitas 75 %) jumlah korban jiwa akibat Gempa Donggala-Palu 2018 mungkin berada pada rentang 1 hingga 1.000 jiwa.

Duka kita untuk Donggala dan Palu.

Referensi :

USGS. 2018. M7.5 – 78 km N of Palu, Indonesia. National Earthquake Information Center – United States Geological Survey, diakses 29 September 2018.

BMKG. 2018. Gempa Bumi Tektonik M7,7 Sulawesi Tengah. Pers release no. UM.505/9/D3/IX?2018

Hamzah Latief. 2018. Komunikasi pribadi.

Beda Idul Adha 1439 H, Semata Perspektif atau Realita?

Seperti diketahui, Indonesia merayakan Idul Adha 1439 H pada saat yang berbeda dengan Saudi Arabia. Di Indonesia, Idul Adha 10 Zulhijjah 1439 H bertepatan dengan 22 Agustus 2018 TU (Tarikh Umum), sementara di Saudi Arabia bertepatan dengan 21 Agustus 2018 TU.

Banyak argumen fikih yang telah dikemukakan untuk menjelaskan situasi tersebut. Baik dalam sudut pandang mendukung keputusan Indonesia. Ataupun menyanggah (dan mencela dalam sisi tertentu, terlebih ini tahun politik). Namun jarang sekali argumen astronomi atau ilmu falak komprehensif yang muncul dalam situasi ini.

Saya hadir dalam Sidang Itsbat Penetapan 1 Zulhijjah 1439 H yang diselenggarakan Kementerian Agama RI di Jakarta pada Sabtu 11 Agustus 2018 TU, dalam kapasitas sebagai salah satu anggota Badan Hisab dan Rukyat Nasional Republik Indonesia. Sidang berlangsung cepat, hanya mendengarkan laporan-laporan pelaksanaan rukyatul hilaal dari seluruh Indonesia pada saat senja itu dan ditingkahi dengan tanggapan-tanggapan sebelum kemudian mengambil keputusan. Tidak ada satu titik pun yang berhasil mendeteksi hilaal. Sehingga diputuskan bulan Zulqaidah 1439 H diistikmalkan atau digenapkan menjadi 30 hari. Dan 1 Zulhijjah 1439 H bertepatan dengan Senin 13 Agustus 2018 TU.

Hanya ada dua tanggapan dalam sidang, masing-masing dari utusan PP Muhammadiyah dan PBNU. Utusan PP Muhammadiyah menyatakan keputusan tersebut sesuai dengan hasil hisab yang dipedomani ormasnya, sembari menyampaikan usulan pribadi tentang bagaimana jika dikaji penggunaan waktu ijtima’ (konjungsi Bulan-Matahari) saja sebagai parameter penentuan awal bulan Hijriyyah, dengan menafikan tinggi Bulan dan parameter-parameter lain. Di persidangan-persidangan sebelumnya, usulan semacam ini sebenarnya disepakati untuk tidak dibahas di forum Sidang Itsbat. Karena posisi sidang hanyalah untuk menyatakan Ya atau Tidak terhadap hasil hisab dan hasil rukyat. Tetapi namanya forum yang cair, tetap saja terbentuk kesempatan untuk menyampaikan usulan semacam ini.

Sementara utusan PBNU menanggapi dengan menyatakan dalam almanak NU yang telah dikonfirmasi oleh hasil rukyat, pelaksanaan rukyat hilaal penentuan 1 Zulhijjah 1439 H di Indonesia seharusnya tidak pada 11 Agustus 2018 TU senja itu. Karena bulan Syawwal 1439 H telah diistikmalkan seiring tidak terdeteksinya hilaal saat rukyat hilaal dilakukan pada 13 Juli 2018 TU. Sehingga 11 Agustus 2018 TU masih bertepatan dengan 28 Zulqaidah. Tidak ada rukyat hilaal yang diselenggarakan pada tanggal 28 Hijriyyah. Di sisi lain, hasil hisab NU sendiri, yang disebut hisab haqiqy tadzkiky ashri kontemporer atau singkatnya hisab jama’i, memperlihatkan pada 12 Agustus 2018 TU senja tinggi Bulan di Indonesia sudah cukup besar. Berkisar 12º hingga 13º di seluruh Indonesia. Sehingga potensi untuk terdeteksi sangat besar. Dan itulah yang terjadi. Sehingga dalam almanak NU pun 1 Zulhijjah 1439 H bertepatan dengan 13 Agustus 2018 TU.

Bahwa dalam beberapa jam pasca sidang tersebut kemudian muncul laporan terdeteksinya hilaal dari tanah Saudi Arabia, hal itu juga sesungguhnya sudah diperkirakan. Data hisab menunjukkan tinggi Bulan di kotasuci Makkah sedikit lebih besar dari 2º. Sehingga ada potensi terdeteksinya hilaal oleh para perukyat di sana, terlepas dari bagaimana kualitas rukyat hilaal di Saudi Arabia (yang dalam dunia ilmu falak masih dipandang memprihatinkan). Maka muncullah keputusan Saudi Arabia, 1 Zulhijjah bertepatan dengan 12 Agustus 2018 TU.

Bagaimana ilmu falak memandang hal itu?

Mari kita lihat peta di bawah ini :

Ini adalah peta standar proyeksi Mercator, yang menggelar bentuk Bumi tiga dimensi yang bulat menjadi selembar peta datar dua dimensi. Batas sisi utara adalah garis lintang 60º LU sementara sisi selatan garis lintang 60º LS. Batas sisi barat adalah garis bujur 180º BB dan batas sisi timur adalah garis bujur 180º BT. Baik garis bujur 180º BB maupun 180º BT sejatinya berimpit di satu tempat yang sama, Ini adalah garis bujur yang secara tradisional dinyatakan sebagai Garis Batas Penanggalan Internasional untuk kalender Tarikh Umum, atau populer dengan IDL (International Date Line). Meskipun sejatinya Garis Batas Penanggalan Internasional yang sesungguhnya meluk-liuk di sekeliling garis bujur 180º ini mengikuti batas-batas negara yang dilintasinya.

Dan garis merah melengkung adalah garis yang diusulkan sebagai Garis Batas Penanggalan Hijriyyah Internasional atau ILDL (International Lunar Date Line). Para ahli falak kontemporer masih bersilang pendapat soal posisi sesungguhnya dari garis ILDL ini. Disini saya menggunakan salah satu pendapat saja, yang populer di Indonesia, yakni sebagai garis berimpit dengan titik-titik dimana tinggi Bulan tepat 2º pada saat terbenamnya Matahari. Garis ini melintas di dekat kotasuci Makkah. Dan dalam peta ini kotasuci Makkah berkedudukan seakan-akan di tengah peta.

Dengan melihat peta tersebut, yang adalah peta dalam perspektif penangggalan Tarikh Umum pada tanggal 11 Agustus 2018 TU maghrib, terlihat jelas dunia seakan-akan dibelah oleh garis merah ILDL. Sebelah barat garis sudah memasuki tanggal 1 Zulhijjah 1439 H. Sementara sisi timur garis masih melanjutkan bulan Zulqaidah menjadi 30 Zulqaidah 1439 H.

Namun ini hanyalah seakan-akan. Lebih jelasnya mari kita lihat peta berikut :

Ini peta dunia yang sama. Hanya saja batas barat dan timur diubah menjadi mengikuti ILDL. Bukan lagi pada garis bujur 180º. Dalam peta ini kedudukan kotasuci Makkah menjadi berada di ujung paling timur. Dan tampak jelas bahwa seluruh dunia senyatanya berada pada tanggal 1 Zulhijjah 1439 H yang sama. Perbedaannya saat konversi ke kalender Tarikh Umum, sisi timur garis bujur 180º telah memasuki bulan Zulhijjah pada 11 Agustus 2018 TU maghrib. Termasuk Saudi Arabia. Sementara sisi barat dari garis bujur 180º baru memasukinya pada 12 Agustus 2018 TU maghrib. Termasuk Indonesia.

Jadi dengan mengubah perspektif semata, dari yang semula perspektif kalender Tarikh Umum menjadi sudut pandang kalender Hijriyyah, kita sudah mendapati bahwa keputusan Indonesia dan Saudi Arabia sebenarnya senada. Sama-sama menempati tanggal 1 Zulhijjah 1439 H pada saat yang sama. Dengan demikian Idul Adha 1439 H di Indonesia sejatinya juga bersamaan dengan Saudi Arabia. Bahwa jika dilihat dalam tanggal Tarikh Umum terkesan berbeda, sekali lagi itu semata soal perspektif. Bukan realita.

Elegi Tebing Breksi, Letusan Sedahsyat Toba dan Gerhana Bulan Apogean

Salah satu lokasi pengamatan Gerhana Bulan Total 28 Juli 2018 adalah Taman Tebing Breksi, yang diselenggarakan oleh Jogja Astro Club (JAC), klub astronomi tertua di kota Yogyakarta. Taman Tebing Breksi bertempat di desa Sambirejo, kec. Prambanan, Kab. Sleman (DIY). Ini adalah sebuah obyek wisata baru nan khas, bekas area penambangan bahan galian C yang ditutup pada 2014 TU (Tarikh Umum) silam. Lantas dinding-dinding batu tegak yang masih tersisa didekorasi dengan aneka pahatan berseni. Kedekatan lokasinya dengan obyek wisata yang telah lebih dulu ada dan populer seperti kompleks Candi Prambanan dan kompleks Candi Ratu Boko menjadikan Taman Tebing Breksi cepat populer. Terlebih setelah pesohor seperti mantan Presiden Barrack Obama mengunjunginya tepat setahun lalu.

Gambar 1. Panorama Taman Tebing Breksi, obyek wisata baru yang berlokasi tak jauh dari Candi Prambanan dan Candi Ratu Boko yang tersohor. Meski menyandang nama breksi, sejatinya tak dijumpai batuan breksi di sini. Melainkan tuf, debu vulkanik produk letusan gunung berapi masa silam yang telah terpadatkan demikian rupa hingga mengeras dan membatu. Sumber: Detik.com/Bagus Kurniawan, 2016.

Nama Tebing Breksi yang melekat pada obyek wisata baru ini sesungguhnya tidaklah tepat menurut perspektif ilmu kebumian. Breksi adalah batuan sedimen yang mengandung fragmen/bongkah yang kasar dan sisinya relatif tajam/menyudut. Jika fragmen/bongkahnya relatif membulat, maka namanya berubah menjadi lebih megah dan populer. Yakni Konglomerat. Kata yang sering dinisbatkan kepada sosok-sosok yang dalam istilah milenial disebut horang-horang kayah rayah.

Breksi bisa dijumpai sebagai hasil aktivitas pengendapan di dasar laut. Bisa juga breksi tersebar di sekeliling sebuah gunung berapi sebagai produk aktivitasnya. Dapat pula breksi terbentuk akibat aktivitas tumbukan benda langit, yakni saat komet atau asteroid menghantam paras Bumi dengan dahsyatnya dan mengubah banyak hal pada batuan yang ditumbuknya. Breksi produk aktivitas terakhir itu dikenal sebagai suevit atau breksi tumbukan.

Namun breksi tidaklah ada di Taman Tebing Breksi, sejauh mata memandang dan sejauh tangan mampu menggali. Dinding-dinding batuan tegak yang kini berhias aneka rupa itu sejatinya dikenal sebagai Tuf. Ya tuf, tumpukan debu vulkanik yang telah membatu demikian rupa. Berbeda dengan breksi yang bisa berasal dari berbagai sumber, tuf jelas merupakan produk aktivitas gunung berapi.

Tuf yang tersingkap di Taman Tebing Breksi merupakan bagian dari apa yang dalam ilmu kebumian dikenal sebagai formasi Semilir. Ini adalah satuan batuan yang dijumpai membentang dalam area yang sangat luas di bagian selatan pulau Jawa, yakni hingga mencapai luasan 800 km2. Tuf ini tersebar mulai dari Yogyakarta di sebelah barat hingga Pacitan di sebelah timur. Dengan ketebalan antara 250 meter hingga 1.200 meter, maka volume tuf Semilir mencapai sedikitnya 480 km3.

Gambar 2. Sebaran dan ketebalan tuf Semilir di bagian selatan pulau Jawa. Tuf yang diendapkan dalam tempo singkat itu kini tersebar di tiga propinsi yakni DIY, Jawa Tengah dan Jawa Timur. Sumber: Smyth dkk. 2011.

Berdasarkan ketiadaan jejak-jejak erosi dan aktivitas binatang purba didalamnya, tuf Semilir diindikasikan terbentuk oleh pengendapan material letusan gunung berapi dalam tempo cukup singkat bagi skala waktu geologi. Tidak perlu menunggu ribuan hingga berjuta-juta tahun seperti umumnya batuan endapan dalam sebuah formasi. Maka tuf Semilir merupakan produk letusan tunggal, sebuah letusan yang sangat dahsyat.

Mari bayangkan berkelana ke masa silam, anggaplah kita bisa menumpang mesin waktunya Doraemon. Putar waktu kembali ke zaman 20 juta tahun silam, kembali ke kala Oligo-Miosen dalam skala waktu geologi. Pulau Jawa sudah terbentuk meski wajahnya belumlah seperti sekarang. Jawa bagian selatan masih terbenam di bawah air laut. Di sini terdapat untaian pulau-pulau kecil berbaris, yang sejatinya adalah puncak-puncak gunung berapi aktif yang tumbuh dari dasar laut. Mereka menjadi bagian dari apa yang disebut busur vulkanik Jawa tua, yang tumbuh dan aktif sejak 45 juta tahun silam.

Salah satu pulau itu adalah, sebut saja, pulau Semilir. Pada 20 juta tahun silam itu ia meletus, mengamuk teramat dahsyat. Seberapa dahsyat? Bagi kita di Yogyakarta, Jawa Tengah dan sekitarnya, Letusan Merapi 2010 selalu dikenang sebagai letusan terdahsyat saat ini. Gunung Merapi memuntahkan tak kurang dari 150 juta m3 magma saat itu. Ada juga Letusan Kelud 2014 meski tingkat kedahsyatannya sedikit di bawah Gunung Merapi, yakni dengan muntahan magma segar 105 juta m3. Namun dibandingkan letusan Semilir 20 juta tahun silam, Merapi dan Kelud adalah ibarat amuba yang bersanding dengan gajah.

Gambar 3. Jam-jam pertama Letusan Toba Muda 74.000 silam, dalam sebuah ilustrasi. Gas dan debu vulkanik disemburkan dahsyat hingga menjangkau ketinggian 70 kilometer. Gambaran situasi yang mirip juga dijumpai pada Letusan Semilir 20 juta tahun silam. Sumber: Anynobody, 2009 dalam Wikipedia, 2009.

Letusan Semilir 20 juta tahun silam memuntahkan tak kurang dari 480 milyar m3 atau 480 km3 magma padat setara batuan. Jika dianggap komposisinya mirip dengan magma Tambora, kalikan angka tersebut dengan 6. Akan kita dapatkan volume magma Letusan Semilir 20 juta tahun silam itu mencapai tak kurang dari 2.800 km3 magma! Bila anda pernah mendengar kisah horor dahsyatnya letusan Gunung Toba yang kini menjadi Danau Toba, ya seperti itulah gambarannya. Letusan Gunung Toba terjadi pada 74.000 tahun silam, yang disebut sebagai Letusan Toba Muda. Letusan yang menggelapkan tanah Sumatera dan Semenanjung Malaya serta mencekik dunia. Volume magma yang dierupsikan dalam Letusan Semilir 20 juta tahun silam itu 18.000 kali lipat lebih melimpah ketimbang amukan Gunung Merapi 2010 TU silam.

Seperti halnya kisah yang terjadi dalam letusan-letusan sangat besar gunung berapi, Letusan Semilir 20 juta tahun silam jelas menebarkan dampaknya ke segenap sudut paras Bumi. Tebaran debu vulkaniknya yang teramat banyak mungkin membedaki kawasan sekitarnya hingga radius 2.500 kilometer dari gunung. Namun debu vulkanik yang lebih halus tersembur tinggi hingga memasuki lapisan stratosfer bersama dengan gas SO2 yang sontak bereaksi dengan uap air membentuk butir-butir sulfat (H2SO4).

Terbentuklah tabir surya vulkanis di ketinggian lapisan stratosfer, yang efektif memblokir sinar Matahari sehingga paras Bumi dibikin remang-remang. Maka reaksi berantai pun terjadilah. Tumbuh-tumbuhan tak bisa menyelenggarakan fotosintesis sehingga mulau bermatian. Hewan-hewan herbivora pun kelaparan dan bertumbangan. Disusul hewan-hewan karnivora hingga ke puncak jaring-jaring makanan. Kematian besar-besaran diduga terjadi pada saat itu, meski seberapa besar tingkatannya masih belum bisa kita ketahui.

Gambar 4. Estimasi dampak sebaran debu vulkanik dalam Letusan Semilir 20 juta tahun silam, dengan mengacu pada dampak Letusan Toba Muda 74.000 tahun silam yang telah lebih diketahui. Bentuk kepulauan Indonesia adalah berdasarkan rekonstruksi untuk 20 juta tahun silam. Sumber: Smyth dkk. 2011.

Pergerakan tektonik menyebabkan bagian selatan pulau Jawa terangkat menjadi daratan. Sementara lempeng tektonik Australia terus mendesak ke utara sembari bersubduksi. Rangkaian proses inilah yang menyebabkan formasi Semilir terbentuk lantas terangkat dan menjadi jajaran perbukitan yang sebagian diantaranya menghiasi sisi timur Yogyakarta. Ilmu kebumian menyebutnya sebagai zona Baturagung. Dimana lokasi gunung berapi purba yang meletus demikian dahsyat itu? Ada beragam pendapat, misalnya yang menyebutkan pusat letusan ada di dalam area zona Baturagung yang terletak di antara Kab. Klaten dan Kab. Gunungkidul. Ada juga yang beropini pusat letusan sangat dahsyat itu kini menjadi cekungan Baturetno, cekungan besar bekas danau purba yang sebagian digenangi air sebagai Waduk Gajahmungkur, Kab. Wonogiri.

Raungan

Untuk apa membicarakan gunung berapi pada saat Gerhana Bulan?

Gerhana Bulan Total 28 Juli 2018 merupakan Gerhana Bulan Apogean, karena terjadi hanya berselang 14 jam setelah Bulan mencapai titik apogee-nya. Gerhana Bulan ini akan dimulai pada pukul 00:15 WIB (kontak awal penumbra atau P1) dan berakhir pada pukul 06:28 WIB (kontak akhir penumbra atau P4). Sehingga durasinya 6 jam 14 menit. Akan tetapi bagian gerhana yang kasatmata hanyalah berdurasi 3 jam 55 menit. Yakni mulai dari pukul 01:24 WIB (kontak awal umbra atau U1) hingga pukul 05:19 WIB (kontak akhir umbra atau U4).

Sementara durasi totalitasnya adalah 1 jam 43 menit dengan puncak gerhana dicapai pada pukul 03:22 WIB. Karena Bulan baru saja meninggalkan titik apogee dengan jarak Bumi – Bulan saat itu masih sebesar 406.100 kilometer, maka kecepatan orbital Bulan masih lambat. Ditunjang dengan lintasan Bulan yang tep@at hampir bersentuhan dengan pusat lingkaran umbra, maka inilah yang menjadikan Gerhana Bulan Total ini sebagai Gerhana Bulan dengan durasi totalitas terpanjang untuk abad ke-21 TU.

Gambar 5. Wajah Bulan dalam Gerhana Bulan Sebagian 7-8 Agustus 2017. Panorama tahap parsial seperti ini akan bisa disaksikan lagi dalam peristiwa Gerhana Bulan Total 28 Juli 2018. Sumber: Sudibyo, 2017.

Manakala gerhana Bulan terjadi, saksikanlah saat-saat sebelum umbra Bumi mulai menyelimuti paras Bulan. Nampak bundaran Bulan nan cemerlang di langit malam. Pada wajahnya ada bagian yang nampak lebih cerah, juga ada yang lebih gelap. Bagian-bagian yang gelap itu disebut mare (jamaknya maria), istilah Bahasa Latin untuk laut. Sebab para astronom jaman dulu, termasuk diantaranya Galileo Galilei, menganggap bagian itu adalah laut di paras Bulan. Namun di kemudian hari anggapan itu terbantahkan. Terlebih setelah eksplorasi Bulan menjadi salah satu bagian dalam khasanah penerbangan antariksa. Bulan ternyata kering kerontang.

Maria merupakan dataran rendah Bulan, khususnya cekungan raksasa (basin) yang terbentuk oleh sebab tertentu bermilyar tahun silam. Di kemudian hari ia digenangi oleh lava Bulan secara berangsur-angsur, produk muntahan magma gunung-gemunung berapi Bulan secara kontinu di masa silam. Magmanya relatif encer, tidak seperti magma Merapi yang lebih kental atau bahkan magma Semilir yang (mungkin) sangat kental. Gunung gemunung berapi Bulan saat itu mungkin seperti gunung berapi di Kepulauan Hawaii (Amerika Serikat) atau di kawasan Hijaz (Saudi Arabia) pada masa kini. Magmanya cair encer sehingga melebar menutupi area yang sangat luas dalam letusan yang dikenal sebagai erupsi efusif (leleran). Namun tak menutup kemungkinan bahwa gunung-gemunung berapi Bulan untuk meletus eksplosif. Layaknya Letusan Merapi 2010 atau bahkan Letusan Semilir 20 juta tahun silam.

Gambar 6. Wajah Bulan dengan tebaran nama-nama mare yang bertebaran diparasnya. Awalnya dikira laut, eksplorasi Bulan memperlihatkan mare adalah cekungan besar yang terisi material vulkanik produk aktivitas gunung-gemunung berapi Bulan yang aktif jauh di masa silam, bermilyar tahun yang lalu. Sumber : Sudibyo, 2018.

Jadi, kala kita menatap wajah Bulan dari tempat seperti Taman Tebing Breksi, kita bisa belajar bahwa kekuatan yang membentuk Taman Tebing Breksi ini sejatinya juga pernah bekerja di Bulan. Dan juga bagian lain tata surya kita. Vulkanisme atau aktivitas kegunungberapian sejatinya berlandaskan pada prinsip yang sangat sederhana, yakni pelepasan panas. Tatkala kita menyeduh secangkir kopi pada saat ini, kopi perlahan-lahan akan mendingin karena melepaskan panasnya ke lingkungan sekitarnya. Termasuk ke udara. Vulkanisme pun demikian. Manakala benda langit, baik planet maupun satelit alamiahnya, memiliki kandungan panas yang cukup besar dalam interiornya, maka panas itu perlahan-lahan akan dilepaskan ke lingkungan sekitar melalui berbagai cara. Salah satunya adalah vulkanisme.

Maka tak heran jika di Bulan kita menemukan jejak-jejak aktivitas gunung berapi. Demikian halnya di planet Venus dan Mars. Meski di ketiga benda langit tersebut aktivitas vulkanisme masakini nyaris tidak ada karena proses pelepasan panas interior nampaknya sudah kurang intensif. Di lingkungan planet Jupiter, bahkan dijumpai aktivitas vulkanisme aktif yang jauh lebih ganas ketimbang yang kita alami di Bumi. Yakni di Io, salah satu satelit alamiah dari planet gas raksasa itu. Bahkan hingga ke tempat yang demikian jauh, dingin dan ganjil seperti lingkungan planet Neptunus pun dijumpai aktivitas vulkanisme. Yakni di Triton, satelit alamiah terbesar dari planet yang berjarak terjauh terhadap Matahari.

Jadi, tatkala kita berada di Taman Tebing Breksi dan menatap Rembulan, mari bayangkan bahwa raungan vulkanik yang pernah membentuk tempat ini pada 20 juta tahun silam juga pernah bergema di keluasan langit, dalam sudut-sudut tata surya kita. Mulai dari Bulan sang pengawal setia Bumi kita, lalu Venus yang udaranya panas membara hingga ke lingkungan Neptunus yang demikian mengigil membekukan.

Referensi :

Smyth dkk. 2011. A Toba-scale Eruption in the Early Miocene: The Semilir Eruption, East Java, Indonesia. Lithos no. 126(3) October 2011, halaman198-211.  

Gerhana Bulan Total Terlama Abad Ini dan Mars Terdekat ke Bumi

Bagaimana jika dua peristiwa langit yang berbeda terjadi pada waktu yang hampir sama? Inilah yang akan kita jumpai pada akhir Juli 2018 TU (Tarikh Umum). Yakni peristiwa Gerhana Bulan Total 28 Juli 2018 dan Mars terdekat ke Bumi 31 Juli 2018.

Sebelum lebih jauh, perlu digarisbawahi bahwa yang dimaksud Gerhana Bulan Total terlama abad ini adalah dalam durasi totalitasnya. Yakni rentang waktu manakala Bulan sepenuhnya berada dalam umbra (bayangan inti) Bumi sehingga sepenuhnya terblokir dari paparan langsung cahaya Matahari. Peristiwa Gerhana Bulan Total telah diperhitungkan akan terjadi pada Sabtu 28 Juli 2018 TU, bertepatan dengan 15 Zulqaidah 1439 H jika berdasarkan takwim standar Kementerian Agama RI atau 14 Zulqaidah 1439 H merujuk kalender Nahdlatul ‘Ulama yang telah dikomparasikan dengan hasil rukyat hilaal. Dan dalam peristiwa ini, durasi totalitasnya adalah sebesar 103 menit atau 1 jam 43 menit. Panjangnya durasi totalitas ini menjadikan Gerhana Bulan Total 28 Juli 2018 adalah Gerhana Bulan Total (berdurasi totalitas) terlama bagi abad ke-21 TU.

Gambar 1. Bulan dalam tahap parsial saat Gerhana Bulan 7-8 Agustus 2017 silam. Diabadikan dalam citra overeksposur untuk memperlihatkan bagian umbra di cakram Bulan yang berwarna kemerah-merahan. Pemandangan yang lebih memukau akan kita saksikan pada Gerhana Bulan Total 28 Juli 2018. Sumber: Sudibyo, 2017.

Gerhana Bulan ini mengurung narasi yang hampir serupa dengan peristiwa sejenis sebelumnya. Yakni terjadi manakala Matahari, Bulan dan Bumi berada dalam satu garis lurus ditinjau dari segala arah (syzygy) dengan Bulan berada di tengah-tengah. Pada saat itu Bulan memiliki fase purnama. Dan pada saat yang sama pula Bulan berkedudukan dekat atau bahkan tepat menempati salah satu dari dua titik nodal dalam orbitnya, yakni titik potong antara orbit Bulandengan dengan ekliptika (bidang edar Bumi dalam mengelilingi Matahari). Sebagai akibatnya pancaran sinar Matahari ke arah Bulan akan terhalangi oleh bundaran Bumi. Bergantung pada besar kecilnya derajat penghalangan cahaya Matahari oleh Bumi, maka terdapat tiga macam Gerhana Bulan. Masing-masing Gerhana Bulan Total (GBT), Gerhana Bulan Sebagian (GBS) atau Gerhana Bulan Parsial dan Gerhana Bulan Penumbral(GBP) atau Gerhana Bulan Samar.

Gerhana Bulan Apogean

Gerhana Bulan 28 Juli 2018 merupakan peristiwa Gerhana Bulan Total. Terjadi karena Bulan tepat sepenuhnya melintasi umbra Bumi di kala puncak gerhana terjadi. Perhitungan menunjukkan awal gerhana akan terjadi pada pukul 00:15 WIB, yang ditandai dengan kontak awal penumbra (P1) yang juga pertanda dimulainya tahap penumbral. Dalam kondisi tersebut, meski gerhana telah dimulai namun masih sangat sulit untuk membedakannya dengan Bulan purnama biasa. Kecuali oleh pengamat yang berpengalaman, atau pengamatan dilakukan dengan menggunakan teleskop / binokular.

Gambar 2. Wajah Bulan dalam Gerhana Bulan Sebagian 7-8 Agustus 2017. Panorama tahap parsial seperti ini akan bisa disaksikan lagi dalam peristiwa Gerhana Bulan Total 28 Juli 2018. Sumber: Sudibyo, 2017.

Gerhana Bulan diperhitungkan baru akan nampak secara kasat mata pada pukul 01:24 WIB. Yakni pada saat kontak awal umbra (U1) dimulai yang juga menandakan dimulainya tahap parsial. Pada yakni pada saat umbra tepat mulai bersentuhan dengan cakram Bulan. Mulai saat itu cakram Bulan akan berangsur-angsur menggelap dari sisi timur. Tahap berikutnya, yakni tahap total, diperhitungkan akan terjadi mulai terjadi pada pukul 02:30 WIB dengan terjadinya kontak awal total (U2). Puncak gerhana diperhitungkan terjadi pada pukul 03:22 WIB.

Tahap total ini diperhitungkan akan berakhir pada pukul 04:13 WIB seiring terjadinya kontak akhir total (U3). Secara kasat mata gerhana diperhitungkan akan berakhir pada pukul 05:19 WIB seiring cakram Bulan tepat meninggalkan umbra sebagai pertanda terjadinya kontak akhir umbra (U4). Tahap parsial pun berakhir pada saat itu. Dan akhir gerhana diperhitungkan bakal terjadi pada pukul 06:28 WIB dengan terjadinya kontak akhir penumbra (P4) sekaligus akhir tahap penumbral.

Dari angka-angka tersebut kita bisa mengetahui durasi gerhana ini. Durasi gerhana secara keseluruhan, dimulai dari kontak awal penumbra hingga kontak akhir penumbra, diperhitungkan sebesar 6 jam 14 menit. Namun durasi gerhana kasat mata, yakni sejak kontak awal umbra hingga kontak akhir umbra, diperhitungkan sebesar 3 jam 55 menit. Sementara durasi totalitasnya adalah 1 jam 43 menit.

Durasi totalitas Gerhana Bulan Total 28 Juli 2018 cukup panjang. Karena gerhana terjadi pada waktu berdekatan dengan apogee Bulan. Yakni saat Bulan berkedudukan di titik apogee (titik terjauh dalam orbitnya terhadap Bumi). Karena itu merupakan Gerhana Bulan Apogean. Saat puncak gerhana terjadi pada 28 Juli 2018 TU pukul 03:22 WIB, jarak Bumi – Bulan diperhitungkan adalah sebesar 406.100 kilometer (yakni dari pusat Bumi ke pusat Bulan). Sementara apogee Bulan terjadi pada 27 Juli 2018 TU pukul 12:45 WIB, atau hanya 14 jam sebelum puncak gerhana. Apogee Bulan saat itu diperhitungkan memiliki jarak 406.220 kilometer.

Jarak rata-rata Bumi – Bulan adalah sebesar 384.400 kilometer. Jika jarak Bumi – Bulan untuk satu saat lebih besar dari nilai tersebut, maka ukuran tampak (apparent) cakram Bulan akan terlihat lebih kecil kala disaksikan dari Bumi. Fenomena ini akan cukup jelas pada saat terjadinya Bulan purnama. Dalam astronomi, Bulan purnama yang terjadi dalam waktu berdekatan dengan apogee Bulan disebut sebagai Bulan purnama apogean. Namun bagi khalayak ramai lebih populer dengan istilah Minimoon, sebuah lawan-kata dari istilah Supermoon. Sejak awal abad ke-21 hingga beberapa tahun ke depan, Minimoon selalu terjadi di setiap bulan Juli hingga Agustus, sementara Supermoon di setiap bulan Desember hingga Januari.

Gambar 3. Perbandingan ukuran Bulan antara saat Bulan purnama perigean (Supermoon) dengan saat purnama jelang Gerhana Bulan Sebagian 7-8 Agustus 2017. Diabadikan dengan instrumen yang sama. Nampak Bulan saat purnama perigean sedikit lebih besar. Sumber: Sudibyo, 2017.

Kecepatan gerak Bulan dalam mengelilingi Bumi tergantung pada posisinya. Saat berada di perigee (titik terdekat ke Bumi), Bulan bergerak paling cepat. Sebaliknya pada saat berada di apogee ia menjadi yang paling lambat. Maka saat Gerhana Bulan Total 28 Juli 2018 terjadi, gerak Bulan sedang dalam keadaan paling lambat. Inilah yang menjadikan durasi totalitasnya cukup besar, selain bahwa pada saat gerhana terjadi lintasan pergerakan Bulan tepat hampir menyentuh pusat bundaran umbra. Kombinasi dua hal tersebut menjadikan durasi totalitas Gerhana Bulan Total 28 Juli 2018 adalah yang terpanjang bagi abad ke-21 TU.

Keterlihatan Gerhana Bulan

Salah satu aspek istimewa dalam peristiwa Gerhana Bulan adalah tahap-tahap gerhananya terjadi pada waktu yang sama pada titik-titik manapun dalam wilayah gerhana. Jika ada perbedaan, maka perbedaan tahap-tahap gerhana antara satu titik dengan titik lainnya hanyalah dalam orde detik. Dengan demikian durasi gerhana Bulan di setiap titik pun dapat dikatakan adalah sama.

Gerhana Bulan Total 28 Juli 2018 memiliki wilayah gerhana cukup luas mencakup lebih dari separuh bola Bumi yang sedang berada dalam situasi malam hari. Yakni melingkupi seluruh benua Eropa, Afrika, Australia serta hampir seluruh Asia (kecuali sudut timur laut Russia) dan sebagian Amerika (khususnya Amerika selatan). Luasan wilayah gerhana terbagi menjadi dua, yakni wilayah yang mengalami gerhana secara utuh dan wilayah yang mengalami gerhana secara tak utuh (saat Bulan mulai terbenam maupun mulai terbit).

Gambar 4. Peta wilayah Gerhana Bulan Total 28 Juli 2018 secara global. Perhatikan bahwa hampir segenap Indonesia merupakan bagian dari wilayah yang mengalami gerhana secara tidak utuh. Yakni Gerhana Bulan terjadi di Indonesia saat Bulan sedang dalam proses terbenam. Sehingga tidak seluruh tahap gerhana bisa disaksikan, sepanjang langit cerah. Sumber: Sudibyo, 2018 dengan basis NASA, 2018.

Hampir segenap Indonesia tercakup ke dalam wilayah yang mengalami gerhana meski secara tak utuh. Karena Gerhana Bulan terjadi di Indonesia manakala Bulan sedang dalam proses terbenam. Jadi tidak seluruh tahap gerhana bisa disaksikan mengingat Bulan sudah keburu terbenam (dan sebaliknya sudah Matahari terbit). Karena itulah maka propinsi Papua hanya bisa menikmati Gerhana Bulan ini sebelum akhir tahap total (U3) saja. Sementara segenap daerah yang ada di antara pulau Sulawesi hingga sisi barat pulau Irian (yakni propinsi Irian Jaya Barat) beserta sebagian propinsi Nusa Tenggara Timur dan Kalimantan Utara hanya sanggup mengalami gerhana sebelum akhir tahap parsial (U4). Sisanya, kecuali sebagian pulau Sumatra, masih lebih beruntung karena mengalami Gerhana Bulan hingga sebelum tahap akhir gerhana (P4). Hanya propinsi Aceh, Sumatra Utara, Sumatra Barat dan Riau saja yang berkesempatan menyaksikan gerhana secara utuh.

Gerhana Bulan Total merupakan gerhana Bulan yang kasat mata. Sehingga dapat kita amati tanpa bantuan alat optik apapun, sepanjang langit cerah. Namun penggunaan alat bantu optik seperti kamera dan teleskop akan menyajikan hasil yang lebih baik. Sepanjang dilakukan dengan pengaturan (setting) yang tepat sesuai dengan tahap-tahap gerhana. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :


Mars Terdekat ke Bumi

Selain Gerhana Bulan Total, Juli 2018 TU juga ditandai dengan peristiwa langka, yakni saat Mars berkedudukan terdekat dengan Bumi. Terdekat dalam arti yang sesungguhnya, yakni dalam hal jarak. Pada Selasa 31 Juli 2018 TU pukul 14:51 WIB yang bertepatan dengan 18 Zulqaidah 1439 H (dalam takwim Kementerian Agama RI) atau 17 Zulqaidah 1439 H (dalam kalender Nahdlatul ‘Ulama) Mars diperhitungkan akan berjarak 57,59 juta kilometer dari Bumi kita, dihitung dari pusat Bumi ke pusat Mars. Terakhir kali Mars berada pada posisi yang lebih dekat ke Bumi ketimbang saat ini adalah pada 15 silam. Tepatnya pada 27 Agustus 2003 TU dimana saat itu Bumi dan Mars hanya terpisahkan jarak sebesar 55,7 juta kilometer saja.

Gambar 5. Simulasi panorama langit malam pada saat puncak Gerhana Bulan Total 28 Juli 2018 dilihat dari Jakarta, Indonesia. Atas = utara, kanan = barat. Nampak Bulan sangat berdekatan dengan Mars, dengan jarak sudut (elongasi) hanya sekitar 10º. Sumber: SkyMapOnline, 2018.

Karena berkedudukan cukup dekat dengan Bumi dibanding biasanya, maka Mars akan bertambah terang. Pada 31 Juli 2018 TU itu Mars bakal menjadi benda langit alami terterang nomor tiga di langit malam setelah Bulan dan Venus. Diperhitungkan Mars akan memiliki magnitudo semu hingga -3, atau 10 kali lebih benderang dibandingkan kondisi biasanya. Perubahan kecemerlangan ini akan mudah dideteksi bahkan tanpa menggunakan alat bantu optik apapun.

Baik Mars maupun Bumi adalah planet-planet yang beredar mengelilingi Matahari dalam lintasannya masing-masing. Mars tergolong dalam kelompok planet superior, yakni planet-planet yang orbitnya lebih jauh terhadap Matahari dibandingkan orbit Bumi. Maka dalam sudut pandang kita di Bumi, ada dua peristiwa unik yang terkait erat dengan posisi Bumi dan Mars dalam orbitnya masing-masing terhadap Matahari. Yakni peristiwa konjungsi (ijtima’) dan oposisi (istikbal).

Konjungsi Mars – Matahari terjadi saat Bumi, Mars dan Matahari terletak dalam satu garis lurus dengan kedudukan Matahari di tengah-tengah. Sehingga Mars akan terlihat sangat berdekatan atau bahkan menghilang di balik Matahari saat dilihat dari Bumi. Dalam peristiwa ini maka Matahari dan Mars akan terbit dan terbenam pada saat yang hampir sama dilihat dari Bumi. Saat itu terjadi maka Mars akan memiliki jarak terpanjangnya terhadap Bumi, yakni mencapai 400 juta kilometer. Pada saat konjungsi Mars – Matahari terjadi, Mars berada dalam kondisi paling redup dengan magnitudo semu +1,6.

Sedangkan oposisi Mars – Matahari adalah sebaliknya, yakni saat Bumi, Mars dan Matahari terletak dalam satu garis lurus dengan kedudukan Bumi di tengah-tengah. Sehingga Mars akan bertolak belakang terhadap kedudukan Matahari. Dengan kata lain, pada saat oposisi Mars terjadi maka planet itu tepat akan terbit kala Matahari tepat terbenam. Dan demikian pula sebaliknya. Saat oposisi Mars terjadi maka ia akan berada pada kondisi paling terang dan jaraknya ke Bumi pun adalah yang terpendek.

Gambar 6. Ilustrasi perubahan diameter tampak (apparent) Mars dari waktu ke waktu antara sebelum oposisi, pada saat oposisi 2018 dan setelah oposisi. Sumber: ALPO, 2018.

Mars memiliki orbit yang berjarak rata-rata 1,524 SA (satuan astronomi) terhadap Matahari sehingga mempunyai periode revolusi sideris 1,88 tahun. Namun demikian konjungsi maupun oposisi Mars – Matahari tidak terjadi setiap 1,88 tahun sekali. Dengan mempertimbangkan periode revolusi Bumi, maka Mars memiliki periode revolusi sinodis sebesar 2,135 tahun atau setara dengan 780 hari. Maka setiap 2,135 tahun inilah konjungsi Mars – Matahari terjadi. Demikian halnya oposisi Mars – Matahari.

Oposisi Mars 2018 sejatinya akan terjadi pada 27 Juli 2018 TU pukul 12:07 WIB, atau hanya 15 jam sebelum puncak Gerhana Bulan Total 28 Juli 2018. Sementara jarak terdekat Mars ke Bumi dicapai dalam empat hari kemudian, yang terjadi karena Mars mengalami dua kondisi sekaligus. Yakni oposisi Mars itu sendiri dan Mars yang sedang bergerak menuju titik perihelionnya (akan dicapai pada 15 September 2018 TU mendatang. Kombinasi dua hal ini sering disebut sebagai oposisi perihelion, umumnya terjadi setiap 15 hingga 17 tahun sekali.

Referensi :

SkyMapOnline, 2018.

Beish. 2018. The 2018 Perihelic Apparition of Mars. The Association of Lunar and Planetary Observers (ALPO), diakses 25 Juli 2018 TU.

Espenak & Meeus. 2009. Five Millennium Canon of Lunar Eclipse, – 1999 to +3000 (2000 BCE to 3000 CE). NASA Tech.Pub. 2008-214173, NASA Goddard Space Flight Center, Greenbelt, Maryland.

Tekanan Hidrostatik: Insiden Goa Thailand dan Kecelakaan Danau Toba Indonesia

John Volanthen masih menyelam sembari memasangi tali pandu di dasar lorong goa Tham Luang Nan Non, atau goa Putri Tidur, yang dibanjiri air. Mendadak sosok yang disebut sebagai penyelam spesialis goa terbaik di dunia itu tersadar kalau gulungan tali yang dibawanya habis. Kondisi yang memaksanya berenang ke paras air, sesuai prosedur standar, untuk berorientasi dan beristirahat barang sejenak. Saat itu pukul 22:00 waktu Thailand (setara dengan WIB di Indonesia), hari Senin 2 Juli 2018 TU (Tarikh Umum). Lorong itu gelap gulita dan hening seperti seharusnya, tapi mendadak terdengar suara lirih memanggil. Begitu lampu sorotnya diarahkan ke sumber suara, terpampang pemandangan 12 remaja dan seorang dewasa berkumpul pada satu serambi sempit di tepi air. Semua nampak tenang meski terduduk lemas tanpa bisa berdiri. Mereka inilah yang telah dicari-cari dan menyedot perhatian dunia selama sembilan hari terakhir.

Drama dimulai pada Sabtu 23 Juni 2018 TU. Kisah sesungguhnya masih simpang siur. Versi yang banyak dikutip menjelaskan, 13 remaja yang berasal dari desa-desa miskin di dekat perbatasan Thailand dan Myanmar meluncur ke kompleks goa Tham Luang usai berlatih sepakbola. Mereka adalah bagian klub kecil yang menjuluki dirinya klub Wild Boar. Setibanya di mulut goa, mereka segera masuk menjalani ritual inisiasi khas setempat. Yakni masuk sejauh mungkin dalam lorong goa, menuliskan namanya di dinding dan lantas bergegas keluar sebelum tergenang air. Juga ada rencana merayakan ulang tahun salah satu dari mereka. Beberapa bungkus makanan ringan pun turut dibawa.

Sang pelatih, pemuda yatim piatu berusia 25 tahun yang dididik menjadi biksu dan mengabdi pada kuil setempat, awalnya tak tahu rencana anak-anak didiknya. Bergegas ia menyusul mereka mengingat sifat goa Tham Luang yang tak boleh dimasuki selama periode Juli hingga September setiap tahunnya karena selalu tergenangi air dari hujan lebat muson. Apalagi mendung sudah membayang. Ia terlambat, para remaja itu sudah terlanjur masuk dan meninggalkan sepeda-sepedanya di dalam mulut goa. Ia pun menyusul masuk. Benar saja, hujan deras pun mengguyur selama berhari-hari kemudian.

Tak ada pilihan bagi mereka kecuali terus masuk kian jauh ke dalam lorong, mencari tempat yang kering dan menunggu. Selama sembilan hari kemudian mereka bertahan hidup dalam ruang sempit nan gelap dengan meminum tetes-tetes air dari stalaktit dan menjatah tiap keping makanan ringan yang dibawa. Sang pelatih juga mengajari bermeditasi, menekankan tetap tenang, tetap berkumpul dan tetap menghemat energi. Mereka sempat berusaha membuat jalan keluar dengan menggali dinding goa hingga 5 meter.

Drama itu menyedot perhatian berskala internasional sekaligus menyatukan kembali rakyat Thailand, yang terpecah oleh perbedaan politik berkepanjangan, untuk sementara. Angkatan Laut Thailand menyiagakan 18 penyelam Navy Seals terbaiknya. 24 sukarelawan penyelam goa pun berdatangan dari mancanegara, mulai dari negara-negara tetangga seperti Laos, Myanmar, China, Filipina, Jepang dan India. Hingga dari negeri-negeri jauh seperti Amerika Serikat, Inggris, Australia, Russia, Belanda, Belgia, Ceko, Denmark, Finlandia, Jerman, Ukraina dan bahkan Israel. Di luar itu ada sekitar 1.000 sukarelawan yang berpartisipasi dari beragam latar belakang. Mulai dari para relawan bencana, petugas penyelamat untuk keadaan darurat hingga petani, pencari sarang burung, tukang masak, pemilik usaha laundry dan juga tukang pijat.

Setelah mempertimbangkan aneka opsi masak-masak, otoritas Thailand memutuskan yang paling rasional dan memungkinkan adalah membawa mereka keluar melalui lorong yang tergenangi air. Begitu ditemukan dan diketahui masih hidup serta lengkap, mereka yang terjebak dalam goa segera diasup makanan dan minuman tinggi kalori. Mereka akan dikeluarkan dari goa dengan didampingi dua penyelam profesional. Mempertimbangkan derasnya arus air dan lebar lorong (yang di satu lokasi sangat menyempit menjadi leher-angsa yang khas), maka diputuskan mereka yang terjebak akan dikeluarkan secara bertahap dalam tiga kelompok.

Gambar 1. Penampang melintang goa Thamn Luang Nan Non di propinsi Chiang Rai (Thailand) berdekatan dengan perbatasan Thailand – Myanmar. Nampak lorong-lorong yang melebar membentuk ruang-ruang goa, juga yang menyempit membentuk sejenis terowongan yang dibanjiri air. Jarak antara pintu masuk goa (entrance) dengan lokasi terjebaknya para remaja dan pelatih sepakbolanya adalah 4 kilometer. Sumber: Anonim, 2018.

Meski serambi tempat mereka terjebak berjarak sekitar 4 kilometer dari mulut goa, namun setiap orang hanya perlu menempuh jarak 2 kilometer untuk tiba di pusat operasi penyelamatan yang ditempatkan ruangan besar kering dalam goa. Dari sini mereka akan dibawa dengan tandu ke mobil ambulans yang sudah menunggu di luar mulut goa, atau ke helikopter jika situasinya mendesak. RS Chiang Rai Prachanukroh yang berjarak 70 kilometer dari goa pun disiagakan.

Operasi evakuasi mulai dilaksanakan pada Minggu 8 Juli 2018 TU. Hari itu kelompok pertama yang terdiri dari empat remaja berhasil dikeluarkan. Sehari berikutnya giliran kelompok kedua, juga terdiri dari empat remaja, berhasil dikeluarkan. Operasi hari kedua berjalan dalam waktu lebih cepat ketimbang hari pertama. Sehingga komandan operasi cukup percaya diri untuk mengeluarkan kelimanya pada hari ketiga. Dan demikianlah adanya. Operasi penyelamatan dinyatakan berakhir pada Selasa malam 10 Juli 2018 TU.

Danau Toba

Lima hari sebelum drama goa Thailand dimulai, tragedi yang lebih memilukan berlangsung di Indonesia. Yakni tenggelamnya Kapal Motor (KM) Sinar Bangun VI di perairan Danau Toba sebelah utara pada Senin 18 Juni 2018 TU senja selagi melayari rute antara pelabuhan Simanindo di pulau Samosir ke pelabuhan Tigaras di pesisir timur danau. 21 orang berhasil diselamatkan sementara 3 jasad berhasil dievakuasi. Namun ratusan orang, dalam perhitungan terakhir adalah 164 orang, dinyatakan hilang .

Sejauh ini penyelidikan memperlihatkan kecelakaan yang menimpa KM Sinar Bangun VI terjadi akibat kelebihan muatan. Dimana kapal yang hanya berkapasitas 40 penumpang dijejali hampir 200 orang. Demikian berlebih bebannya sehingga kala berlayar, penumpang yang selamat menuturkan bahwa paras air Danau Toba hanyalah sejarak sejengkal dari bibir geladak kapal. Faktor berikutnya adalah cuaca buruk yang menerpa kawasan Danau Toba ditandai dengan hujan lebat dan angin kencang yang menciptakan gelombang di paras air danau. Diceritakan pula, kelebihan muatan merupakan hal yang biasa dilakukan pada pelayaran di Danau Toba selama bertahun-tahun di bawah hidung otoritas terkait.

Gambar 2. Diagram Kapal Motor Sinar Bangun IV, yang mengalami kecelakaan dan tenggelam di Danau Toba (Indonesia) pada 18 Juni 2018 TU. Kapal terdiri dari tiga dek dengan panjang hanya 17,5 meter dan kapasitas penumpang maksimum hanya 40 orang tanpa diperkenankan mengangkut barang. Namun pada saat kecelakaan terjadi, kapal dijejali oleh hampir 200 orang dan mengangkut sejumlah sepeda motor. Sumber: Reuters, 2018.

Posisi bangkai kapal dan sejumlah jasad penumpangnya baru diketahui sepuluh hari pasca tenggelam. Awalnya Badan SAR Nasional (Basarnas) mendeteksi adanya obyek asing tergolek di dasar danau sedalam 450 meter melalui sonar. Saat wahana otomatik bawahair (ROV) milik Badan Pengkajian dan Penerapan Teknologi (BPPT) dioperasikan guna melihat lebih lanjut temuan sonar secara visual, terlihat reruntuhan yang diduga adalah bangkai kapal. Terekam pula sejumlah jasad dan benda-benda yang terlontar keluar dari kapal, seperti sepeda motor.

Meski posisi bangkai kapal telah diketahui, namun pada Minggu 2 Juli 2018 TU otoritas Indonesia memutuskan menghentikan operasi pencarian bawahair pada keesokan harinya. Sementara pencarian di permukaan air terus berlanjut. Sebagai kenangan sekaligus peringatan ke masa depan akan peristiwa ini, akan dibangun tugu peringatan. Keputusan ini telah dikonsultasikan dengan keluarga para korban hilang. Walaupun demikian beberapa pihak mengkritik keras keputusan tersebut.

Kini, sukses operasi evakuasi para remaja dan pelatihnya yang terjebak dalam goa di Thailand memberikan bahan bakar baru. Bila remaja Thailand saja bisa dievakuasi, mengapa korban Sinar Bangun VI di Indonesia tidak?

Perbandingan

Membandingkan langsung operasi evakuasi goa Thailand dengan Danau Toba Indonesia sesungguhnya tak berimbang dan tak saling mendekati. Karena keduanya sangat berbeda. Terutama korban hilang terjebak di goa Thailand ditemukan masih hidup. Sementara korban hilang di Danau Toba Indonesia (sebagian kecil) ditemukan telah meninggal di dasar danau. Strategi evakuasi antara korban hidup dengan yang sudah meninggal jelas berbeda.

Gambar 3. Peta kedalaman air Danau Toba dan lokasi ditemukannya bangkai KM Sinar Bangun IV. Nampak bagian terdalam danau adalah sepanjang sisi timur pulau Samosir. Peta diadaptasi dari Chesner (2012). Sumber: Reuters, 2018.

Andaikata mau dibandingkan, dalam hemat saya salah satu faktor fisis yang bisa dievaluasi adalah persoalan hidrostatika yang mewujud dalam bentuk tekanan hidrostatis. Dalam fisika, tekanan hidrostatis berbanding lurus dengan kedalamannya. Semakin dalam maka tekanannya kian meninggi. Disinilah letak perbedaan mendasar kasus goa Thailand dengan Danau Toba Indonesia.

Goa Tham Luang Nan Non terletak pada elevasi 450 meter dpl (dari paras air laut rata-rata). Tekanan udara paras air laut didefinisikan sebagai tekanan 1 atmosfer (1 atm), yang setara dengan 1,013 bar atau 101.325 Pascal. Secara umum terjadi pengurangan tekanan udara sebesar 1.200 Pascal dalam tiap kenaikan elevasi 100 meter. Maka tekanan udara di lokasi goa Tham Luang diperhitungkan sebesar 0,95 atmosfir atau hanya 5 % lebih rendah ketimbang tekanan udara paras air laut. Lorong goa ini memang berliku-liku dan naik-turun dengan bagian yang lebih rendah digenangi air yang keruh berlumpur.

Namun genangan air terdalam hanyalah 3 meter, yakni di bagian lorong tersempit dan berbentuk mirip leher-angsa yang umum dijumpai pada wastafel atau toilet. Jika massa jenis air yang menggenangi goa dianggap 1.100 kg/m3 (karena berlumpur) maka dapat diperhitungkan pada titik genangan terdalam besarnya tekanan total (yakni kombinasi tekanan hidrostatis dan tekanan udara permukaan) adalah 1,27 atm. Ini hanya 27 % lebih tinggi ketimbang tekanan udara paras air laut. Maka di goa Tham Luang di Thailand, para penyelamat bisa mencoret problem tekanan hidrostatis dari daftar hal-hal yang harus diperhatikan dan diatasi dalam operasi penyelamatan.

Sebaliknya tidak demikian dengan Danau Toba di Indonesia.

Paras air danau berada pada elevasi 900 meter dpl. Sehingga tekanan udaranya diperhitungkan sebesar 0,89 atmosfir atau hanya 11 % lebih rendah ketimbang tekanan udara paras air laut. Akan tetapi bangkai kapal beserta para korban hilang tergeletak pada kedalaman 450 meter. Air danau terlihat jernih, sehingga massa jenisnya diperkirakan bernilai sekitar 1.000 kg/m3. Jika kerapatan air danau dianggap seragam untuk setiap titik kedalaman, maka dapat diperhitungkan pada kedalaman 450 meter itu tekanan totalnya mencapai 44,5 atm. Ini tekanan cukup tinggi, mencapai 44,5 kali lipat lebih besar ketimbang tekanan udara paras laut. Tekanan setinggi itu bisa disetarakan dengan tekanan udara yang berkekuatan menghancurkan di paras Venus.

Gambar 4. Gambaran sederhana akan perbandingan tekanan hidrostatis yang diderita di dasar Danau Toba dengan bagian terdalam lorong goa Tham Luang yang digenangi air. Jelas terlihat bahwa tekanan total (kombinasi tekanan hidrostatis dan tekanan udara paras air lokal) di dasar Danau Toba jauh lebih besar ketimbang goa Tham Luang. Inilah salah satu faktor yang membedakan proses evakuasi dalam kecelakaan di Indonesia dan insiden di Thailand. Sumber: Sudibyo, 2018.

Sehingga, bertolak belakang dengan goa Tham Luang di Thailand, para penyelamat di Danau Toba sedari awal harus berhadapan dengan masalah tingginya tekanan air di dasar danau. Indonesia memang memiliki perlengkapan penyelaman laut dalam, yang memungkinkan penyelam bisa bekerja pada kedalaman ekstrim. Namun kedalaman maksimum yang bisa dicapai hanyalah 200 meter. Untuk menjangkau kedalaman 450 meter diperlukan peralatan khusus untuk penyelaman laut dalam nan berat. Atau alternatif lainnya yang telah tersedia, dengan berkaca pada pengalaman evakuasi korban-korban hilang pada jatuhnya pesawat Airbus A330 Air France penerbangan 447 di Samudera Atlantik pada 1 Juni 2009 TU. Yakni menggunakan kapal selam mini khusus yang sanggup menyelami kedalaman lebih dari 200 meter. Dalam kasus Air France tersebut, kapal selam mini khusus itu mengangkut jasad-jasad dari kedalaman 4.000 meter.

Masalah tersulit adalah, baik peralatan penyelaman laut dalam maupun kapal selam mini khusus itu hanya bisa dioperasikan lewat kapal induk yang memang dirancang khusus untuknya. Mendatangkan kapal selam mini khusus ke Danau Toba, secara teknis memungkinkan. Ia bisa diangkut lewat jalur laut melalui Pelabuhan Belawan di Medan, atau lewat jalur udara ke Bandara Kuala Namu. Dari situ kapal selam mini khusus tersebut akan menempuh jalur darat ratusan kilometer menuju Danau Toba. Namun tanpa keberadaan kapal induknya, kapal selam mini khusus itu tak bisa berbuat apa-apa. Sementara kapal induknya, misalnya seperti kapal induk HSwMS Belos (A214) milik Swedia, berbobot mati 6.500 ton sehingga mustahil diangkut lewat jalur darat.

Disini saya tidak mengecilkan upaya evakuasi para korban yang terjebak dalam goa Tham Luang di Thailand. Evakuasi itu pun berhadapan dengan aneka problem di luar problem tekanan hidrostatis. Misalnya, paras genangan air dalam goa yang terus naik. Masalah ini diatasi lewat dipasangnya pompa berkekuatan tinggi yang sanggup menyedot 1,6 juta liter air perjam. Pemerintah Ceko mengirim bantuan pompa tambahan berkapasitas 1,4 juta liter perjam. Dan dalam dua hari terakhir operasi, sebuah pintu air pengendali dibangun tepat di jalan air masuk goa. Sehingga volume air yang memasuki goa dapat dikontrol dan demikian pula paras genangannya.

Begitupun pada saat-saat terakhir, yakni sekitar 30 menit setelah korban terakhir berhasil dikeluarkan dari dalam goa, mesin pompa mendadak meledak. Alhasil air terus masuk tak terkontrol lagi ke dalam goa, sementara di dalam masih ada 20 petugas penyelamat. Petugas terakhir berhasil keluar dari goa manakala air telah menggenang hingga setinggi kepala.

Problem berikutnya adalah ruangan goa tempat mereka terjebak merupakan ruang tertutup. Pernafasan setiap orang membuat kadar Oksigen menurun (terakhir terukur hanya 15 % dari normalnya 21 %) sebaliknya kadar CO2 terus meningkat. Awalnya masalah ini dicoba diatasi dengan memasang pipa penyalur udara segar dari luar goa. Setelah terbukti tak membantu, maka diputuskan mereka harus dievakuasi secepatnya.

Evakuasi secepatnya pun berhadapan dengan masalah tersendiri, karena mereka tak bisa berenang apalagi menyelam. Awalnya direncanakan untuk melatih mereka. Namun mengingat potensi rasa panik yang bisa timbul, terlebih mereka harus menyelam selama 3 jam penuh, maka diputuskan untuk memberi asupan obat penenang dosis tinggi. Sehingga seluruh korban melintasi genangan air dalam kondisi tertidur.

Namun begitu dalam perspektif hidrostatika, evakuasi goa Tham Luang Thailand tidak berhadapan dengan rejim tekanan tinggi sebagaimana halnya evakuasi di Danau Toba.

Referensi :

Chesner. 2012. The Toba Caldera Complex. Quaternary International, volume 258 (2012), hal 5-18.

Scar dkk. 2018. Tragedy on Lake Toba. Reuters Graphic, diakses 6 Juli 2018 TU.

Asteroid 2018 LA (ZLAF9B2) : Diprediksi Jatuh di Indonesia, Mendarat di Afrika Selatan

Kalender menunjukkan Sabtu 2 Juni 2018 TU (Tarikh Umum) dan kian larut saat kami, saya dan pak Mutoha Arkanuddin, berbincang di markas Jogja Astro Club. Sebagai sesama pegiat di klub astronomi kota Yogyakarta yang kesohor itu, beliau adalah pendiri sekaligus mahagurunya sementara saya ke-dhapuk sebagai salah satu pembinanya, kami ngobrol ngalor-ngidul akan banyak hal. Mulai masalah sehari-hari, ilmu falak, astronomi hingga Gunung Merapi yang sedang menggeliat dan menggamit ingatan peristiwa-peristiwa sebelumnya.

Mendadak satu notifikasi masuk. Astronom mancanegara mengabarkan baru saja ditemukan satu asteroid dengan identitas (sementara saat itu) ZLAF9B2. Diameternya antara 2 hingga 5 meter, jika dianggap berbentuk bola sempurna. Yang mengejutkan, asteroid ini akan melintas sangat dekat dengan Bumi kita. Yakni hanya sejarak orbit satelit geostasioner (36.000 kilometer di atas parasbumi). Dengan memperhitungkan nilai ketidakpastian orbitnya berdasarkan jumlah data yang terkumpul pada saat itu, maka terdapat potensi asteroid mini ini akan jatuh ke Bumi. Atau teknisnya akan masuk ke dalam atmosfer Bumi dan berubah menjadi meteor superterang (superfireball). Dan yang kian mengejutkan lagi, perpotongan lintasan asteroid tersebut dengan ketinggian 120 kilometer di atas parasbumi membentang di sebagian wilayah Indonesia. Jika sebuah benda langit menyentuh batas ketinggian tersebut, hampir pasti ia akan masuk ke dalam atmosfer dengan segala akibatnya.

Gambar 1. Asteroid 2018 LA saat ditemukan melalui teleskop reflektor 1,5 m dilengkapi kamera CCD 10K yang terpasang di Observatorium Gunung Lemmon dalam program Catalina Sky Survey. Asteroid nampak sebagai garis dalam lingkaran berwarna ungu. Titik-titik putih adalah bintang-bintang latar belakang. Sumber: Catalina Sky Survey, 2018.

Tabuh menunjukkan pukul 23:00 WIB saat kami bergegas naik ke anjungan observasi di lantai tiga. Langit malam Yogyakarta sangat cerah. Bulan merajai angkasa, didampingi Mars dan Saturnus serta Jupiter yang agak menjauh. Bintang terang seperti Altair di rasi Aquilla dan Vega di rasi Lyra mudah kami identifikasi. Demikian halnya rasi bintang Pari dan alfa Centauri (rasi Centaurus) yang bertahta di langit selatan. Beberapa meteor sempat melintas. Namun asteroid ZLAF9B2, setidaknya superfireball-nya, tak terdeteksi sama sekali.

Ini wajar. Dengan prakiraan orbit yang masih kasar pada saat itu, selalu tersedia zona ketidakpastian dalam meramal kedudukan asteroid tersebut untuk satu masa. Berselang beberapa jam kemudian kami membaca telah terjadi sesuatu di Botswana. Tepatnya peristiwa langit yang mengambil lokasi di perbatasan antara Botswana dan Afrika Selatan, dua negara yang terletak di ujung selatan benua Afrika.

Asteroid 2018 LA

International Astronomical Union (IA) melabeli asteroid ZLAF9B2 ini sebagai asteroid 2008 LA. Ia baru ditemukan hanya dalam tujuh jam sebelum kami naik ke dek pengamatan, menyapu setiap jengkal langit Yogyakarta. Adalah sistem penyigian langit Catalina Sky Survey yang bersenjatakan teleskop kuat dan sistem identifikasi semi-otomatis di Observatorium Gunung Lemmon di kawasan Pegunungan Catalina, Arizona (Amerika Serikat) yang pertama kali mendeteksinya pada 2 Juni 2018 TU pukul 15:22 WIB. Berbekal hanya 12 data hasil pengamatan yang diperoleh selama hanya 3,5 jam saja dari berbagai penjuru, sebagian sifat asteroid 2018 LA pun terkuak. Ia menjadi bagian asteroid kelas Apollo, kelompok asteroid dekat-Bumi yang bergentayangan di antara orbit Venus dan Mars sehingga punya peluang untuk memotong orbit Bumi. Ia mengelilingi Matahari dengan periode 1,61 tahun dan kemiringan orbit (inklinasi) hanya 4º.

Gambar 2. Prakiraan awal rentang waktu dan rentang lokasi jatuh asteroid 2018 LA, dengan waktu dalam UTC (WIB – 7). Nampak bahwa Indonesia tercakup dalam prakiraan tersebut khususnya bilama asteroid jatuh antara pukul 22:00 WIB hingga 22:30 WIB. Sumber: Bill Gray/ProjectPluto.com, 2018.

Sedari awal ditemukan, pergerakan asteroid 2018 LA terlihat berbeda dibanding asteroid-asteroid yang baru ditemukan lainnya di lingkungan dekat-Bumi. Asteroid terabadikan sebagai garis dengan prakiraan magnitudo +18 (64 kali lebih redup ketimbang Pluto). Jadi bukan berupa bintik cahaya redup. Ketampakan ini mengesankan asteroid 2018 LA bergerak cukup cepat dan mungkin berada sangat dekat dengan Bumi. Analisis lebih lanjut membenarkan hal tersebut, asteroid 2018 LA memang bakal lewat sangat dekat dan bahkan berpotensi besar jatuh ke Bumi, dengan probabilitas jatuh hingga 85 %.

Asteroid 2018 LA berpotensi jatuh di Indonesia pada rentang masa antara pukul 22:00 hingga 22:30 WIB. Prakiraan titik jatuhnya merentang mulai dari pulau Irian di timur hingga di pulau Sumba, untuk kemudian melaju menyeberangi Samudera Indonesia. Diprakirakan saat lewat di selatan pulau Jawa, asteroid ini memiliki magnitudo semua sekitar +11 hingga +12. Jelas, jikalau kami bisa mengarahkan teleskop padanya pun ia akan sangat sulit terdeteksi di tengah penjajahan gelimang cahaya Bulan dan parahnya polusi cahaya bagi langit malam Yogyakarta.

Gambar 3. Jejak meteor terang yang kemudian berkembang menjadi superfireball sebagaimana diabadikan Dhiraj S di Gaborone, Botswana, pada pukul 23:44 WIB. Meteor terang ini dipastikan merupakan asteroid 2018 LA yang sedang menerobos masuk ke atmosfer Bumi. Dipublikasikan oleh American Meteor Society. Sumber: Dhiraj S/AMS, 2018.

Kurang dari 1,5 jam setelah diprediksi menembus langit Indonesia, seorang Dhiraj S di Gaborone (Botswana) melaporkan ke American Meteor Society (AMS) tentang ketampakan sebuah superfireball. Ia berhasil mengabadikannya dalam citra (foto) dengan waktu papar 2 detik pada pukul 23:44 WIB. Citranya memperlihatkan garis terang khas meteor sepanjang sekitar 10º. Yang mengejutkan, namun tak terekam foto, sesaat kemudian meteor ini berkembang menjadi superfireball berwarna kekuning-kuningan, penanda mengandung banyak Natrium, dengan perkiraan magnitudo visual -27 pada puncaknya. Artinya ia sempat lebih terang ketimbang Matahari!

Laporan lain datang dari negeri tetangganya. Barend Swanepoel, pemilik peternakan di Ottosdal (Afrika Selatan) melaporkan sistem kamera sirkuit tertutup (CCTV)-nya merekam peristiwa langit tak biasa. Terdeteksi sebuah benda langit yang bergerak melintas sembari kian terang pada sekitar pukul 23:49 WIB. Pada puncaknya ia demikian benderang, setara atau melebihi terangnya Matahari, manakala hampir mendekati horizon.

Gambar 4. Potongan rekaman kamera sirkuit tertututp (CCTV) pada suatu lahan pertanian di Ottosdal (Afrika Selatan). Bintik cahaya terang di latar belakang adalah superfireball dari asteroid 2018 LA. Dipublikasikan oleh Barend Swanepoel. Sumber: Swanepoel, 2018.

Analisis memperlihatkan apabila lintasan potensi jatuh yang ada di Indonesia dikembangkan ke arah barat, maka perpanjangan tersebut akan tepat bertemu dengan perbatasan Botswana dan Afrika Selatan. Tak ada keraguan, superfireball itu memang asteroid 2018 LA yang jatuh ke Bumi. Berikut adalah rekaman videonya, juga dari CCTV di Ottosdal namun bersumber dari Mellisa Delport di pertanian lain :

Dampak

Pada masakini upaya deteksi peristiwa jatuhnya benda langit ke Bumi tak lagi hanya mengandalkan ketampakan visual. Namun juga memanfaatkan sinyal-sinyal gelombang yang tak kasat mata atau bahkan tak terdengar umat manusia. Inilah yang dilakukan the Comprehensive nuclear Test Ban Treaty Organization (CTBTO), institusi di bawah payung Perserikatan Bangsa-Bangsa (PBB) yang ditegakkan untuk mengawasi perjanjian internasional larangan ujicoba nuklir segala matra baik di antariksa, atmosfer, parasbumi, bawah tanah dangkal, bawah tanah dalam, bawah laut dangkal dan bawah laut dalam. Meski deikian CTBTO juga sanggup mengendus aneka peristiwa pelepasan energi-mirip-ledakan-nuklir atmosferik. Terutama dengan dua jenis radas (instrumen) andalannya, yakni radas mikrobarometer untuk menangkap sinyal-sinyal gelombang infrasonik dan radas seismometer guna merekam sinyal seismik.

Gambar 5. Sinyal infrasonik produk masuknya asteroid 2018 LA ke dalam atmosfer Bumi sebagaimana terekam mikrobarometer di stasiun IS47, Afrika Selatan. Usikan tersebut berkorelasi dengan pelepasan energi antara 0,3 hingga 0,5 kiloton TNT. Dipublikasikan oleh Peter Brown. Sumber: Brown, 2018.

Itulah yang ditangkap radas mikrobarometer pada stasiun IS47 yang terletak di Afrika selatan. Usikan gelombang infrasonik cukup kuat terekam di stasiun ini pada beberapa saat pasca terekamnya superfireball di Ottosdal. Analisis Peter Brown, astronom yang berspesialisasi pada meteor, menunjukkan usikan tersebut setara dengan pelepasan energi 0,3 hingga 0,5 kiloton TNT.

Dari data ini bisa diperkirakan seberapa besar asteroid 2018 LA. Dari orbitnya kita tahu bahwa asteroid ini memiliki kecepatan bebas (vinf) 15,8 kilometer/detik (56.900 kilometer/jam) sehingga saat tepat masuk ke atmosfer Bumi memiliki kecepatan relatif (vgeo) 19,4 kilometer/detik (69.700 kilometer/jam). Dengan rentang energi kinetik antara 0,3 hingga 0,5 kiloton TNT, maka diameter asteroid 2018 LA adalah antara 1,7 hingga 2 meter. Sementara massanya antara 9,5 hingga 15,5 ton. Diameter dan massa ini diperoleh dengan asumsi bahwa asteroid 2018 LA memiliki komposisi yang identik dengan meteorit kondritik (massa jenis 3,7 gram/cm3).

Analisis lebih lanjut, dengan memanfaatkan persamaan dan model yang dihimpun Collins dkk (2005), memperlihatkan beberapa hal menarik. Misalnya, sebelum memasuki atmosfer Bumi asteroid ini memiliki energi potensial antara 0,4 hingga 0,7 kiloton TNT. Begitu memasuki atmosfer Bumi, kecepatannya melambat akibat gesekan dengan molekul-molekul udara yang sekaligus menghasilkan tekanan ram. Tekanan ini memecah-belah asteroid sekaligus sangat memperlambatnya mulai ketinggian 40 kilometer dari parasbumi. Inilah peristiwa airburst (mirip ledakan-di-udara) yang membuat energi kinetik superfireball pun terbebaskan ke udara sekitar. Transfer energi ini mewujud dalam, salah satunya, energi akustik. Inilah yang direkam oleh radas mikrobarometer di stasiun IS47.

Gambar 6. Orbit asteroid 2018 LA di antara planet-planet terestrial dalam tata surya kita pada waktu sebulan sebelum jatuh ke Bumi. Nampak orbitnya merentang di antara orbit Venus hingga Mars, suatu ciri khas asteroid dekat-Bumi kelas Apollo. Disimulasikan dengan Stellarium.

Dengan energi hanya 0,3 sampai dengan 0,5 kiloton TNT, jatuhnya asteroid 2018 LA tidak menimbulkan dampak fisik yang nyata di parasbumi dibawahnya. Sebab gelombang kejut yang diproduksinya masih cukup lemah untuk bisa menimbulkan kerusakan. Apalagi sinar panasnya yang jauh lebih lemah lagi. Karena itu jatuhnya asteroid 2018 LA tidak berdampak secara nyata pada situasi di parasbumi yang menjadi titik targetnya.

Yang Ketiga

Asteroid 2018 LA adalah asteroid ketiga yang berhasil ditemukan sebelum jatuh mencium Bumi dalam sejarah astronomi kiwari. Dua asteroid sebelumnya masing-masing adalah asteroid 2008 TC3 dan asteroid 2014 AA.

Asteroid 2008 TC3 (diameter 4 meter, massa 83 ton) ditemukan pada 6 Oktober 2008 TU atau 20 jam sebelum jatuh. Ia ditemukan saat berposisi sejarak 500.000 kilometer dari Bumi kita dan diamati oleh tak kurang dari 26 observatorium, membuahkan tak kurang dari 800 data pengamatan yang sangat berharga. Asteroid anggota asteroid-dekat Bumi kelas Apollo ini memasuki atmosfer Bumi juga di atas Afrika, tepatnya di atas perbatasan Sudan dan Mesir. Energi kinetiknya terukur antara 1,1 hingga 2,1 kiloton TNT. Ia menghasilkan meteorit yang sangat banyak, hingga tak kurang dari 600 buah, yang dikenal sebagai meteorit Almahatta Sitta.

Sementara asteroid 2014 AA (diameter 3 meter, massa 38 ton) ditemukan pada 1 Januari 2014 TU dalam 23 jam sebelum jatuh. Ia juga ditemukan saat sejarak 500.000 kilometer dari Bumi kita, namun lebih jarang yang berhasil melakukan pengamatan atasnya. Asteroid ini jugalah anggota asteroid-dekat Bumi kelas Apollo. Ia memasuki atmosfer Bumi di atas Samudera Atlantik dengan energi kinetik sekitar 4 kiloton TNT. Karena jatuh di tengah-tengah keluasan samudera, tak sebutir pun meteoritnya yang ditemukan.

Gambar 7. Lintasan aktual asteroid 2018 LA dan proyeksi lintasannya di parasbumi (groundpath) sebagaimana dipublikasikan Jet Propulsion Laboratory NASA. Sumber: NASA, 2018.

Sukses deteksi ketiga asteroid tersebut menunjukkan kemajuan astronomi dalam mengidentifikasi ancaman tumbukan benda langit. Meski kemampuan ini masihlah terbatas efektivitasnya dan masih banyak yang harus diperbaiki. Keterbatasan tersebut masih menghasilkan celah besar dalam hal deteksi semua asteroid dekat Bumi meskipun mereka akan melintas sangat dekat atau bahkan akan jatuh ke Bumi.

Beberapa kali celah besar ini membawa akibat pelik. Contoh teraktual adalah peristiwa Chelyabinsk, saat asteroid-tanpa-nama yang tak terdeteksi (meski diameternya ~17 meter dengan massa 10.000 ton) mengalami airburst di atas kawasan Siberia (Rusia) pada 13 Februari 2013 TU. Energi kinetik 500 kiloton TNT terlepas, memproduksi gelombang kejut dan gelombang panas ringan yang merusak kota Chelyabinsk dan sekitarnya. Ribuan orang terluka dan ribuan bangunan rusak dengan total kerugian hingga milyaran rupiah. Pun demikian kala asteroid-tanpa-nama lainnya, dengan diameter ~10 meter, mengalami airburst di atas Kabupaten Bone, Sulawesi Selatan (Indonesia) pada 8 Oktober 2009 TU yang melepaskan energi kinetik 60 kiloton TNT. Demikian pula kala asteroid-tanpa-nama lainnya, kali berdiameter ~1 meter, menumbuk paras Bumi pada 15 September 2007 TU. Tumbukan terjadi di dataran tinggi tepian danau Titicaca dan membentuk lubang besar (kawah) seukuran 13,5 meter di tepi desa Carancas (Peru).

Referensi :

NASA. 2018. Tiny Asteroid Discovered Saturday Disintegrates Hours Later Over Southern Africa. NASA Jet Propulsion Laboratory, diakses 4 Juni 2018 TU.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

Guido. 2018. Small Asteroid 2018 LA impacted Earth on 02 June. Comet & Asteroids, diakses 4 Juni 2018 TU.

American Meteor Society. 2018. Report 1924c (Events 1924 – 2018).

Peter Brown. 2018. komunikasi personal.