Gerhana Bulan Penumbral 16-17 September 2016 dan Sang Candra yang (Bisa) Memicu Gempa

Jumat  16 September  2016  Tarikh Umum (TU) hampir tengah malam, bertepatan dengan 15 Zulhijjah 1437 H. Jika langit cerah, Bulan akan berkedudukan tinggi di langit dengan wajah bundar penuh seperti layaknya Bulan purnama. Arahkan pandangan padanya. Sejak pukul 23:56 WIB hingga hampir empat jam kemudian, ada sesuatu yang akan terjadi. Sekilas pandang Bulan akan tetap terlihat bulat bundar penuh. Namun jika anda bermata jeli dan langit mendukung (tidak berawan, apalagi mendung), akan terlihat satu bagian wajah Bulan yang lebih gelap ketimbang bagian lainnya.  Bagian yang sedikit gelap tersebut akan muncul terutama di sekitar pukul 01:55 WIB. Inilah jejak dari peristiwa langit yang kurang familiar bagi kita: Gerhana Bulan Penumbral atau disebut juga Gerhana Bulan samar. Inilah gerhana yang paling bontot di musim gerhana tahun 2016 TU ini.

Dalam Gerhana Bulan Penumbral, kita memang takkan menyaksikan cakram Bulan yang menghilang sepenuhnya dan digantikan oleh benda sangat redup berwarna kemerah-merahan seperti dalam Gerhana Bulan Total. Kita juga takkan menyaksikan Bulan yang setengah meredup layaknya Gerhana Bulan Sebagian. Namun jangan salah, konfigurasi benda langit yang menghasilkan Gerhana Bulan Penumbral adalah identik dengan yang memproduksi baik Gerhana Bulan Total maupun Gerhana Bulan Sebagian. Mereka terjadi tatkala Matahari, Bulan dan Bumi tepat berada dalam satu garis lurus dalam konfigurasi syzygy. Di tengah-tengah konfigurasi tersebut adalah Bumi, sementara Bulan menempati salah satu dari dua titik nodal (titik potong orbit Bulan dengan bidang orbit Bumi mengelilingi Matahari). Akibatnya pancaran sinar Matahari yang seharusnya tiba di paras Bulan terhalangi oleh Bumi. Sehingga membuat Bulan tak memperoleh sinar Matahari mencukupi. Atau bahkan tak mendapatkannya sama sekali untuk periode waktu tertentu.

Gambar 1. Bulan dalam puncak Gerhana Bulan Penumbral (kiri) dan purnama biasa (kanan), diabadikan dengan teleskop yang terangkai kamera. Secara kasat mata, penggelapa sebagian wajah Bulan dalam Gerhana Bulan Penumbral sangat sulit untuk diamati. Sumber: Sudibyo, 2014.

Gambar 1. Bulan dalam puncak Gerhana Bulan Penumbral (kiri) dan purnama biasa (kanan), diabadikan dengan teleskop yang terangkai kamera. Secara kasat mata, penggelapan sebagian wajah Bulan dalam Gerhana Bulan Penumbral sangat sulit untuk diamati. Sumber: Sudibyo, 2014.

Akibatnya Bulan yang sejatinya sedang berada dalam fase Bulan purnama pun menjadi temaram atau bahkan sangat redup kemerah-merahan dalam beberapa jam kemudian. Sedikit berbeda dengan Gerhana Matahari, Gerhana Bulan memiliki wilayah gerhana cukup luas meliputi lebih dari separuh bola Bumi yang sedang berada dalam suasana malam. Karena garis tengah Matahari jauh lebih besar ketimbang Bumi, maka Bumi tak sepenuhnya menghalangi pancaran sinar Matahari yang menuju ke Bulan. Sehingga bakal masih ada bagian sinar Matahari yang lolos meski intensitasnya berkurang. Ini membuat wilayah gerhana Bulan pun terbagi ke dalam zona penumbra (bayangan tambahan) dan zona umbra (bayangan utama).

Konfigurasi

Bagaimana gerhana samar yang unik ini bisa terjadi? Pada dasarnya ada tiga jenis Gerhana Bulan. Yang pertama adalah Gerhana Bulan Total (GBT), terjadi kala bayangan utama Bumi sepenuhnya menutupi cakram Bulan tanpa terkecuali. Sehingga Bulan akan nyaris menghilang sepenuhnya saat puncak gerhana tiba, menampakkan diri sebagai benda langit sangat redup berwarna kemerah-merahan. Yang kedua adalah Gerhana Bulan Sebagian (GBS), terjadi kala bayangan utama Bumi tak sepenuhnya menutupi cakram Bulan. Akibatnya Bulan hanya akan lebih redup dan terlihat “robek” di salah satu sisinya dengan persentase tertentu kala puncak gerhana. Dan yang terakhir adalah Gerhana Bulan Penumbral (GBP) atau gerhana Bulan samar, yang bisa terjadi kala hanya bayangan tambahan Bumi yang menutupi cakram Bulan, baik menutupi sepenuhnya maupun separo. Tak ada bayangan utama Bumi yang turut menutupi. Dalam gerhana samar ini, Bulan masih tetap mendapatkan sinar Matahari meski intensitasnya sedikit lebih rendah dibanding seharusnya.

Gambar 2. Peta wilayah Gerhana Bulan Penumbral 16-17 September 2016 dalam lingkup global. Perhatikan Indonesia dibelah oleh garis P4 di sisi timur, yakni garis dimana akhir gerhana bertepatan dengan terbenamnya Bulan (terbitnya Matahari). Dengan demikian seluruh Indonesia berkesempatan menyaksikan Gerhana Bulan yang samar ini, sepanjang langit cerah. Sumber: NASA, 2016.

Gambar 2. Peta wilayah Gerhana Bulan Penumbral 16-17 September 2016 dalam lingkup global. Perhatikan Indonesia dibelah oleh garis P4 di sisi timur, yakni garis dimana akhir gerhana bertepatan dengan terbenamnya Bulan (terbitnya Matahari). Dengan demikian seluruh Indonesia berkesempatan menyaksikan Gerhana Bulan yang samar ini, sepanjang langit cerah. Sumber: NASA, 2016.

Gerhana Bulan 16-17 September 2016 merupakan gerhana Bulan samar, yang terjadi sebagai konsekuensi dari peristiwa Gerhana Matahari 1 September 2016. Pada dasarnya tidak setiap saat Bulan purnama terjadi diiringi  dengan peristiwa Gerhana Bulan. Sebaliknya suatu peristiwa Gerhana Bulan pasti terjadi bertepatan dengan saat Bulan purnama. Musababnya adalah orbit Bulan yang tak berimpit dengan bidang edar Bumi mengelilingi Matahari), melainkan menyudut sebesar 5o. Hanya ada dua titik dimana Bulan berpeluang tepat segaris lurus syzygy dengan Bumi dan Matahari, yakni di titik nodal naik dan titik nodal turun. Dan dalam kejadian Bulan purnama, mayoritas terjadi tatkala Bulan tak berdekatan ataupun berada dalam salah satu dari dua titik nodal tersebut. Inilah sebabnya mengapa tak setiap saat Bulan purnama kita bersua dengan Gerhana Bulan.

Gerhana Bulan Penumbral 16-17 September 2016 hanya terdiri dari tiga tahap. Tahap pertama adalah awal gerhana/kontak awal penumbra (P1) yang akan terjadi pada tanggal 16 September 2016 TU pukul 23:56 WIB. Sementara tahap kedua adalah puncak gerhana, yang bakal terjadi pada tanggal 17 September 2016 TU pukul 01:55 WIB. Magnitudo gerhana saat puncak adalah 0,90, maknanya 90 % cakram Bulan pada saat itu tertutupi oleh bayangan tambahan (penumbra) Bumi. Dan yang terakhir adalah tahap akhir gerhana/kontak akhir penumbra (P4) yang bakal berlangsung pada pukul 03:53 WIB. Dengan demikian durasi Gerhana Bulan Penumbral ini mencapai 3 jam 57 menit.

Wilayah gerhana bagi Gerhana Bulan Penumbral 16-17 September 2016  melingkupi sebagian seluruh benua Asia, Australia, Afrika, Eropa dan sebagian kecil Brazil di benua Amerika. Hanya mayoritas benua Amerika yang tak tercakup ke dalam wilayah gerhana ini. Seluruh Indonesia tercakup ke dalam wilayah gerhana. Secara umum tanah Nusantara ini terbelah menjadi dua oleh garis P4, yakni  himpunan titik-titik yang mengalami terbenamnya Bulan bersamaan dengan akhir gerhana. Garis P4 tersebut melintas melalui sebagian pulau Irian. Dapat dikatakan bahwa segenap Indonesia, kecuali propinsi Papua, adalah mengalami gerhana secara utuh.Sementara di propinsi Papua durasi total gerhananya terpotong oleh terbitnya Matahari (yang hampir bersamaan dengan terbenamnya Bulan).

Sesuai dengan namanya, Gerhana Bulan Penumbral ini nyaris tak dapat dibedakan dengan Bulan purnama biasa. Butuh teleskop dengan kemampuan baik untuk dapat melihatnya. Untuk memotretnya, butuh kamera dengan pengaturan (setting) yang lebih kompleks dan bisa disetel secara manual. Dalam puncak gerhana Bulan samar, jika cara pengaturan kamera kita tepat maka Bulan akan terlihat menggelap di salah satu sudutnya. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :

Bagi Umat Islam ada anjuran untuk menyelenggarakan shalat gerhana baik di kala terjadi peristiwa Gerhana Matahari maupun Gerhana Bulan. Tapi hal tersebut tak berlaku dalam kejadian Gerhana Bulan Penumbral ini. Musababnya gerhana Bulan samar dapat dikatakan mustahil untuk bisa diindra dengan mata manusia secara langsung. Padahal dasar penyelenggaraan shalat gerhana adalah saat gerhana tersebut dapat dilihat, seperti dinyatakan dalam hadits Bukhari, Muslim dan Malik yang bersumber dari Aisyah RA. Pendapat ini pula yang dipegang oleh dua ormas Islam terbesar di Indonesia, yakni Nahdlatul ‘Ulama dan Muhammadiyah. Keduanya sepakat saat gerhana tak bisa disaksikan (secara langsung), maka shalat gerhana tak dilaksanakan.

Gempa

Gerhana Bulan Penumbral ini akan berlangsung dalam kurun yang hampir bersamaan dengan temuan terkini dalam ranah ilmu kebumian tentang hubungan antara posisi Bulan dan gempa di Bumi. Telah lama umat manusia mencoba menelusuri apakah kejadian kegempaan di Bumi kita, yang kerap merenggut korban jiwa dan luka-luka serta kerugian material yang luar biasa, berhubungan dengan posisi benda-benda langit khususnya Bulan. Bulan mendapat perhatian khusus karena kemampuan gravitasinya dalam mempengaruhi Bumi. Tiap benda langit yang bertetangga dengan Bumi kita sejatinya juga mencoba memaksakan pengaruh gravitasinya, dalam bentuk gaya pasang surut atau gaya tidal. Namun hanya Bulan dan Matahari yang memiliki pengaruh terbesar.

Gaya tidal kedua benda langit tersebut mempengaruhi Bumi demikian rupa sehingga badan air di paras Bumi, yakni air yang terkumpul sebagai samudera, mengalami pasang surut dalam rupa pasang naik dan pasang turun parasnya secara periodik. Fenomena ini akan mencapai titik maksimumnya tatkala kedua benda langit tersebut nampak segaris dengan Bumi. Tepatnya pada saat elongasi Bulan terhadap Matahari bernilai paling kecil, yang terjadi pada saat konjungsi, dan pada saat elongasi Bulan terhadap Matahari bernilai yang paling besar, yang bertepatan dengan saat oposisi. Kita mengenal konjungsi Bulan dan Matahari sebagai Bulan baru atau Bulan mati, sebaliknya oposisi Bulan dan Matahari mendapatkan namanya yang megah sebagai Bulan purnama. Bulan purnama terjadi dalam 14,8 hari pasca Bulan baru, sementara Bulan baru berikutnya terjadi 14,8 hari pasca Bulan purnama.

Sejak abad ke-19 TU sudah mulai dipikirkan kemungkinan bahwa gaya tidal Bulan dan Matahari, atau lebih tepatnya kombinasinya, tidak hanya berpengaruh pada badan air Bumi saja. Namun juga pada kerak Bumi (litosfer) secara keseluruhan. Aksi gaya tidal kombinasi dari Bulan dan matahari secara berulang-ulang yang mencapai puncaknya setiap 14,8 hari sekali mungkin menghasilkan gangguan pada litosfer hingga melahirkan peristiwa-peristiwa geologis seperti misalnya gempa bumi tektonik. Pemikiran ini kian menguat setelah ilmu kebumian memasuki babak baru melalui tektonik lempeng pada dekade 1960-an TU, yang mendeskripsikan pembagian kerak bumi ke dalam lempeng-lempeng tektonik makro dan mikro yang saling bergerak dengan sejumlah gejalanya. Pada saat yang hampir bersamaan, ilmu kegempaan (seismologi) mulai melakukan pencatatan terkait magnitudo, episentrum dan hiposentrum gempa-gempa tektonik dalam lingkup global menggunakan jaringan seismometer yang ditanam dimana-mana.

Gambar 3. Rekaman letusan dahsyat Gunung Tvashtar Patera di Io seperti diabadikan wahana antariksa New Horizon saat lewat didekatnya pada 2007 TU silam. Semburan material vulkanik akibat letusan dahsyat ini mencapai ketinggian 330 km dari paras Io. Vulkanisme di Io ditenagai oleh rejaman gaya tidal Jupiter nan dahsyat. Sumber: NASA, 2007.

Gambar 3. Rekaman letusan dahsyat Gunung Tvashtar Patera di Io seperti diabadikan wahana antariksa New Horizon saat lewat didekatnya pada 2007 TU silam. Semburan material vulkanik akibat letusan dahsyat ini mencapai ketinggian 330 km dari paras Io. Vulkanisme di Io ditenagai oleh rejaman gaya tidal Jupiter nan dahsyat. Sumber: NASA, 2007.

Dalam ranah astronomi juga diperoleh temuan mencengangkan tentang bagaimana aksi gaya tidal di lingkungan planet tetangga kita. Io, salah satu satelit alamiah Jupiter, mendapat perhatian lebih karena aktivitasnya yang aneh. Kini kita tahu bahwa Io menjadi benda langit paling aktif secara vulkanik di seantero tata surya akibat aksi gaya tidal Jupiter. Gaya tidal Jupiter mempengaruhi Io demikian rupa sehingga benda langit yang sedikit lebih besar dari Bulan itu dipaksa mengembang dan mengempis secara teratus. Perbedaan elevasi paras Io pada saat mengembang dan mengempis bisa mencapai 100 meter. Bandingkan dengan Bumi yang hanya 1 meter. Rejaman gaya tidal nan dahsyat secara berulang-ulang di Io inilah yang membangkitkan 99,5 %  panas interior Io dan menjadikannya kaya dengan gunung-gemunung berapi yang rajin meletus.

Bagaimana dengan Bumi, khususnya dengan peristiwa gempa bumi? Sekilas pandang kombinasi gaya tidal Bulan dan Matahari sulit untuk bisa membangkitkan gempa bumi khususnya gempa bumi tektonik.  Telah diketahui bahwa sebuah gempa bumi tektonik terjadi pada sebuah sumber gempa dalam sebuah segmen di satu sesar (patahan) tertentu. Sebagai akibat dari pergerakan lempeng tektonik, sebuah sesar aktif pun seyogyanya turut bergerak. Namun gesekan antar segmen batuan yang saling berhadapan di sepanjang sesar dapat menahan pergerakan itu untuk sementara. Namun di sisi lain juga menyebabkan tekanan yang diderita segmen batuan tersebut meningkat dan kian meningkat. Hingga akhirnya tekanan tersebut melampaui ambang batas dayatahan batuan, yang membuat segmen batuan tersebut terpatahkan dan melenting. Inilah yang memproduksi getaran seismik yang kita kenal sebagai gempa bumi tektonik.

Tekanan yang diderita sebuah segmen dalam sebuah patahan tidak hanya berasal dari dirinya sendiri saja. Namun juga bisa berasal dari luar. Telah diketahui bahwa gempa bumi tektonik dapat “menular”, maksudnya dapat merembet dari satu segmen ke segmen sebelahnya dalam satu sesar yang sama. Agar sebuah gempa bumi tektonik yang dipicu oleh gempa bumi tektonik lainnya didekatnya dapat terjadi, maka harus ada tekanan eksternal  (disebut tekanan Coulomb)  dalam rentang 0,1 hingga 1 Mega Pascal (1 Pascal = 1 Newton/meter2).  Sebaliknya kombinasi gaya tidal Bulan dan Matahari hanya menghasilkan tekanan eksternal di sekitar 1 kilo Pascal saja, atau 100 kali lemah ketimbang ambang batas tekanan Coulomb yang dibutuhkan untuk memicu sebuah gempa bumi tektonik.

Gambar 4. Tiga belas kawasan di Kepulauan Jepang yang sensitif terhadap gaya tidal Bulan (dalam Bulan baru maupun Bulan purnama) terkait kemampuannya memicu gempa bumi tektonik di sini. Situasi tersebut dapat terjadi hanya bila tekanan akibat tektonik regional (disimbolkan dengan P-axes) searah dengan tekanan dari gaya tidal Bulan. Sumber: Tanaka, 2004.

Gambar 4. Tiga belas kawasan di Kepulauan Jepang yang sensitif terhadap gaya tidal Bulan (dalam Bulan baru maupun Bulan purnama) terkait kemampuannya memicu gempa bumi tektonik di sini. Situasi tersebut dapat terjadi hanya bila tekanan akibat tektonik regional (disimbolkan dengan P-axes) searah dengan tekanan dari gaya tidal Bulan. Sumber: Tanaka, 2004.

Namun sejatinya tidak sesederhana itu. Penyelidikan Tanaka dkk (2004) memperlihatkan bahwa tekanan Coulomb yang kecil dari kombinasi gaya tidal Bulan dan Matahari pun sejatinya mampu memicu gempa bumi tektonik. Asalkan tekanan Coulomb dari gaya tidal Bulan dan Matahari itu searah dengan tekanan Coulomb dari tektonik regional. Analisanya terhadap distribusi dan pola dari 90.000 gempa bumi tektonik di Kepulauan Jepang sepanjang kurun Oktober 1997 TU hingga Mei 2002 TU memperlihatkan dari 100 kawasan yang dipetakan terdapat 13 kawasan (13 %) yang sensitif terhadap gangguan gaya tidal Bulan dan Matahari.  Penyelidikan lain juga memperlihatkan bahwa zona subduksi menjadi kawasan yang sangat sensitif terhadap gangguan dari gaya tidal Bulan dan Matahari, khususnya dalam hal memicu kejadian gempa-gempa bumi tektonik dalam. Jumlah getaran yang dihasilkan oleh gempa-gempa bumi tektonik dalam meningkat secara eksponensial bersamaan dengan meningkatnya tekanan Coulomb akibat gaya tidal. Peningkatan ini membuat potensi meletupnya gempa bumi tektonik di zona subduksi menjadi meningkat di sekitar fase Bulan baru dan Bulan purnama.

Penyelidikan lebih lanjut oleh Ide dkk (2016) memperlihatkan bahwa tekanan dari gaya tidal Bulan dan Matahari lebih berpotensi untuk memicu gempa bumi tektonik besar (magnitudo di atas 7,0) ketimbang yang lebih kecil, secara statistik. Dengan zona subduksi sebagai kawasan yang sangat sensitif terhadap tekanan Coulomb akibat gaya tidal Bulan dan Matahari, maka gempa besar yang terjadi di sini dapat mencakup gempa akbar (megathrust), gempa yang paling ditakuti. Penyelidikan terhadap tiga gempa akbar dalam kurun 15 tahun terakhir, masing-masing Gempa akbar Sumatra-Andaman 2004 (magnitudo 9,3) di Indonesia, gempa akbar Maule 2010 (magnitudo 8,8) di Chile dan gempa akbar Tohoku-Oki 2011 (magnitudo 9,0) di Jepang menegaskan hal itu. Ketiga gempa itu cukup menggetarkan karena skalanya dan kedahsyatan tsunami yang ditimbulkannya hingga renggutan korban jiwa yang diakibatkannya. Gempa akbar Sumatra-Andaman 2004 dan gempa akbar Maule 2010 terjadi di sekitar waktu Bulan purnama, bertepatan dengan pasang naik tinggi dan juga puncak tekanan Coulomb akibat gaya tidal. Sementara gempa akbar Tohoku-Oki 2011 tidak terjadi pada Bulan baru ataupun Bulan purnama, namun bersamaan dengan saat amplitudo tekanan Coulomb akibat gaya tidal mencapai nilai maksimumnya.

Gambar 5. Tiga peristiwa gempa akbar dalam 15 tahun terakhir bersama dengan perubahan dinamis tekanan akibat gaya tidal Bulan. Masing-masing adalah gempa akbar Sumatra-Andaman 2004 (atas), gempa akbar Tohoku-Oki 2011 (tengah) dan gempa akbar Maule 2010 (bawah). Kiri: lokasi episentrum dan mekanisme fokal sumber gempa, kanan : perubahan dinamis tekanan akibat gaya tidal Bulan pada bidang patahan sumber gempa dalam arah lentingan. Terlihat jelas ketiga gempa tersebut terjadi tatkala amplitudo tekanan akibat gaya tidal mencapai maksimum. Sumber: Ide, 2016.

Gambar 5. Tiga peristiwa gempa akbar dalam 15 tahun terakhir bersama dengan perubahan dinamis tekanan akibat gaya tidal Bulan. Masing-masing adalah gempa akbar Sumatra-Andaman 2004 (atas), gempa akbar Tohoku-Oki 2011 (tengah) dan gempa akbar Maule 2010 (bawah). Kiri: lokasi episentrum dan mekanisme fokal sumber gempa, kanan : perubahan dinamis tekanan akibat gaya tidal Bulan pada bidang patahan sumber gempa dalam arah lentingan. Terlihat jelas ketiga gempa tersebut terjadi tatkala amplitudo tekanan akibat gaya tidal mencapai maksimum. Sumber: Ide, 2016.

Baiklah, dari data-data yang sifatnya sangat teknis tersebut, apa yang dapat kita simpulkan? Ternyata memang ada hubungan antara saat Bulan baru maupun Bulan purnama dengan kejadian gempa bumi tektonik di Bumi kita, khususnya gempa bumi besar (magnitudo 7,0 atau lebih). Penemuan ini memang tidak mengubah kedudukan gempa bumi tektonik saat ini sebagai peristiwa alam yang sangat sulit diprediksi waktu kejadiannya secara spesifik. Ia juga tidak mengurangi apa yang selama ini selalu diserukan para ahli kebumian dan kebencanaan dalam berhadapan dengan ancaman gempa, untuk selalu waspada. Namun temuan ini membuka jendela pengetahuan baru, bahwa saat-saat Bulan baru dan Bulan purnama adalah saat-saat yang lebih rawan bagi Bumi kita, khususnya di zona subduksi. Dan Gerhana Matahari terjadi pada saat Bulan baru, sementara Gerhana Bulan pada saat Bulan purnama.

Referensi :

Tanaka dkk. 2004. Tidal Triggering of Earthquakes in Japan Related to the Regional Tectonic Stress. Earth Planets Space, vol 56 (2004) pp 511-515.

Ide dkk. 2016. Earthquake Potential Revealed by Tidal Influence on Earthquake Size-Frequency Statistics. Nature Geoscience (2016), online 12 September 2016.

Idul Adha 1437 H, Kebersamaan di Tengah Dua Anomali (Kasus Unik Saudi Arabia dan Indonesia)

Hari raya Idul Adha 1437 H telah datang. Indonesia merayakannya pada Senin 12 September 2016 Tarikh Umum (TU), bertepatan dengan 10 Zulhijjah 1437 H. Dan tak seperti sebelumnya, kali ini tak ada yang berbeda. Kementerian Agama RI, sebagai representasi pemerintah, memutuskan 1 Zulhijjah bertepatan dengan Sabtu 3 September 2016 TU atas dasar sidang itsbat pada 1 September 2016 TU. Pada momen sidang itsbat tersebut, yang bertepatan dengan 29 Zulqaidah 1437 H dalam takwim standar Indonesia, seluruh sistem hisab (perhitungan astronomi) yang berkembang di Indonesia menyajikan data bahwa Bulan terbenam lebih dulu dibanding Matahari. Hal tersebut ditegaskan dari sisi rukyat (observasi) hilaal. Dalam momen yang bersamaan dengan terjadinya peristiwa Gerhana Matahari 1 September 2016 di 123 kota/kabupaten di Indonesia, rukyatul hilaal tak berhasil mendeteksi hilaal pada kesempatan tersebut. Sehingga bulan Zulqaidah 137 H pun harus digenapkan menjadi 30 hari (istikmal).

Keputusan senada juga disajikan oleh ormas-ormas Islam di Indonesia. Nahdlatul ‘Ulama, atas dasar rukyatul hilaal di banyak titik rukyat di berbagai penjuru Indonesia pada saat yang sama dan tak ada yang berhasil mendeteksi hilaal, menyampaikan ikhbar bahwa Idul Adha 10 Zulhijjah 1437 H bertepatan dengan Senin 12 September 2016 TU. Ikhbar tersebut dikeluarkan setelah sidang itsbat di Kementerian Agama RI usai. Demikian halnya Muhammadiyah. Jauh hari sebelumnya Muhammadiyah sudah memutuskan bahwa Idul Adha 1437 H bertepatan dengan Senin 12 September 2016 melalui maklumat Pimpinan Pusat Muhammadiyah nomor 01/MLM/I.0/E/2016. Dasarnya adalah hisab sistem kontemporer dengan “kriteria” wujudul hilaal, dimana pada 1 September 2016 TU hilaal dinyatakan belum wujud di seluruh Indonesia karena tinggi Bulan pada saat Matahari terbenam berkisar antara minus 1o hingga 0o. Maklumat yang sama juga menetapkan 1 Ramadhan 1437 H bertepatan dengan Senin 6 Juni 2016 TU dan hari raya Idul Fitri 1 Syawwal 1437 H adalah Rabu 6 Juli 2016 TU. Demikian halnya Persatuan Islam (Persis), dengan dasar hisab sistem kontemporer berbasis “kriteria” LAPAN 2009.

Di mancanegara, keputusan penetapan hariraya Idul Adha 1437 H yang patut diperhatikan adalah keputusan Saudi Arabia. Pada hari yang sama dengan Indonesia, Saudi Arabia juga menggelar proses rukyat hilaal untuk menentukan Idul Adha 1437 H dan hari Arafah (hari wukuf) bagi jamaah haji. Hasilnya, wukuf di padang Arafah ditetapkan terjadi pada Minggu 11 September 2016 TU. Sementara hari raya Idul Adha di Saudi Arabia dirayakan pada hari berikutnya, yakni Senin 12 September 2016 TU. Keputusan ini segera menjadi rujukan bagi banyak negara Islam dan negara berpenduduk mayoritas Muslim serta komunitas Muslim di berbagai penjuru. Hanya sedikit yang berbeda dengannya. Misalnya Mesir, sebagian India dan Jerman yang merayakan Idul Adha pada Minggu 11 September 2016 TU. Sementara negara lain seperti sebagian India, Selandia Baru dan Pakistan baru akan menggelar shalat Idul Adha pada Selasa 13 September 2016 TU.

Penetapan 1 Zulhijjah adalah salah satu isu penting dalam perikehidupan Umat Islam di Indonesia karena terkait ibadah. Yakni hari raya Idul Adha pada tanggal 10 Zulhijjah yang didahului puasa Arafah sehari sebelumnya. Semenjak hari raya Idul Adha hingga empat hari kemudian, yakni pada hari-hari tasyrik (tanggal 11, 12 dan 13 Zulhijjah), Umat Islam di Indonesia melaksanakan penyembelihan hewan kurban. Idul Adha menjadi satu dari dua hari raya Umat Islam di Indonesia, meski atmosfer budaya yang melingkupinya tak sekental momen hari raya Idul Fitri

Di tengah kebersamaan ini, sejatinya ada dua anomali yang menarik untuk dikupas terkait penetapan tersebut. Yakni anomali di Saudi Arabia dan (sebagian) Indonesia.

Saudi Arabia

Konjungsi geosentris Bulan dan Matahari (ijtima’ haqiqy), yakni momen saat Bulan dan Matahari menempati satu garis bujur ekliptika yang sama ditinjau dari titik pusat Bumi, terjadi pada Kamis 1 September 2016 TU pukul 16:03 WIB. Sementara konjungsi toposentris Bulan dan Matahari (ijtima’ mar’i), yakni momen yang sama dengan konjungsi geosentris Bulan dan Matahari namun ditinjau dari sebuah titik di paras (permukaan) Bumi terjadi lebih lambat dengan saat yang berbeda-beda. Di Indonesia, konjungsi toposentris terjadi jelang maghrib, seperti ternyata dari peristiwa Gerhana Matahari 1 September 2016. Di Saudi Arabia khususnya di kotasuci Makkah al-Mukarramah, Gerhana Matahari yang sama mencapai puncaknya pada pukul 11:23 waktu Saudi. Sehingga konjungsi toposentris di Makkah terjadi pada pukul 11:23 waktu Saudi, atau sebelum Matahari terbenam setempat.

Dalam kalender sipil Saudi Arabia, yang dikenal sebagai kalender Ummul Qura, 1 September 2016 TU juga bertepatan dengan 29 Zulqaidah 1437 H. Dan hari berikutnya merupakan tanggal 1 Zulhijjah 1437 H. Saudi Arabia menggunakan “kriteria” Ummul Qura dalam kalendernya. Secara sederhana “kriteria” ini mendeskripsikan:

awal bulan Hijriyyah terjadi tatkala seluruh cakram Bulan masih ada di atas horizon semu pada saat Matahari terbenam sempurna pasca konjungsi geosentrik Bulan dan Matahari.

Dalam bahasa astronomi, “kriteria” ini diformulasikan sebagai saat Lag Bulan > + 2 menit. Lag Bulan adalah selisih waktu keterlambatan terbenamnya Bulan terhadap terbenamnya Matahari. Lag Bulan bernilai positif saat Bulan terlambat terbenam dibanding Matahari dan sebaliknya bernilai negatif tatkala Bulan lebih dulu terbenam dibanding Matahari.

Gambar 1. Zona potensi ketampakan (visibilitas) hilaal per 1 September 2016 TU secara toposentrik berdasarkan kriteria Odeh (Audah). Warna merah tidak memenuhi moonset after sunset. Sementara warna selain merah sudah memenuhi moonset after sunset. Berdasar grafik ini Saudi Arabia sudah memenuhi syarat Ummul Qura, sementara sebagian pulau Sumatra (Indonesia) sudah memenuhi syarat wujudul hilaal. Sumber: Odeh, 2016.

Gambar 1. Zona potensi ketampakan (visibilitas) hilaal per 1 September 2016 TU secara toposentrik berdasarkan kriteria Odeh (Audah). Warna merah tidak memenuhi moonset after sunset. Sementara warna selain merah sudah memenuhi moonset after sunset. Berdasar grafik ini Saudi Arabia sudah memenuhi syarat Ummul Qura, sementara sebagian pulau Sumatra (Indonesia) sudah memenuhi syarat wujudul hilaal. Sumber: Odeh, 2016.

Namun harus digarisbawahi bahwa kalender Saudi Arabia dengan “kriteria” Ummul Qura-nya merupakan kalender sipil. Ia digunakan untuk kepentingan perikehidupan sehari-hari di negeri itu, mulai dari kepentingan ekonomi dan bisnis hingga politik ketatanegaraan. Sementara khusus untuk menentukan hari raya Idul Adha, Saudi Arabia menetapkannya berdasarkan rukyatul hilaal. Demikian halnya untuk menentukan awal puasa Ramadhan dan hari raya Idul Fitri. Sebab dalam pandangan Saudi Arabia, ketiga hal tersebut memiliki aspek ibadah yang kuat sehingga tidak mengacu pada kalender sipil yang mereka gunakan. Maka berpeluang terjadi situasi dimana Saudi Arabia memulai puasa Ramadhan saat kalendernya menunjukkan tanggal 2 Ramadhan, ber-Idul Fitri saat kalender menunjukkan tanggal 2 Syawwal dan ber-Idul Adha pada saat kalender menunjukkan tanggal 11 Zulhijjah. Inilah anomali itu.

Anomali tersebut terjadi pada tahun ini. Karena pada Kamis 1 September 2016 TU tidak terdeteksi hilaal di segenap penjuru Saudi Arabia, maka otoritas kerajaan ini menetapkan hari raya Idul Adha adalah pada Senin 12 September 2016 TU yang bertepatan dengan 11 Zulhijjah 1437 H. Konsekuensinya hari wukuf di padang Arafah, yang menjadi penentu pelaksanaan ibadah haji, adalah bertepatan dengan tanggal 10 Zulhijjah 1437 H. Konsekuensi ini merupakan hal yang tak terhindarkan manakala kalender Hijriyyah hendak dijadikan sebagai kalender sipil (muamalah) sebagaimana halnya kalender Tarikh Umum (Masehi/Gregorian) dengan kriteria yang tetap, sementara pendapat fikih mayoritas dalam penentuan waktu ibadah puasa Ramadhan dan dua hari raya adalah berdasarkan rukyatul hilaal.

Anomali semacam ini bukanlah yang pertama kali terjadi di Saudi Arabia. Konstelasinya sepanjang empat tahun terakhir adalah sebagai berikut:

  • Awal puasa Ramadhan 1434 H bertepatan dengan Kamis 2 Ramadhan 1434 H kalender Saudi Arabia (10 Juli 2014 TU).

  • Hari raya Idul Adha 1436 H bertepatan dengan Kamis 11 Zulhijjah 1436 H kalender Saudi Arabia (24 September 2015 TU).

  • Hari raya Idul Adha 1437 H bertepatan dengan Senin 11 Zulhijjah 1437 H kalender Saudi Arabia (12 September 2016 TU).

Saudi Arabia berpandangan mereka memiliki dasar yang kuat terkait anomali tersebut. Di masa Rasulullah SAW juga pernah terjadi shalat Idul Fitri digelar pada tanggal 2 Syawwal. Yakni bersandar hadits yang diriwayatkan Ibnu Majah, dengan terjemahan sebagai berikut :

“Telah menceritakan kepada kami (Abu Bakr bin Abu Syaibah) berkata, telah menceritakan kepada kami (Husyaim) dari (Abu Bisyr) dari (Abu Umair bin Anas bin Malik) ia berkata; telah menceritakan kepadaku (paman-pamanku) dari kalangan Anshar -mereka adalah para sahabat Rasulullah SAW- mereka berkata, “Kami tidak dapat melihat hilal bulan Syawal, maka pada pagi harinya kami masih berpuasa, lalu datanglah kafilah di penghujung siang, mereka bersaksi di sisi Nabi SAW bahwa kemarin mereka melihat hilal. Maka Rasulullah SAW pun memerintahkan mereka berbuka, dan keluar untuk merayakan hari rayanya pada hari esok. ”
Hadits Imam Ibnu Majah nomor 1643.

Memang butuh kajian lebih lanjut melalui ilmu-ilmu terkait, namun hadits ini menyajikan kesan bahwa ibadah (hari raya Idul Fitri) boleh berselisih terhadap kalender (Hijriyyah).

Indonesia

Bagaimana dengan Indonesia? Anomali serupa ternyata juga terjadi meski kejadiannya adalah sebaliknya. Ini dialami oleh Muhammadiyah. Kalender Hijriyyah yang dpedomani Muhammadiyah merupakan kalender yang berdasarkan pada “kriteria” wujudul hilaal dan diberlakukan ke seluruh Indonesia melalui prinsip transfer wujudul hilaal (naklul wujud). Secara sederhana “kriteria” wujudul hilaal mendeskripsikan :

awal bulan Hijriyyah terjadi tatkala piringan teratas cakram Bulan masih ada di atas horizon semu pada saat Matahari terbenam sempurna pasca konjungsi geosentrik Bulan dan Matahari.

Sekilas “kriteria” ini mirip dengan “kriteria” Ummul Qura dengan sedikit perbedaan dalam kedudukan cakram Bulan. Dalam bahasa astronomi, “kriteria” wujudul hilaal ini diformulasikan sebagai saat Lag Bulan > + 0 menit atau singkatnya moonset after sunset. Dan dengan prinsip transfer wujudul hilaal, apabila terjadi situasi dimana sebagian Indonesia sudah memenuhi kondisi wujudul hilaal (positif) sementara sebagian lainnya belum memenuhi (negatif) maka daerah-daerah yang masih negatif musti mengikuti daerah yang sudah positif. Sehingga terdapat satu kesatuan. Dalam hal ini prinsip transfer wujudul hilaal tak berbeda dengan konsep wilayatul hukmi yang dipergunakan Kementerian Agama RI maupun sejumlah ormas Islam di Indonesia lainnya. Hanya namanya saja yang berbeda.

adha-gb2-a_sdh-wujud

Gambar 2. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari pada saat syarat wujudul hilaal sudah terpenuhi (atas) dan wujudul hilaal belum terpenuhi (bawah). Perhatikan bahwa dalam kedua contoh tersebut, tinggi Bulan (dihitung dari horizon sejati) adalah sudah negatif. Namun patokan wujudul hilaal adalah horizon semu (ufuk mar'i). Sumber: Sudibyo, 2016.

Gambar 2. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari pada saat syarat wujudul hilaal sudah terpenuhi (atas) dan wujudul hilaal belum terpenuhi (bawah). Perhatikan bahwa dalam kedua contoh tersebut, tinggi Bulan (dihitung dari horizon sejati) adalah sudah negatif. Namun patokan wujudul hilaal adalah horizon semu (ufuk mar’i). Sumber: Sudibyo, 2016.

Pada saat Matahari terbenam di hari Kamis 1 September 2016 TU, hampir di seluruh Indonesia sudah mengalami konjungsi geosentrik Bulan dan Matahari. Dan di seluruh Indonesia tinggi Bulan bervariasi antara minus 1o hingga 0o. Hampir di seluruh Indonesia pula kondisi moonset after sunset tak terpenuhi. Dalam grafik visibilitas Odeh secara global (gambar 1), kawasan yang tidak memenuhi syarat moonset after sunset adalah kawasan yang berwarna merah. Sementara kawasan yang sudah memenuhi syarat moonset after sunset adalah yang berwarna selain merah. Dapat dilihat dalam grafik tersebut bahwa mayoritas Indonesia berada dalam kawasan merah. Perkecualian adalah di sebagian pulau Sumatra khususnya bagian utara. Meski di sini tinggi Bulan sudah negatif (dihitung terhadap horizon sejati), namun terjadi situasi dimana moonset after sunset sudah potensial terpenuhi. Sehingga wilayah ini tercakup ke dalam kawasan berwarna putih.

adha-gb3_a-jakarta

Gambar 3. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari untuk titik Jakarta (atas) dan Palembang (bawah) pada 1 September 2016 TU saat Matahari terbenam. Perhatikan bahwa di kedua titik tersebut, syarat wujudul hilaal belum terpenuhi. Sumber: Sudibyo, 2016.

Gambar 3. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari untuk titik Jakarta (atas) dan Palembang (bawah) pada 1 September 2016 TU saat Matahari terbenam. Perhatikan bahwa di kedua titik tersebut, syarat wujudul hilaal belum terpenuhi. Sumber: Sudibyo, 2016.

Untuk mengevaluasi potensi tersebut maka diuji apakah Bulan telah sepenuhnya berada di bawah horizon semu ataukah tidak manakala Matahari terbenam untuk titik-titik tertentu di pulau Sumatra dan Jawa pada 1 September 2016 TU. Evaluasi dilakukan dengan menggunakan perangkat lunak Accurate Times 5.2 karya Mohammad Odeh dari ICOP (International Crescent’s Observation Project). Perhitungan di-setting secara toposentrik pada enam titik berbeda masing-masing lima di pulau Sumatra (Palembang, Medan, Banda Aceh, pulau Simeulue dan pulau Nias) serta satu di pulau Jawa (Jakarta). Titik di pulau Jawa sekaligus menjadi titik kontrol mengingat berada di wilayah Gerhana Matahari 1 September 2016.

Di titik Jakarta (propinsi DKI Jakarta), diperoleh bahwa pada saat Matahari terbenam sempurna maka Bulan juga sudah sepenuhnya terbenam. Mengingat piringan teratas Bulan sudah sepenuhnya berada di bawah horizon semu. Sehingga di sini moonset after sunset belum terjadi. Hal serupa juga terjadi di titik Palembang (propinsi Sumatra Selatan). Hal menarik yang dapat dicermati dari titik Jakarta adalah cakram Bulan yang beririsan dengan cakram Matahari. Ini menunjukkan pada saat terbenam di titik Jakarta, Matahari memang sedang mengalami Gerhana Matahari. Dan hal ini memang benar-benar terjadi, dimana dua lokasi di DKI Jakarta berhasil mengabadikan saat-saat awal gerhana tersebut. Yakni di titik rukyat hilaal pulau Karya, yang dilaksanakan oleh tim gabungan Kementerian Agama Kanwil Jakarta, Kementerian Agama Kep. Seribu, Lembaga Falakiyah PWNU Jakarta dan Jakarta Islamic Centre. Sementara yang kedua di titik rukyat hilaal Kemayoran, yang dilaksanakan oleh tim BMKG pusat.

adha-gb3_c-medan

Gambar 4. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari untuk titik Medan (atas) dan Banda Aceh (bawah) pada 1 September 2016 TU saat Matahari terbenam. Perhatikan bahwa di kedua titik tersebut, syarat wujudul hilaal sudah terpenuhi. Sumber: Sudibyo, 2016.

Gambar 4. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari untuk titik Medan (atas) dan Banda Aceh (bawah) pada 1 September 2016 TU saat Matahari terbenam. Perhatikan bahwa di kedua titik tersebut, syarat wujudul hilaal sudah terpenuhi. Sumber: Sudibyo, 2016.

Berbeda halnya dengan titik Medan (propinsi Sumatra Utara). Disini diperoleh bahwa pada saat Matahari terbenam sempurna Bulan ternyata belum sepenuhnya terbenam. Sebab piringan teratas Bulan masih ada di bawah horizon semu, meski bagian lainnya sudah di bawah horizon semu. Situasi serupa juga terjadi di titik Banda Aceh (propinsi Aceh), titik Sinabang di pulau Simeulue (propinsi Aceh) dan titik Gunungsitoli di pulau Nias (propinsi Sumatra Utara). Pada ketiga titik terakhir tersebut semuanya mengalami situasi Bulan belum sepenuhnya terbenam tatkala Matahari sudah terbenam sempurna, dimana masih ada bagian piringan teratas Bulan yang menyembul di atas horizon semu.

Dengan demikian syarat wujudul hilaal sejatinya telah terpenuhi di sebagian pulau Sumatra, setidaknya di propinsi Aceh dan Sumatra Utara. Seyogyanya dengan prinsip transfer wujudul hilaal maka daerah-daerah lain di Indonesia yang belum memenuhi syarat musti mengikuti Aceh dan Sumatra Utara (yang sudah memenuhi syarat wujudul hilaal). Bila hal ini diberlakukan maka seyogyanya 1 Zulhijjah 1437 H di Indonesia menurut “kriteria” wujudul hilaal bertepatan dengan Jumat 2 September 2016 TU. Dan hari raya Idul Adha seyogyanya bertepatan dengan Minggu 11 September 2016 TU.

adha-gb3_e-simeulue

Gambar 5. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari untuk titik Sinabang di pulau Simeulue (atas) dan Gunungsitoli di pulau Nias (bawah) pada 1 September 2016 TU saat Matahari terbenam. Perhatikan bahwa di kedua titik tersebut, syarat wujudul hilaal sudah terpenuhi. Sumber: Sudibyo, 2016.

Gambar 5. Perbandingan posisi serta kedudukan cakram Bulan dan Matahari untuk titik Sinabang di pulau Simeulue (atas) dan Gunungsitoli di pulau Nias (bawah) pada 1 September 2016 TU saat Matahari terbenam. Perhatikan bahwa di kedua titik tersebut, syarat wujudul hilaal sudah terpenuhi. Sumber: Sudibyo, 2016.

Namun situasi tersebut tidak terjadi. Muhammadiyah dalam maklumatnya menetapkan hari raya Idul Adha bertepatan dengan Senin 12 September 2016 TU. Inilah anomali itu. Personalia pengurus pusat Muhammadiyah dalam penjelasan singkatnya (secara personal) menyebut bahwa situasi ini terjadi karena di titik acuan perhitungan (markaz), yakni di Yogyakarta, situasi moonset after sunset belum terpenuhi.

Meski penjelasan ini belum menjawab pertanyaan bagaimana dengan prinsip transfer wujudul hilaal, sebagaimana yang pernah diterapkan pada penentuan 1 Ramadhan 1434 H (2013 TU) di Indonesia. Dimana pada saat itu sebagian Indonesia (khususnya pulau-pulau Sumatra, Jawa, kepulauan Bali dan Nusa Tenggara serta sebagian pulau Kalimantan dan sebagian kecil Sulawesi) sudah memenuhi syarat wujudul hilaal pada Senin 8 Juli 2013 TU sementara sisanya belum. Namun Muhammadiyah memaklumatkan seluruh Indonesia sudah memasuki 1 Ramadhan 1434 H (menurut “kriteria” wujudul hilaal) pada keesokan harinya Selasa 9 Juli 2013 TU.

Gambar 6. Zona potensi ketampakan (visibilitas) hilaal per 8 Juli 2013 TU secara toposentrik berdasarkan kriteria Odeh (Audah). Warna merah tidak memenuhi moonset after sunset. Berdasar grafik ini sebagian Indonesia sudah memenuhi syarat wujudul hilaal. Dengan prinsip transfer wujudul hilaal, maka Muhammadiyah memaklumatkan bahwa saat tu seluruh Indonesia sudah memenuhi syarat wujudul hilaal. Sumber: Odeh, 2013.

Gambar 6. Zona potensi ketampakan (visibilitas) hilaal per 8 Juli 2013 TU secara toposentrik berdasarkan kriteria Odeh (Audah). Warna merah tidak memenuhi moonset after sunset. Berdasar grafik ini sebagian Indonesia sudah memenuhi syarat wujudul hilaal. Dengan prinsip transfer wujudul hilaal, maka Muhammadiyah memaklumatkan bahwa saat tu seluruh Indonesia sudah memenuhi syarat wujudul hilaal. Sumber: Odeh, 2013.

Di atas semua persoalan teknis tersebut, patut disyukuri bahwa kedua anomali itu menjadikan Idul Adha 1437 H dapat kita rayakan bersama-sama di Indonesia di sebagian besar dunia pada hari yang sama. Kebersamaan semacam ini yang telah lama didamba oleh Umat Islam dimanapun berada. Dalam salah satu sabdanya, Rasulullah SAW bertutur bahwa hari raya adalah saat orang banyak berhari raya. Semoga kebersamaan ini dapat selalu terlaksana dalam hal waktu-waktu ibadah (awal Ramadhan dan dua hari raya) ke depan.

Membaca Ujicoba Senjata Nuklir Korea Utara

Sebuah gempa meletup dari kawasan Pegunungan Sungjibaegam (Korea Utara) pada Jumat pagi 9 September 2016 Tarikh Umum (TU) pukul 07:30 WIB. Magnitudonya 5,3 dalam bentuk body-wave magnitude (mb). Kedalaman sumbernya? Badan geologi Amerika Serikat atau USGS (United States Geological Survey)  menempatkannya pada nol km (!). Sementara badan lain semisal pusat penelitian geofisika Jerman atau GFZ (Geo Forschungs Zentrum) menyebut hiposentrumnya sangat dangkal, yakni pada kedalaman hanya 1 km. Demikian halnya Badan Meteorologi Klimatologi dan Geofisika (BMKG) di Indonesia, yang juga menempatkan hiposentrumnya pada kedalaman 1 km.

Episentrum gempa yang aneh ini terletak di dekat Punggye-ri, nama legendaris jika berbicara tentang Korea Utara masakini. Punggye-ri adalah fasilitas ujicoba nuklir bawah tanah yang dikelola oleh militer Korea Utara di kawasan Pegunungan Sungjibaegam, yang telah aktif selama sedikitnya 10 tahun terakhir. Kawasan Pegunungan Sungjibaegam bukanlah kawasan yang tergolong zona sumber gempa tektonik potensial, fakta yang menambah aneh gempa ini. Pola gelombang dari gempa yang aneh itupun tak kalah anehnya. Amplitudo gelombang P (primer) yang dirambatkannya lebih besar ketimbang amplitudo gelombang S (sekunder) dengan impuls pertama menunjukkan gerakan kompresi (tekanan) ke segala arah. Pola semacam itu merupakan ciri khas getaran seismik produk ledakan, bukan getaran khas gempa tektonik seperti umumnya.

Gambar 1. Getaran seismik produk ujicoba nuklir Korea Utara 9 September 2016 TU seperti yang terekam dari stasiun Baumata, Nusa Tenggara Timur (BATI). BMKG menyimpulkan getaran seismik ini memiliki magnitudo 5,3 dengan kedalaman sumber hanya 1 km. Sumber: BMKG, 2016.

Gambar 1. Getaran seismik produk ujicoba nuklir Korea Utara 9 September 2016 TU seperti yang terekam dari stasiun Baumata, Nusa Tenggara Timur (BATI). BMKG menyimpulkan getaran seismik ini memiliki magnitudo 5,3 dengan kedalaman sumber hanya 1 km. Sumber: BMKG, 2016.

Apa yang sedang terjadi di Pegunungan Sungjibaegam? Kini dapat dipastikan bahwa salah satu negara termiskin di dunia itu kembali melaksanakan ujicoba detonasi (peledakan) senjata nuklir di bawah tanah di lokasi tersebut. Secara formal inilah ujicoba nuklir kelima yang diselenggarakan Korea Utara dalam kurun satu dasawarsa terakhir. Pertama kali mereka meledakkan senjata nuklirnya di bawah tanah (sebagai ujicoba nuklir) pada 9 Oktober 2006 TU. Ujicoba itu tak sukses, sebab energi ledakan (yield)-nya hanya 0,48 kiloton TNT. Ujicoba kedua berlangsung tiga tahun kemudian, tepatnya pada 25 Mei 2009. Kali ini hasilnya lebih bagus, dengan energi ledakan sebesar 7 kiloton TNT.

Ujicoba ketiga terlaksana empat tahun kemudian, setelah tampuk pimpinan negeri berganti dari tangan Kim Jong-il (wafat 17 Desember 2011 TU) ke Kim Jong-un. Ujicoba ketiga berlangsung pada 12 Februari 2013 TU dengan hasil lebih baik ketimbang sebelumnya, yakni energi ledakan mencapai 12 kiloton TNT. Dan ujicoba keempat dilaksanakan pada 6 Januari 2016 TU, yang diklaim sebagai ujicoba pertama bom Hidrogen (tahap lebih lanjut pengembangan senjata nuklir). Klaim ini meragukan, sebab energi ledakannya hanya berkisar 10 kiloton TNT. Selain keempat ujicoba tersebut, juga terdapat satu ujicoba lainnya yang nampaknya tak dipublikasikan secara formal mengingat hasilnya jelek. Yakni ujioba pada 12 Mei 2010 TU dengan pelepasan energi ‘hanya’ 0,0029 kiloton TNT.

Energi

Gambar 2. Diagram dasar efek ledakan nuklir bawah tanah sebagai panduan umum dalam pelaksanaan ujicoba nuklir bawah tanah. Saat senjata nuklir diledakkan pada titik ledak (shot point), suhu sangat tinggi yang dihasilkannya akan melelehkan apapun disekelilingnya hingga terbentuk rongga (cavity).  Rongga besar ini akan membuat lapisan-lapisan tanah diatasnya ambles hingga menutupinya. Akibatnya seluruh sampah nuklir praktis tersekap di bekas rongga ini. Sebagai imbasnya di permukaan tanah terbentuk cekungan kawah. Sumber: Glasstone & Dolan, 1977.

Gambar 2. Diagram dasar efek ledakan nuklir bawah tanah sebagai panduan umum dalam pelaksanaan ujicoba nuklir bawah tanah. Saat senjata nuklir diledakkan pada titik ledak (shot point), suhu sangat tinggi yang dihasilkannya akan melelehkan apapun disekelilingnya hingga terbentuk rongga (cavity). Rongga besar ini akan membuat lapisan-lapisan tanah diatasnya ambles hingga menutupinya. Akibatnya seluruh sampah nuklir praktis tersekap di bekas rongga ini. Sebagai imbasnya di permukaan tanah terbentuk cekungan kawah. Sumber: Glasstone & Dolan, 1977.

Seberapa kuat energi ledakan nuklir dari ujicoba terakhir Korea Utara ini? Kita bisa memprakirakannya dari getaran seismik yang dihasilkannya. Ada dua cara untuk itu. Pertama, secara umum ada  hubungan matematis sederhana antara energi ledakan sebuah senjata nuklir yang diledakkan di bawah tanah dengan magnitudo gempa yang ditimbulkannya dalam bentuk :

korea-rumus_1Dalam persamaan tersebut, C merupakan konstanta empirik yang bergantung kepada karakter geologi lokasi ujicoba nuklir. Untuk Pegunungan Sungjibaegam, dengan mengacu pada ujicoba nulir pada tahun 2006 TU dan 2009 TU, maka C bernilai antara 3,9 hingga 4,2. Jika diterapkan, maka kita akan mendapatkan energi senjata nuklir dari ujicoba nuklir Korea Utara kali ini berada dalam rentang antara 29 hingga 74 kiloton TNT. Angka 74 kiloton TNT nampaknya terlalu besar dan terdapat alasan rasional bahwa ujicoba tersebut mungkin menghasilkan ledakan berenergi di sekitar 29 kiloton TNT.

Alasan tersebut adalah bagian dari cara yang kedua. Khusus untuk kawasan ujicoba nuklir Korea Utara telah diketahui adanya hubungan antara energi ledakan nuklir bawah tanah dengan magnitudo gempa dan kedalaman titik ledakan dari paras/permukaan tanah tepat diatasnya melalui persamaan empirik berikut:

korea-rumus_2Cara yang kedua ini membutuhkan informasi terkait kedalaman titik ledak. Untuk itu digunakan pendekatan tak langsung. Tujuan ujicoba nuklir bawah tanah adalah agar bisa meledakkan senjata nuklir jenis apapun (baik bom fissi, bom fusi dan variannya) dengan aman sehingga sampah nuklir yang diproduksinya tersekap sempurna didalam tanah tanpa punya peluang untuk lolos ke paras Bumi dan tersebar melalui udara. Agar tujuan tersebut dapat dicapai, maka senjata nuklir yang akan diujicoba harus diletakkan pada kedalaman melebihi kedalaman kritis yang dinyatakan oleh persamaan empiris :

korea-rumus_3-kritisDari ujicoba nuklir Korea Utara pada tahun 2006 TU, 2009 TU dan 2013 TU dapat diketahui bahwa seluruh titik ledaknya terletak pada kedalaman yang lebih besar dibanding kedalaman kritis. Nilai kedalaman titik ledak akan sama dengan kedalaman kritis pada angka 360 meter, yang setara dengan energi ledakan 25,6 kiloton TNT. Untuk alasan keamanan, titik ledak tersebut harus lebih dalam ketimbang kedalaman kritis, sehingga cukup rasional untuk menempatkannya pada kedalaman 450 meter. Pada kedalaman tersebut, persamaan empirik memberikan nilai energi ledakan sebesar 30,5 kiloton TNT. Kedalaman 450 meter bukanlah titik terdalam bagi ujicoba nuklir Korea Utara. Sebab pada ujicoba tahun 2009 TU diprakirakan titik ledaknya lebih dalam lagi, yakni sedalam 650 meter.

Sehingga ujicoba nuklir Korea Utara kali ini mungkin melepaskan energi 30 kiloton TNT. Ini menjadikannya ujicoba nuklir paling bertenaga sepanjang sejarah Korea Utara. Sebagai pembanding, energi bom nuklir yang meremukkan Hiroshima dan Nagasaki di akhir Perang Dunia 2 masing-masing adalah sebesar 15 dan 20 kiloton TNT. Sehingga dapat dikatakan bahwa senjata nuklir yang diujicobakan Korea Utara kali ini telah berkualifikasi sebagai senjata nuklir taktis kelas penghancur sebuah kota.

Gambar 3. Lokasi ujicoba nuklir Korea Utara terbaru dalam tanda bintang (*) warna merah, bersama dengan titik-titik lokasi ujicoba nuklir sebelumnya di medan percobaan nuklir Punggye-ri, kawasan Pegunungan Sungjibaegam (Korea Utara). Terlihat juga lokasi ujicoba nuklir yang dianggap gagal dan tidak dipublikasikan secara formal, yakni ujicoba 12 Mei 2010 TU (tanda segitiga). Sumber: Sudibyo, 2016 dengan basis Google Maps dan Zhang & Wen, 2014.

Gambar 3. Lokasi ujicoba nuklir Korea Utara terbaru dalam tanda bintang (*) warna merah, bersama dengan titik-titik lokasi ujicoba nuklir sebelumnya di medan percobaan nuklir Punggye-ri, kawasan Pegunungan Sungjibaegam (Korea Utara). Terlihat juga lokasi ujicoba nuklir yang dianggap gagal dan tidak dipublikasikan secara formal, yakni ujicoba 12 Mei 2010 TU (tanda segitiga). Sumber: Sudibyo, 2016 dengan basis Google Maps dan Zhang & Wen, 2014.

Booster

Tiap kali Korea Utara mengujicoba senjata nuklirnya selalu muncul pertanyaan apakah gagal atau tidak. Ujicoba nuklir tahun 2006 TU tergolong gagal karena energinya terlalu kecil. Kegagalan ini mengesankan adanya salah desain atau salah perhitungan dalam pembangunan senjata nuklir. Demikian halnya ujicoba nuklir Januari 2016 TU, yang diklaim sebagai ujicoba bom Hidrogen namun juga dianggap gagal karena energinya terlalu kecil, bertolak-belakang dengan energi bom Hidrogen yang telah dikenal dalam sejarah.

Apakah ujicoba nuklir Korea Utara kali ini sukses? Tergantung sudut pandang yang kita gunakan untuk melihatnya dalam konteks fisika energi tinggi. Jika sudut pandangnya adalah sudut pandang primitif, maka ujicoba nuklir Korea Utara bisa dikatakan sukses. Karena toh mereka berhasil membangun dan sukses meledakkan senjata nuklir.  Upaya tersebut tidaklah mudah, sebab Korea Utara harus mengumpulkan isotop Plutonium239 hingga mencapai kuantitas tertentu. Untuk sebuah senjata nuklir, secara umum dibutuhkan Plutonium239 hingga sebanyak 10 kilogram agar tercapai massa kritis, yakni massa minimum yang dibutuhkan agar terjadi reaksi fissi nuklir (pembelahan inti-inti atom berat) secara berantai. Jika yang digunakan adalah isotop Uranium235, maka secara umum massa kritisnya jauh lebih besar yakni mencapai 52 kilogram.

Baik menggunakan Uranium235 maupun Plutonium239, membangun senjata nuklir menjadi pekerjaan yang berat. Hanya terdapat 0,7 % isotop Uranium235 dalam mineral Uranium di alam, sehingga harus dilakukan pemurnian baik dengan cara teknik difusi gas maupun pemisahan elektromagnetis. Sementara Plutonium239 tak hadir di alam sehingga harus diciptakan terlebih dahulu dalam tungku reaktor nuklir, melalui penembakan logam Uranium dengan guyuran partikel neutron secara terus-menerus. Sehingga terjadi transformasi dari Uranium238 (yang kadarnya 99,3 % di alam) menjadi Uranium239 yang kemudian meluruh ke Neptunium239 hingga akhirnya meluruh lagi menjadi Plutonium239. Baik Uranium235 maupun Plutonium239 lantas harus dibuat ke dalam bentuk bola berongga, yang diselubungi oleh lapisan bahan peledak konvensional di segala arah. Di pusat bola juga harus ditempatkan inisiator neutron untuk memulai reaksi fissi nuklir kala senjata nuklir ini sudah diaktifkan.

Gambar 4. Perbandingan gelombang seismik dari kelima ujicoba nuklir Korea Utara sejak 2006 TU seperti yang terekam dalam stasiun seismik Hedmark (Norwegia) yang berjarak 7.360 kilometer dari lokasi ujicoba, diplot dalam skala yang sama. Nampak amplitudo dan magnitudo gelombang seismik produk ujicoba 9 September 2016 TU adalah yang terbesar dibanding yang lain. Sumber: NORSAR, 2016.

Gambar 4. Perbandingan gelombang seismik dari kelima ujicoba nuklir Korea Utara sejak 2006 TU seperti yang terekam dalam stasiun seismik Hedmark (Norwegia) yang berjarak 7.360 kilometer dari lokasi ujicoba, diplot dalam skala yang sama. Nampak amplitudo dan magnitudo gelombang seismik produk ujicoba 9 September 2016 TU adalah yang terbesar dibanding yang lain. Sumber: NORSAR, 2016.

Namun dari sudut pandang modern, ujicoba tersebut mungkin (sekali lagi) mendemonstrasikan kegagalan Korea Utara. Karena sudut pandang modern menekankan pada efisiensi senjata nuklir. Senjata nuklir paling awal, meski terkesan dahsyat, dikenal tak efisien sehingga membutuhkan bobot yang sangat besar. Bom Little Boy yang meremukkan Hiroshima memiliki massa total 4,4 ton. Sementara bom Fat Man yang menghancurkan Nagasaki massanya sedikit lebih besar, yakni 4,6 ton. Pada Little Boy, hanya 1,4 % saja dari 64 kilogram Uranium235 yang mengalami reaksi fissi nuklir dan melepaskan energi, atau setara dengan hanya 880 gram Uranium235. Pada Fat Man sedikit lebih baik karena 13 % dari 6,2 kilogram Plutonium239 yang mengalami reaksi fissi nuklir, setara dengan 810 gram Plutonium239. Sisanya terbuang percuma sebagai sampah nuklir.

Dalam sudut pandang modern, efisiensi ini harus ditingkatkan hingga 20 % atau lebih. Sehingga kita tak lagi harus menyaksikan senjata nuklir berukuran dan berbobot jumbo yang hanya bisa diangkut dengan armada pesawat pengebom terberat. Namun cukup hanya dengan pesawat yang lebih ringan atau bahkan dengan sistem persenjataan non pesawat seperti rudal jelajah atau rudal balistik. Sebab dalam sudut pandang modern, massa senjata nuklir bisa direduksi menjadi di bawah 1.000 kilogram atau bahkan dibawah 500 kilogram. Sementara kandungan energinya tetap setara atau bahkan beberapa kali lipat lebih besar ketimbang bom Little Boy maupun Fat Man.

Peningkatan efisiensi reaksi fissi nuklir tersebut umumnya dilakukan dengan pendorong (booster). Pada dasarnya sebuah senjata nuklir dalam rupa bom fissi nuklir hanya bisa bekerja jika didalamnya terjadi banjir partikel neutron. Partikel inilah yang akan membelah isotop Uranium235 atau Plutonium239 sehingga menjadi isotop-isotop yang lebih ringan sembari melepaskan 2 atau 3 neutron baru dan energi besar. Dalam sudut pandang primitif, banjir neutronnya dikategorikan sedikit karena hanya berasal dari reaksi fissi itu sendiri. Agar efisiensi fissi nuklir meningkat, maka kuantitas banjir neutron didalamnya pun harus berlipat ganda. Untuk itu dibutuhkan sumber eksternal yang sanggup menghasilkan banjir neutron dalam jumlah besar, yakni reaksi fusi nuklir. Fusi nuklir adalah penggabungan inti-inti atom ringan (umumnya Hidrogen dan isotopnya) pada suhu yang teramat tinggi hingga menghasilkan inti yang lebih berat (umumnya Helium) disertai pelepasan neutron dan energi. Dalam kondisi tertentu, kuantitas banjir neutron produk reaksi fusi nuklir bisa mencapai 8 kali lipat produk reaksi fissi nuklir.

Gambar 5. Diagram dasar senjata nuklir berupa bom fissi nuklir dengan pendorong. Saat diledakkan, maka lapisan bahan peledak terluar (bentuk ellipsoid, disini nampak berbentuk lonjong) akan memberikan tekanan kuat ke internal, membuat selubung bahan peledak terdalam (berbentuk bola, disini nampak sebagai lingkaran) akan terpicu dan meledak. Ledakan tersebut menghasilkan tekanan kuat menuju ke pusat bola sekaligus menekan kuat Plutonium dan campuran Tritium-Deuterium. Plutonium melampaui massa kritis, yang membuat Tritium-Deuterium mulai mengalami reaksi fusi nuklir. Banjir neutron yang dihasilkannya membelah-belah inti Plutonium dalam jumlah yang lebih besar. Selimut Berilium berfungsi sebagai pemantul neutron kembali ke internal bola. Sumber: Anonim.

Gambar 5. Diagram dasar senjata nuklir berupa bom fissi nuklir dengan pendorong. Saat diledakkan, maka lapisan bahan peledak terluar (bentuk ellipsoid, disini nampak berbentuk lonjong) akan memberikan tekanan kuat ke internal, membuat selubung bahan peledak terdalam (berbentuk bola, disini nampak sebagai lingkaran) akan terpicu dan meledak. Ledakan tersebut menghasilkan tekanan kuat menuju ke pusat bola sekaligus menekan kuat Plutonium dan campuran Tritium-Deuterium. Plutonium melampaui massa kritis, yang membuat Tritium-Deuterium mulai mengalami reaksi fusi nuklir. Banjir neutron yang dihasilkannya membelah-belah inti Plutonium dalam jumlah yang lebih besar. Selimut Berilium berfungsi sebagai pemantul neutron kembali ke internal bola. Sumber: Anonim.

Inti atom yang digunakan sebagai bahan bakar fusi nuklir adalah isotop Deuterium (Hidrogen2) dan Tritium (Hidrogen3). Fusi nuklir yang melibatkan inti Deuterium dan Tritium akan terjadi mulai suhu 10 juta Kelvin dan akan lebih efisien pada suhu 20 juta hingga 30 juta Kelvin. Suhu setinggi itu dapat dicapai pada beberapa mikrodetik pertama dalam meledaknya bom fissi nuklir. Hanya sejumput jumlah Deuterium dan Tritium yang terlibat dalam proses pendorong ini, dimana pelepasan energi reaksi fusi nuklir yang dihasilkannya hanya setara dengan 1 % energi keseluruhan senjata nuklir. Namun ia menghasilkan banjir neutron yang mencukupi untuk meningkatkan jumlah reaksi fissi nuklir. Selain meningkatkan efisiensi fissi nuklir, penggunaan teknik pendorong juga mengurangi atau bahkan menghilangkan kebutuhan lapisan pemantul neutron (tamper). Lapisan pemantul merupakan lapisan logam padat yang berfungsi untuk memantulkan balik partikel-partikel neutron yang tidak sempat bersua dengan inti Uranium235 atau Plutonium239 dan hendak lolos dari internal senjata.

Penggentar

Pada praktiknya penambahan Deuterium dan Tritium sebagai pendorong dilakukan dengan memasukkan kedua isotop tersebut (yang berwujud gas) ke dalam rongga di pusat bola massa Plutonium239 dalam bom fissi nuklir. Korea Utara mungkin telah mencoba hal ini, setidaknya seperti tecermin dalam ujicoba nuklir Januari 2016 TU.  Namun ujicoba nuklir September 2016 TU  ini di satu sisi mencerminkan mereka masih gagal. Sebab dalam desain ideal senjata nuklir, energi maksimum yang mungkin dicapai dari sebuah bom fissi nuklir berbasis Plutonium239 tanpa pendorong adalah mencapai 60 kiloton TNT. Sehingga jika desainnya sempurna dan pendorong bekerja dengan baik, kita seyogyanya akan menyaksikan ledakan bawah tanah yang melepaskan energi di atas  50 atau bahkan 100 kiloton TNT. Energi sebesar itu akan menghasilkan getaran seismik dengan magnitudo 5,7 atau lebih besar lagi.

Namun di sisi lain, ujicoba nuklir September 2016 TU dapat pula mengesankan sukses Korea Utara. Apalagi jika tujuannya adalah miniaturisasi senjata nuklir dengan sedikit mengorbankan kandungan energinya. Dengan miniaturisasi, maka senjata nuklir akan memiliki massa dan dimensi yang lebih kecil. Sehingga dapat digendong dalam sistem rudal jelajah maupun rudal balistik. Apa yang mengkhawatirkan dari sisi ini adalah bahwa pada saat yang sama Korea Utara cukup berhasil dalam mengembangkan sistem rudal balistik. Pada 22 Juni 2016 TU mereka berhasil meluncurkan rudal balistik berjangkauan menengah berbasis darat dengan nama Musudan-1. Rudal tersebut dirancang untuk menghantam sasaran sejauh 4.000 kilometer, meski pada peluncuran tersebut hanya ditembakkan sejauh 400 kilometer (konsekuensinya ketinggian maksimum  rudal pun meningkat menjadi 1.413 kilometer). Selanjutnya pada 24 Agustus 2016 TU giliran rudal balistik Pukkusong-1 ditembakkan dari kapal selam. Jangkauan maksimumnya diperkirakan setara dengan Musudan-1, meski pada saat itu hanya ditembakkan sejauh 500 kilometer. Dan hanya beberapa hari sebelum ujicoba nuklir terakhirnya, Korea Utara menembakkan tiga rudal Rodong-1 sekaligus dengan akurasi tinggi. Rodong-1 mampu menjangkau sasaran sejauh 1.000 kilometer. Baik Musudan-1, Pukkusong-1 maupun Rodong-1 dapat dimuati dengan hululedak nuklir da dapat menjangkau negara-negara yang bermusuhan di Asia timur jauh (seperti Korea Selatan dan Jepang) dengan mudah.

Gambar 6. Bagaimana pengaruh penggunaan teknologi pendorong pada bom fissi nuklir diperlihatkan dalam gambar perbandingan ini. Kiri: bom Fat Man, senjata nuklir generasi pertama tanpa pendorong dengan kandungan energi 20 kiloton TNT memiliki diameter maksimum 150 cm dan massa total 4,6 ton. Fat Man hanya bisa diangkut dengan pesawat pengebom terberat. Kanan: bom W54, senjata nuklir dengan teknologi pendorong, yang massanya  hanya 23 kilogram dan diameter maksimum hanya 27 cm. Meski sangat kecil, namun kandungan energinya mencapai 6 kiloton TNT atau sepertiga Fat Man. Sumber:  Glasstone & Dolan, 1977.

Gambar 6. Bagaimana pengaruh penggunaan teknologi pendorong pada bom fissi nuklir diperlihatkan dalam gambar perbandingan ini. Kiri: bom Fat Man, senjata nuklir generasi pertama tanpa pendorong dengan kandungan energi 20 kiloton TNT memiliki diameter maksimum 150 cm dan massa total 4,6 ton. Fat Man hanya bisa diangkut dengan pesawat pengebom terberat. Kanan: bom W54, senjata nuklir dengan teknologi pendorong, yang massanya hanya 23 kilogram dan diameter maksimum hanya 27 cm. Meski sangat kecil, namun kandungan energinya mencapai 6 kiloton TNT atau sepertiga Fat Man. Sumber: Glasstone & Dolan, 1977.

Maka dari sisi geopolitik, kombinasi ujicoba nuklir terkini dan peluncuran rudal-rudal balistik membuat Korea Utara boleh dikata berhasil mencapai tujuannya. Senjata nuklir dikombinasikan dengan rudal balistik adalah faktor penggentar (deterrent) bagi negara tetangga, bahkan bagi adidaya seperti Amerika Serikat sekalipun. Kepemilikan senjata nuklir ditambah dengan rudal balistik membuat  Korea Utara memiliki daya tawar yang lebih baik ketika berhadapan dengan kepentingan-kepentingan internasional yang sering dipaksakan. Terlebih negeri itu secara teknis masih dalam kondisi berperang sejak 1950 TU, kala Perang Korea meletus. Perang tersebut hanya berakhir secara teknis dengan sebuah perjanjian gencatan senjata, bukan berakhir permanen dalam bentuk perundingan perdamaian.

Referensi :

BMKG. 2016. Laporan Gempa Bumi akibat Ledakan Nuklir Korea Utara, 9 September 2016. 

NORSAR. 2016. North Korean Undergorund Nuclear Test Larger than Previous Tests, Pers Release.

Glasstone & Dolan. 1977. The Effects of Nuclear Weapons. Washington DC, US Department of Defense.

Zhang & Wen. 2014. Seismological Evidence for a Low-yield Nuclear Test on 12 May 2010 in North Korea. Seismological Research Letter, vol. 86 (January/February 2016), no. 1.

Gerhana Matahari 1 September 2016, Secuil Gerhana di Sepotong Tanah Nusantara

Kamis 1 September 2016 Tarikh Umum (TU). Waktunya sore hari, hanya beberapa saat sebelum Matahari terbenam. Arahkan pandangan ke kaki langit barat, tepatnya ke arah kedudukan Matahari. Jika langit cerah dan anda beruntung berada di daerah yang tepat, maka akan kita saksikan satu keajaiban panorama langit: peristiwa Gerhana Matahari. Inilah gerhana ketiga yang menghampiri Indonesia dalam musim gerhana 2016.

Gerhana, dalam bentuk Gerhana Matahari yang kemudian disusul dengan Gerhana Bulan dalam 14 hari berikutnya,  ataupun sebaliknya (Gerhana Bulan terlebih dahulu baru kemudian Gerhana Matahari) adalah sunnatullah. Sebab tatkala Bulan menempati sebuah titik nodal pada saat fase konjungsi/Bulan baru (yang menimbulkan peristiwa Gerhana Matahari), maka dalam 14 hari kemudian Bulan akan menempati titik nodal kedua dalam fase oposisi/purnama (yang menghasilkan Gerhana Bulan). Atau dapat pula sebaliknya. Titik nodal adalah  titik potong antara orbit Bulan dengan ekliptika (bidang edar Bumi dalam mengelilingi Matahari), yang terdiri dari dua titik yakni titik nodal naik (ascending node) dan titik nodal turun (descending node). Dalam momen tertentu tiap beberapa tahun sekali, berkemungkinan terjadi Bulan secara berturut-turut menempati titik-titik nodalnya di saat purnama, Bulan baru dan purnama berikutnya. Sehingga terjadi tiga gerhana secara berturut-turut dalam tempo hanya 28 hari, fenomena yang secara tak resmi saya sebut sebagai parade gerhana.

Gambar 1. Wajah Matahari yang tercuil kecil akibat tutupan Bulan dalam tahap akhir Gerhana Matahari 9 Maret 2016 silam, diabadikan dari Kebumen (Jawa Tengah). Panorama seperti ini pula yang akan kembali disaksikan pada Gerhana Matahari 1 September 2016 dari sebagian kecil wilayah Indonesia. Sumber: Sudibyo, 2016.

Gambar 1. Wajah Matahari yang tercuil kecil akibat tutupan Bulan dalam tahap akhir Gerhana Matahari 9 Maret 2016 silam, diabadikan dari Kebumen (Jawa Tengah). Panorama seperti ini pula yang akan kembali disaksikan pada Gerhana Matahari 1 September 2016 dari sebagian kecil wilayah Indonesia. Sumber: Sudibyo, 2016.

Gerhana Matahari 1 September 2016 merupakan Gerhana Matahari Cincin. Secara sederhana gerhana ini terjadi kala Bumi, Bulan dan Matahari benar-benar berjajar dalam satu garis lurus ditinjau dari segenap perspektif dengan Bulan berada di antara Bumi dan Matahari. Sebagai akibatnya maka pancaran sinar Matahari yang menuju ke Bumi sedikit terblokir oleh Bulan. Maka dari itu gerhana Matahari selalu terjadi di kala siang hari. Karena ukuran Bulan jauh lebih kecil ketimbang Bumi, maka pemblokiran tersebut tidak merata di sekujur bagian permukaan Bumi yang sedang terpapar sinar Matahari pada saat itu (atau dalam kondisi siang), melainkan hanya di sektor-sektor tertentu bergantung pada geometri orbit Bulan saat itu. Dan pemblokiran tersebut tak berlangsung efektif sehingga Bulan seakan-akan terlihat kekecilan di kala puncak gerhana. Maka saat puncak gerhana terjadi, Bumi masih akan menyaksikan secuil cakram Matahari menyembul di sekeliling bundaran Bulan yang gelap yang mengesankan sebagai lingkaran bercahaya mirip cincin. Karena itu gerhana Matahari ini disebut sebagai Gerhana Matahari Cincin (anular).

Tempat-tempat dimana kita bisa menyaksikan gerhana ini dinamakan wilayah gerhana. Di dalam wilayah gerhana ada zona antumbra, yakni titik-titik dimana ini  bentuk cincin pada saat puncak gerhana dapat disaksikan. Di sekelilingnya terdapat zona penumbra, yakni titik-titik yang harus berpuas diri menyaksikan Matahari hanya secuil atau hanya tertutupi sebagian (sebagai gerhana sebagian) kala puncak gerhana.  Wilayah Gerhana Matahari Cincin 1 September 2016 mencakup hampir seluruh benua Afrika (kecuali secuil wilayah Afrika bagian utara di pesisir Laut Tengah), separuh Semenanjung Arabia dan sepotong kecil tanah Indonesia. Tetapi zona antumbra hanya melewati negara-negara di benua Afrika bagian tengah, tepatnya di bagian negara Gabon, Khatulistiwa Guinea, Kongo, Tanzania dan Madagaskar. Sementara sisa wilayah gerhana lainnya harus berpuas diri menjadi zona penumbra saja

Gambar 2. Peristiwa Gerhana Matahari dan Gerhana Bulan dalam musim gerhana 2016 berdasarkan titik acu kota Kebumen, Kabupaten Kebumen (Jawa Tengah). Terlihat seluruh gerhana tersebut memiliki wilayah yang melintas di Indonesia. Sumber: Sudibyo, 2016.

Indonesia

Indonesia menempati posisi unik dalam Gerhana Matahari 1 September 2016 ini. Sebab Indonesia menjadi satu-satunya negara di kawasan Asia tenggara yang berkesempatan berada dalam wilayah gerhana. Secara akumulatif di seluruh benua Asia hanya ada lima negara yang masuk kedalam wilayah gerhana, masing-masing Saudi Arabia (sebagian), Yaman, Oman (sebagian kecil), Maladewa dan Indonesia (sebagian kecil).

Seperti halnya keempat negara Asia lainnya, wilayah gerhana di Indonesia berupa zona penumbra. Sehingga di Indonesia Gerhana Matahari 1 September 2016 hanya akan nampak sebagai gerhana sebagian. Itupun dengan magnitudo (persentase penutupan cakram Matahari oleh Bulan) yang kecil, seluruhnya kurang dari 10 %. Sehingga hanya secuil wajah Matahari yang menghilang dalam puncak gerhana. Karena itu durasi gerhana Matahari di Indonesia pun relatif singkat, terlebih di banyak titik di wilayah gerhana Indonesia sudah mengalami terbenamnya Matahari sebelum gerhana usai.

Gambar 3. Peta wilayah Gerhana Matahari Cincin 1 September 2016 dalam lingkup Indonesia. Di Indonesia gerhana Matahari ini akan berbentuk Gerhana Matahari Sebagian, dengan wilayah gerhana ditandai oleh daerah yang yang dibatasi oleh garis lurus/lengkung. Sumber: Xavier Jubier, 2016.

Gambar 3. Peta wilayah Gerhana Matahari Cincin 1 September 2016 dalam lingkup Indonesia. Di Indonesia gerhana Matahari ini akan berbentuk Gerhana Matahari Sebagian, dengan wilayah gerhana ditandai oleh daerah yang yang dibatasi oleh garis lurus/lengkung. Sumber: Xavier Jubier, 2016.

Tanah Nusantara yang tercakup ke dalam wilayah gerhana hanyalah (ujung selatan) pulau Sumatra dan (sebagian besar) pulau Jawa. Secara administratif terdapat 123 kabupaten/kota yang berada dalam wilayah gerhana, yang tersebar di delapan propinsi. Masing-masing Bengkulu, Lampung, DKI Jakarta, Banten, Jawa Barat, Jawa Tengah, DIY dan Jawa Timur. Magnitudo gerhana di Indonesia bervariasi mulai dari yang terkecil bernilai mendekati 0 % di kota Tuban (Kabupaten Tuban, Jawa Timur) hingga yang terbesar bernilai 9,6 % di kota Sukabumi (Kabupaten Sukabumi, Jawa Barat). Durasi gerhana pun bervariasi mulai kurang dari 1 menit di kota Tuban hingga sepanjang 34 menit di kota Tais (kabupaten Seluma, Bengkulu).

Berikut adalah tabel waktu, durasi dan magnitudo gerhana di masing-masing dari 123 kabupaten/kota tersebut. Dengan catatan :

  1. Tabel disusun lewat perhitungan yang dibantu software Emapwin 1.21 karya Shinobu Takesako.
  2. Perhitungan dilakukan hanya di ibukota kabupaten/kota tersebut dan tidak mencakup titik-titik lain dalam kabupaten/kota itu.
  3. Perhitungan dilakukan di elevasi 0 meter dpl (dari paras laut rata-rata). Dalam realitasnya akan ada sedikit perbedaan bila ibukota kabupaten/kota tersebut memiliki elevasi cukup tinggi.
  4. Untuk kabupaten yang ibukotanya memiliki magnitudo kurang dari 0,5 % maka dimungkinkan terjadi adanya titik-titik dalam kabupaten tersebut yang tak tercakup dalam wilayah gerhana.

gms-gb3_bengkulugms-gb3_lampunggms-gb3_dkigms-gb3_bantengms-gb3_jabar1gms-gb3_jabar2gms-gb3_jateng1gms-gb3_jateng2gms-gb3_diygms-gb3_jatim1gms-gb3_jatim2Shalat Gerhana

Bagi Umat Islam, sangat dianjurkan untuk menyelenggarakan shalat gerhana tatkala peristiwa gerhana terjadi, baik Gerhana Matahari maupun Gerhana Bulan. Nah tulisan ini tak hendak menyentuh tata cara pelaksanaan shalat gerhana atau khutbah yang dianjurkan. Namun hanya mengupas kapan waktunya.

Berbeda dengan Gerhana Matahari 9 Maret 2016 lalu, Gerhana Matahari 1 September 2016 memiliki durasi yang cukup singkat, yakni maksimum 34 menit. Sementara shalat gerhana Matahari, yang terdiri dari shalat dua rakaat dan khutbah gerhana, membutuhkan waktu tersendiri. Jika dianggap bahwa keseluruhan rangkaian shalat Gerhana Matahari bisa dilaksanakan dalam 20 menit, maka hanya di kabupaten/kota yang mengalami durasi gerhana 20 menit atau lebih saja yang berkesempatan mendirikan shalat gerhana. Apabila batasan ini digunakan, maka hanya ada 45 kabupaten/kota di wilayah gerhana (setara 36 % dari total kabupaten/kota di wilayah gerhana) yang memiliki kesempatan ini. Seluruh kabupaten/kota di Jawa Tengah dan Jawa Timur (yang masuk ke wilayah gerhana) tak berkesempatan mendirikan shalat gerhana. Demikian halnya sebagian kabupaten/kota di Jawa Barat.

Pembaharuan: Galeri Gerhana

Upaya untuk mendeteksi dan mengabadikan peristiwa Gerhana Matahari ini di Indonesia dilakukan di berbagai titik di pulau Jawa dan Sumatra. Upaya ini dipadukan dengan pelaksanaan rukyatul hilaal sebagai salah satu bahan pertimbangan dalam menentukan hari raya Idul Adha 10 Zulhijjah 1437 H di Indonesia. Cukup mengesankan bahwa peristiwa Gerhana Matahari 1 September 2016 ini bertepatan dengan tanggal 29 Zulqaidah 1437 H dalam takwim standar Indonesia. Sehingga hari itu juga menjadi saat penentuan apakah bulan Zulqaidah akan berumur 29 hari ataukah mengalami penggenapan (istikmal) menjadi 30 hari. Meski banyak dari titik-titik tersebut yang berujung dengan kegagalan akibat tutupan mendung atau bahkan hujan deras yang mewarnai langit setempat.

Hanya ada beberapa tempat saja yang berhasil mengabadikan Gerhana Matahari ini, itupun dengan kondisi langit yang kurang menguntungkan sehingga tutupan awan selalu mewarnai. Dalam catatan saya ada tujuh titik yang berhasil mengabadikan gerhana ini. Namun dalam galeri ini hanya disajikan lima titik diantaranya saja.

Gambar 5 a. Citra Gerhana Matahari 1 September 2016 pada pukul 17:33 WIB, diabadikan dari pulau Karya Kep. Seribu hanya beberapa menit sebelum Matahari menghilang di balik awan. Sumber: POB JIC P. Karya/Fajar Fathurahman, 2016.

Gambar 5 a. Citra Gerhana Matahari 1 September 2016 pada pukul 17:33 WIB, diabadikan dari pulau Karya Kep. Seribu hanya beberapa menit sebelum Matahari menghilang di balik awan. Sumber: POB JIC P. Karya/Fajar Fathurahman, 2016.

Dua titik pertama terletak di propinsi DKI Jakarta, masing-masing di pulau Karya (Kepulauan Seribu) dan Kemayoran. Pengamatan dari pulau Karya dilakukan oleh tim perukyat hilaal yang adalah gabungan Kementerian Agama Kanwil DKI Jakarta, Kementerian Agama Kep. Seribu, Jakarta Islamic Centre dan Pengurus Wilayah Nahdlatul ‘Ulama (PWNU) DKI Jakarta. Tim ini mengambil titik yang disebut sebagai Pos Observasi Bulan (POB) Jakarta Islamic Centre. Pengamatan berlangsung tak optimal, hanya pada menit-menit pertama saja Matahari teramati sebelum kemudian mendung menutupi. Meski begitu bagaimana Matahari yang ‘tercuil’ kecil akibat gerhana ini dapat diidentifikasi dengan jelas lewat teleskop. Sementara pengamatan dari Kemayoran dilakukan oleh tim Badan Meteorologi Klimatologi dan Geofisika (BMKG) yang juga melaksanakan tugas rukyatul hilaal. Dibanding Kep. Seribu, gangguan awan di Kemayoran lebih brutal. Sehingga Matahari nyaris tertutupi sepenuhnya. Namun bagaimana gerhana terjadi masih dapat dikenali, melalui teleskop.

Gambar 5 b. Citra Gerhana Matahari 1 September 2016 pada sekitar pukul 17:34 WIB, diabadikan dari Kemayoran di tengah-tengah tutupan awan nan brutal. Sumber: BMKG/Rukman Nugraha, 2016.

Gambar 5 b. Citra Gerhana Matahari 1 September 2016 pada sekitar pukul 17:34 WIB, diabadikan dari Kemayoran di tengah-tengah tutupan awan nan brutal. Sumber: BMKG/Rukman Nugraha, 2016.

Gangguan awan yang cukup brutal juga dialami titik berikutnya yang terletak di propinsi Banten, yakni di pantai Anyer. Di sini pengamatan dilakukan oleh tim dari Planetarium dan Observatorium Jakarta (POJ). Dalam momen yang pas nan singkat saat awal gerhana sudah terjadi, Matahari seakan memasuki celah di antara awan-awan tebal dan memungkinkan untuk diabadikan, dengan teleskop.

Gambar 5 c. Citra Gerhana Matahari 1 September 2016 pada pukul 17:34 WIB, diabadikan dari pantai Anyer di tengah-tengah tutupan awan nan brutal. Persentase penutupan Matahari oleh Bulan pada saat itu sekitar 4,4 %. Sumber: POJ/Ronny Syamara, 2016.

Gambar 5 c. Citra Gerhana Matahari 1 September 2016 pada pukul 17:34 WIB, diabadikan dari pantai Anyer di tengah-tengah tutupan awan nan brutal. Persentase penutupan Matahari oleh Bulan pada saat itu sekitar 4,4 %. Sumber: POJ/Ronny Syamara, 2016.

Gangguan awan juga dialami oleh dua titik berikutnya yang terletak di propinsi Daerah Istimewa Yogyakarta, tepatnya di Kab. Bantul. Yang pertama terletak di puncak bukit Becici yang berhutan pinus, dilakukan oleh Zulkarnaen Syri L seorang fotografer profesional.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada pukul 17:26 WIB, diabadikan dari puncak bukit Becici dalam kondisi langit yang relatif lebih bersahabat. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: Zulkarnaen Syri Lokesywara, 2016.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada pukul 17:26 WIB, diabadikan dari puncak bukit Becici dalam kondisi langit yang relatif lebih bersahabat. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: Zulkarnaen Syri Lokesywara, 2016.

Sementara titik berikutnya terletak di Pos Observasi Bulan Bela Belu Parangkusumo, yang dilakukan oleh tim gabungan Badan Hisab dan Rukyat Daerah (BHRD) Yogyakarta, Kementerian Agama Kanwil Yogyakarta, PWNU Yogyakarta dan Universitas Ahmad Dahlan Yogyakarta. Sebagian tim tersebut juga menunaikan tugas pelaksanaan rukyatul hilaal.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada jam yang tak disertakan, diabadikan dari bukit Bela belu, Parangkusumo, dengan kondisi langit dipenuhi awan. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: UAD/Muchlas Arkanuddin, 2016.

Gambar 5 d. Citra Gerhana Matahari 1 September 2016 pada jam yang tak disertakan, diabadikan dari bukit Bela belu, Parangkusumo, dengan kondisi langit dipenuhi awan. Diabadikan dengan kamera DSLR, tanpa dirangkai teleskop. Sumber: UAD/Muchlas Arkanuddin, 2016.

Mengunjungi Proxima Centauri b, (Kandidat) Planet Tata Surya Non Matahari Terdekat

Frasa “mengunjungi planet Proxima Centauri b” disini tentu saja maknanya konotatif, hanya sebentuk imajinasi. Sebab guna merealisasikannya dengan teknologi yang dikuasai umat manusia saat ini sungguh tak terbayang lamanya. Sebab jarak antara Bumi dan Proxima Centauri b adalah sebesar 4,22 tahun cahaya, sementara setahun cahaya itu setara jarak 9,46 trilyun kilometer. Sehingga apabila kita menggunakan roket-roket komersial pengorbit satelit ke orbit Bumi (yang kecepatan puncaknya rata-rata 7,7 km/detik), butuh waktu paling tidak 165.000 tahun sejak berangkat dari Bumi hingga tiba di Proxima Centauri b. Waktu 165.000 tahun itu hampir mirip dengan waktu yang dibutuhkan leluhur umat manusia untuk bermigrasi dari tanah Afrika timur ke segenap penjuru hingga membentuk peradaban manusia seperti saat ini.

Andaikata kita menggunakan wantariksa (wahana antariksa) tercepat buatan manusia saat ini, yakni Juno (kecepatan puncak 40 km/detik) yang baru saja tiba di lingkungan planet raksasa gas Jupiter, waktu yang dibutuhkan masih selama hampir 29.000 tahun.  Bahkan andaikata proyek Breakthrough Starshot yang sedang digagas bisa merengkuh sukses, sebuah wantariksa mini seberat beberapa gram baru akan tiba di Proxima Centauri b setelah menempuh waktu 20 tahun meski melesat secepat seperlima kecepatan cahaya.

Gambar 1. Gambaran artis planet Proxima Centauri b sebagai planet berbatu (terestrial) yang beredar mengelilingi bintang induknya yang kemerahan dan redup. Planet tersebut terletak di zona Goldilocks bintang Proxima Centauri sehingga mungkin mengandung air dalam bentuk cair. Sepasang bintang di latarbelakang adalah bintang alpha Centauri A dan alpha Centauri B. Sumber: ESO/M.Kornmesser, 2016.

Gambar 1. Gambaran artis planet Proxima Centauri b sebagai planet berbatu (terestrial) yang beredar mengelilingi bintang induknya yang kemerahan dan redup. Planet tersebut terletak di zona Goldilocks bintang Proxima Centauri sehingga mungkin mengandung air dalam bentuk cair. Sepasang bintang di latarbelakang adalah bintang alpha Centauri A dan alpha Centauri B. Sumber: ESO/M.Kornmesser, 2016.

Proxima Centauri b adalah nama yang sedang menghebohkan jagat astronomi di hari-hari terakhir ini. Terutama sejak 24 Agustus 2016 Tarikh Umum (TU). Biang keladinya adalah ESO (European Southern Observatory), institusi riset antarnegara Eropa dan juga pemilik sejumlah teleskop raksasa termutakhir di Bumi. Mereka melansir temuan menghebohkan: ada planet seukuran Bumi yang ditemukan mengorbit bintang Proxima Centauri. Itu bintang terdekat terhadap Bumi kita setelah Matahari, namun demikian redupnya sehingga mustahil bisa dilihat dengan mata biasa saja (tanpa bantuan teleskop). Diindikasikan pertama kali pada 2013 TU, ESO kemudian meluncurkan kampanye ambisius bertajuk Pale Red Dot guna menyeret planet itu keluar dari selimut persembunyiannya.

Tak tanggung-tanggung, ESO mengerahkan teleskop reflektor raksasa dengan cermin obyektif bergaris tengah 3,6 meter di Observatorium La Silla (Chile). Teleskop hebat itu dirangkai dengan spektograf HARPS (High Accuracy Radial velocity Planet Searcher) yang hebat. Tak hanya itu, ESO juga mengerahkan teleskop raksasa lain andalannya, yakni teleskop reflektor VLT (Very Large Telescope) dengan cermin bergaris tengah 8 meter yang berpangkalan di Gurun Atacama (juga di Chile). Teleskop VLT dirangkai dengan spektograf lain yang tak kalah hebatnya, yakni UVES (Ultraviolet and Visual Echelle Spectograph). Dengan dua radas (instrumen) canggih ini ESO memburu keberadaan planet tata surya non Matahari (planet ekstrasolar) terdekat ke Bumi kita lewat metode Doppler.

Perburuan ini berujung manis dengan penemuan planet tersebut, yang untuk sementara diberi nama planet Proxima Centauri b. Meski hingga saat ini umat manusia telah menemukan tak kurang dari 3.200 buah planet tata surya non Matahari terhitung sejak 1995 TU, namun Proxima Centauri b tetap menggemparkan. Sebab selain paling dekat dengan Bumi kita, ia juga seukuran dengan planet biru tempat tinggal manusia ini. Selain itu ia diduga cukup hangat sehingga mampu menjaga air dalam bentuk cair. Air dalam bentuk cair menjadi komponen yang penting dalam kehidupan.

Bintang Induk

Planet Proxima Centauri b adalah planet yang mengorbit bintang Proxima Centauri, bintang terdekat dengan Bumi kita setelah Matahari. Namun bintang Proxima Centauri cukup redup. Sehingga ia hanya bisa disaksikan dengan menggunakan teleskop yang lensa/cermin obyektifnya bergaris tengah minimal 8 cm. Karena itu tak mengherankan bahwa bintang terdekat tapi  redup ini baru disadari keberadaannya oleh umat manusia dalam kurun seabad terakhir saja. Adalah Robert Innes, astronom kelahiran Skotlandia yang mengepalai Observatorium Union di Johannesburg (Afrika Selatan), yang menyadari ada bintang tak biasa di sekitar sistem bintang Alpha Centauri. Bintang tersebut memiliki gerak diri (proper motion) yang setara dengan sistem bintang alpha Centauri, namun sangat redup dan terpisah jauh (elongasi 2,2°). Pengukuran paralaks nan teliti oleh Harold Alden pada 1928 TU menunjukkan bahwa bintang tersebut, yang lantas dikenal sebagai Proxima Centauri, ternyata lebih dekat ke Bumi dibandingkan sistem bintang ganda alpha Centauri.

Gambar 2. Bintang alpha Centauri A yang sangat terang (tengah) yang kontras dengan bintang Proxima Centauri nan redup (titik merah dalam lingkaran merah). Jika dibandingkan, Proxima Centauri adalah 26 kali lebih redup ketimbang alpha Centauri A. Diabadikan di Belanda pada 20 Februari 2012 TU dengan kamera DSLR Canon memakai lensa 85 mm (f/1,8). Ada 11 frame hasil bidikan yang dijadikan satu lewat teknik stacking. Masing-masing frame memiliki waktu paparan 30 detik. Sumber: Skatebiker, 2012.

Gambar 2. Bintang alpha Centauri A yang sangat terang (tengah) yang kontras dengan bintang Proxima Centauri nan redup (titik merah dalam lingkaran merah). Jika dibandingkan, Proxima Centauri adalah 26 kali lebih redup ketimbang alpha Centauri A. Diabadikan di Belanda pada 20 Februari 2012 TU dengan kamera DSLR Canon memakai lensa 85 mm (f/1,8). Ada 11 frame hasil bidikan yang dijadikan satu lewat teknik stacking. Masing-masing frame memiliki waktu paparan 30 detik. Sumber: Skatebiker, 2012.

Karena memiliki gerak diri yang setara, bintang ini pun dianggap sebagai bagian dari sistem bintang alpha Centauri. Maka alpha Centauri merupakan sistem bintang tripel yang beranggotakan bintang alpha Centauri A, bintang alpha Centauri B dan bintang alpha Centauri C (Proxima Centauri). Ketiganya beredar mengelilingi sebuah titik pusat massa yang sama. Namun ada yang ganjil dalam sistem bintang tripel ini. Jarak rata-rata alpha Centauri A terhadap alpha Centauri B hanya 11 SA (satuan astronomi), atau setara jarak dari Matahari ke orbit Uranus. Dengan demikian baik alpha Centauri A dan maupun alpha Centauri B hanya membutuhkan waktu 80 tahun untuk menuntaskan gerak mengelilingi titik pusat massa bersama sekali putaran. Namun tidak demikian halnya dengan Proxima Centauri. Jaraknya  luar biasa besar, yakni 13.000 SA atau setara seperempat tahun cahaya dari titik itu. Maka Proxima Centauri butuh 500.000 tahun untuk mengedari titik pusat massa bersama sekali putaran.

Keganjilan lainnya, jika bintang alpha Centauri A dan bintang alpha Centauri B tergolong bintang yang relatif terang dengan magnitudo semu masing-masing adalah +0,01 dan +1,33 maka bintang Proxima Centauri justru sangat redup (magnitudo semu +11,02). Keganjilan berikutnya, bila bintang alpha Centauri A dan bintang alpha Centauri B adalah anggota kelompok bintang deret utama (masing-masing kelas G dan K), maka bintang Proxima Centauri justru merupakan anggota bintang katai merah (red dwarf). Keganjilan-keganjilan ini mendorong sejumlah astronom mempertanyakan apakah bintang Proxima Centauri benar-benar bagian dari sistem bintang alpha Centauri. Sebab terbuka kemungkinan bahwa bintang Proxima Centauri adalah bintang yang kebetulan saja sedang melintas di dekat sistem bintang alpha Centauri dan tak terikat (secara gravitasi) dengan sistem bintang tersebut.

Sebagai bintang terdekat ke Bumi setelah Matahari kita, banyak informasi akan Proxima Centauri yang telah terungkap. Dalam banyak hal bintang redup ini kalah pamor dibanding Matahari. Misalnya, massa Proxima Centauri hanyalah 12 % dari massa Matahari. Sementara radiusnya hanya 14,1 % dari radius Matahari. Sehingga bintang Proxima Centauri ini pada galibnya hanya sedikit lebih besar dari Jupiter.  Selanjutnya luminositas, yakni jumlah energi yang dilepaskan per satuan waktu, juga sangat kecil. Luminositas bolometriknya adalah 0,15 % dari luminositas Matahari. Sementara dalam spektrum cahaya tampak (visual), luminositasnya bahkan jauh lebih kecil lagi yakni hanya 0,005 % dari luminositas Matahari. Sebab 85 % energi Proxima Centauri dihantarkan dalam spektrum sinar inframerah. Suhu fotosfera (permukaan)-nya juga rendah yakni hanya 3.050 Kelvin, sementara pada Matahari mencapai 5.800 Kelvin. Layaknya Matahari, Proxima Centauri pun memiliki siklus aktivitasnya sendiri dengan puncak aktivitas ditandai peristiwa mirip badai Matahari. Akan tetapi periode siklus aktivitas Proxima Centauri jauh lebih pendek, yakni ‘hanya’ 442 hari. Sementara pada Matahari periodenya mencapai 11 tahun.

Tetapi di sisi lain, banyak pula karakter Proxima Centauri yang lebih dominan. Misalnya saja dalam hal kerapatan (massa jenis)-nya yang jauh lebih besar, yakni 40 kali lipat dari Matahari. Bintang dengan kerapatan besar  umum dijumpai pada bintang-bintang eksotik yang telah mengalami evolusi tahap lanjut, termasuk diantaranya bintang katai. Juga medan magnetiknya. Sebagai bintang dengan massa rendah, perpindahan panas dalam interior Proxima Centauri sepenuhnya dalam bentuk konveksi. Salah satu konsekuensinya adalah dibangkitkan dan dipertahankannya medan magnet bintang yang cukup kuat, 600 kali lebih kuat ketimbang Matahari. Konsekuensi lainnya, 88 % fotosfera Proxima Centauri adalah aktif, proporsi yang jauh lebih besar dibanding Matahari. Imbasnya korona Proxima Centauri pun mengalami pemanasan lebih tinggi sehingga bersuhu 3,5 juta Kelvin. Sementara suhu korona Matahari ‘hanya’ 2 juta Kelvin.

Gambar 3. Jejak badai bintang Proxima Centauri seperti yang terekam dalam fotometri kuasi-simultan dari teleskop ASH2 (Astrograph for the South Hemisphere II) dengan filter Hidrogen alpha pada spektrum cahaya tampak dan LCOGT (Las Cumbres Observatory Global Telescope) juga pada sepktrum cahaya tampak. Jejak badai bintang ditandai dengan panah abu-abu. Dalam waktu pengamatan selama 80 hari berturut-turut, nampak terdeteksi minimal tiga peristiwa badai bintang. Kedua teleskop tersebut merupakan bagian dari kampanye pale red dot ESO untuk menemukan planet di bintang Proxima Centauri. Sumber: ESO/Anglada-Escude dkk, 2016.

Gambar 3. Jejak badai bintang Proxima Centauri seperti yang terekam dalam fotometri kuasi-simultan dari teleskop ASH2 (Astrograph for the South Hemisphere II) dengan filter Hidrogen alpha pada spektrum cahaya tampak dan LCOGT (Las Cumbres Observatory Global Telescope) juga pada sepktrum cahaya tampak. Jejak badai bintang ditandai dengan panah abu-abu. Dalam waktu pengamatan selama 80 hari berturut-turut, nampak terdeteksi minimal tiga peristiwa badai bintang. Kedua teleskop tersebut merupakan bagian dari kampanye pale red dot ESO untuk menemukan planet di bintang Proxima Centauri. Sumber: ESO/Anglada-Escude dkk, 2016.

Proxima Centauri dikenal sebagai bintang suar (flare star) atau bintang yang kerap menyemburkan badai bintang. Fakta ini diketahui pada 1951 TU oleh astronom Harlow Shapley setelah menganalisis pelat-pelat fotografis terkait bintang ini sejak 1915 TU. Ia mendapati bahwa bintang Proxima Centauri memiliki kecenderungan untuk bertambah terang hingga 8 % lebih terang dari semula, lantas kemudian meredup lagi. Peningkatan dan pengurangan kecerlangan ini berlangsung secara periodik dengan periode rata-rata 442 hari. Sumber peningkatan kecerlangan ini adalah badai bintang. Berbeda dengan badai Matahari, medan magnet Proxima Centauri yang jauh lebih kuat menyebabkan hampir seluruh fotosfera-nya menjadi area badai. Sehingga badai bintang Proxima Centauri kerap berukuran hingga sebesar bintangnya itu sendiri. Saat badai bintang terjadi, suhu bintang melonjak hingga 27 juta Kelvin, yang memungkinkan untuk memancarkan sinar-X. Ini membuat luminositas sinar-X Proxima Centauri setara dengan Matahari. Bahkan dalam puncak badai, luminositas sinar-X Proxima Centauri dapat mencaai 100 kali lebih besar ketimbang Matahari.

Planet

Planet Proxima Centauri b, atau sebut saja sebagai Proxima b, ditemukan dengan metode Doppler atau metode kecepatan radial. Ini adalah metode tak langsung dalam menemukan planet tata surya non Matahari dengan jalan mendeteksi pergeseran pada garis-garis spektrum emisi dari bintang induknya. Metode ini seperti halnya kita mendeteksi ada tidaknya mobil ambulans yang sedang menjauh atau mendekat  lewat keras lirihnya suara sirenenya. Hanya saja untuk kasus ini bukan suara yang menjadi fokus perhatian, melainkan spektrum emisi bintang. Meski, baik dalam kasus mobil ambulans maupun bintang, kuncinya terletak pada frekuensi. Yakni frekuensi suara (untuk mobil ambulans) dan frekuensi cahaya (untuk bintang).

Pada dasarnya setiap bintang bergerak relatif terhadap Bumi kita dalam kecepatan tertentu yang dinamakan kecepatan radial. Bilamana bintang tersebut memiliki planet, maka gangguan gravitasi planet itu akan menyebabkan perubahan periodik pada kecepatan radial bintang. Mari lihat   tata surya kita sebagai contoh. Meskipun Jupiter tetap setia mengedari Matahari dalam orbitnya, namun gangguan gravitasi Jupiter juga membuat kecepatan radial Matahari berubah secara periodik. Meski amplitudo perubahan itu sangat kecil, yakni hanya 12,4 meter/detik dengan periode 12 tahun (yang sama dengan periode revolusi Jupiter). Jika hal serupa diaplikasikan pada Bumi kita, yang massanya jauh lebih kecil ketimbang Jupiter, maka amplitudo perubahan kecepatan radial Matahari pun jauh lebih kecil lagi.  Yakni hanya 0,1 meter/detik dengan periode 1 tahun. Upaya mendeteksi perubahan kecepatan radial bintang dapat dilakukan melalui radas spektograf berakurasi sangat tinggi yang khusus dibuat untuk itu.

Gambar 4. Deteksi tak langsung eksistensi planet Proxima Centauri b yang mengorbit bintang Proxima Centauri, seperti terlihat pada perubahan kecepatan radial bintang tersebut berdasarkan hasil observasi dengan spektograf HAVES dan UVES. Nampak jelas pada kedua periodogram di atas, terdapat sinyal kuat dengan puncak pada periode 11,19 hari. Ini menjadi indikasi ada sebuah obyek yang mengelilingi Proxima Centauri dengan periode revolusi 11,19 hari Bumi. Sumber: ESOAnglada-Escude dkk, 2016.

Gambar 4. Deteksi tak langsung eksistensi planet Proxima Centauri b yang mengorbit bintang Proxima Centauri, seperti terlihat pada perubahan kecepatan radial bintang tersebut berdasarkan hasil observasi dengan spektograf HAVES dan UVES. Nampak jelas pada kedua periodogram di atas, terdapat sinyal kuat dengan puncak pada periode 11,19 hari. Ini menjadi indikasi ada sebuah obyek yang mengelilingi Proxima Centauri dengan periode revolusi 11,19 hari Bumi. Sumber: ESOAnglada-Escude dkk, 2016.

Radas HARPS memiliki kemampuan mendeteksi perubahan kecepatan radial bintang hingga 0,3 m/detik. Saat HARPS diarahkan ke bintang Proxima Centauri dalam rentang waktu observasi relatif lama, didapati adanya perubahan kecepatan radial dengan amplitudo sebesar 1,76 meter/detik dengan periode 11,19 hari. Perubahan yang sama dengan periode serupa juga dideteksi oleh radas UVES meski amplitudonya sedikit berbeda, yakni 1,69 meter/detik. Perubahan kecepatan radial pada bintang Proxima Centauri b menjadi indikasi bahwa bintang ini dikelilingi oleh setidaknya sebuah kandidat planet.

Analisis lebih lanjut memperlihatkan planet tersebut, yakni Proxima Centauri b, beredar pada jarak rata-rata sebesar 0,049 SA atau 7,33 juta kilometer dari bintang Proxima Centauri. Kelonjongan orbit (eksentrisitas)-nya diketahui lebih kecil dari 0,35. Apabila nilai kelonjongannya tepat 0,35 maka Proxima Centauri b beredar mengelilingi bintang induknya dalam sebentuk orbit lonjong yang memiliki periastron (titik terdekat ke bintang) sebesar 0,032 SA atau 4,79 juta kilometer dan apastron (titik terjauh ke bintang) sebesar 0,066 SA atau 9,87 juta kilometer. Periode revolusi Proxima Centauri b adalah 11,19 hari sehingga setahun di sana sama dengan 11,19 hari. Massanya, tepatnya massa minimumnya adalah 1,27 kali massa Bumi sehingga planet Proxima Centauri b mungkin merupakan planet terestrial (planet batuan). Sementara paparan sinar yang diterimanya adalah 65 % paparan sinar Matahari di Bumi, atau setara dengan 889 watt/meter2.

Apa yang menarik dari planet ini adalah suhu rata-rata parasnya dan lingkungan tempatnya berada. Jika dianggap tidak memiliki atmosfer, maka suhu paras rata-rata Proxima Centauri b adalah minus 39° Celcius (234 Kelvin). Sebaliknya jika planet  Proxima Centauri b mempunyai atmosfer maka suhu paras rata-ratanya menjadi lebih besar yakni mencapai 30° Celcius (303 Kelvin). Namun angka perkiraan ini relatif kasar karena hanya memperhitungkan jarak planet ke bintang induknya dan intensitas penyinaran. Dalam menggali persoalan ini lebih lanjut, Laboratoire de Météorologie Dynamique’s Planetary Global Climate Model melakukan simulasi dengan berbasis dua asumsi seiring kedekatan jarak orbit Proxima Centauri b dengan bintang induknya. Asumsi pertama, planet Proxima Centauri b mengalami resonansi 3:2. Artinya tiap kali Proxima Centauri b tepat dua kali mengelilingi bintang induk, maka ia juga tepat tiga kali berotasi (berputar pada porosnya). Sehingga dalam asumsi ini periode rotasi Proxima Centauri b adalah 7,46 hari. Sementara asumsi kedua adalah planet Proxima Centauri b terikat dalam gaya tidal dengan bintang induknya, atau mengalami rotasi tersinkron. Dalam kondisi ini maka periode rotasi Proxima Centauri b akan tepat sama dengan periode revolusinya, yakni 11,19 hari. Sehingga hemisfer Proxima Centauri b yang menghadap ke arah bintang Proxima Centauri selalu sama.

Dalam asumsi pertama, maka distribusi suhu paras di Proxima Centauri b bervariasi mulai dari yang terdingin di kutub (minus 90° Celcius) hingga yang terhangat di sekitar ekuator (0° Celcius). Jika terdapat air di Proxima Centauri b, maka distribusi suhu seperti ini akan membentuk samudera yang merentang di antara garis lintang 30° LU hingga garis lintang 30° LS. Sebaliknya apabila bersandar pada asumsi kedua, maka suhu paras Proxima Centauri b bervariasi mulai dari yang terdingin pada kawasan dekat kutub (di sekitar garis lintang 60° LU dan 60° LS) pada sisi yang membelakangi bintang induknya (yakni minus 75° Celcius) hingga yang terhangat di sekitar ekuator pada sisi yang menghadap bintang induk (yakni 30° Celcius). Bila ada air, maka akan terbentuk samudera yang lebih luas karena merentang mulai dari garis lintang 70° LU hingga garis lintang 70° LS.

Gambar 5. Prakiraan distribusi suhu paras rata-rata planet Proxima Centauri b berdasarkan asumsi mengalami resonansi 3:2 (kiri) dan rotasi tersinkron (kanan). Berdasarkan simulasi numerik yang dikerjakan Laboratoire de Météorologie Dynamique's Planetary Global Climate Model. Sumber: ESO, 2016.

Gambar 5. Prakiraan distribusi suhu paras rata-rata planet Proxima Centauri b berdasarkan asumsi mengalami resonansi 3:2 (kiri) dan rotasi tersinkron (kanan). Berdasarkan simulasi numerik yang dikerjakan Laboratoire de Météorologie Dynamique’s Planetary Global Climate Model. Sumber: ESO, 2016.

Kemungkinan keberadaan air dalam bentuk cair menjadi bagian paling menarik dari kisah penemuan planet Proxima Centauri b ini. Sebab dengan orbitnya, maka praktis planet tersebut terletak dalam zona Goldilock atau zona kedapathunian, yakni sebuah kawasan sejarak antara 0,0423 SA (6,33 juta kilometer) hingga 0,0816 SA (12,21 juta kilometer) dari bintang Proxima Centauri. Di dalam zona Goldilocks, bilamana terdapat air maka ia bisa berbentuk zat cair. Air dalam bentuk cair menjadi salah satu faktor yang mendukung kehidupan, baik dengan makhluk hidup yang memanen energi dari sinar bintang induknya maupun dengan makhluk hidup yang ditenagai pemanasan internal planet tersebut. Apabila air tersedia dalam jumlah besar, maka siklus air mungkin bisa berjalan dan turut membentuk lansekap berbatu planet tersebut.

Beberapa Catatan

Baiklah. Jadi apabila kita berkunjung ke planet Proxima Centauri b, entah bagaimanapun caranya, kemungkinan besar kita akan berjumpa dengan lansekap bebatuan padat layaknya Bumi dan juga samudera yang luas. Planetnya memang ganjil, karena setahun disana setara 11,19 hari Bumi sementara satu harinya mungkin setara dengan dua pertiga tahunnya atau malah setahunnya. Pertanyaan terpentingnya, adakah kehidupan disana? Atau bisakah planet Proxima Centauri b ini dihuni oleh kehidupan seperti Bumi?

Jawaban dari pertanyaan itu membuat para astronom terpolarisasi ke dalam dua kutub pendapat yang berbeda. Kutub pendapat pertama mengatakan tidak mungkin, baik untuk dihuni maupun menyemaikan kehidupan. Ada empat alasannya, yakni Proxima Centauri b mungkin mengalami rotasi tersinkron, bintang Proxima Centauri memiliki medan magnet yang sangat kuat (600 kali lipat medan magnet Matahari), bintang Proxima Centauri kerap menyemburkan badai bintang dan Proxima Centauri b mengalami paparan sinar-X dan sinar ultraungu yang sangat tinggi (paparan sinar-X-nya mungkin 400 kali lebih kuat dibanding Bumi). Dengan rotasi tersinkron, maka hemisfer Proxima Centauri b yang menghadap bintang induknya akan mengalami pemanasan berlebih. Sementara hemisfer yang membelakanginya menggigil kedinginan dalam beku. Dan dalam kondisi rotasi tersinkron pula, atmosfer Proxima Centauri b (bilamana ada) akan terkikis habis oleh hempasan badai bintang dan kuatnya medan magnet Proxima Centauri. Dan akhirnya, dengan paparan sinar-X dan sinar ultraungu yang sangat kuat, yang juga mampu menggerus dan mengikis atmosfer Proxima Centauri b hingga habis. Singkatnya, bagi kutub pendapat pertama ini planet Proxima Centauri b adalah planet yang berbahaya.

Sebaliknya kutub pendapat kedua mengatakan berbeda. Jadi mungkin saja Proxima Centauri b bisa dihuni dan menyemai benih kehidupan. Alasannya juga empat. Meski rotasinya tersinkron, planet Proxima Centauri b dapat memiliki keseimbangan suhu paras rata-rata antara hemisfer yang menghadap bintang dan yang membelakanginya bilamana tersedia atmosfer stabil yang mampu mendistribusikan panas lewat sirkulasi atmosfer global. Planet ini memang berhadapan dengan medan magnet bintang dan badai bintang yang kuat. Namun beberapa penelitian memperlihatkan bahwa jika Proxima Centauri b memiliki medan magnet mencukupi (layaknya medan magnet Bumi), maka ia akan mampu mempertahankan atmosfernya dari gempuran medan magnet dan badai bintang. Jumlah materi atmosfer yang terkikis akan cukup kecil. Jadi ia bisa menghindari nasib malang seperti halnya yang dialami Mars. Penelitian serupa juga mengungkap bahwa medan magnet  Proxima Centauri b juga bisa membuatnya mempertahankan atmosfernya dari gempuran sinar-X dan sinar ultraungu. Singkatnya, bagi kutub ini planet Proxima Centauri b memang tinggal di lingkungan berbahaya. Namun ia bisa bertahan andaikata memang memiliki medan magnet mencukupi.

Yang jelas kedua kutub pendapat tersebut menyepakati bahwa planet Proxima Centauri b ini berada di lingkungan yang hangat, yang mampu mempertahankan air dalam bentuk cair. Butuh observasi lebih lanjut untuk memastikan apakah planet ini memang demikian. Observasi, terutama oleh tim peneliti lain yang independen, sekaligus akan mengonfirmasi apakah sesungguhnya memang ada planet yang dimaksud di bintang Proxima Centauri. Sebab pada 2012 TU silam kita pernah mengalami kejadian tak mengenakkan terkait sistem bintang alpha Centauri. Saat itu tim astronom Eropa, juga bersenjatakan radas HARPS, mengumumkan telah mengidentifikasi adanya planet terestrial yang mengorbit bintang alpha Centauri B. Namun tiga tahun kemudian tim peneliti lain yang berbasis data HARPS yang sama menyimpulkan planet tersebut tidak ada. Apa yang semula diduga sebagai planet di bintang alpha Centauri B ternyata hanya sekedar cacat perhitungan matematis.

Observasi lebih lanjut juga akan mampu menentukan massa Proxima Centauri b dengan lebih baik. Saat ini informasi yang kita ketahui hanyalah massa minimumnya. Bergantung kepada sudut inklinasinya, maka massa Proxima Centauri b mungkin bisa bervariasi mulai dari sekecil 2,6 kali lipat massa Bumi hingga sebesar 70 kali lipat massa Bumi. Jika massanya terlalu besar, maka ia bukanlah planet terestrial.

Referensi :

Anglada-Escude dkk. 2016. A Terrestrial Planet Candidate in a Temperate Orbit around Proxima Centauri. Nature, vol. 536 no. 7617 (25 August 2016), pp 437–440.

‘Mercon Renteng’, Pelajaran dari Gempa Amatrice (Italia) 2016

Dalam 48 jam pasca gempa kuat melanda Pegunungan Apennina di tengah-tengah Italia, sudah 250 jasad ditemukan dan diangkat dari timbunan reruntuhan bangunan. Sebanyak 365 orang lainnya ditemukan luka-luka dalam beragam tingkatan. Namun puluhan orang masih dinyatakan hilang. Sebagian dari mereka yang hilang adalah penduduk kota-kecil Amatrice (ketinggian 955 meter dpl/dari paras laut rata-rata dan populasi 3.000 jiwa) yang  berdekatan dengan episentrum gempa. Amatrice mengalami dampak terparah, separuh wilayahnya lenyap dari peta, berganti dengan timbunan puing-puing bangunan yang memerangkap banyak orang didalamnya. Kota-kecil Accumoli (ketinggian 855 meter dpl, populasi 667 jiwa) dan Arquata del Tronto (ketinggian 777 meter dpl, populasi 1.302 jiwa) juga mengalami kerusakan yang tak kalah parahnya.  Di tengah kisah sedih ini, narasi keajaiban pun bersembulan. Misalnya tentang bocah perempuan yang ditemukan selamat meski tertimbun reruntuhan bangunan Amatrice selama berjam-jam.

Gambar 1. Bagaimana Gempa Amatrice 2016 terekam sebagai usikan pada frekuensi arus elektron dalam cincin sinkrotron (jari-jari 844 meter) di ESRF (European Synchrotron Radiation Facility), Grenoble (Perancis). Usikan pertama merupakan gempa utama (magnitudo 6,2). Sementara usikan kedua berasal dari gempa susulan (magnitudo 5,5) hampir sejam pasca gempa utama. Usikan terjadi akibat perubahan-kecil-sementara bentuk cincin sinkrotron seiring melintasnya gelombang gempa, dimana variasi 1 Hz setara dengan perubahan sebesar 2 mikrometer. Sumber: ESRF, 2016.

Gambar 1. Bagaimana Gempa Amatrice 2016 terekam sebagai usikan pada frekuensi arus elektron dalam cincin sinkrotron (jari-jari 844 meter) di ESRF (European Synchrotron Radiation Facility), Grenoble (Perancis). Usikan pertama merupakan gempa utama (magnitudo 6,2). Sementara usikan kedua berasal dari gempa susulan (magnitudo 5,5) hampir sejam pasca gempa utama. Usikan terjadi akibat perubahan-kecil-sementara bentuk cincin sinkrotron seiring melintasnya gelombang gempa, dimana variasi 1 Hz setara dengan perubahan sebesar 2 mikrometer. Sumber: ESRF, 2016.

Korban jiwa dan kerusakan ini nampak bersesuaian dengan estimasi cepat PAGER (Prompt Assessment   of Global Earthquakes for Response) yang disajikan otoritas kegempaan Amerika Serikat, yakni USGS (United States Geological Survey). PAGER mengestimasi bahwa jumlah korban tewas akibat Gempa Amatrice 2016 ini, begitu untuk mudahnya kita sebut, akan mencapai angka antara 100 hingga 1.000 jiwa, dengan probabilitas 64 %. Sementara kerugian material diperkirakan akan mencapai angka antara US $ 1 milyar hingga US $ 10 milyar (atau antara Rp 13 trilyun hingga Rp 130 trilyun, dalam kurs US $ 1 = Rp 13.000), dengan probabilitas 35 %. Meski demikian masih terlalu dini untuk menyimpulkan seberapa menghancurkan dan merusak Gempa Amatrice 2016 ini.

Regangan Italia

Gempa Amatrice 2016 meletup pada Rabu pagi 24 Agustus 2016 Tarikh Umum (TU) pukul 08:37 WIB, atau dinihari (pukul 01:37) di Italia. Gempa terjadi kala orang-orang masih terlelap. USGS melansir gempa ini memiliki magnitudo momen 6,2 (deviasi standar 0,016) dengan sumber sangat dangkal, yakni hanya sedalam 10 km dpl. Episentrum gempa terletak di kawasan Italia bagian tengah, tepatnya di satu titik dalam Pegunungan Apennina sejarak sekitar 100 km timur laut kota Roma.  Penyebab gempa adalah mekanisme pematahan turun (normal faulting), jenis pematahan kerak bumi yang menghasilkan lembah (graben) nan khas. Berdasarkan distribusi episentrum dari lebih 200 gempa susulan dalam 24 jam pasca gempa utama dan pencitraan interfrerometri dari radas (instrumen) PALSAR pada satelit ALOS-2 milik JAXA (Jepang), sumber Gempa Amatrice 2016 adalah segmen sepanjang 20 km dengan lebar10 km. Segmen tersebut berorientasi utara-barat laut ke selatan-tenggara.

amatrice-gb2_insar

Gambar 2. Atas: sumber Gempa Amatrice 2016 berdasarkan pencitraan interferometri SAR (synthetic apperture radar) diferensial melalui satelit ALOS-2 milik JAXA (Jepang). Interferometri didasarkan pada dua citra, masing-masing diambil pada 9 September 2015 TU dan 24 Agustus 2016 TU. Sumber gempa nampak sebagai segmen seluas 20 x 10 kilometer persegi yang mengalami subsidens dengan tingkat belum diketahui. Bawah: salah satu sudut dari sesar Monte Vettore, yang menjadi bagian dari Sumber Gempa Amatrice 2016. Nampak pergeseran akibat gempa 2016 (2016 rupture) dengan lembah sesar (graben) di sisi bawah. Sementara di latarbelakang terdapat cermin sesar (slickenslide), salah satu gejala khas pematahan. Sumber: JAXA, 2016 & Univ Chiety Pescara,2016.

Gambar 2. Atas: sumber Gempa Amatrice 2016 berdasarkan pencitraan interferometri SAR (synthetic apperture radar) diferensial melalui satelit ALOS-2 milik JAXA (Jepang). Interferometri didasarkan pada dua citra, masing-masing diambil pada 9 September 2015 TU dan 24 Agustus 2016 TU. Sumber gempa nampak sebagai segmen seluas 20 x 10 kilometer persegi yang mengalami subsidens dengan tingkat belum diketahui. Bawah: salah satu sudut dari sesar Monte Vettore, yang menjadi bagian dari Sumber Gempa Amatrice 2016. Nampak pergeseran akibat gempa 2016 (2016 rupture) dengan lembah sesar (graben) di sisi bawah. Sementara di latarbelakang terdapat cermin sesar (slickenslide), salah satu gejala khas pematahan. Sumber: JAXA, 2016 & Univ Chiety Pescara,2016.

Seluruh Italia dapat dikatakan merasakan getaran akibat gempa kuat ini. Getaran maksimum terjadi di episentrum yang mencapai intensitas 9 MMI (Modifed Mercalli Intensity), jenis getaran yang sanggup menghancurkan dan meruntuhkan sebagian besar bangunan serta menggeser kedudukan pondasinya. Kota-kota terdekat dengan episentrum menerima getaran dengan intensitas 8 MMI, yang dampaknya sanggup meruntuhkan bangunan pada umumnya kecuali yang didesain tahan gempa. Kota Roma menerima getaran 4 MMI, jenis getaran ringan yang mampu membangunkan orang-orang yang sedang tidur.

USGS PAGER mengestimasi ada 13.000 jiwa yang tinggal di kawasan yang mengalami getaran 8 MMI, sementara 234.000 jiwa lainnya berdiam di kawasan yang bergetar dengan intensitas 7 MMI. Secara akumulatif, populasi yang mengalami getaran 4 MMI atau lebih diprakirakan mencapai 23,6 juta jiwa.  Dengan adanya orang-orang yang tinggal di kawasan yang tergetarkan 8 MMI, jelas secara umum terlihat bahwa Gempa Amatrice 2016 berpotensi merenggut korban jiwa. Dan itulah yang terjadi.

Di tengah semua kepiluan yang diakibatkannya, bagaimana Gempa Amatrice 2016 dapat terjadi sebenarnya relatif mudah dijelaskan. Peristiwa ini tak bisa dilepaskan dari sejarah geologi Italia. Sebagian besar negeri itu terletak di Semenanjung Apennina, dengan Pegunungan Apennina membujur tepat di tengah-tengahnya. Semenanjung itu sendiri adalah sebuah daratan yang dijepit oleh dua aktivitas geologi berbeda. Di sisi timur terdapat perairan Laut Adriatik, tempat mikrolempeng Adriatik yang adalah pecahan dari lempeng Afrika  menyelusup ke bawah lempeng Eurasia dalam proses subduksi. Sementara di sisi barat terdapat perairan Laut Tirenea yang adalah cekungan busur belakang (back-arc basin), suatu gejala khas dalam zona subduksi. Cekungan busur belakang merupakan kawasan yang berbatasan dengan tepi kontinen dan  mengalami peregangan akibat aktivitas subduksi.

Gambar 3. Peta kota Amatrice dan kerusakan yang dalaminya akibat Gempa Amatrice 2016, berdasarkan nilai interferometri koheren antara sebelum dan sesudah gempa. Nampak sebagian kota telah hancur. Sumber: JAXA, 2016.

Gambar 3. Peta kota Amatrice dan kerusakan yang dalaminya akibat Gempa Amatrice 2016, berdasarkan nilai interferometri koheren antara sebelum dan sesudah gempa. Nampak sebagian kota telah hancur. Sumber: JAXA, 2016.

Aktivitas di Laut Tirenea lebih aktif ketimbang zona subduksi di sisi timurnya. Sebagai akibatnya  Semenanjung Apennina dipaksa mengambil sikap dalam menghadapi tarikan dari sisi barat (Laut Tirenea) dengan tarikan lain dari sisi timur (Laut Adriatik).  Semenanjung ini tak punya pilihan lain kecuali mengalami peregangan  (ekstensional), khususnya di sepanjang Pegunungan Apennina sebagai tulang punggungnya. Akibatnya terbentuklah sesar-sesar aktif disekujur Pegunungan Apennina yang  didominasi oleh jenis pensesaran turun (normal faulting). Ciri khasnya pensesaran turun adalah terbentuknya lembah-lembah lurus memanjang mengikuti alur sesar di dalam pegunungan ini. Sesar-sesar aktif inilah sumber sebagian besar gempa tektonik yang mendera Italia sejak masa Romawi kuno. Hanya tinggal menunggu waktu saja sebuah titik dalam sesar-sesar ini mengalami reaktivasi, untuk kemudian melepaskan energinya dalam bentuk gempa bumi tektonik

Gempa Amatrice 2016 juga mendemonstrasikan apa yang secara sederhana disebut sebagai ‘letupan mercon renteng.’ Bila anda  kerap bermain dengan petasan, anda tentu akan mengetahui bahwa saat banyak petasan kita renteng (rangkai jadi satu dengan satu sumbu), maka kala salah  satu petasan sudah meledak, berikutnya giliran petasan lain yang berurutan yang meledak. Hal serupa juga terjadi dalam gempa tektonik. Sebuah sistem sesar aktif nan panjang umumnya tidaklah tunggal, melainkan bersegmen-segmen. Tiap segmen memiliki panjang tertentu yang relatif berbeda dibanding segmen-segmen yang ada di sebelahnya. Jumlah keseluruhan segmen tersebut mencerminkan panjang sistem sesar aktif tersebut. Dengan segmentasi ini maka sebuah gempa tektonik umumnya meletup hanya dari satu segmen dalam sistem sesar aktif itu. Meski dapat pula terjadi gempa berasal dari dua atau tiga segmen yang bergerak (melenting) bersamaan, walaupun hal ini jarang terjadi.

Begitu sebuah segmen melepaskan energinya sebagai gempa, maka ia memberikan tekanan tambahan kepada segmen lain sebelah-menyebelahnya. Sehingga peluang segmen sebelah untuk melepaskan energinya menjadi lebih besar. Demikian berulang-ulang di sepanjang sistem sesar aktif tersebut. Segmentasi itu juga memungkinkan kita mengestimasi periode perulangan kejadian gempa disegmen tersebut, sepanjang faktor-faktor yang menentukan diketahui.

Gambar 4. Lokasi segmen sumber Gempa Amatrice 2016 yang dijepit oleh segmen sumber Gempa Umbria-Marche 1997 di sebelah utaranya dan segmen sumber Gempa L'Aquila 2009 di sebelah selatannya. Diplot berdasarkan koordinat episentrum gempa-gempa di kawasan ini sejak 1997 TU. Sumber: Sudibyo, 2016.

Gambar 4. Lokasi segmen sumber Gempa Amatrice 2016 yang dijepit oleh segmen sumber Gempa Umbria-Marche 1997 di sebelah utaranya dan segmen sumber Gempa L’Aquila 2009 di sebelah selatannya. Diplot berdasarkan koordinat episentrum gempa-gempa di kawasan ini sejak 1997 TU. Sumber: Sudibyo, 2016.

Hal itu pun berlaku pada sistem sesar aktif di Pegunungan Apennina. Ia pun bersegmen-segmen. Dalam sejarahnya tiap segmen memiliki kemampuan untuk melepaskan gempa dengan magnitudo maksimum 6. Khusus di bagian tengah Apennina, sedikitnya teridentifikasi tiga segmen yang saling berurutan. Gempa Amatrice 2016 terjadi pada segmen sepanjang 25-30 km, berdasar analisis seismologi. Analisis yang sama juga memprakirakan dalam segmen tersebut  terjadi lentingan (slip) sejauh rata-rata 100 cm dari semula. Sehingga terbentuk graben baru dengan kedalaman maksimum sekitar 100 cm, meski graben ini belum tentu akan nampak di paras Bumi.

Menariknya, tepat di sisi utara segmen sumber Gempa Amatrice 2016 ini terdapat segmen lain yang sudah melepaskan energinya di masa silam. Yakni dalam peristiwa Gempa Umbria-Marche 1997. Gempa dangkal dengan magnitudo 6,1 itu  merenggut  11 jiwa dan melukai 100 orang. Sebaliknya  tepat di sisi selatan sumber Gempa Amatrice 2016 terdapat segmen lainyang juga telah melepaskan energinya. Inilah  sumber Gempa L’Aquila 2009. Dengan  magnitudo 6,3 gempa L’Aquila yang merupakan gempa dangkal membunuh 308 orang, melukai lebih dari 1.500 orang dan 65.000 orang lebih kehilangan tempat tinggal. Gempa kuat ini merupakan kejadian gempa yang berulang setiap rata-rata tiga abad sekali, terhitung sejak abad ke-15 TU. Gempa L’Aquila 2009 juga mencatatkan sejarah baru dalam ilmu kegempaan, karena inilah untuk pertama kalinya ilmuwan kegempaan dituntut ke pengadilan akibat kegagalannya memprediksi gempa kuat ini. Jadi sumber Gempa Amatrice 2016 dijepit oleh dua segmen sumber gempa yang telah melepaskan energinya lebih dahulu.

Pelajaran bagi Indonesia

Jadi dalam perspektif ‘mercon renteng’ ini, peristiwa  Gempa Amatrice 2016 adalah bencana alam yang tak terelakkan. Walaupun  kapangempa tersebut akan terjadi, khususnya selepas peristiwa  gempa 1997dan 2009, adalah diluar jangkauan ilmu kegempaan saat ini. Kita hanya tahu bahwa di tengah-tengah Pegunungan Apennina ada segmen yang terjepit oleh dua segmen yang sama-sama telah melepaskan energinya. Sehingga ia memiliki potensi cukup tinggi untuk melepaskan peristiwa gempa berikutnya. Namun kita sungguh belum bisa mengetahui kapan persisnya gempa tersebut benar-benar meletup dari segmen itu.

Pelajaran apa yang bisa diambil dari Gempa Amatrice 2016 untuk Indonesia?

Salah satunya adalah persoalan ‘mercon renteng’ ini. Beberapa sumber gempa tektonik potensial di Indonesia memiliki kecenderungan serupa. Khususnya pada sistem sesar aktif yang cukup panjang. Misalnya sepanjang zona subduksi Sumatra dan zona subduksi Jawa. Juga sepanjang sesar besar Sumatra dan sesar besar Mentawai. Juga di sepanjang sesar busur belakang Flores dan Wetar.

Gambar 5. Segmentasi sumber gempa di sepanjang subduksi Sumatra seperti terlihat jelas dari peta plotting episentrum gempa sebelum 26 Desember 2004 TU. Nampak teridentifikasi sejumlah segmen utama: Aceh (bersama Andaman dan Nicobar), Simeulue dan Nias serta Mentawai. Pasca pelepasan energi dahsyat dari segmen Aceh-Andaman-Nicobar di akhir 2004 TU, tekanan hebat ke arah selatan memaksa segmen Simeulue-Nias melepaskan energinya tiga bulan kemudian sembari menyalurkan tekanannya terus ke selatan. Inilah ‘mercon renteng’ di Indonesia. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Zona subduksi Sumatra telah terbukti menyerupai untaian ‘mercon renteng’ ini. Tatkala gempa akbar Sumatra-Andaman 26 Desember 2004 (magnitudo 9,1) meletup, tiga segmen sekaligus melepaskan energinya dalam zona subduksi sepanjang 1.200 km. Akibatnya tekanan hebat pun bergeser ke selatan. Ini terbukti dalam tiga bulan kemudian tatkala gempa akbar Simeulue-Nias 27 Maret 2005 (magnitudo 8,7) melanda.  Segmen subduksi Simeulue-Nias ini terakhir mengalami gempa akbar pada 1861 TU. Dengan rata-rata perulangan kejadian gempa adalah 200 tahun, maka gempa akbar berikutnya seharusnya baru akan terjadi di sekitar 2060 TU. Namun tekanan hebat dari segmen-segmen di utaranya membuat segmen ini pun melepaskan energi lebih cepat. Pasca 2005 TU, teror seismik terus berlanjut ke selatan seiring tambahan tekanan disana. Meletuplah Gempa Bengkulu 12 September 2007 (magnitudo 8,4 dan 7,9). Kini diperkirakan masih tersisa satu segmen dengan timbunan energi besar dan tekanan luar biasa, yakni segmen Mentawai.

Teori ‘mercon renteng’ berlaku pula untuk sistem sesar besar Sumatra. Sistem sesar aktif sepanjang 1.900 km ini terbagi ke dalam 19 segmen berbeda. Setiap segmen memiliki panjang yang tak sama, bervariasi antara yang terpendek 60 km hingga yang terpanjang 200 km. Dengan panjang lebih besar ketimbang segmen-segmen di Pegunungan Apennina, setiap segmen dalam sistem sesar besar Sumatra berkemampuan membangkitkan gempa tektonik dengan magnitudo antara 6 hingga 7,5. Periode perulangan kejadian gempanya pun lebih cepat, yakni rata-rata seabad. Inilah yang membuat kawasan ini mendapat perhatian lebih. Di sisi yang sama, kewaspadaan juga harus terus menerus ditingkatkan mengingat kita memiliki mimpi terburuk gempa bumi bagi kawasan yang pernah terjadi dalam gempa dan tsunami dahsyat Aceh.

Referensi:

USGS. 2016. M6.2 – 10 km SE of Norcia, Italy. USGS Earthquake Hazards Program.

JAXA. 2016. ALOS-2/PALSAR-2 Observation Results on M 6.2 Earthquake in Central Italy.

Koch, Jean Marc. 2016. European Synchrotron Radiation Facility.

Transit Merkurius 2016 di Kala Senja (Bakal Terlihat dari Ujung Barat Indonesia)

Senin 9 Mei 2016 Tarikh Umum (TU). Waktunya pukul 18:30 WIB. Lokasinya di Banda Aceh, ibukota propinsi Aceh sekaligus kotabesar terbarat di Indonesia. Pandangan mengarah ke barat. Langit cerah hingga kaki langitnya. Matahari nampak merembang petang dengan warna merah jingganya yang khas. Sekilas tak ada apa-apa di rona sang surya yang masih menyilaukan itu. Namun tatkala teleskop diarahkan padanya, khususnya dengan tingkat perbesaran minimal 50 kali dan telah dilengkapi dengan filter Matahari sebagaimana yang ditekankan standar pengamatan Matahari yang baik, ada yang berbeda. Wajah Matahari memang berhiaskan jerawat di sana-sini, yang adalah bintik Matahari (sunspot). Namun di pinggir timur cakram Matahari akan nampak satu titik hitam. Ia bukanlah bintik Matahari. Ia merupakan Merkurius. Hari itu Merkurius sedang melakoni satu babak nan langka dalam panggung pertunjukan kosmik, yakni transit. Tepatnya Transit Merkurius 2016.

Gambar 1. Transit Merkurius 1999 yang terjadi pada 19 November 1999 TU seperti diabadikan oleh satelit TRACE milik NASA (Amerika Serikat). Nampak Merkurius sebagai bola kecil kehitaman, melaju di latar depan Matahari yang bergejolak. Sumber: NASA, 1999.

Gambar 1. Transit Merkurius 1999 yang terjadi pada 19 November 1999 TU seperti diabadikan oleh satelit TRACE milik NASA (Amerika Serikat). Nampak Merkurius sebagai bola kecil kehitaman, melaju di latar depan Matahari yang bergejolak. Sumber: NASA, 1999.

Apa itu Transit Merkurius?

Konjungsi dan Transit

Merkurius merupakan planet terkecil sekaligus terdekat dengan Matahari dalam tata surya kita. Diameternya 4.880 kilometer atau hanya sepertiga Bumi kita, atau hanya sedikit lebih besar dibanding Bulan. Ukuran Merkurius bahkan lebih kecil ketimbang dua satelit alamiah seperti Ganymede (satelit alamiah Jupiter, diameter 5.268 kilometer) dan Titan (satelit alamiah Saturnus, diameter 5.150 kilometer). Hanya karena Merkurius beredar mengeliling Matahari-lah yang membuatnya menyandang status planet. Tepatnya planet terdekat ke Matahari. Merkurius hanya butuh waktu 88 hari untuk menyelesaikan revolusinya ke Matahari. Tapi sebaliknya rotasinya sangat lamban. Ia butuh waktu 59 hari untuk menyelesaikan putaran pada porosnya, atau yang dikenal sebagai hari bintang. Namun jika mengacu pada kedudukan Matahari (hari Matahari), maka siang dan malam di Merkurius berlangsung selama 176 hari. Dengan kata lain, setahun di Merkurius (yakni relatif terhadap periode revolusinya) lebih cepat ketimbang sehari di Merkurius (yakni relatif terhadap hari Matahari).

Gambar 2. Merkurius (panah kuning) mengapung di atas kaki langit timur yang masih bergelimang kabut pada kota Gombong yang bermandikan cahaya lampu buatan pada fajar 17 Agustus 2012 TU usai shalat Shubuh. Diabadikan dari lantai dua masjid asy-Syifa kompleks RS PKU Muhammadiyah Gombong, Kabupaten Kebumen (Jawa Tengah). Citra telah diolah dengan bantuan software GIMP 2. Sumber: Sudibyo, 2012.

Bersama Venus, Merkurius dikategorikan sebagai planet dalam. Yakni kelompok planet yang orbitnya lebih dekat ke Matahari ketimbang Bumi. Sebagai implikasinya Merkurius dan Venus akan terkesan berdekatan/berkumpul dengan Matahari pada dua kesempatan berbeda. Yang pertama adalah konjungsi dalam (inferior), terjadi saat Merkurius atau Venus berada di antara Bumi dan Matahari. Dan yang kedua adalah konjungsi luar (superior), dimana konfigurasinya mirip dengan konjungsi dalam namun kali ini Matahari berada di antara Merkurius/Venus dan Bumi. Merkurius akan mengalami konjungsi dengan Matahari, entah inferior maupun superior, setiap 116 hari sekali. Sementara Venus mengalaminya setiap 584 hari sekali.

Pada dasarnya Transit Merkurius adalah peristiwa konjungsi inferior yang khusus, dimana konfigurasinya sama persis dengan kejadian Gerhana Matahari. Sehingga dalam Transit Merkurius pun Matahari, Merkurius dan Bumi terletak dalam satu garis lurus secara tiga dimensi (syzygy). Bedanya jika dalam Gerhana Matahari adalah Bulan yang berada di tengah-tengah, dalam Transit Merkurius digantikan oleh Merkurius. Perbedaan lainnya, diameter sudut (apparent) Bulan hampir menyamai diameter sudut Matahari. Sehingga dalam peristiwa Gerhana Matahari, cakram Matahari akan tertutupi Bulan dalam jumlah yang signifikan. Bahkan bisa tertutupi sepenuhnya seperti dalam kejadian Gerhana Matahari Total. Maka kecerlangan-nampak Matahari akan tereduksi, khususnya di wilayah gerhana. Bahkan dapat tergelapkan sempurna dalam Gerhana Matahari Total. Sebaliknya diameter sudut Merkurius jauh lebih kecil dibanding Matahari, yakni hanya seper 160-nya. Sehingga yang akan terlihat hanyalah sebuah titik kecil yang bergerak melintas di latar depan Matahari selama waktu tertentu yang disebut durasi transit.

Gambar 3. Replika Merkurius berbentuk bola kecil yang parasnya telah dipahat sesuai paras Merkurius berdasarkan hasil pemetaan wantariksa MESSENGER. Merkurius adalah planet terkecil dalam tata surya kita, yang hanya sedikit lebih besar dari Bulan dan bahkan lebih kecil ketimbang Ganymede (satelit alamiah Jupiter) maupun Titan (satelit alamiah Saturnus). Dipahat oleh George Ioannidis di London (Inggris). Sumber: LittlePlanetFactory.com, 2016.

Gambar 3. Replika Merkurius berbentuk bola kecil yang parasnya telah dipahat sesuai paras Merkurius berdasarkan hasil pemetaan wantariksa MESSENGER. Merkurius adalah planet terkecil dalam tata surya kita, yang hanya sedikit lebih besar dari Bulan dan bahkan lebih kecil ketimbang Ganymede (satelit alamiah Jupiter) maupun Titan (satelit alamiah Saturnus). Dipahat oleh George Ioannidis di London (Inggris). Sumber: LittlePlanetFactory.com, 2016.

Dibanding kejadian Gerhana Matahari, yang selalu ada setiap tahun meski wilayah gerhananya berubah-ubah, maka Transit Merkurius jauh lebih jarang terjadi. Dalam satu abad Tarikh Umum hanya akan terjadi 13 hingga 14 kali peristiwa Transit Merkurius saja. Ini pun sudah lumayan apabila dibandingkan dengan peristiwa Transit Venus, yang bahkan jauh lebih jarang lagi. Rata-rata sebuah babak Transit venus terjadi setiap 243 tahun sekali, dengan selisih waktu terpendek 105,5 tahun sekali. Transit Venus terakhir yang kita saksikan terjadi pada 6 Juni 2012 TU lalu dan takkan berulang hingga 11 Desember 2117 TU kelak.

Transit Merkurius selalu terjadi pada bulan Mei atau November. Jika transit terjadi saat Merkurius berada di titik aphelion (titik terjauh ke Matahari)-nya, maka Transit Merkurius terjadi di bulan Mei. Sebaliknya bila saat itu Merkurius menempati titik perihelion (titik terdekat ke Matahari)-nya, maka Transit Merkurius terjadi di bulan November. Peluang Transit Merkurius di bulan Mei lebih kecil dibanding bulan November. Dalam abad ke-21 TU ini akan terjadi 14 kali peristiwa Transit Venus, hanya 5 diantaranya yang terjadi di bulan Mei. Termasuk Transit Merkurius 2016.

Transit 2016

Transit Merkurius 2016 memiliki lima tahap. Tahap pertama adalah kontak I atau awal transit, yakni saat sisi barat cakram Merkurius tepat mulai bersentuhan dengan sisi timur cakram Matahari. Tahap ini terjadi pada pukul 18:12 WIB. Tahap berikutnya adalah kontak II, yang terjadi saat Merkurius tepat sepenuhnya memasuki cakram Matahari, atau teknisnya saat sisi timur cakram Merkurius tepat mulai meninggalkan sisi timur cakram Matahari. Momen ini terjadi pada pukul 18:16 WIB. Selanjutnya adalah tahap puncak transit yang terjadi pukul 21:57 WIB. Lantas diikuti dengan tahap keempat sebagai kontak III, yang terjadi saat sisi barat cakram Merkurius tepat mulai bersentuhan dengan sisi barat cakram Matahari. Ini terjadi pada Selasa dinihari 9 Mei 2016 TU pukul 01:39 WIB. Dan tahap pamungkas, yakni kontak IV yang juga adalah akhir transit, terjadi pada pukul 01:42 WIB. Sehingga secara keseluruhan durasi Transit Merkurius 2016 ini adalah 7 jam 30 menit.

Gambar 4. Peta wilayah Transit Merkurius 2016 dalam lingkup global. Wilayah transit ditandai dengan warna putih. Angka-angka I, II, III dan IV menunjukkan garis kontak I, kontak II, kontak III dan kontak IV. Sumber: Espenak, 2016.

Gambar 4. Peta wilayah Transit Merkurius 2016 dalam lingkup global. Wilayah transit ditandai dengan warna putih. Angka-angka I, II, III dan IV menunjukkan garis kontak I, kontak II, kontak III dan kontak IV. Sumber: Espenak, 2016.

Dengan durasinya yang cukup lama, sebagian besar paras Bumi masuk ke dalam wilayar transit, yakni wilayah yang berkesempatan menyaksikan Transit Merkurius 2016 ini baik dalam segenap tahap maupun sebagian saja. Hanya sebagian Asia Timur Jauh (tepatnya Jepang, Semenanjung Korea dan sebagian Cina), sebagian Asia Tenggara (tepatnya Filipina, Timor Leste, Brunei Darussalam, Vietnam, Laos, Singapura serta sebagian Kampuchea, sebagian Malaysia dan sebagian besar Indonesia) dan Australia (Australia, Selandia Baru dan Papua Nugini) yang tak tercakup ke dalam wilayah transit.

Di Indonesia, garis kontak I (garis khayali yang menghubungkan titik-titik yang mengalami kontak I tepat saat Matahari terbenam) melintas di sisi timur kota Pekanbaru (propinsi Riau) dari barat daya ke timur laut. Sementara garis kontak II (garis khayali yang menghubungkan titik-titik yang mengalami kontak II tepat saat Matahari terbenam) tepat melintasi kota Padang (propinsi Sumatra Barat). Ke timur laut, garis kontak II juga tepat melintasi Kuala Lumpur (Malaysia). Hanya daerah-daerah yang ada di sebelah barat garis kontak I yang tercakup ke dalam wilayah transit. Sehingga Transit Merkurius 2016 di Indonesia hanya dapat dinikmati di sebagian pulau Sumatra dan pulau-pulau kecil disekelilingnya saja. Tepatnya di propinsi Sumatra Barat, Riau, Sumatra Utara dan Aceh. Di seluruh tempat itu, Transit Merkurius 2016 dapat dinikmati kala senja menjelang Matahari terbenam.

Gambar 5. Peta wilayah Transit Merkurius 2016 dalam lingkup Indonesia. Wilayah transit terletak di sebelah barat garis kontak I, yakni meliputi sebagian pulau Sumatra dan pulau-pulau kecil disekelilingnya. Sumber: Sudibyo, 2016.

Gambar 5. Peta wilayah Transit Merkurius 2016 dalam lingkup Indonesia. Wilayah transit terletak di sebelah barat garis kontak I, yakni meliputi sebagian pulau Sumatra dan pulau-pulau kecil disekelilingnya. Sumber: Sudibyo, 2016.

Tempat terbaik untuk mengamati Transit Merkurius 2016 di Indonesia adalah kota Banda Aceh (propinsi Aceh) dan sekitarnya. Di kedua tempat tersebut Matahari terbenam pada pukul 18:46 WIB. Sehingga durasi-nampak transit, yakni durasi sejak awal transit hingga terbenamnya Matahari, adalah sebesar 34 menit. Tempat terbaik kedua adalah Medan (propinsi Sumatra Utara) dan sekitarnya. Di sini Matahari terbenam pada pukul 18:30 WIB sehingga durasi-nampak transit sebesar 18 menit.

Cara mengamati Transit Merkurius 2016 adalah sama persis dengan cara mengamati Gerhana Matahari. Bedanya, karena diameter sudut Merkurius yang sangat kecil (yakni hanya seper 158 Matahari) maka mutlak dibutuhkan teleskop dengan perbesaran minimal 50 kali. Teleskop ini diarahkan ke Matahari, bisa dengan dilengkapi filter Matahari yang sepadan dan aman agar bisa dilihat langsung dengan mata kita. Atau dapat pula dengan memanfaatkan teknik proyeksi, dimana hasil bidikan teleskop langsung disalurkan ke sebuah layar proyeksi.

Arti Penting

Transit Merkurius menjadi peristiwa astronomi yang tak sepopuler Gerhana Matahari maupun Gerhana Bulan. Namun ia memiliki sejumlah nilai sangat penting sepanjang sejarahnya.

Misalnya dalam hal penentuan jarak Bumi-Matahari yang lebih akurat. Jarak Bumi-Matahari menjadi komponen fundamental dalam memahami tata surya kita. Hukum Kepler III memperlihatkan hubungan antara jarak rata-rata atau setengah sumbu utama orbit (dinyatakan dalam satuan astronomi) sebuah benda langit pengorbit Matahari dengan periode revolusinya (dinyatakan dalam tahun Bumi atau tahun saja). 1 Satuan Astronomi (SA) adalah jarak rata-rata Bumi-Matahari. Salah satu cara untuk mengetahui nilai 1 SA adalah dengan pengukuran paralaks Matahari, yakni pengamatan Matahari dari minimal dua titik yang berbeda di Bumi (lebih baik jika kedua titik tersebut berselisih jarak sangat besar) pada waktu yang sama. Pengukuran paralaks seperti ini telah dimulai pada 23 abad silam, tepatnya di abad 3 STU oleh Aristarchus. Namun pengukuran yang tak akurat membuat Aristarchus mendapati 1 SA hanyalah sebesar 2,96 juta kilometer. Pengukuran ulang oleh Claudius Ptolomeus dalam seabad kemudian mendapatkan nilai 1 SA hanya 7,97 juta kilometer. Atau hanya 21 kali lipat jarak rata-rata Bumi-Bulan. Nilai 1 SA yang ‘kecil’ ini mungkin turut mendorong Ptolomeus mengapungkan model geosentrik dalam tata surya kita. Model yang bertahan hingga 17 abad kemudian.

Gambar 6. Contoh penggunaan teknik proyeksi teleskopik dengan menggunakan teleskop reflektor (pemantul) Newtonian. Teleskop diarahkan ke Matahari, sementara citra yang dihasilkan langsung disorotkan ke layar proyeksi (dalam hal ini sehelai kertas putih di papan tulis). Fokus okulernya diatur demikian rupa agar citra di layar proyeksi tajam. Payung digunakan untuk melindungi layar proyeksi sehingga kontrasnya lebih besar. Teknik ini digunakan dalam observasi Transit Venus 2012 di Gombong, Kabupaten Kebumen (Jawa Tengah) oleh Forum Kajian Ilmu Falak Gombong. Panah menunjukkan kedudukan Venus. Sumber: Sudibyo, 2012.

Gambar 6. Contoh penggunaan teknik proyeksi teleskopik dengan menggunakan teleskop reflektor (pemantul) Newtonian. Teleskop diarahkan ke Matahari, sementara citra yang dihasilkan langsung disorotkan ke layar proyeksi (dalam hal ini sehelai kertas putih di papan tulis). Fokus okulernya diatur demikian rupa agar citra di layar proyeksi tajam. Payung digunakan untuk melindungi layar proyeksi sehingga kontrasnya lebih besar. Teknik ini digunakan dalam observasi Transit Venus 2012 di Gombong, Kabupaten Kebumen (Jawa Tengah) oleh Forum Kajian Ilmu Falak Gombong. Panah menunjukkan kedudukan Venus. Sumber: Sudibyo, 2012.

Di awal mula berseminya fajar model heliosentrik, Copernicus melakukan pengukuran ulang paralaks Matahari. Ia mendapati nilai 1 SA yang tak jauh berbeda dari masa Ptolomeus, yakni 9,57 juta kilometer. Keadaan tak berubah hingga masa Edmund Halley (ya, sosoknyalah yang diabadikan sebagai nama komet legendaris itu). Memperbaiki gagasan James Gregory dari tahun 1663 TU, pada 1691 TU Halley memperhitungkan bahwa transit Merkurius atau Venus bisa dimanfaatkan untuk mengukur paralaks Matahari dengan akurasi jauh lebih tinggi dibanding era Copernicus. Ide Halley dipraktikkan dalam Transit Venus 1761 dan Transit Venus 1769. Inilah kesempatan dimana Jerome Lalande, setelah menganalisis data pengamatan transit tersebut, mendapatkan 1 SA adalah senilai 153 juta kilometer. Perhitungan ulang dengan memanfaatkan peristiwa transit sejenis yang berlangsung seabad kemudian, masing-masing Transit Venus 1874 dan Transit Venus 1882 membuat Simon Newcomb memperoleh nilai 1 SA yang lebih akurat lagi, yakni 149,59 juta kilometer. Inilah nilai modern untuk 1 Satuan Astronomi, yang telah disahihkan kembali lewat pengukuran-pengukuran berbasis wahana antariksa (wantariksa) yang diterbangkan ke planet-planet tetangga ataupun melanglang buana kita.

Sedikit berbeda dengan Transit Venus, awalnya Transit Merkurius agak sukar untuk diperhitungkan kejadiannya meski jauh lebih sering terjadi. Contoh menarik terjadi pada 1843 TU. Saat itu Urbain Le Verrier, sang penemu planet Neptunus secara matematis, memperlihatkan bahwa akan terjadi Transit Merkurius 1843. Namun kampanye observasi astronomi yang digalakkan tak mendeteksi kejadian tersebut. Transit Merkurius yang sesungguhnya justru baru terjadi dua tahun kemudian, yakni pada 9 Mei 1845 TU (waktu Indonesia) yang teramati di Australia. Keterlambatan ini mendorong Le Verrier mengapungkan gagasannya tentang adanya planet-tak-dikenal yang gravitasinya cukup kuat untuk memperlambat gerak Merkurius. Itulah yang kemudian dikenal sebagai Vulcan. Vulcan akhirnya tak pernah ditemukan (dan memang tak pernah ada), namun keganjilan kecil pada orbit Merkurius memang nyata adanya. Itulah presesi perihelion Merkurius. Kelak barulah setelah Albert Einstein menelurkan gagasan relativitas umumnya yang kesohor, terjadinya presesi perihelion Merkurius bisa dijelaskan. Presesi perihelion tersebut terjadi akibat melengkungnya ruang-waktu di sekeliling Matahari. Karena Merkurius menjadi planet terdekat dengan Matahari, maka ia yang paling merasakannya dibanding planet-planet lainnya.

Di masa kini, peristiwa Transit Merkurius menjadi sarana untuk menguji metode dan radas (instrumentasi) astronomi modern untuk menguak sistem keplanetan di luar tata surya kita. Perubahan sangat kecil yang dalam kecerlangan-nampak Matahari selama berlangsungnya Transit Merkurius akan membantu menemukan perubahan sejenis pada bintang tetangga yang memiliki planet-luartatasurya (eksoplanet) kecil. Demikian halnya pengukuran diameter sudut Merkurius saat transit dan pembandingannya dengan diameter Merkurius yang sesungguhnya akan sangat bermanfaat untuk menentukan ukuran eksoplanet kecil. Dengan kata lain, Transit Merkurius di era modern (seperti Transit Merkurius 2016) menjadi arena ujicoba untuk menemukan eksoplanet-eksoplanet yang lebih kecil di bintang-bintang tetangga kita.

Referensi :

Espenak. 2014. 2016 Transit of Mercury. Observer’s Handbook 2016, Royal Astronomical Society of Canada.

King. 1845. Observations transit of Mercury, May, 8, 1845. Monthly Notices of the Royal Astronomical Society, Vol. 7 (Nov 1845), p.10.

Gunawan dkk. 2012. Kala Bintang Kejora Melintas Sang Surya, Transit Venus 2012. Buku elektronik, KafeAstronomi.com Publisher, 2012.