Gempa di Swarnadwipa bagian Utara, Bumi Tanah Rencong yang Tercabik (Tektonik)

Getaran itu datang tanpa persiapan, tanpa ada peringatan. Selagi azan Shubuh bersahut-sahutan berkumandang di bumi tanah rencong bagian timur pada Rabu pagi 7 Desember 2016 Tarikh Umum (TU), sebuah getaran sangat keras mengguncang Kabupaten Pidie Jaya dan sekitarnya pada pukul 05:04 WIB. Getaran keras tersebut, yang berlangsung selama sekitar 20 detik, adalah getaran terkeras yang pernah dirasakan daratan ujung utara pulau Sumatra itu dalam tiga tahun terakhir. Tepatnya sejak peristiwa Gempa Aceh Tengah 2013 silam. Stasiun-stasiun pengukur gempa di sebagian besar penjuru Bumi pun dengan riuh mencatat getaran dari swarnadwipa tersebut.

Gambar 1. Lokasi episentrum Gempa Pidie Jaya 2016 menurut rilis awal BMKG serta USGS dan GFZ dalam peta struktur pulau Sumatra bagian utara. Sumber: Barber & Crow, 2005 dengan penambahan oleh Sudibyo, 2016.

Gambar 1. Lokasi episentrum Gempa Pidie Jaya 2016 menurut rilis awal BMKG serta USGS dan GFZ dalam peta struktur pulau Sumatra bagian utara. Sumber: Barber & Crow, 2005 dengan penambahan oleh Sudibyo, 2016.

Berselang beberapa hari kemudian kita mencermati dengan pilu dampak Gempa Pidie Jaya 2016 ini, demikian ia bisa dinamakan. Berdasarkan data yang dihimpun Badan Penanggulangan Bencana Daerah (BPBD) Pidie Jaya, tercatat 101 orang tewas. Sementara korban luka-luka tercatat sebanyak 724 orang. Kerugian material tak kepalang banyaknya. Tercatat 105 buah bangunan tempat tinggal atau pertokoan yang ambruk, disamping ada 10.534 buah rumah yang rusak. Tercatat pula sebanyak 55 buah masjid ikut roboh, demikian halnya 1 unit sekolah dan 1 bangunan RSUD Pidie Jaya. Sebanyak 11.142 orang dipaksa mengungsi. Selain itu tak kurang dari 14.000 meter jalan raya dibikin rusak, disamping 50 buah jembatan juga dibikin retak-retak.

Angka-angka tersebut hanyalah sementara, tetap terbuka kemungkinan untuk meningkat lagi. Dengan angka sementara ini pun, Gempa Pidie Jaya 2016 telah menabalkan dirinya sebagai gempa paling mematikan di propinsi Aceh dalam 12 tahun terakhir, tepatnya semenjak malapetaka gempa akbar Sumatra-Andaman 26 Desember 2004 yang memilukan.

Parameter

Pusat Gempa Bumi dan Tsunami Badan Meteorologi Klimatologi dan Geofisika (BMKG) pada awalnya menempatkan Gempa Pidie Jaya 2016 sebagai gempa kuat dengan magnitudo 6,4 dengan kedalaman sumber sangat dangkal, yakni hanya 10 kilometer. Posisi episentrumnya adalah 121 kilometer di sebelah tenggara kota Banda Aceh. Sementara lembaga sejenis di mancanegara, yakni United States Geological Survey (USGS) National Earthquake Information Center melansir gempa ini juga memiliki magnitudo 6,4  dengan sumber sedalam 17 kilometer dengan episentrum 92 kilometer sebelah tenggara Banda Aceh. Pada dasarnya setiap gempa bumi tektonik dengan kedalaman sumber kurang dari 30 kilometer merupakan gempa dangkal.

Belakangan baik USGS maupun BMKG merevisi besaran magnitudo dan kedalaman sumbernya. Dalam versi BMKG, Gempa Pidie Jaya 2016 memiliki magnitudo 6,5 dengan sumber sedalam 15 kilometer. Posisi episentrumnya juga direvisi menjadi 105 kilometer sebelah tenggara kota Banda Aceh. Sementara dalam versi USGS, magnitudo gempanya juga direvisi menjadi 6,5 dengan kedalaman sumber menjadi tinggal 8 kilometer. Sangat dangkal. Sebaliknya posisi episentrum versi USGS relatif tak berubah banyak.

Gambar 2. Distribusi episentrum gempa-gempa susulan dalam Gempa Pidie Jaya 2016 yang direkam stasiun pengamat gempa Indonesian Tsunami Early Warning Systems BMKG. Dalam 48 jam pasca gempa utama, telah terjadi 69 kali gempa susulan dengan kecenderungan jumlah gempa kian menurun dari hari ke hari. Sumber: BMKG/Daryono, 2016.

Gambar 2. Distribusi episentrum gempa-gempa susulan dalam Gempa Pidie Jaya 2016 yang direkam stasiun pengamat gempa Indonesian Tsunami Early Warning Systems BMKG. Dalam 48 jam pasca gempa utama, telah terjadi 69 kali gempa susulan dengan kecenderungan jumlah gempa kian menurun dari hari ke hari. Sumber: BMKG/Daryono, 2016.

Revisi parameter gempa adalah hal yang biasa dilakukan badan-badan seismologi dimanapun. Informasi awal sebuah gempa pada umumnya merupakan informasi sementara, yang didasarkan pada data terbatas dari stasiun seismometer (pengukur gempa) yang terbatas pula. Informasi awal ini ditujukan sebagai bagian dari peringatan dini, terutama jika sumber gempanya di laut sehingga memiliki potensi tsunami, serta untuk mengestimasi dampak kerusakan yang terkait dengan intensitas getarannya. Seiring waktu, dengan kian banyaknya data yang terkumpul dari stasiun-stasiun seismometer yang semula belum tercakup membuat parameter gempa bisa dipertajam lagi sehingga mengalami revisi.

Contoh revisi parameter gempa masa silam misalnya pada peristiwa Gempa Yogyakarta 2006. Rilis awal BMKG menempatkan episentrum Gempa Yogyakarta 2006 di dasar Samudera Indonesia (Indian Ocean), sementara rilis awal USGS memosisikannya di pantai Parangtritis. Kedua lokasi tersebut merupakan bagian dari sesar Opak nan legendaris. Namun setelah sejumlah seismometer tambahan dipasang pascagempa di kawasan Yogyakarta-Bantul-Gunungkidul guna memonitor gempa-gempa susulan dan parameternya, diketahui bahwa episentrum Gempa Yogyakarta 2006 berada di daratan. Yakni di sisi barat Kabupaten Gunung Kidul. Survei pergeseran tanah melalui sistem pemosisian global (GPS/global positioning system) dan teknik interferometri radar berbasis satelit (InSAR/interferometry synthetic apperture radar) di kemudian hari memastikan bahwa episentrum Gempa Yogyakarta 2006 memang ada di daratan, tepatnya di sesar Oya yang paralel namun berada 10 kilometer di sisi timur sesar Opak. Berkaca pada pengalaman tersebut, maka revisi parameter Gempa Pidie Jaya 2016 sejatinya bukanlah hal yang aneh.

Gambar 3. Sumber Gempa Yogyakarta 2006 di lembah sungai Oya, ekspresi paras bumi dari sesar Oya yang sebelumnya tak dikenal. Lokasi ini didasarkan atas analisis distribusi gempa-gempa susulan, pengukuran deformasi permukaan berbasis GPS dan analisis interferometri radar.  Sebelumnya rilis awal lembaga-lembaga seperti BMKG dan USGS menempatkan sumber gempa ini di sesar Opak, 10 km sebelah barat sesar Oya. Sumber: Tsuji dkk, 2009 digambar ulang oleh Sudibyo, 2015.

Gambar 3. Sumber Gempa Yogyakarta 2006 di lembah sungai Oya, ekspresi paras bumi dari sesar Oya yang sebelumnya tak dikenal. Lokasi ini didasarkan atas analisis distribusi gempa-gempa susulan, pengukuran deformasi permukaan berbasis GPS dan analisis interferometri radar. Sebelumnya rilis awal lembaga-lembaga seperti BMKG dan USGS menempatkan sumber gempa ini di sesar Opak, 10 km sebelah barat sesar Oya. Sumber: Tsuji dkk, 2009 digambar ulang oleh Sudibyo, 2015.

Gempa Pidie Jaya disebabkan oleh patahnya segmen batuan sepanjang sekitar 30 kilometer dengan lebar sekitar 15 kilometer secara mendadak. Begitu patah, ia melenting (bergeser mendadak) sejauh rata-rata 80 sentimeter. Pelentingan tersebut memiliki arah menuju ke salah satu dari dua kemungkinan: barat daya (strike menuju azimuth 243 derajat) atau tenggara (strike menuju azimuth 147 derajat). Lentingan yang melibatkan segmen batuan yang cukup luas itu menyebabkan terlepasnya energi. Yang merambat sebagai gelombang gempa bumi saja diprakirakan mencapai 85 kiloton TNT, atau 4 kali lipat lebih hebat ketimbang letusan bom nuklir Hiroshima.

Mirip Gempa Yogyakarta 2006 ?

Kombinasi sumber gempa yang sangat dangkal dan besarnya pelepasan energi membuat Gempa Pidie Jaya 2016 ini menghasilkan getaran yang sangat merusak. Getaran terkeras memiliki intensitas 8 MMI (modified mercalli intensity), tingkat getaran yang sanggup merubuhkan banyak bangunan di suatu pemukiman di Indonesia. Getaran 8 MMI terutama dirasakan di paras Bumi yang tepat berada di atas sumber gempa dan area sekitarnya. Segenap Kabupaten Pidie, Kabupaten Pidie Jaya dan kota Sigli diguncang oleh getaran berintensitas  7 MMI, yang tergolong getaran sangat keras. Getaran 7 MMI adalah jenis getaran yang sanggup meruntuhkan bangunan khususnya yang bermutu rendah. Kota Banda Aceh diguncang oleh getaran dengan intensitas 5 MMI. Ini adalah jenis getaran yang cukup kuat untuk dirasakan oleh semua orang dan sanggup membuat orang-orang yang  sedang tidur menjadi terbangun, namun belum cukup kuat untuk merusak bangunan. Sementara sisa propinsi Aceh lainnya digoyang oleh getaran berintensitas 4 MMI, yang tergolong getaran ringan.

Gambar 4. Salah satu desa yang terkena dampak Gempa Pidie Jaya 2016, yakni desa Paru Keude kec. Bandar Baru kab. Pidie Jaya. Distribusi kerusakan bangunan telah dipetakan dengan pesawat udara nir awak (PUNA/drone) hasil kerjasama BIG, BNPB dan sejumlah lembaga. Sumber: BIG/Hasanudin Z Abidin, 2016

Gambar 4. Salah satu desa yang terkena dampak Gempa Pidie Jaya 2016, yakni desa Paru Keude kec. Bandar Baru kab. Pidie Jaya. Distribusi kerusakan bangunan telah dipetakan dengan pesawat udara nir awak (PUNA/drone) hasil kerjasama BIG, BNPB dan sejumlah lembaga. Sumber: BIG/Hasanudin Z Abidin, 2016

USGS melalui PAGER (Prompt Assessment of Global Earthquake for Response) memprakirakan sekitar 4,78 juta jiwa tinggal di daerah yang merasakan dampak getaran dari Gempa Pidie Jaya 2016 ini mulai dari getaran berintensitas 4 MMI ke atas. Diantara jumlah tersebut, 371 ribu jiwa diantaranya tinggal di daerah yang merasakan getaran sangat keras dengan intensitas 7 MMI. Dan pemuncaknya, 179 ribu jiwa merasakan getaran berintensitas 8 MMI yang menghancurkan. Kota-kota seperti Sigli dan Meureudu dihajar dengan getaran 7 MMI, sementara kota-kota seperti Bireun, Lhokseumawe dan Banda Aceh merasakan getaran setingkat lebih rendah yakni 6 MMI. Dengan karakteristik semacam ini maka  peluang ambruknya bangunan-bangunan yang menelan korban jiwa dan kerugian material pun terbuka lebar. USGS memprakirakan terdapat peluang 44 % jatuhnya korban jiwa hingga 10 orang dan peluang 38 % untuk jorban jiwa hingga 100 orang. Sementara untuk kerugian material, peluangnya adalah 52 % untuk kerugian hingga Rp 130 milyar.

Gambar 5. Peta intensitas guncangan dan distribusi populasi penduduk setempat (berdasar USGS Landscan 2005) serta daftar kota-kota tertentu yang mengalami getaran (pada intensitas tertent) akibat Gempa Pidie Jaya 2016. Disajikan oleh USGS PAGER. Sumber: USGS, 2016.

Gambar 5. Peta intensitas guncangan dan distribusi populasi penduduk setempat (berdasar USGS Landscan 2005) serta daftar kota-kota tertentu yang mengalami getaran (pada intensitas tertent) akibat Gempa Pidie Jaya 2016. Disajikan oleh USGS PAGER. Sumber: USGS, 2016.

Dalam beberapa hal Gempa Pidie Jaya 2016 mirip dengan peristiwa Gempa Yogyakarta 2006 silam. Diantaranya dalam hal magnitudonya, dimana Gempa Pidie Jaya 2016 memiliki magnitudo momen 6,5 atau hanya sedikit di atas Gempa Yogyakarta 2006 yang bermagnitudo momen 6,4. Juga dalam hal kedalaman sumbernya, dimana kedua gempa sama-sama merupakan gempa dangkal. Kedua gempa juga memiliki sumber yang berdekatan dengan sebuah kota.

Kemiripan lainnya mungkin dalam hal moletrack. Pada gempa bumi tektonik dengan sumber dangkal atau sangat dangkal, pelentingan yang terjadi salam sumber gempanya umumnya akan muncul di paras Bumi tepat di atas sumber gempa sebagai retakan-retakan berpola yang disebut moletrack. Moletrack menjadi indikasi dari surface rupture sebuah gempa bumi tektonik dangkal, sebagai cerminan dari sumber gempa yang ada dibawahnya. Bagaimana dengan Gempa Pidie Jaya 2016 in?  Simulasi yang dikerjakan Aditya Gusman, salah satu peneliti gempa bumi di Indonesia, menunjukkan Gempa Pidie Jaya 2016 mungkin menyebabkan pergeseran permukaan tanah sebesar maksimum 5 sentimeter secara vertikal dan juga 5 sentimeter secara horizontal. Ini pergeseran yang kecil, sehingga mungkin tidak menghasilkan moletrack. Meski untuk memastikan ada tidaknya surface rupture  Gempa Pidie Jaya 2016 masih diselidiki lewat survei lapangan.

Gambar 6. Contoh moletrack yang menandai surface rupture sebuah sumber gempa tektonik dangkal, dalam hal ini adalah kejadian Gempa ganda Sumatra 6 Maret 2007 yang magnitudonya hampir sama dengan Gempa Pidie Jaya 2016. Moletrack ini terletak di lintasan sesar besar Sumatra pada segmen Sumani yang berada di Kasiak (Sumatra Barat). Dari moletrack ini diketahui bahwa lokasi di latar depan (ditandai dengan panah ke kiri) telah mengalami pergeseran mendatar 30 cm bersamaan dengan penurunan (subsidens) 20 cm. Sumber: Daryono dkk, 2012.

Gambar 6. Contoh moletrack yang menandai surface rupture sebuah sumber gempa tektonik dangkal, dalam hal ini adalah kejadian Gempa ganda Sumatra 6 Maret 2007 yang magnitudonya hampir sama dengan Gempa Pidie Jaya 2016. Moletrack ini terletak di lintasan sesar besar Sumatra pada segmen Sumani yang berada di Kasiak (Sumatra Barat). Dari moletrack ini diketahui bahwa lokasi di latar depan (ditandai dengan panah ke kiri) telah mengalami pergeseran mendatar 30 cm bersamaan dengan penurunan (subsidens) 20 cm. Sumber: Daryono dkk, 2012.

Pertanyaan awamnya, bagaimana gempa ini bisa terjadi? Dan pelajaran apa yang bisa diambil Indonesia darinya?

Teriris

Bukalah aplikasi ataupun program komputer geografis yang populer dari apapun gawai (gadget) anda, seperti Google Maps maupun Google Earth. Bukalah peta pulau Sumatra dan perbesar di bagian ujung utara swarnadwipa ini. Pilih moda peta berupa satellite, kemudian lanjutkan dengan medan. Akan dapat kita lihat betapa kompleksnya tatanan tektonik di sini. Andaikata bumi tanah rencong dapat berkata-kata dan bermain media sosial, ia akan memasang status  “rumit.”

Gambar 7. Estimasi deformasi pada paras bumi di lokasi dan sekitar sumber Gempa Pidie Jaya 2016 secara mendatar/horizontal (kiri) maupun vertikal (kanan). Nampak jika model sumber gempanya berorientasi tenggara-barat laut, maka di kota Sigli dan sekitarnya terjadi pergeseran mendatar hingga 5 cm dan pada saat yang sama juga mengalami pengangkatan sebesar 5 cm pula. Disimulasikan oleh Aditya Gusman. Sumber: Gusman, 2016.

Gambar 7. Estimasi deformasi pada paras bumi di lokasi dan sekitar sumber Gempa Pidie Jaya 2016 secara mendatar/horizontal (kiri) maupun vertikal (kanan). Nampak jika model sumber gempanya berorientasi tenggara-barat laut, maka di kota Sigli dan sekitarnya terjadi pergeseran mendatar hingga 5 cm dan pada saat yang sama juga mengalami pengangkatan sebesar 5 cm pula. Disimulasikan oleh Aditya Gusman. Sumber: Gusman, 2016.

Ujung utara Swarnadwipa dibentuk oleh aktivitas tiga lempeng tektonik yang berbeda. Di sebelah barat ada lempeng India yang merupakan lempeng laut (oseanik) sehingga berat jenisnya lebih tinggi. Lempeng India mengalasi sebagian dasar Samudera Indonesia (Indian Ocean) dan dulu sempat dikira sebagai satu kesatuan dengan lempeng Australia (yang mengalasi sebagian dasar Samudera Indonesia dan membentuk benua Australia). Belakangan disadari bahwa lempeng India dan lempeng Australia adalah dua lempeng yang berbeda dan saling terpisah, yang salah satunya tecermin dari peristiwa gempa ganda Samudera Indonesia 11 April 2012 (magnitudo 8,6 dan 8,2). Sementara di sisi timur bertengger lempeng Sunda, bagian dari lempeng Eurasia. Lempeng Sunda adalah lempeng yang mengalasi kepulauan Indonesia bagian barat.

Terjepit di tengah-tengah lempeng India dan lempeng Sunda di ujung swarnadwipa adalah lempeng Burma, yang mendapat popularitasnya karena bencana gempa akbar Sumatra-Andaman 26 Desember 2004 (magnitudo 9,3) silam. Lempeng Burma  merupakan lempeng mikro karena ukurannya yang kecil, hanya mencakup segenap Kepulauan Andaman, Kepulauan Nicobar, sebagian Laut Andaman dan bagian barat propinsi Aceh. Lempeng mikro Burma semula adalah bagian dari lempeng Eurasia. Namun subduksi lempeng India terhadap lempeng Eurasia di tempat yang sekarang menjadi busur kepulauan Andaman dan Nicobar menyebabkan terbitnya salah satu gejala khas tektonik lempeng, yakni pembentukan cekungan busur belakang (back-arc). Subduksi membuat kerak bumi di bagian belakang busur kepulauan Andaman dan Nicobar, yakni di sisi timurnya, menipis sehingga membentuk cekungan yang tergenangi air laut.

Gambar 8. Peta struktur ujung utara pulau Sumatra yang kompleks, sebagai hasil interaksi nan rumit antara lempeng India, lempeng Sunda dan lempeng mikro Burma. Interaksi ini menyebabkan terbentuknya sejumlah sesar aktif di daratan, yang bakal menjai sumber gempa potensial mendatang. Sumber: Natawidjaja, 2006.

Gambar 8. Peta struktur ujung utara pulau Sumatra yang kompleks, sebagai hasil interaksi nan rumit antara lempeng India, lempeng Sunda dan lempeng mikro Burma. Interaksi ini menyebabkan terbentuknya sejumlah sesar aktif di daratan, yang bakal menjai sumber gempa potensial mendatang. Sumber: Natawidjaja, 2006.

Lama-kelamaan di tengah cekungan ini terbentuk sesar-sesar turun sebagai retakan panjang, tempat meluapnya cairan panas sangat kental dari lapisan selubung yang membentuk lempeng baru di kedua sisinya. Inilah pusat pemekaran lantai samudera.  Sehingga Laut Andaman pada hakikatnya adalah bayi samudera baru yang masih sangat muda, serupa dengan misalnya Laut Merah di Timur Tengah. Jika proses pemekaran ini berlanjut terus, maka dalam berjuta-juta tahun mendatang Laut Andaman akan bertransformasi menjadi samudera yang baru. Terbentuknya retakan dasar laut Andaman sekaligus memproduksi lempeng mikro Burma, yang mulai terpisah dari lempeng Eurasia sekitar 3 hingga 4 juta tahun silam.

Eksistensi ketiga lempeng tektonik tersebut membuat bumi tanah rencong tercabik-cabik, ibarat kue yang telah dibelah-belah pisau tektonik. Banyak sesar aktif berkembang di sini. Sesar utama adalah sistem sesar besar Sumatra, yang dahulu disebut sesar Semangko. Sesar besar Sumatra adalah sesar aktif sepanjang 1.900 kilometer yang membentang mulai dari kawasan Selat Sunda di selatan hingga Laut Andaman di utara, ‘membelah’ pulau Sumatra menjadi dua bagian yang asimetris. Di daratan Aceh sesar besar ini bercabang dua mulai dari satu lokasi di dekat kota Takengon. Satu cabang adalah segmen Aceh (panjang 230 kilometer) yang melintas tepat di sebelah barat kota Banda Aceh. Sementara cabang kedua adalah segmen Seulimeum (panjang 120 kilometer), yang melintas di sisi timur kota Sabang dan bertanggung jawab pada terjadinya Gempa Aceh 1964 (magnitudo 7,0). Kedua cabang ini sama-sama menerus ke barat laut untuk kemudian bergabung dengan zona retakan dasar Laut Andaman.

Di luar dua cabang utama itu, dari dekat kota Takengon pula berkembang sesar lain yang berbelok ke arah utara sebagai lengkungan mirip sabit. Di sekitar kota Takengon ia dikenal sebagai sesar Takengon yang bersifat sesar naik (thrust). Sementara bagian utaranya dinamakan sesar Samalanga-Sipopok yang pergerakannya bersifat mendatar (strike slip). Lebih jauh ke selatan di sekitar kota Kutacane berkembang pula sesar yang menerus ke arah kota Lhokseumawe. Di bagian selatan sesar ini dikenal sebagai sesar Lokop-Kutacane. Dan di bagian utara dinamakan sesar Lhokseumawe.  Baik sesar Samalanga-Sipopok maupun sesar Lhokseumawe sama-sama menerus ke dasar Laut Andaman dan bergabung dengan sejumlah sesar aktif disana.  Selain sesar-sesar yang tergolong panjang tersebut, bumi tanah rencong juga masih memiliki sejumlah sesar lainnya yang relatif pendek.

Gambar 9. Citra pendahuluan interferometri radar (inSAR) Gempa Pidie Jaya 2016 dari satelit Sentinel-1A dan Sentinel-1B lewat radas ARIA automatic interferogram. Meski resolusi citranya jelek karena koherensinya sangat rendah (sehingga pola-pola interferensinya tidak terlalu jelas), namun terkesan bahwa deformasi terbesar akibat gempa ini berada di sekitar lintasan sesar Samalanga-Sipopok di dekat kota Meureudu. Sumber: Fielding, 2016.

Gambar 9. Citra pendahuluan interferometri radar (inSAR) Gempa Pidie Jaya 2016 dari satelit Sentinel-1A dan Sentinel-1B lewat radas ARIA automatic interferogram. Meski resolusi citranya jelek karena koherensinya sangat rendah (sehingga pola-pola interferensinya tidak terlalu jelas), namun terkesan bahwa deformasi terbesar akibat gempa ini berada di sekitar lintasan sesar Samalanga-Sipopok di dekat kota Meureudu. Sumber: Fielding, 2016.

Dengan bumi yang tercabik-cabik tektonik demikian rupa, maka dapat dikatakan bahwa segenap penjuru daratan tanah rencong merupakan kawasan rawan gempa. Baik pesisir barat maupun pesisir timur.  Inilah yang membedakan Aceh dengan bagian pulau Sumatra lainnya dimana kawasan rawan gempa terlokalisir hanya di pesisir barat dan di sepanjang Pegunungan Bukit Barisan tempat lintasan sesar besar Sumatra.

Pelajaran

Sumber Gempa Pidie Jaya 2016 berada di dekat lintasan sesar Samalanga-Sipopok, sehingga sejumlah pihak menduga bahwa sesar itulah yang bertanggung jawab atas peristiwa gempa tersebut. Meskipun revisi parameter gempa baik oleh BMKG maupun USGS tidak lagi menempatkan episentrumnya persis di atas lintasan sesar Samalanga-Sipopok. Analisis interferometri radar berbasis citra radar dari satelit Sentinel-1A dan Sentinel-1B yang dikerjakan Eric Fielding, cendekiawan kebumian dari California Institute of Technology (Amerika Serikat) mengindikasikan bahwa lokasi sumber gempa memang berhubungan dengan sesar Samalanga-Sipopok. Namun ini pun masih sementara. Butuh survei lapangan untuk memastikan hal tersebut. Misalnya dengan mengukur pergerakan titik-titik tertentu melalui sistem pemosisian global (GPS).

Gambar 10. Lokasi stasiun-stasiun pemantau GPS dalam jejaring AGNeSS (Aceh GPS Network for Sumatran fault System). Profile A dan profile B menunjukkan dua baris kelurusan yang sengaja ditentukan dalam pemasangan stasiun pantau tersebut. Lewat pergerakan yang direkam jejaring ini diketahui masih ada potensi gempa besar di daratan propinsi Aceh bagian selatan. Sumber: Ito dkk, 2012.

Gambar 10. Lokasi stasiun-stasiun pemantau GPS dalam jejaring AGNeSS (Aceh GPS Network for Sumatran fault System). Profile A dan profile B menunjukkan dua baris kelurusan yang sengaja ditentukan dalam pemasangan stasiun pantau tersebut. Lewat pergerakan yang direkam jejaring ini diketahui masih ada potensi gempa besar di daratan propinsi Aceh bagian selatan. Sumber: Ito dkk, 2012.

Pasca 2004 TU, muncul pertanyaan besar di kalangan cendekiawan kebumian tentang apakah tekanan sangat besar yang ditimbulkan peristiwa gempa akbar Sumatra-Andaman 26 Desember 2004 terhantar ke daratan dan memberikan beban tambahan tekanan kepada sesar-sesar aktif di ujung utara pulau Sumatra ataukah tidak. Untuk menjawabnya maka telah digelar jejaring AGNeSS (Aceh GPS Network for Sumatran fault System) sejak 2005 TU. Jejaring ini ‘menanam’ 7 stasiun pengamatan GPS kontinu dan 20 stasiun pengamatan episodik. ‘Penanaman’ stasiun-stasiun pemantauan yang rapat membuat pergerakan yang disebabkan oleh Gempa Pidie Jaya 2016 bisa diukur dan dianalisis, meski butuh waktu.

Ada dua pelajaran yang bisa diambil dari peristiwa memilukan ini. Yang pertama, bagi tanah rencong Gempa Pidie Jaya 2016 bukanlah peristiwa terakhir. Potensi gempa tektonik di daratan Aceh masih tetap terbuka. Jejaring AGNeSS menunjukkan bahwa sesar besar Sumatra di bagian selatan propinsi Aceh menunjukkan tanda-tanda potensi untuk memproduksi gempa besar (magnitudo ~7) di masa depan. Belum sesar-sesar yang lain. Sementara bagi Indonesia, gempa ini kembali menjadi pengingat bahwa banyak kawasan yang rawan gempa di negeri ini. Sekurangnya 60 % kota di Indonesia didirikan di atas sesar, sehingga kemungkinan terjadinya peristiwa gempa bumi yang menyerang kota masih tetap terbuka. Kewaspadaan dan kesiapsiagaan tetap perlu dipertahankan.

Referensi :

Barber & Crow. 2005. Sumatra, Geology Resources and Tectonic Evolution, in Chapter 4: Pre-Tertiary Stratigraphy. Geological Society, London, Memoirs, 31 pp 24-53.

USGS. 2016. M6.5 – 19 km SE of Sigli, Indonesia. USGS National Earthquake Information Center

Ito dkk. 2012. Isolating Along-strike Variations in the Depth Extent of Shallow Creep and Fault Locking on the Northern Great Sumatran Fault. Journal of the Geophysical Research, vol. 117 B06409.

Daryono, 2016, komunikasi pribadi.

Aditya Gusman, 2016, komunikasi pribadi.

Eric Fielding, 2016, komunikasi pribadi.

Gempa Dalam di Laut Jawa

Sebuah getaran kuat meletup dari dasar Laut Jawa pada kedalaman 650 km di Rabu pagi 19 Oktober 2016 Tarikh Umum (TU) pukul 07:25 WIB. Magnitudo gempa adalah 6,3 dalam catatan Pusat Gempa Nasional BMKG (Badan Meteorologi Klimatologi dan Geofisika). Sementara dalam rekaman USGS NEIC (United States Geological Survey National Earthquake Information Center), magnitudonya sedikit lebih besar yakni 6,6. Episentrumnya terletak sejuah 156 km ke utara-barat laut dari kota Indramayu (versi USGS) atau 120 km sebelah timur laut kota Subang (versi BMKG). Ditinjau dari sisi magnitudonya, gempa ini sekuat Gempa Yogya 2006 silam namun bertolak belakang karena sumbernya yang sangat dalam, bukan lagi di kerak bumi.

Gambar 1. Episentrum Gempa Laut Jawa 2016 (tanda bintang) di dalam pita episentrum gempa-gempa dalam di Laut Jawa (lingkaran-lingkaran gelap). Sumber: USGS, 2016.

Gambar 1. Episentrum Gempa Laut Jawa 2016 (tanda bintang) di dalam pita episentrum gempa-gempa dalam di Laut Jawa (lingkaran-lingkaran gelap). Sumber: USGS, 2016.

Getaran akibat gempa ini dirasakan dalam luasan yang luar biasa. Sekujur pesisir utara pulau Jawa merasakannya, dengan intensitas getaran berkisar 2 hingga 3 MMI. Sementara kawasan pantai selatan merasakan getaran yang lebih sedikit lebih kuat. Getaran juga dirasakan di pulau Bali. Bahkan stasiun pencatat gempa di Padang pun merasakannya dengan intensitas   2 hingga 3 MMI pula. Saat dipetakan, getaran akibat Gempa Laut Jawa 2016 (demikian bisa kita namakan) melingkupi pulau-pulau Jawa, Sumatra (sebagian), Kalimantan (sebagian) dan pulau-pulau kecil di Laut Jawa. Intensitas getarannya memang tak ada yang melampau 4 MMI (modified mercalli intensity). Intesitas 4 MMI dapat disetarakan dengan getaran yang kita rasakan kala ada kita sedang berada di jembatan/jalan layang dan ada kendaraan bertonase berat melintas cepat. Memang mengagetkan, namun bukan jenis getaran yang merusak. Apalagi meruntuhkan bangunan. Ketakjuban kita terhadap gempa ini lebih karena getarannya yang dirasakan di area yang sangat luas sementara magnitudonya “hanya” 6,3. Secara akumulatif USGS menaksir getaran gempa ini (dalam intensitas 2 hingga 3 MMI) dirasakan oleh 112 juta orang atau hampir separuh penduduk Indonesia.

Dilihat dari kedalaman sumbernya dan mekanisme pematahannya (focal mechanism), dapat dikatakan bahwa Gempa Laut Jawa 2016 ini merupakan gempa intralempeng. Sederhananya gempa yang terjadi di dalam sebuah lempeng, bukan akibat interaksi antar 2 lempeng. Lebih spesifik lagi, Gempa Laut Jawa 2016 diproduksi oleh patahnya segmen batuan dalam lempeng Australia yang sedang menukik/menyelusup ke dalam lapisan selubung (mantel) Bumi setelah bersubduksi dengan lempeng Sunda (Eurasia) yang membentuk pulau Jawa. Segmen yang terpatahkan itu mungkin seluas 20 x 10 kilometer persegi dan melenting sejauh sekitar semeter. Namun karena jauh di dalam Bumi, bahkan sudah lebih dalam ketimbang dasar kerak Bumi di pulau Jawa (yang tebalnya hanya 30 sampai 40 km), maka getaran yang terasakan di paras Bumi pun jauh lebih lemah. Tetapi sumber yang sangat dalam pula menyebabkan getarannya melingkupi area yang sangat luas, yang mustahil terjadi apabila sumber gempanya sangat dangkal.

Gambar 2. Peta intensitas getaran Gempa Laut Jawa 2016. Nampak sekujur pulau Jawa merasakan getaran 3 hingga 4 MMI. Sumber : BMKG, 2016.

Gambar 2. Peta intensitas getaran Gempa Laut Jawa 2016. Nampak sekujur pulau Jawa merasakan getaran 3 hingga 4 MMI. Sumber : BMKG, 2016.

Episentrum Gempa Laut Jawa 2016 terletak pada sebentuk pita berarah barat-barat laut menuju timur-tenggara yang dibentuk oleh episentrum gempa-gempa dalam di waktu lalu. Gempa-gempa tersebut umumnya memiliki magnitudo antara 6 hingga 7. Jadi gempa di kawasan ini bukanlah hal yang aneh, meskipun posisi Laut Jawa cukup jauh dari zona subduksi Jawa. Demikian halnya kawasan di sisi selatannya (yang lebih dekat ke garis pantai utara pulau Jawa). Salah satu gempa yang cukup menonjol adalah Gempa Laut Jawa 9 Agustus 2007 dinihari (magnitudo 7,5 hiposentrum 290 km) yang meletup di lepas pantai utara Indramayu sejauh 75 km sebelah utara kota Indramayu. Gempa kuat tersebut juga menggetarkan sekujur pulau Jawa, Sumatra (sebagian), Bali dan bahkan terasa hingga Semenanjung Malaya. Intensitas getaran di pulau Jawa setingkat lebih besar ketimbang saat Gempa Laut Jawa 2016 ini.

Gambar 3. Penampang pulau Jawa jika dibelah secara vertikal dari utara ke selatan. Nampak Lempeng Australia dengan arah geraknya (panah kuning). Nampak posisi sumber Gempa Laut Jawa 2016 (tanda bintang) dengan bagian gelombang gempanya yang merambat melalui medium padat (panah merah) dan medium plastis/setengah cair (panah putih). Digambar tanpa skala. Sumber: Sudibyo, 2016

Gambar 3. Penampang pulau Jawa jika dibelah secara vertikal dari utara ke selatan. Nampak Lempeng Australia dengan arah geraknya (panah kuning). Nampak posisi sumber Gempa Laut Jawa 2016 (tanda bintang) dengan bagian gelombang gempanya yang merambat melalui medium padat (panah merah) dan medium plastis/setengah cair (panah putih). Digambar tanpa skala. Sumber: Sudibyo, 2016

Bahkan getaran tersebut sempat menyebabkan puluhan rumah di Kabupaten Cianjur rusak, fakta yang sempat membuat para ahli kebumian mengernyitkan dahi di awal mula. Sebab Kabupaten Cianjur berjarak ratusan kilometer dari episentrum gempa. Kerusakan tersebut akhirnya dapat dipahami dengan melihat sebagian besar gelombang gempa dihantarkan lewat medium padat (yakni lempeng Australia) ketimbang medium setengah cair (yakni selubung Bumi). Saat tiba di zona subduksi, yakni bidang pertemuannya dengan lempeng Sunda, getaran gempa tersebut pun dihantarkan ke daratan pulau Jawa bagian selatan.

Gerhana Bulan Penumbral 16-17 September 2016 dan Sang Candra yang (Bisa) Memicu Gempa

Jumat  16 September  2016  Tarikh Umum (TU) hampir tengah malam, bertepatan dengan 15 Zulhijjah 1437 H. Jika langit cerah, Bulan akan berkedudukan tinggi di langit dengan wajah bundar penuh seperti layaknya Bulan purnama. Arahkan pandangan padanya. Sejak pukul 23:56 WIB hingga hampir empat jam kemudian, ada sesuatu yang akan terjadi. Sekilas pandang Bulan akan tetap terlihat bulat bundar penuh. Namun jika anda bermata jeli dan langit mendukung (tidak berawan, apalagi mendung), akan terlihat satu bagian wajah Bulan yang lebih gelap ketimbang bagian lainnya.  Bagian yang sedikit gelap tersebut akan muncul terutama di sekitar pukul 01:55 WIB. Inilah jejak dari peristiwa langit yang kurang familiar bagi kita: Gerhana Bulan Penumbral atau disebut juga Gerhana Bulan samar. Inilah gerhana yang paling bontot di musim gerhana tahun 2016 TU ini.

Dalam Gerhana Bulan Penumbral, kita memang takkan menyaksikan cakram Bulan yang menghilang sepenuhnya dan digantikan oleh benda sangat redup berwarna kemerah-merahan seperti dalam Gerhana Bulan Total. Kita juga takkan menyaksikan Bulan yang setengah meredup layaknya Gerhana Bulan Sebagian. Namun jangan salah, konfigurasi benda langit yang menghasilkan Gerhana Bulan Penumbral adalah identik dengan yang memproduksi baik Gerhana Bulan Total maupun Gerhana Bulan Sebagian. Mereka terjadi tatkala Matahari, Bulan dan Bumi tepat berada dalam satu garis lurus dalam konfigurasi syzygy. Di tengah-tengah konfigurasi tersebut adalah Bumi, sementara Bulan menempati salah satu dari dua titik nodal (titik potong orbit Bulan dengan bidang orbit Bumi mengelilingi Matahari). Akibatnya pancaran sinar Matahari yang seharusnya tiba di paras Bulan terhalangi oleh Bumi. Sehingga membuat Bulan tak memperoleh sinar Matahari mencukupi. Atau bahkan tak mendapatkannya sama sekali untuk periode waktu tertentu.

Gambar 1. Bulan dalam puncak Gerhana Bulan Penumbral (kiri) dan purnama biasa (kanan), diabadikan dengan teleskop yang terangkai kamera. Secara kasat mata, penggelapa sebagian wajah Bulan dalam Gerhana Bulan Penumbral sangat sulit untuk diamati. Sumber: Sudibyo, 2014.

Gambar 1. Bulan dalam puncak Gerhana Bulan Penumbral (kiri) dan purnama biasa (kanan), diabadikan dengan teleskop yang terangkai kamera. Secara kasat mata, penggelapan sebagian wajah Bulan dalam Gerhana Bulan Penumbral sangat sulit untuk diamati. Sumber: Sudibyo, 2014.

Akibatnya Bulan yang sejatinya sedang berada dalam fase Bulan purnama pun menjadi temaram atau bahkan sangat redup kemerah-merahan dalam beberapa jam kemudian. Sedikit berbeda dengan Gerhana Matahari, Gerhana Bulan memiliki wilayah gerhana cukup luas meliputi lebih dari separuh bola Bumi yang sedang berada dalam suasana malam. Karena garis tengah Matahari jauh lebih besar ketimbang Bumi, maka Bumi tak sepenuhnya menghalangi pancaran sinar Matahari yang menuju ke Bulan. Sehingga bakal masih ada bagian sinar Matahari yang lolos meski intensitasnya berkurang. Ini membuat wilayah gerhana Bulan pun terbagi ke dalam zona penumbra (bayangan tambahan) dan zona umbra (bayangan utama).

Konfigurasi

Bagaimana gerhana samar yang unik ini bisa terjadi? Pada dasarnya ada tiga jenis Gerhana Bulan. Yang pertama adalah Gerhana Bulan Total (GBT), terjadi kala bayangan utama Bumi sepenuhnya menutupi cakram Bulan tanpa terkecuali. Sehingga Bulan akan nyaris menghilang sepenuhnya saat puncak gerhana tiba, menampakkan diri sebagai benda langit sangat redup berwarna kemerah-merahan. Yang kedua adalah Gerhana Bulan Sebagian (GBS), terjadi kala bayangan utama Bumi tak sepenuhnya menutupi cakram Bulan. Akibatnya Bulan hanya akan lebih redup dan terlihat “robek” di salah satu sisinya dengan persentase tertentu kala puncak gerhana. Dan yang terakhir adalah Gerhana Bulan Penumbral (GBP) atau gerhana Bulan samar, yang bisa terjadi kala hanya bayangan tambahan Bumi yang menutupi cakram Bulan, baik menutupi sepenuhnya maupun separo. Tak ada bayangan utama Bumi yang turut menutupi. Dalam gerhana samar ini, Bulan masih tetap mendapatkan sinar Matahari meski intensitasnya sedikit lebih rendah dibanding seharusnya.

Gambar 2. Peta wilayah Gerhana Bulan Penumbral 16-17 September 2016 dalam lingkup global. Perhatikan Indonesia dibelah oleh garis P4 di sisi timur, yakni garis dimana akhir gerhana bertepatan dengan terbenamnya Bulan (terbitnya Matahari). Dengan demikian seluruh Indonesia berkesempatan menyaksikan Gerhana Bulan yang samar ini, sepanjang langit cerah. Sumber: NASA, 2016.

Gambar 2. Peta wilayah Gerhana Bulan Penumbral 16-17 September 2016 dalam lingkup global. Perhatikan Indonesia dibelah oleh garis P4 di sisi timur, yakni garis dimana akhir gerhana bertepatan dengan terbenamnya Bulan (terbitnya Matahari). Dengan demikian seluruh Indonesia berkesempatan menyaksikan Gerhana Bulan yang samar ini, sepanjang langit cerah. Sumber: NASA, 2016.

Gerhana Bulan 16-17 September 2016 merupakan gerhana Bulan samar, yang terjadi sebagai konsekuensi dari peristiwa Gerhana Matahari 1 September 2016. Pada dasarnya tidak setiap saat Bulan purnama terjadi diiringi  dengan peristiwa Gerhana Bulan. Sebaliknya suatu peristiwa Gerhana Bulan pasti terjadi bertepatan dengan saat Bulan purnama. Musababnya adalah orbit Bulan yang tak berimpit dengan bidang edar Bumi mengelilingi Matahari), melainkan menyudut sebesar 5o. Hanya ada dua titik dimana Bulan berpeluang tepat segaris lurus syzygy dengan Bumi dan Matahari, yakni di titik nodal naik dan titik nodal turun. Dan dalam kejadian Bulan purnama, mayoritas terjadi tatkala Bulan tak berdekatan ataupun berada dalam salah satu dari dua titik nodal tersebut. Inilah sebabnya mengapa tak setiap saat Bulan purnama kita bersua dengan Gerhana Bulan.

Gerhana Bulan Penumbral 16-17 September 2016 hanya terdiri dari tiga tahap. Tahap pertama adalah awal gerhana/kontak awal penumbra (P1) yang akan terjadi pada tanggal 16 September 2016 TU pukul 23:56 WIB. Sementara tahap kedua adalah puncak gerhana, yang bakal terjadi pada tanggal 17 September 2016 TU pukul 01:55 WIB. Magnitudo gerhana saat puncak adalah 0,90, maknanya 90 % cakram Bulan pada saat itu tertutupi oleh bayangan tambahan (penumbra) Bumi. Dan yang terakhir adalah tahap akhir gerhana/kontak akhir penumbra (P4) yang bakal berlangsung pada pukul 03:53 WIB. Dengan demikian durasi Gerhana Bulan Penumbral ini mencapai 3 jam 57 menit.

Wilayah gerhana bagi Gerhana Bulan Penumbral 16-17 September 2016  melingkupi sebagian seluruh benua Asia, Australia, Afrika, Eropa dan sebagian kecil Brazil di benua Amerika. Hanya mayoritas benua Amerika yang tak tercakup ke dalam wilayah gerhana ini. Seluruh Indonesia tercakup ke dalam wilayah gerhana. Secara umum tanah Nusantara ini terbelah menjadi dua oleh garis P4, yakni  himpunan titik-titik yang mengalami terbenamnya Bulan bersamaan dengan akhir gerhana. Garis P4 tersebut melintas melalui sebagian pulau Irian. Dapat dikatakan bahwa segenap Indonesia, kecuali propinsi Papua, adalah mengalami gerhana secara utuh.Sementara di propinsi Papua durasi total gerhananya terpotong oleh terbitnya Matahari (yang hampir bersamaan dengan terbenamnya Bulan).

Sesuai dengan namanya, Gerhana Bulan Penumbral ini nyaris tak dapat dibedakan dengan Bulan purnama biasa. Butuh teleskop dengan kemampuan baik untuk dapat melihatnya. Untuk memotretnya, butuh kamera dengan pengaturan (setting) yang lebih kompleks dan bisa disetel secara manual. Dalam puncak gerhana Bulan samar, jika cara pengaturan kamera kita tepat maka Bulan akan terlihat menggelap di salah satu sudutnya. Detail teknis pemotretan untuk mengabadikan gerhana ini dengan menggunakan kamera DSLR (digital single lens reflex) tersaji berikut ini :

Bagi Umat Islam ada anjuran untuk menyelenggarakan shalat gerhana baik di kala terjadi peristiwa Gerhana Matahari maupun Gerhana Bulan. Tapi hal tersebut tak berlaku dalam kejadian Gerhana Bulan Penumbral ini. Musababnya gerhana Bulan samar dapat dikatakan mustahil untuk bisa diindra dengan mata manusia secara langsung. Padahal dasar penyelenggaraan shalat gerhana adalah saat gerhana tersebut dapat dilihat, seperti dinyatakan dalam hadits Bukhari, Muslim dan Malik yang bersumber dari Aisyah RA. Pendapat ini pula yang dipegang oleh dua ormas Islam terbesar di Indonesia, yakni Nahdlatul ‘Ulama dan Muhammadiyah. Keduanya sepakat saat gerhana tak bisa disaksikan (secara langsung), maka shalat gerhana tak dilaksanakan.

Gempa

Gerhana Bulan Penumbral ini akan berlangsung dalam kurun yang hampir bersamaan dengan temuan terkini dalam ranah ilmu kebumian tentang hubungan antara posisi Bulan dan gempa di Bumi. Telah lama umat manusia mencoba menelusuri apakah kejadian kegempaan di Bumi kita, yang kerap merenggut korban jiwa dan luka-luka serta kerugian material yang luar biasa, berhubungan dengan posisi benda-benda langit khususnya Bulan. Bulan mendapat perhatian khusus karena kemampuan gravitasinya dalam mempengaruhi Bumi. Tiap benda langit yang bertetangga dengan Bumi kita sejatinya juga mencoba memaksakan pengaruh gravitasinya, dalam bentuk gaya pasang surut atau gaya tidal. Namun hanya Bulan dan Matahari yang memiliki pengaruh terbesar.

Gaya tidal kedua benda langit tersebut mempengaruhi Bumi demikian rupa sehingga badan air di paras Bumi, yakni air yang terkumpul sebagai samudera, mengalami pasang surut dalam rupa pasang naik dan pasang turun parasnya secara periodik. Fenomena ini akan mencapai titik maksimumnya tatkala kedua benda langit tersebut nampak segaris dengan Bumi. Tepatnya pada saat elongasi Bulan terhadap Matahari bernilai paling kecil, yang terjadi pada saat konjungsi, dan pada saat elongasi Bulan terhadap Matahari bernilai yang paling besar, yang bertepatan dengan saat oposisi. Kita mengenal konjungsi Bulan dan Matahari sebagai Bulan baru atau Bulan mati, sebaliknya oposisi Bulan dan Matahari mendapatkan namanya yang megah sebagai Bulan purnama. Bulan purnama terjadi dalam 14,8 hari pasca Bulan baru, sementara Bulan baru berikutnya terjadi 14,8 hari pasca Bulan purnama.

Sejak abad ke-19 TU sudah mulai dipikirkan kemungkinan bahwa gaya tidal Bulan dan Matahari, atau lebih tepatnya kombinasinya, tidak hanya berpengaruh pada badan air Bumi saja. Namun juga pada kerak Bumi (litosfer) secara keseluruhan. Aksi gaya tidal kombinasi dari Bulan dan matahari secara berulang-ulang yang mencapai puncaknya setiap 14,8 hari sekali mungkin menghasilkan gangguan pada litosfer hingga melahirkan peristiwa-peristiwa geologis seperti misalnya gempa bumi tektonik. Pemikiran ini kian menguat setelah ilmu kebumian memasuki babak baru melalui tektonik lempeng pada dekade 1960-an TU, yang mendeskripsikan pembagian kerak bumi ke dalam lempeng-lempeng tektonik makro dan mikro yang saling bergerak dengan sejumlah gejalanya. Pada saat yang hampir bersamaan, ilmu kegempaan (seismologi) mulai melakukan pencatatan terkait magnitudo, episentrum dan hiposentrum gempa-gempa tektonik dalam lingkup global menggunakan jaringan seismometer yang ditanam dimana-mana.

Gambar 3. Rekaman letusan dahsyat Gunung Tvashtar Patera di Io seperti diabadikan wahana antariksa New Horizon saat lewat didekatnya pada 2007 TU silam. Semburan material vulkanik akibat letusan dahsyat ini mencapai ketinggian 330 km dari paras Io. Vulkanisme di Io ditenagai oleh rejaman gaya tidal Jupiter nan dahsyat. Sumber: NASA, 2007.

Gambar 3. Rekaman letusan dahsyat Gunung Tvashtar Patera di Io seperti diabadikan wahana antariksa New Horizon saat lewat didekatnya pada 2007 TU silam. Semburan material vulkanik akibat letusan dahsyat ini mencapai ketinggian 330 km dari paras Io. Vulkanisme di Io ditenagai oleh rejaman gaya tidal Jupiter nan dahsyat. Sumber: NASA, 2007.

Dalam ranah astronomi juga diperoleh temuan mencengangkan tentang bagaimana aksi gaya tidal di lingkungan planet tetangga kita. Io, salah satu satelit alamiah Jupiter, mendapat perhatian lebih karena aktivitasnya yang aneh. Kini kita tahu bahwa Io menjadi benda langit paling aktif secara vulkanik di seantero tata surya akibat aksi gaya tidal Jupiter. Gaya tidal Jupiter mempengaruhi Io demikian rupa sehingga benda langit yang sedikit lebih besar dari Bulan itu dipaksa mengembang dan mengempis secara teratus. Perbedaan elevasi paras Io pada saat mengembang dan mengempis bisa mencapai 100 meter. Bandingkan dengan Bumi yang hanya 1 meter. Rejaman gaya tidal nan dahsyat secara berulang-ulang di Io inilah yang membangkitkan 99,5 %  panas interior Io dan menjadikannya kaya dengan gunung-gemunung berapi yang rajin meletus.

Bagaimana dengan Bumi, khususnya dengan peristiwa gempa bumi? Sekilas pandang kombinasi gaya tidal Bulan dan Matahari sulit untuk bisa membangkitkan gempa bumi khususnya gempa bumi tektonik.  Telah diketahui bahwa sebuah gempa bumi tektonik terjadi pada sebuah sumber gempa dalam sebuah segmen di satu sesar (patahan) tertentu. Sebagai akibat dari pergerakan lempeng tektonik, sebuah sesar aktif pun seyogyanya turut bergerak. Namun gesekan antar segmen batuan yang saling berhadapan di sepanjang sesar dapat menahan pergerakan itu untuk sementara. Namun di sisi lain juga menyebabkan tekanan yang diderita segmen batuan tersebut meningkat dan kian meningkat. Hingga akhirnya tekanan tersebut melampaui ambang batas dayatahan batuan, yang membuat segmen batuan tersebut terpatahkan dan melenting. Inilah yang memproduksi getaran seismik yang kita kenal sebagai gempa bumi tektonik.

Tekanan yang diderita sebuah segmen dalam sebuah patahan tidak hanya berasal dari dirinya sendiri saja. Namun juga bisa berasal dari luar. Telah diketahui bahwa gempa bumi tektonik dapat “menular”, maksudnya dapat merembet dari satu segmen ke segmen sebelahnya dalam satu sesar yang sama. Agar sebuah gempa bumi tektonik yang dipicu oleh gempa bumi tektonik lainnya didekatnya dapat terjadi, maka harus ada tekanan eksternal  (disebut tekanan Coulomb)  dalam rentang 0,1 hingga 1 Mega Pascal (1 Pascal = 1 Newton/meter2).  Sebaliknya kombinasi gaya tidal Bulan dan Matahari hanya menghasilkan tekanan eksternal di sekitar 1 kilo Pascal saja, atau 100 kali lemah ketimbang ambang batas tekanan Coulomb yang dibutuhkan untuk memicu sebuah gempa bumi tektonik.

Gambar 4. Tiga belas kawasan di Kepulauan Jepang yang sensitif terhadap gaya tidal Bulan (dalam Bulan baru maupun Bulan purnama) terkait kemampuannya memicu gempa bumi tektonik di sini. Situasi tersebut dapat terjadi hanya bila tekanan akibat tektonik regional (disimbolkan dengan P-axes) searah dengan tekanan dari gaya tidal Bulan. Sumber: Tanaka, 2004.

Gambar 4. Tiga belas kawasan di Kepulauan Jepang yang sensitif terhadap gaya tidal Bulan (dalam Bulan baru maupun Bulan purnama) terkait kemampuannya memicu gempa bumi tektonik di sini. Situasi tersebut dapat terjadi hanya bila tekanan akibat tektonik regional (disimbolkan dengan P-axes) searah dengan tekanan dari gaya tidal Bulan. Sumber: Tanaka, 2004.

Namun sejatinya tidak sesederhana itu. Penyelidikan Tanaka dkk (2004) memperlihatkan bahwa tekanan Coulomb yang kecil dari kombinasi gaya tidal Bulan dan Matahari pun sejatinya mampu memicu gempa bumi tektonik. Asalkan tekanan Coulomb dari gaya tidal Bulan dan Matahari itu searah dengan tekanan Coulomb dari tektonik regional. Analisanya terhadap distribusi dan pola dari 90.000 gempa bumi tektonik di Kepulauan Jepang sepanjang kurun Oktober 1997 TU hingga Mei 2002 TU memperlihatkan dari 100 kawasan yang dipetakan terdapat 13 kawasan (13 %) yang sensitif terhadap gangguan gaya tidal Bulan dan Matahari.  Penyelidikan lain juga memperlihatkan bahwa zona subduksi menjadi kawasan yang sangat sensitif terhadap gangguan dari gaya tidal Bulan dan Matahari, khususnya dalam hal memicu kejadian gempa-gempa bumi tektonik dalam. Jumlah getaran yang dihasilkan oleh gempa-gempa bumi tektonik dalam meningkat secara eksponensial bersamaan dengan meningkatnya tekanan Coulomb akibat gaya tidal. Peningkatan ini membuat potensi meletupnya gempa bumi tektonik di zona subduksi menjadi meningkat di sekitar fase Bulan baru dan Bulan purnama.

Penyelidikan lebih lanjut oleh Ide dkk (2016) memperlihatkan bahwa tekanan dari gaya tidal Bulan dan Matahari lebih berpotensi untuk memicu gempa bumi tektonik besar (magnitudo di atas 7,0) ketimbang yang lebih kecil, secara statistik. Dengan zona subduksi sebagai kawasan yang sangat sensitif terhadap tekanan Coulomb akibat gaya tidal Bulan dan Matahari, maka gempa besar yang terjadi di sini dapat mencakup gempa akbar (megathrust), gempa yang paling ditakuti. Penyelidikan terhadap tiga gempa akbar dalam kurun 15 tahun terakhir, masing-masing Gempa akbar Sumatra-Andaman 2004 (magnitudo 9,3) di Indonesia, gempa akbar Maule 2010 (magnitudo 8,8) di Chile dan gempa akbar Tohoku-Oki 2011 (magnitudo 9,0) di Jepang menegaskan hal itu. Ketiga gempa itu cukup menggetarkan karena skalanya dan kedahsyatan tsunami yang ditimbulkannya hingga renggutan korban jiwa yang diakibatkannya. Gempa akbar Sumatra-Andaman 2004 dan gempa akbar Maule 2010 terjadi di sekitar waktu Bulan purnama, bertepatan dengan pasang naik tinggi dan juga puncak tekanan Coulomb akibat gaya tidal. Sementara gempa akbar Tohoku-Oki 2011 tidak terjadi pada Bulan baru ataupun Bulan purnama, namun bersamaan dengan saat amplitudo tekanan Coulomb akibat gaya tidal mencapai nilai maksimumnya.

Gambar 5. Tiga peristiwa gempa akbar dalam 15 tahun terakhir bersama dengan perubahan dinamis tekanan akibat gaya tidal Bulan. Masing-masing adalah gempa akbar Sumatra-Andaman 2004 (atas), gempa akbar Tohoku-Oki 2011 (tengah) dan gempa akbar Maule 2010 (bawah). Kiri: lokasi episentrum dan mekanisme fokal sumber gempa, kanan : perubahan dinamis tekanan akibat gaya tidal Bulan pada bidang patahan sumber gempa dalam arah lentingan. Terlihat jelas ketiga gempa tersebut terjadi tatkala amplitudo tekanan akibat gaya tidal mencapai maksimum. Sumber: Ide, 2016.

Gambar 5. Tiga peristiwa gempa akbar dalam 15 tahun terakhir bersama dengan perubahan dinamis tekanan akibat gaya tidal Bulan. Masing-masing adalah gempa akbar Sumatra-Andaman 2004 (atas), gempa akbar Tohoku-Oki 2011 (tengah) dan gempa akbar Maule 2010 (bawah). Kiri: lokasi episentrum dan mekanisme fokal sumber gempa, kanan : perubahan dinamis tekanan akibat gaya tidal Bulan pada bidang patahan sumber gempa dalam arah lentingan. Terlihat jelas ketiga gempa tersebut terjadi tatkala amplitudo tekanan akibat gaya tidal mencapai maksimum. Sumber: Ide, 2016.

Baiklah, dari data-data yang sifatnya sangat teknis tersebut, apa yang dapat kita simpulkan? Ternyata memang ada hubungan antara saat Bulan baru maupun Bulan purnama dengan kejadian gempa bumi tektonik di Bumi kita, khususnya gempa bumi besar (magnitudo 7,0 atau lebih). Penemuan ini memang tidak mengubah kedudukan gempa bumi tektonik saat ini sebagai peristiwa alam yang sangat sulit diprediksi waktu kejadiannya secara spesifik. Ia juga tidak mengurangi apa yang selama ini selalu diserukan para ahli kebumian dan kebencanaan dalam berhadapan dengan ancaman gempa, untuk selalu waspada. Namun temuan ini membuka jendela pengetahuan baru, bahwa saat-saat Bulan baru dan Bulan purnama adalah saat-saat yang lebih rawan bagi Bumi kita, khususnya di zona subduksi. Dan Gerhana Matahari terjadi pada saat Bulan baru, sementara Gerhana Bulan pada saat Bulan purnama.

Referensi :

Tanaka dkk. 2004. Tidal Triggering of Earthquakes in Japan Related to the Regional Tectonic Stress. Earth Planets Space, vol 56 (2004) pp 511-515.

Ide dkk. 2016. Earthquake Potential Revealed by Tidal Influence on Earthquake Size-Frequency Statistics. Nature Geoscience (2016), online 12 September 2016.

‘Mercon Renteng’, Pelajaran dari Gempa Amatrice (Italia) 2016

Dalam 48 jam pasca gempa kuat melanda Pegunungan Apennina di tengah-tengah Italia, sudah 250 jasad ditemukan dan diangkat dari timbunan reruntuhan bangunan. Sebanyak 365 orang lainnya ditemukan luka-luka dalam beragam tingkatan. Namun puluhan orang masih dinyatakan hilang. Sebagian dari mereka yang hilang adalah penduduk kota-kecil Amatrice (ketinggian 955 meter dpl/dari paras laut rata-rata dan populasi 3.000 jiwa) yang  berdekatan dengan episentrum gempa. Amatrice mengalami dampak terparah, separuh wilayahnya lenyap dari peta, berganti dengan timbunan puing-puing bangunan yang memerangkap banyak orang didalamnya. Kota-kecil Accumoli (ketinggian 855 meter dpl, populasi 667 jiwa) dan Arquata del Tronto (ketinggian 777 meter dpl, populasi 1.302 jiwa) juga mengalami kerusakan yang tak kalah parahnya.  Di tengah kisah sedih ini, narasi keajaiban pun bersembulan. Misalnya tentang bocah perempuan yang ditemukan selamat meski tertimbun reruntuhan bangunan Amatrice selama berjam-jam.

Gambar 1. Bagaimana Gempa Amatrice 2016 terekam sebagai usikan pada frekuensi arus elektron dalam cincin sinkrotron (jari-jari 844 meter) di ESRF (European Synchrotron Radiation Facility), Grenoble (Perancis). Usikan pertama merupakan gempa utama (magnitudo 6,2). Sementara usikan kedua berasal dari gempa susulan (magnitudo 5,5) hampir sejam pasca gempa utama. Usikan terjadi akibat perubahan-kecil-sementara bentuk cincin sinkrotron seiring melintasnya gelombang gempa, dimana variasi 1 Hz setara dengan perubahan sebesar 2 mikrometer. Sumber: ESRF, 2016.

Gambar 1. Bagaimana Gempa Amatrice 2016 terekam sebagai usikan pada frekuensi arus elektron dalam cincin sinkrotron (jari-jari 844 meter) di ESRF (European Synchrotron Radiation Facility), Grenoble (Perancis). Usikan pertama merupakan gempa utama (magnitudo 6,2). Sementara usikan kedua berasal dari gempa susulan (magnitudo 5,5) hampir sejam pasca gempa utama. Usikan terjadi akibat perubahan-kecil-sementara bentuk cincin sinkrotron seiring melintasnya gelombang gempa, dimana variasi 1 Hz setara dengan perubahan sebesar 2 mikrometer. Sumber: ESRF, 2016.

Korban jiwa dan kerusakan ini nampak bersesuaian dengan estimasi cepat PAGER (Prompt Assessment   of Global Earthquakes for Response) yang disajikan otoritas kegempaan Amerika Serikat, yakni USGS (United States Geological Survey). PAGER mengestimasi bahwa jumlah korban tewas akibat Gempa Amatrice 2016 ini, begitu untuk mudahnya kita sebut, akan mencapai angka antara 100 hingga 1.000 jiwa, dengan probabilitas 64 %. Sementara kerugian material diperkirakan akan mencapai angka antara US $ 1 milyar hingga US $ 10 milyar (atau antara Rp 13 trilyun hingga Rp 130 trilyun, dalam kurs US $ 1 = Rp 13.000), dengan probabilitas 35 %. Meski demikian masih terlalu dini untuk menyimpulkan seberapa menghancurkan dan merusak Gempa Amatrice 2016 ini.

Regangan Italia

Gempa Amatrice 2016 meletup pada Rabu pagi 24 Agustus 2016 Tarikh Umum (TU) pukul 08:37 WIB, atau dinihari (pukul 01:37) di Italia. Gempa terjadi kala orang-orang masih terlelap. USGS melansir gempa ini memiliki magnitudo momen 6,2 (deviasi standar 0,016) dengan sumber sangat dangkal, yakni hanya sedalam 10 km dpl. Episentrum gempa terletak di kawasan Italia bagian tengah, tepatnya di satu titik dalam Pegunungan Apennina sejarak sekitar 100 km timur laut kota Roma.  Penyebab gempa adalah mekanisme pematahan turun (normal faulting), jenis pematahan kerak bumi yang menghasilkan lembah (graben) nan khas. Berdasarkan distribusi episentrum dari lebih 200 gempa susulan dalam 24 jam pasca gempa utama dan pencitraan interfrerometri dari radas (instrumen) PALSAR pada satelit ALOS-2 milik JAXA (Jepang), sumber Gempa Amatrice 2016 adalah segmen sepanjang 20 km dengan lebar10 km. Segmen tersebut berorientasi utara-barat laut ke selatan-tenggara.

amatrice-gb2_insar

Gambar 2. Atas: sumber Gempa Amatrice 2016 berdasarkan pencitraan interferometri SAR (synthetic apperture radar) diferensial melalui satelit ALOS-2 milik JAXA (Jepang). Interferometri didasarkan pada dua citra, masing-masing diambil pada 9 September 2015 TU dan 24 Agustus 2016 TU. Sumber gempa nampak sebagai segmen seluas 20 x 10 kilometer persegi yang mengalami subsidens dengan tingkat belum diketahui. Bawah: salah satu sudut dari sesar Monte Vettore, yang menjadi bagian dari Sumber Gempa Amatrice 2016. Nampak pergeseran akibat gempa 2016 (2016 rupture) dengan lembah sesar (graben) di sisi bawah. Sementara di latarbelakang terdapat cermin sesar (slickenslide), salah satu gejala khas pematahan. Sumber: JAXA, 2016 & Univ Chiety Pescara,2016.

Gambar 2. Atas: sumber Gempa Amatrice 2016 berdasarkan pencitraan interferometri SAR (synthetic apperture radar) diferensial melalui satelit ALOS-2 milik JAXA (Jepang). Interferometri didasarkan pada dua citra, masing-masing diambil pada 9 September 2015 TU dan 24 Agustus 2016 TU. Sumber gempa nampak sebagai segmen seluas 20 x 10 kilometer persegi yang mengalami subsidens dengan tingkat belum diketahui. Bawah: salah satu sudut dari sesar Monte Vettore, yang menjadi bagian dari Sumber Gempa Amatrice 2016. Nampak pergeseran akibat gempa 2016 (2016 rupture) dengan lembah sesar (graben) di sisi bawah. Sementara di latarbelakang terdapat cermin sesar (slickenslide), salah satu gejala khas pematahan. Sumber: JAXA, 2016 & Univ Chiety Pescara,2016.

Seluruh Italia dapat dikatakan merasakan getaran akibat gempa kuat ini. Getaran maksimum terjadi di episentrum yang mencapai intensitas 9 MMI (Modifed Mercalli Intensity), jenis getaran yang sanggup menghancurkan dan meruntuhkan sebagian besar bangunan serta menggeser kedudukan pondasinya. Kota-kota terdekat dengan episentrum menerima getaran dengan intensitas 8 MMI, yang dampaknya sanggup meruntuhkan bangunan pada umumnya kecuali yang didesain tahan gempa. Kota Roma menerima getaran 4 MMI, jenis getaran ringan yang mampu membangunkan orang-orang yang sedang tidur.

USGS PAGER mengestimasi ada 13.000 jiwa yang tinggal di kawasan yang mengalami getaran 8 MMI, sementara 234.000 jiwa lainnya berdiam di kawasan yang bergetar dengan intensitas 7 MMI. Secara akumulatif, populasi yang mengalami getaran 4 MMI atau lebih diprakirakan mencapai 23,6 juta jiwa.  Dengan adanya orang-orang yang tinggal di kawasan yang tergetarkan 8 MMI, jelas secara umum terlihat bahwa Gempa Amatrice 2016 berpotensi merenggut korban jiwa. Dan itulah yang terjadi.

Di tengah semua kepiluan yang diakibatkannya, bagaimana Gempa Amatrice 2016 dapat terjadi sebenarnya relatif mudah dijelaskan. Peristiwa ini tak bisa dilepaskan dari sejarah geologi Italia. Sebagian besar negeri itu terletak di Semenanjung Apennina, dengan Pegunungan Apennina membujur tepat di tengah-tengahnya. Semenanjung itu sendiri adalah sebuah daratan yang dijepit oleh dua aktivitas geologi berbeda. Di sisi timur terdapat perairan Laut Adriatik, tempat mikrolempeng Adriatik yang adalah pecahan dari lempeng Afrika  menyelusup ke bawah lempeng Eurasia dalam proses subduksi. Sementara di sisi barat terdapat perairan Laut Tirenea yang adalah cekungan busur belakang (back-arc basin), suatu gejala khas dalam zona subduksi. Cekungan busur belakang merupakan kawasan yang berbatasan dengan tepi kontinen dan  mengalami peregangan akibat aktivitas subduksi.

Gambar 3. Peta kota Amatrice dan kerusakan yang dalaminya akibat Gempa Amatrice 2016, berdasarkan nilai interferometri koheren antara sebelum dan sesudah gempa. Nampak sebagian kota telah hancur. Sumber: JAXA, 2016.

Gambar 3. Peta kota Amatrice dan kerusakan yang dalaminya akibat Gempa Amatrice 2016, berdasarkan nilai interferometri koheren antara sebelum dan sesudah gempa. Nampak sebagian kota telah hancur. Sumber: JAXA, 2016.

Aktivitas di Laut Tirenea lebih aktif ketimbang zona subduksi di sisi timurnya. Sebagai akibatnya  Semenanjung Apennina dipaksa mengambil sikap dalam menghadapi tarikan dari sisi barat (Laut Tirenea) dengan tarikan lain dari sisi timur (Laut Adriatik).  Semenanjung ini tak punya pilihan lain kecuali mengalami peregangan  (ekstensional), khususnya di sepanjang Pegunungan Apennina sebagai tulang punggungnya. Akibatnya terbentuklah sesar-sesar aktif disekujur Pegunungan Apennina yang  didominasi oleh jenis pensesaran turun (normal faulting). Ciri khasnya pensesaran turun adalah terbentuknya lembah-lembah lurus memanjang mengikuti alur sesar di dalam pegunungan ini. Sesar-sesar aktif inilah sumber sebagian besar gempa tektonik yang mendera Italia sejak masa Romawi kuno. Hanya tinggal menunggu waktu saja sebuah titik dalam sesar-sesar ini mengalami reaktivasi, untuk kemudian melepaskan energinya dalam bentuk gempa bumi tektonik

Gempa Amatrice 2016 juga mendemonstrasikan apa yang secara sederhana disebut sebagai ‘letupan mercon renteng.’ Bila anda  kerap bermain dengan petasan, anda tentu akan mengetahui bahwa saat banyak petasan kita renteng (rangkai jadi satu dengan satu sumbu), maka kala salah  satu petasan sudah meledak, berikutnya giliran petasan lain yang berurutan yang meledak. Hal serupa juga terjadi dalam gempa tektonik. Sebuah sistem sesar aktif nan panjang umumnya tidaklah tunggal, melainkan bersegmen-segmen. Tiap segmen memiliki panjang tertentu yang relatif berbeda dibanding segmen-segmen yang ada di sebelahnya. Jumlah keseluruhan segmen tersebut mencerminkan panjang sistem sesar aktif tersebut. Dengan segmentasi ini maka sebuah gempa tektonik umumnya meletup hanya dari satu segmen dalam sistem sesar aktif itu. Meski dapat pula terjadi gempa berasal dari dua atau tiga segmen yang bergerak (melenting) bersamaan, walaupun hal ini jarang terjadi.

Begitu sebuah segmen melepaskan energinya sebagai gempa, maka ia memberikan tekanan tambahan kepada segmen lain sebelah-menyebelahnya. Sehingga peluang segmen sebelah untuk melepaskan energinya menjadi lebih besar. Demikian berulang-ulang di sepanjang sistem sesar aktif tersebut. Segmentasi itu juga memungkinkan kita mengestimasi periode perulangan kejadian gempa disegmen tersebut, sepanjang faktor-faktor yang menentukan diketahui.

Gambar 4. Lokasi segmen sumber Gempa Amatrice 2016 yang dijepit oleh segmen sumber Gempa Umbria-Marche 1997 di sebelah utaranya dan segmen sumber Gempa L'Aquila 2009 di sebelah selatannya. Diplot berdasarkan koordinat episentrum gempa-gempa di kawasan ini sejak 1997 TU. Sumber: Sudibyo, 2016.

Gambar 4. Lokasi segmen sumber Gempa Amatrice 2016 yang dijepit oleh segmen sumber Gempa Umbria-Marche 1997 di sebelah utaranya dan segmen sumber Gempa L’Aquila 2009 di sebelah selatannya. Diplot berdasarkan koordinat episentrum gempa-gempa di kawasan ini sejak 1997 TU. Sumber: Sudibyo, 2016.

Hal itu pun berlaku pada sistem sesar aktif di Pegunungan Apennina. Ia pun bersegmen-segmen. Dalam sejarahnya tiap segmen memiliki kemampuan untuk melepaskan gempa dengan magnitudo maksimum 6. Khusus di bagian tengah Apennina, sedikitnya teridentifikasi tiga segmen yang saling berurutan. Gempa Amatrice 2016 terjadi pada segmen sepanjang 25-30 km, berdasar analisis seismologi. Analisis yang sama juga memprakirakan dalam segmen tersebut  terjadi lentingan (slip) sejauh rata-rata 100 cm dari semula. Sehingga terbentuk graben baru dengan kedalaman maksimum sekitar 100 cm, meski graben ini belum tentu akan nampak di paras Bumi.

Menariknya, tepat di sisi utara segmen sumber Gempa Amatrice 2016 ini terdapat segmen lain yang sudah melepaskan energinya di masa silam. Yakni dalam peristiwa Gempa Umbria-Marche 1997. Gempa dangkal dengan magnitudo 6,1 itu  merenggut  11 jiwa dan melukai 100 orang. Sebaliknya  tepat di sisi selatan sumber Gempa Amatrice 2016 terdapat segmen lainyang juga telah melepaskan energinya. Inilah  sumber Gempa L’Aquila 2009. Dengan  magnitudo 6,3 gempa L’Aquila yang merupakan gempa dangkal membunuh 308 orang, melukai lebih dari 1.500 orang dan 65.000 orang lebih kehilangan tempat tinggal. Gempa kuat ini merupakan kejadian gempa yang berulang setiap rata-rata tiga abad sekali, terhitung sejak abad ke-15 TU. Gempa L’Aquila 2009 juga mencatatkan sejarah baru dalam ilmu kegempaan, karena inilah untuk pertama kalinya ilmuwan kegempaan dituntut ke pengadilan akibat kegagalannya memprediksi gempa kuat ini. Jadi sumber Gempa Amatrice 2016 dijepit oleh dua segmen sumber gempa yang telah melepaskan energinya lebih dahulu.

Pelajaran bagi Indonesia

Jadi dalam perspektif ‘mercon renteng’ ini, peristiwa  Gempa Amatrice 2016 adalah bencana alam yang tak terelakkan. Walaupun  kapangempa tersebut akan terjadi, khususnya selepas peristiwa  gempa 1997dan 2009, adalah diluar jangkauan ilmu kegempaan saat ini. Kita hanya tahu bahwa di tengah-tengah Pegunungan Apennina ada segmen yang terjepit oleh dua segmen yang sama-sama telah melepaskan energinya. Sehingga ia memiliki potensi cukup tinggi untuk melepaskan peristiwa gempa berikutnya. Namun kita sungguh belum bisa mengetahui kapan persisnya gempa tersebut benar-benar meletup dari segmen itu.

Pelajaran apa yang bisa diambil dari Gempa Amatrice 2016 untuk Indonesia?

Salah satunya adalah persoalan ‘mercon renteng’ ini. Beberapa sumber gempa tektonik potensial di Indonesia memiliki kecenderungan serupa. Khususnya pada sistem sesar aktif yang cukup panjang. Misalnya sepanjang zona subduksi Sumatra dan zona subduksi Jawa. Juga sepanjang sesar besar Sumatra dan sesar besar Mentawai. Juga di sepanjang sesar busur belakang Flores dan Wetar.

Gambar 5. Segmentasi sumber gempa di sepanjang subduksi Sumatra seperti terlihat jelas dari peta plotting episentrum gempa sebelum 26 Desember 2004 TU. Nampak teridentifikasi sejumlah segmen utama: Aceh (bersama Andaman dan Nicobar), Simeulue dan Nias serta Mentawai. Pasca pelepasan energi dahsyat dari segmen Aceh-Andaman-Nicobar di akhir 2004 TU, tekanan hebat ke arah selatan memaksa segmen Simeulue-Nias melepaskan energinya tiga bulan kemudian sembari menyalurkan tekanannya terus ke selatan. Inilah ‘mercon renteng’ di Indonesia. Sumber: Natawidjaja, 2007 dengan teks oleh Sudibyo, 2014.

Zona subduksi Sumatra telah terbukti menyerupai untaian ‘mercon renteng’ ini. Tatkala gempa akbar Sumatra-Andaman 26 Desember 2004 (magnitudo 9,1) meletup, tiga segmen sekaligus melepaskan energinya dalam zona subduksi sepanjang 1.200 km. Akibatnya tekanan hebat pun bergeser ke selatan. Ini terbukti dalam tiga bulan kemudian tatkala gempa akbar Simeulue-Nias 27 Maret 2005 (magnitudo 8,7) melanda.  Segmen subduksi Simeulue-Nias ini terakhir mengalami gempa akbar pada 1861 TU. Dengan rata-rata perulangan kejadian gempa adalah 200 tahun, maka gempa akbar berikutnya seharusnya baru akan terjadi di sekitar 2060 TU. Namun tekanan hebat dari segmen-segmen di utaranya membuat segmen ini pun melepaskan energi lebih cepat. Pasca 2005 TU, teror seismik terus berlanjut ke selatan seiring tambahan tekanan disana. Meletuplah Gempa Bengkulu 12 September 2007 (magnitudo 8,4 dan 7,9). Kini diperkirakan masih tersisa satu segmen dengan timbunan energi besar dan tekanan luar biasa, yakni segmen Mentawai.

Teori ‘mercon renteng’ berlaku pula untuk sistem sesar besar Sumatra. Sistem sesar aktif sepanjang 1.900 km ini terbagi ke dalam 19 segmen berbeda. Setiap segmen memiliki panjang yang tak sama, bervariasi antara yang terpendek 60 km hingga yang terpanjang 200 km. Dengan panjang lebih besar ketimbang segmen-segmen di Pegunungan Apennina, setiap segmen dalam sistem sesar besar Sumatra berkemampuan membangkitkan gempa tektonik dengan magnitudo antara 6 hingga 7,5. Periode perulangan kejadian gempanya pun lebih cepat, yakni rata-rata seabad. Inilah yang membuat kawasan ini mendapat perhatian lebih. Di sisi yang sama, kewaspadaan juga harus terus menerus ditingkatkan mengingat kita memiliki mimpi terburuk gempa bumi bagi kawasan yang pernah terjadi dalam gempa dan tsunami dahsyat Aceh.

Referensi:

USGS. 2016. M6.2 – 10 km SE of Norcia, Italy. USGS Earthquake Hazards Program.

JAXA. 2016. ALOS-2/PALSAR-2 Observation Results on M 6.2 Earthquake in Central Italy.

Koch, Jean Marc. 2016. European Synchrotron Radiation Facility.

Kumamoto dan Drama Gempa yang ‘Menyerang’ Kota

Hingga Minggu 17 April 2016 Tarikh Umum (TU) tercatat 42 orang tewas. Dan lebih dari 3.000 orang lainnya mengalami luka-luka mulai dari yang ringan hingga berat. Diantara korban luka-luka tersebut terdapat dua orang berkewarganegaraan Indonesia, yang tertimpa barang saat mencoba menyelamatkan diri kala guncangan menerjang. Angka-angka ini hanyalah sementara, sebab hingga kini masih tak kurang dari 80 orang yang menghilang, diduga terperangkap dalam reruntuhan bangunan. Selain itu tak kurang dari 91.000 orang menjadi pengungsi, dievakuasi dari kawasan yang mengalami dampak terparah. Puluhan bangunan runtuh, termasuk jembatan, bangunan bersejarah dan sebuah rumah sakit. Pipa gas terputus dimana-mana dan sempat memicu kebakaran. Demikian halnya jaringan listrik. Bahkan transportasi kereta api sempat terhenti manakala sebuah kereta cepat Shinkanshen anjlok dari relnya. Tanah longsor terjadi di sejumlah titik. Dan sebagai pemuncaknya Gunung Aso, gunung berapi aktif terbesar di Jepang yang terakhir meletus setahun silam, mendadak menyemburkan kepulan debu vulkaniknya hingga setinggi 100 meter di atas kawah dalam sebuah letusan yang lemah.

Gambar 1. Satu jembatan yang runtuh ke dalam sungai seiring longsornya tebing sungai di Minami Aso dalam Gempa Kumamoto 2016. Tanda-tanda panah menunjukkan retakan di paras Bumi, yang adalah moletrack dari zona rekahan sumber gempa. Zona rekahan ini menampakkan tanda-tanda pergeseran ke kanan (menganan) atau dekstral. Sumber: People Daily China, 2016.

Gambar 1. Satu jembatan yang runtuh ke dalam sungai seiring longsornya tebing sungai di Minami Aso dalam Gempa Kumamoto 2016. Tanda-tanda panah menunjukkan retakan di paras Bumi, yang adalah moletrack dari zona rekahan sumber gempa. Zona rekahan ini menampakkan tanda-tanda pergeseran ke kanan (menganan) atau dekstral. Sumber: People Daily China, 2016.

Semua itu adalah bait-bait yang telah terucap dari drama yang sedang melanda prefektur Kumamoto di pulau Kyushu (Jepang). Tiga guncangan kuat menggetarkan pulau besar paling selatan dari kepulauan Jepang ini dalam kurun hanya 28 jam. Dalam catatan National Earthquake Information Center United States Geological Survey (USGS), guncangan kuat pertama terjadi pada Kamis 14 April 2016 TU pukul 19:27 WIB dengan magnitudo 6,2. Berselang dua setengah jam kemudian, tepatnya pukul 22:04 WIB, guncangan kedua datang menerjang dengan magnitudo 6,0. Dan puncaknya terjadi 28 jam kemudian, tepatnya pada Jumat 15 April 2016 TU pukul 23:25 WIB, dengan magnitudo 7,0. Dinamakan Gempa Kumamoto 2016, inilah kejadian gempa bumi tektonik terbesar di daratan Jepang sejak Gempa Iwate-Miyagi 2008 (magnitudo 6,9) dan Gempa Hanshin Agung-Awaji 1995 (magnitudo 6,9). Yang terakhir itu lebih populer sebagai Gempa Kobe 1995, gempa bumi yang menghasilkan kerugian material terbesar sepanjang sejarah Jepang sebelum kejadian Gempa akbar Tohoku 2011 beserta tsunaminya.

Gempa Kumamoto 2016 memperlihatkan dua hal kepada dunia, termasuk kita di Indonesia. Pertama, bagaimana sebuah gempa kuat merusak ternyata dapat menyerbu sebuah kota besar dan halaman belakangnya. Dan yang kedua, bagaimana upaya-upaya persiapan menghadapi bencana gempa ternyata membuahkan hasil yang (lumayan) manis.

Gambar 2. Hembusan debu vulkanik sering letusan Gunung Aso, yang terjadi hanya beberapa jam pasca gempa utama dalam Gempa Kumamoto 2016 terjadi. Letusan ini tergolong lemah, dengan kolom letusan hanya setinggi 100 meter di atas kawah. Sumber: Mikado Shimbun, 2016.

Gambar 2. Hembusan debu vulkanik sering letusan Gunung Aso, yang terjadi hanya beberapa jam pasca gempa utama dalam Gempa Kumamoto 2016 terjadi. Letusan ini tergolong lemah, dengan kolom letusan hanya setinggi 100 meter di atas kawah. Sumber: Mikado Shimbun, 2016.

Futagawa-Hinagu

Layaknya Indonesia, kepulauan Jepang merupakan untaian pulau-pulau yang tumbuh akibat jepitan lempeng-lempeng tektonik. Ada empat lempeng tektonik yang berperan di sini. Satu adalah lempeng tektonik utama, yakni lempeng Pasifik. Sementara tiga sisanya adalah lempeng tektonik kecil/mikrolempeng, masing-masing mikrolempeng Filipina, Amuria dan Okhotsk. Lempeng Pasifik dan mikrolempeng Filipina bersifat oseanik (lempeng samudera) yang berat jenisnya lebih besar. Sebaliknya mikrolempeng Amuria dan Okhotsk bersifat kontinental (lempeng benua) dengan berat jenis lebih kecil. Interaksi mikrolempeng Amuria dan Filipina membentuk kepulauan Jepang bagian selatan, yang mencakup pulau Kyushu dan sebagian pulau Honshu. Interaksi tersebut berupa subduksi, dengan mikrolempeng Filipina melekuk dan menyelusup ke bawah mikrolempeng Amuria menuju lapisan selubung di bawah kerak seiring berat jenisnya yang lebih besar. Salah satu gejala subduksi ini adalah terbentuknya parit Nankai. Parit adalah cekungan memanjang di dasar samudera yang mirip palung namun lebih lebar dan lebih dangkal.

Gambar 3. Rona rupabumi pulau Kyushu (Jepang). nampak sesar besar Median Tectonic Line (MTL) melintas dari timur laut (kiri atas) untuk kemudian meliuk ke selatan sebagai sesar Usuki-Yatsushiro tectonic line. Salah satu cabang sesar MTL nampak melintas lurus melewati kota Kumamoto dan sekitarnya, yang berdiri di atas graben (lembah patahan) Beppu-Shimabara. Sesar cabang inilah yang bertanggungjawab atas Gempa Kumamoto 2016. Sumber: Earthoffire, 2014.

Gambar 3. Rona rupabumi pulau Kyushu (Jepang). nampak sesar besar Median Tectonic Line (MTL) melintas dari timur laut (kiri atas) untuk kemudian meliuk ke selatan sebagai sesar Usuki-Yatsushiro tectonic line. Salah satu cabang sesar MTL nampak melintas lurus melewati kota Kumamoto dan sekitarnya, yang berdiri di atas graben (lembah patahan) Beppu-Shimabara. Sesar cabang inilah yang bertanggungjawab atas Gempa Kumamoto 2016. Sumber: Earthoffire, 2014.

Situasi kepulauan Jepang bagian selatan mirip dengan pulau Sumatra di Indonesia. Di sini arah gerak mikrolempeng Filipina pun miring (tak tegak lurus) terhadap sumbu parit Nankai. Sehingga berimplikasi pada terbentuknya sistem sesar besar di daratan Jepang, yang dinamakan Median Tectonic Line (MTL). Sesar besar MTL merupakan sesar geser menganan (right-lateral). Dalam sesar geser menganan seperti ini, apabila kita berdiri tepat di salah satu sisi sesar ini maka kita akan melihat sisi lain sesar (yang tepat berada di hadapan kita) akan bergerak ke sisi kanan kita. Sesar besar MTL bergerak dengan kecepatan antara 5 hingga 10 mm/tahun. Posisinya mengikuti jajaran gunung-gemunung berapi di kepulauan Jepang. Segmen-segmen yang terkunci dan lalu melenting mendadak di sepanjang sesar besar MTL bertanggung jawab atas sejumlah kejadian gempa bumi di Jepang. Misalnya Gempa Hanshin Agung-Awaji 1995, yang terjadi pada salah satu cabang dari sistem sesar besar MTL.

Di pulau Kyushu, sesar besar MTL melintas dari timur laut dan berbelok melengkung hingga akhirnya ke selatan mengikuti jajaran gunung-gemunung berapi di sini. Sebuah sesar cabang memisah dari MTL dan menerus ke barat daya, melewati Gunung Aso. Inilah sesar Futagawa dan sesar Hinagu. Dua sesar ini secara teknis melintas tepat di sisi dan di bawah kota Kumamoto. Gempa Kumamoto 2016 bersumber dari sesar ini.

Karena magnitudonya lebih kecil, dua gempa pertama dari tiga gempa kuat dalam Gempa Kumamoto 2016 diidentifikasi sebagai gempa pendahulu (preshock). Analisis USGS memperlihatkan sumber Gempa Kumamoto 2016 adalah segmen seluas 80 x 20 kilometer persegi di sepanjang sesar Futagawa dan Hinagu. Setelah terpatahkan, ia bergerak melenting sejauh rata-rata 1 meter. Pergerakan ini tak homogen di segenap sudut segmen, karena ada bagian-bagian tertentu yang melenting hingga sejauh maksimal 4 meter. Khususnya di sekitar titik episentrum. Sumber gempanya sangat dangkal, yakni hanya 10 km di bawah paras laut rata-rata (dpl). Akibatnya pergerakan segmen yang terpatahkan ini terjadi hingga ke paras Bumi. Ia menciptakan apa yang disebut zona rekahan (rupture) dalam kelurusan tertentu. Dua sisi yang bersebelahan dalam zona rekahan ini telah bergeser horizontal sejauh 1 meter, berdasarkan jejaring radas GPS (global positioning system) dari Geospatial Information (GSI) Jepang.

Gambar 4. Episentrum gempa utama (M7,0) dan dua gempa pendahulu (M6,2 dan M6,0) dalam Gempa Kumamoto 2016. Nampak sesar Futagawa dan Hinagu, yang bertanggung jawab dalam gempa ini. Pola-pola warna pelangi menunjukkan pergeseran tanah Kumamoto dan sekitarnya akibat gempa ini berdasarkan citra radar satelit Palsar-2 yang diolah dengan teknik interferometri SAR (synthethic apperture radar). Sumber: GIS Japan, 2016.

Gambar 4. Episentrum gempa utama (M7,0) dan dua gempa pendahulu (M6,2 dan M6,0) dalam Gempa Kumamoto 2016. Nampak sesar Futagawa dan Hinagu, yang bertanggung jawab dalam gempa ini. Pola-pola warna pelangi menunjukkan pergeseran tanah Kumamoto dan sekitarnya akibat gempa ini berdasarkan citra radar satelit Palsar-2 yang diolah dengan teknik interferometri SAR (synthethic apperture radar). Sumber: GIS Japan, 2016.

Segmen yang cukup luas dan kedalaman sumber gempa yang sangat dangkal berimplikasi buruk terhadap kota Kumamoto dan halaman belakangnya. Sekujur kota terguncang sangat keras dengan intensitas getaran hingga 9 MMI (modified mercalli intensity). Praktis dalam guncangan sebesar ini hanya bangunan-bangunan yang memang dirancang tahan gempa sajalah yang masih sanggup bertahan. Guncangan yang sangat keras juga menyebabkan tebing-tebing yang relatif curam mengalami kegagalan. Massa tanah dan batuan di tebing-tebing tersebut pun bergerak melongsor, yang terjadi dimana-mana. Secara akumulatif 716 ribu jiwa tinggal di kawasan yang mengalami guncangan hingga sebesar 9 MMI. Sementara 391 ribu jiwa dan 551 ribu jiwa lainnya tinggal di kawasan yang masing-masing tergetarkan hingga 8 dan 7 MMI.

Gempa utama (magnitudo 7,0) dari pematahan ini melepaskan energi hingga 560 kiloton TNT. Ini hampir menyamai energi Peristiwa Chelyabinsk 2013 di Russia tiga tahun silam. Sementara dua gempa pendahulu dengan masing-masing magnitudo 6,2 dan 6,0 melepaskan energi 35 dan 18 kiloton TNT. Layaknya kejadian gempa bumi tektonik umumnya, Gempa Kumamoto 2016 juga diikuti dengan gempa-gempa susulan (aftershock). Ini merupakan rangkaian pelepasan energi tambahan sebagai bagian dari upaya segmen yang telah terpatahkan untuk menyetabilkan dirinya dan membentuk keseimbangan baru dengan lingkungannya. Hingga kini telah terjadi ratusan gempa susulan. Secara akumulatif, energi yang terlepaskan dan merambat dari tiga gempa kuat yang mengguncang Kumamoto dan ratusan gempa-gempa susulannya mungkin sudah melebihi 700 kiloton TNT. Sebagai pembanding, letusan bom nuklir Hiroshima melepaskan energi 20 kiloton TNT. Sehingga secara akumulatif energi yang terlepaskan dan merambat sebagai gelombang gempa dalam kejadian Gempa Kumamoto 2016 telah 35 kali lipat lebih besar dari bom nuklir Hiroshima.

Gambar 5. Kawasan yang mengalami getaran sangat kuat dengan intensitas mulai dari intensitas getaran 7 MMI hingga 9 MMI dalam Gempa Kumamoto 2016. Nampak hampir seluruh kota Kumamoto tercakup ke dalam kawasan dengan getaran hingga 9 MMI. Sumber: USGS, 2016.

Gambar 5. Kawasan yang mengalami getaran sangat kuat dengan intensitas mulai dari intensitas getaran 7 MMI hingga 9 MMI dalam Gempa Kumamoto 2016. Nampak hampir seluruh kota Kumamoto tercakup ke dalam kawasan dengan getaran hingga 9 MMI. Sumber: USGS, 2016.

Indonesia

Gempa Kumamoto 2016 memberikan gambaran yang menggelisahkan kepada dunia, tentang bagaimana gempa bumi tektonik ‘menyerang’ dan meluluhlantakkan sebuah kota. Kumamoto sejatinya bukanlah kota pertama di dunia yang mendapat serangan semacam ini. Jepang sendiri memiliki pengalaman buruk serupa, yang terakhir di Kobe dalam bencana Gempa Hanshin Agung-Awaji 1995. Di Indonesia, kita juga mengenal peristiwa Gempa Yogyakarta 2006 sebagai serangan yang hampir sama. Dan dalam lingkup global, kengerian yang dihadirkan oleh Gempa Haiti 2010, yang menyerang ibukota Port au Prince dan halaman belakangnya, masih sangat berbekas.

Gempa-gempa yang menyerang kota dalam sejarahnya tak perlu tergolong gempa besar. Dalam tiga kejadian tersebut, magnitudonya bahkan tak ada yang lebih besar dari 7,0. Namun kombinasi sumber gempa yang di dekat/tepat di bawah kota dengan kedalaman sumber yang sangat dangkal di satu sisi serta padatnya penduduk dan bangunan-bangunan yang bermutu buruk menyebabkan korban manusia dan kerugian material yang direnggutnya bisa melangit.

Jepang pernah merasakan pengalaman buruk sebelumnya di kota Kobe. Sebelum 1995 TU, Jepang tak menyangka bahwa Kobe bakal digempur gempa kuat. Kota ini relatif jauh dari lintasan sesar besar MTL. Baru di kemudian hari ketahuan bahwa salah satu cabang sesar besar MTL melintas di halaman belakang Kobe. Di lepas pantainya terdapat sebuah pulau Awaji yang kecil, dipisahkan oleh selat Akashi dengan daratan Kobe. Siapa sangka, dari pulau inilah bencana melanda. Sesar Nojima yang menyembul di sisi barat pulau mendadak terpatahkan pada Senin 17 Januari 1995 TU. Pematahan ini bahkan menjalar hingga ke sesar Suma, Suwayama dan Gosukebashi yang ada di daratan Kobe. Secara keseluruhan pematahan itu terjadi dalam segmen sepanjang lebih dari 50 km pada empat sesar tersebut, dengan lentingan mendatar menganan hingga sejauh 1,5 meter. Gempa dengan magnitudo 6,9 pun meletup, yang kemudian dikenal sebagai bencana Gempa Hanshin-Agung Awaji 1995. Inilah bencana gempa bumi tektonik termahal dalam sejarah Jepang sebelum 2011 TU. Selain merenggut nyawa lebih dari 6.000 orang, Gempa Hanshin Agung-Awaji 1995 juga meruntuhkan ribuan bangunan dan merusak banyak sarana infrastruktur dengan total kerugian hingga lebih dari US $ 200 milyar.

Gambar 6. Peta kota Kobe dan sekitarnya beserta sumber Gempa Hanshin Agung-Awaji 1995 yang meremukkan kota dan menjadikannya bencana alam termahal sepanjang sejarah Jepang sebelum 2011 TU. Nampak sesar Nojima (A) serta sesar Suma, Suwayama dan Gosukebashi (ketiganya di B). Jalinan sesar Nojima dengan sesar-sesar lainnya inilah yang membuat gelombang gempa memperoleh jalan tol-nya langsung ke kota Kobe. Sumber: Koketsu dkk, 1998.

Gambar 6. Peta kota Kobe dan sekitarnya beserta sumber Gempa Hanshin Agung-Awaji 1995 yang meremukkan kota dan menjadikannya bencana alam termahal sepanjang sejarah Jepang sebelum 2011 TU. Nampak sesar Nojima (A) serta sesar Suma, Suwayama dan Gosukebashi (ketiganya di B). Jalinan sesar Nojima dengan sesar-sesar lainnya inilah yang membuat gelombang gempa memperoleh jalan tol-nya langsung ke kota Kobe. Sumber: Koketsu dkk, 1998.

Indonesia juga punya pengalaman serupa yang mengambil tempat di Yogyakarta, di sisi selatan dan timur Gunung Merapi. Sebelum 2006 TU, di kawasan ini telah dikenal adanya sesar Opak meski aktif tidaknya masih menjadi perdebatan. Namun Indonesia tak pernah mengira bahwa sekira 10 km di sebelah timurnya dan sejajar dengan sesar Opak ada sesar lain yang siap terpatahkan. Inilah sesar Oya, yang mengukir paras Bumi diatasnya sebagai lembah yang dialiri Sungai Oya (anak Sungai Opak) di lingkup Pegunungan Seribu. Siapa sangka, Sabtu pagi 27 Mei 2006 TU segmen sepanjang 20 km dalam sesar ini terpatahkan. Meletuplah Gempa Yogyakarta 2006 yang bermagnitudo 6,4. Jalinan antar sesar yang rumit di kawasan ini, mulai dari sesar Oya, Siluk, Opak, Progo, Dengkeng dan lain-lain membuat gelombang gempa seakan menemui jalan bebas hambatan untuk merambat kemana-mana. Tak sekedar itu, getaran keras yang ditimbulkannya mengguncang dataran Bantul dan Prambanan-Klaten yang relatif lunak dan belum terpadatkan. Di sini gelombang gempa menjadi terkuatkan (teramplifikasi), hingga memproduksi getaran berintensitas 8 MMI. Akibatnya dataran Bantul dan Prambanan-Klaten pun hancur lebur. Puluhan ribu bangunan bermutu rendah dan medium ambruk, dengan lebih dari 5.000 jiwa terenggut.

Kasus paling ekstrim dari gempa bumi yang menyerang kota adalah Gempa Haiti 2010. Buruknya mutu bangunan di kawasan ibukota Port au Prince dan halaman belakangnya menghasilkan malapetaka luar biasa kala gempa bermagnitudo 7,0 menerjang pada Selasa sore 12 Januari 2010 TU. Sumbernya adalah sebuah sesar tak dikenal yang berhubungan dengan sistem sesar Enriquillo-Plantain Garden. Seperti halnya kejadian Gempa Yogyakarta 2006, pematahan yang terjadi pada sumber Gempa Haiti 2010 tak muncul ke paras Bumi. Namun dampaknya sangat menghancurkan. Port au Prince diporak-porandakan oleh getaran sangat keras, dengan intensitas hingga 9 MMI. Ratusan ribu bangunan ambruk. Korban jiwa tak dapat diketahui sepenuhnya seiring buruknya administrasi pemerintah Haiti, namun diperkirakan mencapai 160.000 orang. Pemerintah Haiti sendiri menyatakan korban jiwanya mencapai 316.000 orang, jumlah yang dianggap terlalu dibesar-besarkan oleh sejumlah kalangan.

Gambar 7. Jalinan rumit antar sesar di Pegunungan Seribu dan dataran Yogyakarta-Bantul (tidak semuanya diperlihatkan). Nampak sumber Gempa Yogyakarta 2006 di sesar Oya (lembah sungai Oya). Meski sumber gempa terletak di daerah yang batuannya relatif keras, namun jalinan sesar-sesar yang rumit membuat gelombang gempa melesat di jalan tol-nya menuju ke dataran Bantul dan Prambanan-Klaten yang lunak. Mayoritas korban gempa berjatuhan di sini. Sumber: Tsuji dkk, 2009 dan digambar ulang oleh Sudibyo, 2015.

Gambar 7. Jalinan rumit antar sesar di Pegunungan Seribu dan dataran Yogyakarta-Bantul (tidak semuanya diperlihatkan). Nampak sumber Gempa Yogyakarta 2006 di sesar Oya (lembah sungai Oya). Meski sumber gempa terletak di daerah yang batuannya relatif keras, namun jalinan sesar-sesar yang rumit membuat gelombang gempa melesat di jalan tol-nya menuju ke dataran Bantul dan Prambanan-Klaten yang lunak. Mayoritas korban gempa berjatuhan di sini. Sumber: Tsuji dkk, 2009 dan digambar ulang oleh Sudibyo, 2015.

Dibanding negara-negara lainnya yang berdiri di atas zona rawan gempa, Jepang relatif beruntung. Pengalaman buruk Gempa Hanshin Agung-Awaji 1995 dan gempa-gempa merusak mematikan sebelumnya sepanjang sejarah serta kemajuan ekonomi negeri sakura itu membuat mereka berani berinvestasi mahal dalam upaya mitigasi gempa bumi. Terutama terkait perangkat keras. Mayoritas bangunan modern di Jepang telah dirancang tahan gempa. Demikian halnya infrastruktur. Di sisi lain, perangkat lunak mitigasi seperti halnya sosialisasi penyelamatan diri saat bencana gempa menerjang pun telah menjadi bagian dari pendidikan sekolah.

Segala ketekunan dan kesabaran ini nampaknya terbayar pasca 1995 TU. Dalam kejadian Gempa akbar Tohoku 2011 (magnitudo 9,0), tak kurang dari 18.000 jiwa tewas atau hilang. Seluruhnya disebabkan oleh hantaman tsunami besar produk gempa ini, bukan akibat getarannya. Sebagai pembanding, bencana Gempa akbar Sumatra-Andaman 2004 (magnitudo 9,3) merenggut tak kurang dari 270.000 jiwa (tewas atau hilang) dengan tak kurang dari 207.000 jiwa diantaranya adalah warganegara Indonesia.

Indonesia memang bukan Jepang. Kondisi finansial negeri ini tak memungkinkan untuk menyelenggarakan mitigasi bencana gempa bumi secara massif dalam hal perangkat kerasnya. Namun tidak dengan perangkat lunaknya. Apa yang menggelisahkan dari fenomena gempa yang ‘menyerang’ kota adalah ternyata cukup banyak kota di Indonesia yang berdiri di atas atau di dekat sebuah sesar. Bahkan disebut-sebut tak kurang dari 60 % kota di Indonesia yang demikian. Memang belum tentu sesar yang ada di bawah atau di dekat sebuah kota tergolong aktif. Namun juga banyak yang belum diketahui apakah pernah memproduksi gempa tektonik di masa silam ataukah tidak. Padahal bila sesar tersebut aktif dan melepaskan energinya, dampak yang ditimbulkannya pada kota tersebut akan cukup besar.Siapkah kita?

Referensi :

United States Geological Survey. 2016. M7.0 – 1 km West of Kumamoto-shi, Japan.

Koketsu dkk. 1998. A Fault Model of the 1995 Kobe Earthquake Derived from the GPS Data on the Akashi Kaikyo Bridge and Other Datasets. Earth Planets Space, vol 50 (1998), pp. 803–811.

Tsuji dkk. 2009. Earthquake Fault of the 26 May 2006 Yogyakarta Earthquake Observed by SAR Interferometry. Earth Planets Space, vol 61 (2009), pp. e29-e32.

Gempa Samudera Indonesia 2 Maret 2016, Gempa Besar di Tengah Lautan (dan Cukup Jauh dari Mentawai)

Dalam rilis awalnya, Badan Meteorologi Klimatologi dan Geofisika (BMKG) melansir ia memiliki magnitud 8,3. Beberapa waktu kemudian angka ini diperbaiki lewat rilis perbaikan, dengan menyatakan magnitudnya 7,9. Baik di angka magnitud 8,3 maupun 7,9 maka gempa bumi tektonik ini tetap tergolong gempa besar. Sumbernya sangat dangkal, yakni hanya 10 kilometer dpl (dari paras laut rata-rata). Episentrumnya terletak di tengah-tengah lautan. Daratan terdekat dengannya adalah Kepulauan Mentawai (propinsi Sumatra Barat). Dengan sebaris informasi awal ini, tak heran banyak yang terperanjat saat mendengar atau menerima kabar singkat bahwa gempa itulah yang meletup pada 2 Maret 2016 Tarikh Umum (TU) pukul 19:50 WIB tadi. Dengan embel-embel ‘gempa Mentawai’, sontak terbayang bahwa pusat gempanya berdekatan dengan kepulauan di sisi barat pulau Sumatra itu. Saya juga sempat beranggapan nampaknya inilah gempa besar yang telah lama diprediksi.

Sudah sejak bertahun silam beragam riset kegempaan masa silam menyajikan kesadaran bahwa Kepulauan Mentawai berdiri di atas monster megathrust. Mulai dari yang memotong-motong karang mikroatol guna menelisik sejarah naik turunnya pulau-pulau di kepulauan tersebut dari waktu ke waktu oleh deformasi akibat gempa besar/akbar dalam kurun milenium terakhir. Hingga dari radas-radas GPS yang ditanam guna mengetahui pergerakan pulau-pulau tersebut relatif terhadap daratan utama pulau Sumatra. Monster megathrust inilah sumber potensial untuk gempa jumbo. Andaikata ia melepaskan seluruh energinya, maka dengan panjang segmen hingga 400 kilometer dapat diprakirakan ia akan melepaskan gempa dengan magnitud sekitar 9. Tak hanya intensitas getarannya yang menakutkan, sebab mekanisme pematahan pada monster megathrust yang menghasilkan gempa ini juga akan menyebabkan dasar laut di atas sumber gempa terdeformasi vertikal. Inilah yang menyebabkan kolom air laut diatasnya bergolak hingga terbitlah tsunami. Tsunami segera berderap ke pesisir barat pulau Sumatra dimana prakiraan tinggi gelombangnya saat tiba di garis pantai sungguh membikin bulu kuduk meremang.

Gambar 1. Posisi sumber Gempa Samudera Indonesia 2 Maret 2016 (ditandai dengan 03-02-2016 M 7.9) terhadap daratan pulau Sumatra beserta koordinat episentrum dari gempa-gempa besar/akbar (magnitudo > 7) dalam radius hingga 1.000 kilometer. daratan terdekat ke sumber gempa ini berjarak tak kurang dari 680 kilometer. Sumber: USGS, 2016.

Gambar 1. Posisi sumber Gempa Samudera Indonesia 2 Maret 2016 (ditandai dengan 03-02-2016 M 7.9) terhadap daratan pulau Sumatra beserta koordinat episentrum dari gempa-gempa besar/akbar (magnitudo > 7) dalam radius hingga 1.000 kilometer. daratan terdekat ke sumber gempa ini berjarak tak kurang dari 680 kilometer. Sumber: USGS, 2016.

Namun saat mengecek koordinat episentrumnya dan mengeplotnya ke peta, keterperanjatan itu langsung surut. Episentrum gempa ini terletak jauh di tengah-tengah Samudera Indonesia (Indian Ocean). Kep. Mentawai memang daratan terdekat dengannya, namun itu pun masih sejarak tak kurang dari 680 km terhadap episentrum. Jarak yang sesungguhnya teramat jauh. Dari sini pula penamaan gempa ini sebagai Gempa Mentawai menjadi rancu, seperti dipaparkan geolog kegempaan pak Irwan Meilano. Penamaan tersebut juga mendatangkan problem psikologis khususnya bagi penduduk setempat. Dengan jarak yang cukup jauh dari episentrum, maka tak heran jika getaran gempanya terasa lamat-lamat hingga pelan di Kep. Mentawai dan daratan Sumatra. Model yang disajikan otoritas United States Geological Survey (USGS) memperlihatkan intensitas getaran yang dialami Kep. Mentawai dan P. Sumatra pada umumnya dalam gempa ini berkisar 3 MMI (Modified Mercalli Intensity). Intensitas sekecil itu bisa dirasakan publik pada umumnya sebagai getaran layaknya getaran yang kita rasakan saat berdiri di tepi jalan kala sebuah truk besar tengah melaju. Jarak terhadap episentrum yang jauh menghasilkan intensitas gempa yang kecil. Maka tak perlu terlalu mengkhawatirkan apakah guncangan gempa ini berdampak terhadap kondisi Kep. Mentawai.

Tsunami kecil

Bagaimana dengan tsunaminya? Hal itu sangat bergantung kepada bagaimana jenis mekanisme pematahan pada gempa ini. Ada tiga mekanisme pematahan, yakni pematahan naik (thrust), pematahan turun (normal) dan pematahan geser (strike). Simpelnya, pematahan naik membuat segmen kerakbumi di sumber gempa terangkat sehingga membukit/membentuk gundukan. Sementara pematahan turun menghasilkan lembah/cekungan. Pada dasarnya mekanisme pematahan naik dan turun inilah yang mampu memproduksi tsunami. Karena ia menghasilkan deformasi vertikal nan besar di dasar laut di sumber gempa, sehingga kolom air laut diatasnya akan bergolak dan menjadi tsunami.

Gambar 2. Model dislokasi kerakbumi di daratan pulau Sumatra sebagai dampak dari Gempa Samudera Indonesia 2 Maret 2016. Diprakirakan pulau Sumatra bergerser 2 cm ke arah timurlaut. Sumber: Meilano, 2016.

Gambar 2. Model dislokasi kerakbumi di daratan pulau Sumatra sebagai dampak dari Gempa Samudera Indonesia 2 Maret 2016. Diprakirakan pulau Sumatra bergerser 2 cm ke arah timurlaut. Sumber: Meilano, 2016.

Dalam rilisnya USGS menyebut Gempa Samudera Indonesia 2 Maret 2016 ini disebabkan oleh mekanisme pematahan geser. Ini adalah jenis pematahan yang tak menyebabkan deformasi vertikal dasar laut di lokasi sumber gempa. Analisis lebih lanjut memperlihatkan gempa besar ini diproduksi oleh patahnya segmen kerakbumi di dasar Samudera Indonesia seluas 80 x 40 km2. Segmen ini lantas melenting sejauh rata-rata 6 meter, dengan pelentingan maksimum 12 meter. Dengan kata lain, jika suatu saat sebelum gempa kita berkesempatan berdiri tepat di batas segmen ini dengan lingkungannya, maka di kesempatan berikutnya (pasca gempa) kita akan melihat batu yang ada di hadapan kita telah bergeser sejauh rata-rata 6 meter. Dengan jenis pematahan geser, maka pada gilirannya kemungkinan terbentuknya tsunami adalah cukup kecil. Model dislokasi yang dikerjakan pak Irwan Meilano dan Endra Gunawan memperlihatkan gempa ini menyebabkan pergeseran ke timur laut sejauh rata-rata 2 cm di pulau Sumatra.

Apabila ada tsunaminya, lagi-lagi jarak yang jauh dari sumber gempa berperan menentukan tingkat kedahsyatan tsunaminya saat tiba di pesisir. Pada dasarnya semakin besar magnitud gempanya maka semakin berenergi tsunaminya dan semakin tinggi gelombang yang terbentuk. Namun semakin jauh dari sumber tsunami, maka tinggi tsunaminya pun turut melorot. Dalam bahasa yang lebih teknis, semakin jauh dari sumber tsunami membuat energi tsunami kian terdissipasi kala ia berjuang melintasi samudera. Sehingga berdampak pada melemahnya sang tsunami dan melorotnya ketinggiannya. Perhitungan sederhana dengan menggunakan persamaan Iida memperlihatkan, dengan jarak 680 km dan memegang anggapan bahwa magnitudo tsunami = magnitudo gempa = 8,3 maka diperoleh prakiraan ketinggian tsunami di Kep. Mentawai pada kisaran 15 cm. Cukup kecil dan sangat sulit berdampak signifikan. Simulasi yang lebih kompleks dengan memanfaatkan program simulasi tsunami (yang berbasis persamaan-persamaan gelombang dangkal) juga menyajikan hasil yang mirip. Misalnya seperti yang dikerjakan mas Aditya Gusman. Dalam simulasinya nampak bahwa prakiraan tinggi gelombang di Kep. Mentawai berada pada kisaran 10 hingga 15 cm saja.

Gambar 3. Simulasi distribusi tinggi maksimum tsunami sebagai akibat Gempa Samudera Indonesia 2 Maret 2016. Nampak tinggi tsunami di Kepulauan mentawai berkisar antara 10 hingga 15 cm. Sumber: Gusman, 2016.

Gambar 3. Simulasi distribusi tinggi maksimum tsunami sebagai akibat Gempa Samudera Indonesia 2 Maret 2016. Nampak tinggi tsunami di Kepulauan mentawai berkisar antara 10 hingga 15 cm. Sumber: Gusman, 2016.

Bagaimana dalam realitasnya? Gempa Samudera Indonesia 2 Maret 2016 memang menghasilkan tsunami. Namun sangat kecil. BMKG mencatat tinggi tsunami yang terekam pada stasiun pasang surut di pelabuhan Padang (propinsi sumatra Barat) hanyalah 5 cm. Rekaman pasang surut di pelabuhan Tanahbala, Kep. Batu (propinsi Sumatra Utara) yang disajikan UNESCO/IOC Sea Level Monitoring juga hanya setinggi 5 cm. Usikan tsunami itu datang tepat sejam pasca gempa, menandakan bahwa kecepatan tsunami berkisar 700 km/jam. Namun dengan tinggi yang amat sangat rendah, tak ada dampak yang ditimbulkannya sejauh ini.

Gambar 4. Rekaman dinamika paras air laut di stasiun pasang surut pelabuhan Tanahbala, Kepulauan Batu (propinsi Sumatra Utara). Skala waktu dalam GMT (WIB - 7).Nampak paras air laut yang sedang berkecenderungan naik (sebagai imbas dari pasang naik harian) mendadak mengalami usikan liar dengan amplitudo sekitar 5 cm sejak pukul 21:00 WIB. Sumber: UNESCO/IOC, 2016.

Gambar 4. Rekaman dinamika paras air laut di stasiun pasang surut pelabuhan Tanahbala, Kepulauan Batu (propinsi Sumatra Utara). Skala waktu dalam GMT (WIB – 7).Nampak paras air laut yang sedang berkecenderungan naik (sebagai imbas dari pasang naik harian) mendadak mengalami usikan liar dengan amplitudo sekitar 5 cm sejak pukul 21:00 WIB. Sumber: UNESCO/IOC, 2016.


Dengan intensitas getaran yang lemah dan tsunami yang tak kalah lemahnya, maka Gempa Samudera Indonesia 2 Maret 2016 ini dapat dikatakan tak berdampak baik bagi Kep. Mentawai maupun daratan pulau Sumatra. Tetapi atas semua itu gempa besar ini tak menutupi fakta bahwa Kep. Mentawai masih menjadi salah satu kawasan rawan gempa dan tsunami di Indonesia. Mari tetap waspada (dan bersiaga pada waktunya), namun janganlah paranoia.

Referensi :

Irwan Meilano. 2016. komunikasi pribadi.

Aditya Gusman. 2016. komunikasi pribadi.

USGS. 2016. M7.8 – Southwest of Sumatra, Indonesia. National Earthquake Information Center United States Geological Survey.

Mengenal Kandidat Sumber Gempa Bumi dan Tsunami di Pulau Jawa

Pantai Logending di Kecamatan Ayah Kabupaten Kebumen (Jawa Tengah) bersiap menuju momen Matahari terbenam pada Senin 17 Juli 2006 Tarikh Umum (TU) sore. Obyek wisata pantai ini masih satu lokasi dengan Goa Jatijajar dan Goa Petruk di lingkungan karst Karangbolong, Gombong selatan. Inilah trio obyek wisata populer andalan Kabupaten Kebumen. Sore itu Pantai Logending relatif lengang. Hari itu adalah hari pertama masuk sekolah di tahun ajaran yang baru (2006-2007 TU). Hanya ada puluhan wisatawan lokal. Di hari-hari sebelumnya, pengunjung pantai ini setiap harinya bisa mencapai ribuan orang dalam beragam usia. Selain memiliki pantai datar bermuara sungai yang tepat berdampingan dengan Tanjung Karangbolong di sisi timur dan Teluk Penyu di sisi barat, pantai Logending juga memiliki bumi perkemahan yang kerap menjadi arena perkemahan para pelajar di musim liburan. Ditambah dengan aksesnya yang mudah, tempat yang rindang (penuh pepohonan) dan ketersediaan sarana prasarana yang memadai, tak pelak pantai ini menjadi pantai favorit bagi penduduk Kabupaten Kebumen dan kabupaten/kota tetangganya.

Gambar 1. Jejak kedahsyatan terjangan Tsunami 17 Juli 2006 di pantai Logending (Kabupaten Kebumen). Kiri: sebagian dinding bangunan WC umum yang ambrol dan terhempas hingga 2 meter ke utara dari semula. Kanan: tebing sungai yang tererosi berat hingga menghancurkan taludnya. Di latar belakang nampak bangunan pos TNI AL Logending. Tsunami yang menghantam pantai ini memiliki tinggi maksimum 7 meter dpl. Sumber: Sudibyo, 2006.

Gambar 1. Jejak kedahsyatan terjangan Tsunami 17 Juli 2006 di pantai Logending (Kabupaten Kebumen). Kiri: sebagian dinding bangunan WC umum yang ambrol dan terhempas hingga 2 meter ke utara dari semula. Kanan: tebing sungai yang tererosi berat hingga menghancurkan taludnya. Di latar belakang nampak bangunan pos TNI AL Logending. Tsunami yang menghantam pantai ini memiliki tinggi maksimum 7 meter dpl. Sumber: Sudibyo, 2006.

Siapa sangka, Senin sore itu adalah hari yang tak biasa dan bakal dikenang seterusnya bagi pantai Logending dan Kabupaten Kebumen. Sejarak 230 kilometer ke arah selatan-barat daya, Bumi sedang bergolak. Bagian kerak Samudera Indonesia (atau Samudera Hindia) yang bersisian dengan palung Jawa dalam segmen sepanjang 200 kilometer mendadak terpatahkan pada pukul 15:19 WIB. Gempa tektonik pun terjadilah, dengan magnitudo momen 7,7. Sehingga tergolong gempa besar. Karena daratan terdekat dengan episentrum adalah pantai Pangandaran, maka gempa ini acap disebut Gempa Pangandaran 17 Juli 2006. Meski ada pula yang menyebutnya Gempa Jawa 17 Juli 2006 atau Gempa Samudera Hindia 17 Juli 2006.

Namun pematahan kerak samudera pada gempa ini berlangsung lebih lambat ketimbang pematahan penyebab gempa bumi tektonik umumnya. Sehingga gempa besar ini merupakan gempa-ayun atau gempa-lambat (slow-quake). Akibatnya getarannya relatif tak terasa khususnya di daratan pulau Jawa bagian selatan. Tapi di sekeliling sumber gempa, getarannya demikian keras. Sehingga mampu menyebabkan longsoran berskala besar pada lereng curam di sisi utara Palung Jawa. Longsoran ini menyebabkan kolom air segara, yang sudah bergolak akibat terangkatnya dasar laut di atas sumber gempa, menjadi kian bergolak saja. Terbentuklah tsunami besar yang magnitudonya setingkat lebih tinggi dibanding magnitudo gempanya, satu ciri khas lain lagi dari gempa-lambat. Dengan segera gelora yang mematikan ini berderap ke dua arah berlawanan, yakni timur laut dan barat daya. Tsunami yang melejit ke timur laut melaju pada kecepatan antara 230 hingga 260 km/jam, berderap langsung ke arah sebagian pesisir selatan pulau Jawa yang berhadapan. Namun tak satupun penduduk di sana yang menyadari bahwa bencana hendak tiba. Demikian halnya di pantai Logending.

Didahului dua dentuman keras, tsunami menyerbu pantai Logending mulai pukul 16:09 WIB atau hampir sejam pascagempa. Lima gelora menggempur susul-menyusul, dengan gelombang pertama sebagai yang terbesar (tertinggi). Airbah segera menggenang hingga 1 meter dari permukaan tanah dan menderu deras hingga sejauh tak kurang 200 meter ke darat. Arus airbah demikian kuat hingga menyeret puluhan kapal nelayan ke daratan sampai berlubang-lubang atau malah patah terbelah. Arus airbah bahkan sanggup menjebol tembok bangunan seperti WC umum dan melubangi dinding pos TNI AL Logending. Warung-warung semi permanen kuliner khas Logending pun tak luput dari terjangan airbah tsunami. Kepanikan dan kekacauan sontak merebak. Orang-orang berlarian lintang-pukang menuju bukit. Tetapi puluhan orang gagal menyelamatkan diri. Mereka terseret arus airbah dan beberapa diantaranya menjadi korban. Salah satu korban bahkan ditemukan terdampar di pantai Parangtritis, Bantul (propinsi DI Yogyakarta), seratusan kilometer dari Logending.

Gambar 2. Menit-menit terjangan Tsunami 17 Juli 2006 di kolam PLTU Bunton (Kabupaten Cilacap) seperti yang direkam kamera sirkuit tertutup (CCTV). Air bah Tsunami terekam mulai memasuki kolam pada pukul 16:08 WIB. Pukul 16:19 WIB (kiri), gelombang ketiga mulai memasuki kolam hingga meluber dalam beberapa detik kemudian. Selang 9 menit kemudian (kanan), paras kolam telah kembali seperti semula sebelum tsunami melanda. Sumber: PLTU Bunton, 2006 dalam Lavigne dkk, 2007.

Gambar 2. Menit-menit terjangan Tsunami 17 Juli 2006 di kolam PLTU Bunton (Kabupaten Cilacap) seperti yang direkam kamera sirkuit tertutup (CCTV). Air bah Tsunami terekam mulai memasuki kolam pada pukul 16:08 WIB. Pukul 16:19 WIB (kiri), gelombang ketiga mulai memasuki kolam hingga meluber dalam beberapa detik kemudian. Selang 9 menit kemudian (kanan), paras kolam telah kembali seperti semula sebelum tsunami melanda. Sumber: PLTU Bunton, 2006 dalam Lavigne dkk, 2007.

Jarang

Tsunami ini menewaskan 16 warga Kabupaten Kebumen dengan 41 orang lainnya dinyatakan hilang. Dihitung dari paras air laut (dpl) saat itu, tinggi tsunami yang menggempur pantai Logending adalah 7 meter. Di antara sekujur pesisir Kabupaten Kebumen yang terhajar tsunami pada waktu yang sama, tinggi tsunami yang menerpa pantai Logending adalah yang terbesar (terkecil di pantai Suwuk sisi timur setinggi 2,5 meter dpl). Namun hal itu belum seberapa bila dibandingkan dengan hempasan tsunami di Kabupaten/Kota Cilacap. Pesisir Teluk Penyu di antara pantai Logending dan kota Cilacap diterjang tsunami dengan ketinggian bervariasi antara 2 hingga 5,5 meter dpl. Namun korban jiwa yang direnggutnya jauh lebih besar, yakni mencapai 157 orang. Meski demikian kota Cilacap patut bersyukur karena terhindar dari malapetaka yang jauh lebih buruk. Sebab sejatinya tsunami yang mengarah ke kota ini memiliki ketinggian sangat besar, yakni 21 meter dpl! Itu setara dengan gedung empat lantai. Beruntung gelombang pembunuh yang menggidikkan ini teredam sepenuhnya oleh keberadaan pulau Nusakambangan, sehingga kota Cilacap terlindungi. Secara akumulatif bencana tsunami ini merenggut nyawa 653 orang dan melukai 1.526 orang. Sebanyak 120 orang juga dinyatakan hilang. Lebih dari 1.600 bangunan rusak dalam beragam tingkat keparahan.

Bencana Gempa Pangandaran 17 Juli 2006 dan tsunami yang menyertainya seakan mengulangi bencana sejenis yang terjadi di pesisir selatan Jawa Timur 12 tahun sebelumnya. Saat itu, Jumat 3 Juni 1994 TU dinihari pukul 01:17 WIB, segmen sepanjang 160 kilometer yang berjarak 220 kilometer dari garis pantai Kabupaten Malang, Lumajang, Jember dan Banyuwangi mendadak terpatahkan. Terjadilah Gempa Banyuwangi 3 Juni 1994 yang tergolong gempa besar, karena magnitudo momennya 7,8. Tetapi ia juga bersifat gempa-ayun. Maka getaran gempa besar ini tak terasakan di daratan Jawa bagian timur. Apalagi merusak bangunan. Sebaliknya di sekeliling sumber gempa, getarannya demikian keras. Hingga mampu melongsorkan tebing curam di dasar laut dalam skala yang luar biasa.

Gambar 3. Bibir pantai yang tererosi berat hingga tergerus akibat terjangan Tsunami 3 Juni 1994 di pantai Rajegwesi (Kabupaten Banyuwangi). Tsunami setinggi maksimum 14 meter dpl menggempur pantai ini dan menggenang hingga 400 meter ke daratan. Sumber: Synolakis dkk, 1995.

Gambar 3. Bibir pantai yang tererosi berat hingga tergerus akibat terjangan Tsunami 3 Juni 1994 di pantai Rajegwesi (Kabupaten Banyuwangi). Tsunami setinggi maksimum 14 meter dpl menggempur pantai ini dan menggenang hingga 400 meter ke daratan. Sumber: Synolakis dkk, 1995.

Kisah selanjutnya pun menyerupai Gempa Pangandaran 17 Juli 2006. Dalam 50 menit pasca gempa, gelora tsunami menggempur pesisir Kabupaten Malang, Lumajang, Jember dan Banyuwangi serta sebagian pesisir selatan Bali. Tanpa peringatan dan tanpa ampun. Bentuk pantai yang berlekuk-lekuk dengan teluk-teluk kecilnya membuat tsunami terakumulasi di teluk-teluk kecil tersebut. Sehingga tingginya kembali berlipat ganda. Tinggi tsunami terbesar mencapai 15 meter dpl. Akibatnya sejumlah pesisir pun terhantam telak dan terbabat beserta penghuninya. Dalam petaka pagi buta itu, paling tidak 223 jiwa melayang dengan lebih dari 400 orang luka-luka berat dan ringan. Selain itu tak kurang dari 1.000 rumah hancur.

Sebelum dua bencana tsunami tersebut, pulau Jawa terhitung sangat jarang dilimbur airbah tsunami yang signifikan dan berdampak. Tsunami bersejarah terakhir yang menghantam pulau Jawa adalah tsunami produk Letusan dahsyat Krakatau 1883. Peristiwa tersebut menciptakan tsunami raksasa setinggi maksimum 33 meter dpl yang menghancurkan pesisir barat pulau Jawa yang berhadapan dengan selat Sunda. Korban yang direnggutnya mencapai tak kurang dari 36.000 jiwa. Namun tsunami ini disebabkan oleh letusan dahsyat gunung berapi, jenis peristiwa yang tergolong jarang terjadi. Sebaliknya tsunami yang ditimbulkan oleh gempa tektonik, yang lebih kerap terjadi, justru belum pernah ditemukan catatan sejarahnya di pulau Jawa hingga 1994 TU.

Jadi bagaimana tsunami 1994 dan tsunami 2006 bisa terjadi di pesisir selatan pulau Jawa? Dan masih adakah sumber gempa bumi dan tsunami potensial sejenis nun jauh di dasar samudera lepas pantai selatan pulau Jawa?

Zona Rekahan

Semua berpangkal dari geologi pulau Jawa yang khas. Pulau terpadat penduduknya di dunia ini dibentuk oleh interaksi konvergen antara dua lempeng tektonik besar dunia. Yang pertama adalah lempeng Sunda (Eurasia) yang bersifat kontinental (kerak benua) dan relatif stabil. Dan yang kedua adalah lempeng Australia yang oseanik (kerak samudera) dan bergerak relatif ke utara pada kecepatan antara 60 hingga 70 mm/tahun. Interaksi konvergen antara kedua lempeng tektonik besar ini menghasilkan subduksi (penyelusupan atau tunjaman). Karena berat jenis lempeng Australia lebih besar dibanding lempeng Sunda, maka lempeng Australia melekuk di sepanjang batas konvergensi untuk kemudian menunjam di bawah lempeng Sunda dengan membentuk sudut miring terhadap paras Bumi. Di sisi lempeng Sunda, subduksi tersebut membuat bagian lempeng Sunda di sini menjadi membengkak (menggelembung). Inilah yang kemudian muncul di atas paras air laut sebagai pulau Jawa. Batas konvergensi tersebut secara kasat mata terlihat sebagai palung laut. Yakni bagian dasar laut yang sempit mirip parit namun sangat dalam. Palung tersebut dikenal sebagai palung Jawa dengan titik terdalam (7.725 meter dpl) di lepas pantai Kebumen-Purworejo sejarak 260 km dari garis pantai. Titik ini sekaligus merupakan titik terdalam di Samudera Indonesia.

Gambar 4. Penampang melintang sederhana zona subduksi Jawa dengan sejumlah gejala khas subduksi didalamnya. Sumber: Sudibyo, 2015 berbasis peta Google Earth.

Gambar 4. Penampang melintang sederhana zona subduksi Jawa dengan sejumlah gejala khas subduksi didalamnya. Sumber: Sudibyo, 2015 berbasis peta Google Earth.

Seperti halnya subduksi di tempat lain, subduksi Jawa pun menampakkan sejumlah gejala yang khas. Misalnya busur pegunungan bawah laut yang sejajar dengan palung Jawa, yang dikenal sebagai busur luar Jawa. Busur luar Jawa terletak tepat di sisi utara palung Jawa dan sebagian diantaranya merupakan prisma/baji akresi. Prisma akresi merupakan akumulasi batuan sedimen campur-aduk yang tertumpuk dan tertekan kuat. Di antara busur luar dan daratan pulau Jawa terbentang cekungan yang juga ditimbuni sedimen, sebagai cekungan busur muka (forearc basin). Gejala lainnya adalah eksistensi vulkanisme yang memunculkan jajaran gunung-gemunung berapi andesitik. Jajaran tersebut membentuk busur dalam Jawa yang vulkanis (busur luar Jawa bersifat non vulkanis). Dan zona Benioff-Wadati sebagai zona sumber gempa bumi tektonik dengan kedalaman hiposentrum yang kian bertambah seiring kian menjauh dari palung. Gejala-gejala tersebut disebabkan oleh pergesekan antara sisi atas lempeng Australia yang telah menyelusup dengan sisi bawah lempeng Sunda yang membengkak. Kawasan pergesekan ini dikenal pula sebagai zona subduksi dan eksis hingga kedalaman 60 km dpl.

Zona subduksi Jawa merupakan sistem penunjaman yang bersifat tegak (frontal). Maksudnya, sumbu palung Jawa (yang berarah barat-timur) adalah relatif tegak lurus terhadap arah gerak lempeng Australia (yang berarah ke utara). Subduksi semacam ini membuat segenap gerakan lempeng Australia diakokmodasi sepenuhnya oleh zona subduksi Jawa. Sebagai akibatnya, maka tidak sempat terbentuk sistem patahan besar yang aktif di cekungan busur muka maupun daratan pulau Jawa sebagaimana halnya yang dialami pulau Sumatra. Sistem patahan besar aktif merupakan pusat konsentrasi gempa-gempa tektonik dangkal di daratan. Ini membawa pulau Jawa pada konsekuensi berikutnya, dimana gempa-gempa tektonik dangkal di daratan pulau Jawa tersebar di sejumlah titik, mengikuti sesar-sesar aktif nan pendek yang terbentuk di sana-sini.

Sekujur zona subduksi Jawa merupakan sumber gempa bumi tektonik potensial. Ia juga menjadi sumber potensial bagi tsunami, sepanjang syarat-syaratnya terpenuhi. Sebabnya adalah pergesekan antarlempeng (interplate), antara sisi atas lempeng Australia yang telah menyelusup dengan sisi bawah lempeng Sunda yang membengkak. Area pergesekan tersebut tidak memiliki pelumas sehingga subduksi kerap tersendat-sendat atau malah bahkan tertahan, bergantung pada sifat batuannya. Istilah teknisnya terkunci (locked). Bila subduksi terkunci sementara dorongan dari lempeng Australia selalu terjadi, maka zona subduksi akan turut terdorong ke mendekati daratan pulau Jawa (terdorong ke utara) secara perlahan mengikuti gerakan lempeng Australia. Gerakan tersebut tak dapat dirasakan manusia, namun bisa diindra dengan mudah melalui radas (instrumen) pengukur koordinat berakurasi tinggi. Situasi berbeda akan dijumpai bila subduksinya tak terkunci, maka zona subduksinya akan bergerak relatif berlawanan arah dibanding arah gerak lempeng Australia, yakni menuju samudera (ke arah selatan).

Gambar 5. Ilustrasi sederhana pematahan naik miring (oblique thrust) pada kerak bumi, antara sebelum pematahan (A) dan sesudah pematahan (B). Tanda panah hitam merupakan arah tegasan. Angka (1) menunjukkan besarnya lentingan (slip) sementara angka (2) menunjukkan besarnya gerak vertikal. Pematahan jenis inilah yang kerap terjadi pada zona subduksi dan bila melibatkan area yang sangat luas akan menghasilkan gempa besar atau gempa akbar yang disertai tsunami. Sumber: Sudibyo, 2015.

Gambar 5. Ilustrasi sederhana pematahan naik miring (oblique thrust) pada kerak bumi, antara sebelum pematahan (A) dan sesudah pematahan (B). Tanda panah hitam merupakan arah tegasan. Angka (1) menunjukkan besarnya lentingan (slip) sementara angka (2) menunjukkan besarnya gerak vertikal. Pematahan jenis inilah yang kerap terjadi pada zona subduksi dan bila melibatkan area yang sangat luas akan menghasilkan gempa besar atau gempa akbar yang disertai tsunami. Sumber: Sudibyo, 2015.

Subduksi yang terkunci ini tak bisa berlangsung untuk seterusnya. Apabila akumulasi dorongan lempeng Australia telah mulai melebihi ambang batas daya tahan batuan di area pergesekan antarlempeng, maka pematahan pun terjadilah. Terbitlah apa yang kita kenal sebagai gempa bumi tektonik. Gempa tektonik di zona subduksi umumnya memiliki sifat pematahan anjak miring (oblique thrust), mengikuti kemiringan lempeng Australia yang menyelusup. Saat gempa ini terjadi, maka kuncian pada subduksi sontak terlepas. Sehingga zona subduksi terdorong ke arah berlawanan dibanding semula, yakni ke arah samudera (menjauhi daratan pulau Jawa), dalam waktu relatif singkat. Jarak yang ditempuh zona subduksi kala terdorong ini disebut jarak lentingan (slip). Magnitudo (kekuatan) gempanya sangat bergantung pada zona rekahan atau zona-pecah, yakni luas area yang terpatahkan, dan besarnya pelentingan. Semakin luas area yang terpatahkan, maka semakin besar lentingan zona subduksinya dan semakin besar pula magnitudo gempanya.

Sebagai gambaran, gempa tektonik bermagnitudo 6 disebabkan oleh terbentuknya zona rekahan seluas 20 x 10 kilometer persegi yang melenting sejauh rata-rata 20 cm. Sementara gempa bermagnitudo 7 disebabkan oleh timbulnya zona-pecah yang lebih besar yakni seluas 50 x 25 kilometer persegi dengan lentingan rata-rata sebesar 100 cm. Dan gempa magnitudo 8 disebabkan oleh terbentuknya zona rekahan yang lebih luas lagi, yakni seluas 200 x 100 kilometer persegi, dengan jarak lentingan rata-rata adalah 200 cm. Mulai dari magnitudo 8 atau lebih, gempa tektonik di zona subduksi mendapatkan kehormatan menyandang nama gempa akbar atau gempa megathrust. Nama tersebut melekat karena pada magnitudo itu zona-pecahnya demikian besar dan begitu pula lentingannya.

Dengan sifat pematahan anjak miring, maka pelentingan pada gempa tektonik di zona subduksi selalu diimbangi oleh gerak vertikal (pengangkatan). Bila magnitudo gempanya besar (melebihi 6,5) dan sumber gempanya dangkal (kurang dari 50 kilometer dpl), maka gerak vertikal akan menyebabkan dasar laut di atas sumber gempa terangkat. Pengangkatan dasar laut inilah yang bisa memproduksi tsunami. Yakni saat kolom air laut di atas sumber gempa berolak dan berusaha memulihkan kembali kesetimbangannya. Pada dasarnya semakin besar magnitudo gempa di zona subduksi Jawa, maka akan semakin luas area dasar laut yang terangkat dan semakin besar pula pengangkatannya. Sehingga magnitudo tsunaminya pun akan semakin besar. Tetapi ada perkecualian. Sebuah gempa tektonik di zona subduksi dengan magnitudo yang lebih kecil dapat menghasilkan tsunami yang magnitudonya lebih besar. Inilah gempa-ayun. Mengacu pada kejadian tsunami 1994 dan 2006 di pulau Jawa serta tsunami 2010 di pulau Sumatra, maka perkecualian ini hanya akan terjadi apabila sumber gempa berada di prisma akresi. Dengan kata lain, perkecualian ini hanya muncul apabila episentrum gempa tepat berada di sisi palung.

Tiga Seismic Gap

Subduksi yang membentuk pulau Jawa telah berlangsung sejak 150 juta tahun silam. Dengan usia demikian tua maka subduksi Jawa dapat dikatakan relatif lebih padat dan stabil dibandingkan, katakanlah, subduksi sejenis di Samudera Pasifik seperti subduksi Chile maupun Alaska. Baik subduksi Chile atau Alaska dikenal sebagai pembangkit gempa akbar, masing-masing Gempa Chile 22 Mei 1960 (magnitudo 9,6) dan Gempa Alaska 27 Maret 1964 (magnitudo 9,2). Keduanya juga memproduksi tsunami dahsyat berenergi tinggi sehingga berkemampuan menyeberangi Samudera Pasifik tanpa mengalami susut energi signifikan. Akibatnya ia sanggup menghasilkan kehancuran dan kerusakan signifikan di pesisir yang berseberangan dari sumber tsunaminya, ribuan kilometer jauhnya.

Subduksi Jawa diperkirakan tidak memiliki potensi melepaskan gempa dan tsunami semacam itu. Jika umur subduksi dan kecepatan subduksi dipertimbangkan dengan menggunakan persamaan empiris Kanamori (Kanamori, 1986), maka dapat diprakirakan bahwa magnitudo maksimum dari gempa tektonik di zona subduksi Jawa adalah 7,5. Cukup mengesankan bahwa prakiraan ini ternyata hampir mendekati realitas, seperti diperlihatkan Gempa Banyuwangi 3 Juni 1994 (magnitudo 7,8) dan Gempa Pangandaran 17 Juli 2006 (magnitudo 7,7). Harus digarisbawahi bahwa prakiraan ini berdasar persamaan empiris. Sehingga tetap ada peluang subduksi Jawa untuk melepaskan gempa yang lebih besar bahkan hingga gempa akbar sekalipun.

Apalagi setelah kejadian Gempa akbar Sumatra-Andaman 26 Desember 2004 yang meluluhlantakkan propinsi Aceh dan merenggut korban jiwa sangat besar, terdapat konsensus di di kalangan ilmuwan kegempaan bahwa zona subduksi dimanapun kini harus dipandang berbahaya (berpotensi melepaskan gempa besar/akbar dan tsunaminya) sebelum benar-benar terbukti tak berbahaya. Sebab dalam kasus Gempa Sumatra-Andaman 26 Desember 2004, zona subduksinya pun tergolong tua (yakni 55 hingga 90 juta tahun). Dan persamaan empiris Kanamori memprakirakan magnitudo maksimum dari gempa tektonik yang bisa dilepaskan zona subduksi Aceh berkisar pada 7 hingga 8. Nyatanya Gempa Sumatra-Andaman 26 Desember 2004 justru jauh lebih besar, dengan magnitudo antara 9,1 hingga 9,3. Dari realitas inilah tak mengherankan bila dalam menyusun peta bahaya tsunami dan peta evakuasi tsunami di pesisir selatan pulau Jawa, magnitudo maksimum dari gempa hipotetis yang dijadikan dasar penyusunan peta (dengan multiskenario sumber) adalah 8,5.

Gambar 6. Distribusi episentrum gempa-gempa tektonik di pulau Jawa dan zona subduksinya, terhitung sejak 1 Januari 1980 TU hingga 1 Januari 2015 TU oleh Incorporated Research Institutions for Seismology (IRIS). Data dibatasi hanya pada gempa tektonik dengan kedalaman sumber kurang dari 70 kilometer dpl. Angka 2006 dan 1994 masing-masing menunjukkan dua sumber gempa masalalu di busur luar Jawa, yakni Gempa Pangandaran 17 Juli 2006 dan Gempa Bangyuwangi 3 Juni 1994. Sementara angka 2009 merupakan sumber gempa masalalu di cekungan busur muka, yakni Gempa Tasikmalaya 2 September 2009. Sumber: IRIS, 2015.

Gambar 6. Distribusi episentrum gempa-gempa tektonik di pulau Jawa dan zona subduksinya, terhitung sejak 1 Januari 1980 TU hingga 1 Januari 2015 TU oleh Incorporated Research Institutions for Seismology (IRIS). Data dibatasi hanya pada gempa tektonik dengan kedalaman sumber kurang dari 70 kilometer dpl. Angka 2006 dan 1994 masing-masing menunjukkan dua sumber gempa masalalu di busur luar Jawa, yakni Gempa Pangandaran 17 Juli 2006 dan Gempa Bangyuwangi 3 Juni 1994. Sementara angka 2009 merupakan sumber gempa masalalu di cekungan busur muka, yakni Gempa Tasikmalaya 2 September 2009. Sumber: IRIS, 2015.

Terhitung dari Selat Sunda di sebelah barat hingga Selat Bali di sebelah timur, panjang zona subduksi Jawa adalah 1.100 kilometer. Ini hanya sedikit lebih pendek ketimbang panjang zona rekahan Gempa Sumatra Andaman 26 Desember 2004 (yakni 1.300 kilometer). Bila segenap zona subduksi Jawa terpatahkan dalam satu peristiwa tunggal, dengan perkiraan lebar zona subduksinya 200 kilometer, maka gempa akbar yang dihasilkannya bisa mencapai magnitudo 9,2. Namun berkaca pada peristiwa tsunami (Tsunami 1994 dan Tsunami 2006) serta gempa-gempa besar abad ke-19 TU (Gempa 1840, Gempa 1867 dan Gempa 1875), maka patut diduga bahwa zona subduksi Jawa pun tersegmentasi (tersekat-sekat). Ini serupa dengan zona subduksi Sumatra.

Hanya saja jika segmentasi subduksi Sumatra telah teridentifikasi relatif lebih baik lengkap dengan siklus kegempaan maksimal tiap segmen, yang berulang setiap antara dua hingga enam abad sekali, tidak demikian halnya dengan Jawa. Busur luar Jawa yang sepenuhnya berada di bawah air laut, berbeda dengan busur luar Sumatra yang muncul di sejumlah lokasi sebagai pulau Simeulue, Nias, Enggano dan Kepulauan Mentawai. Akibatnya tiada radas pengukur koordinat geodetik (yakni GPS berpresisi sangat tinggi yang khusus digunakan untuk survei geodesi) yang bisa ditempatkan di busur luar Jawa untuk mengukur naik-turunnya busur luar Jawa dari waktu ke waktu. Juga tidak terdapat karang atol kecil (mikroatol) yang bisa digunakan untuk pengukuran serupa hingga ratusan atau bahkan ribuan tahun ke masa silam. Ketiadaan ini membuat para ilmuwan kegempaan dipaksa bersandar hanya pada lapisan-lapisan endapan tsunami purba. Aktivitas pencarian endapan tsunami purba dan pengukuran waktu pengendapannya (dengan teknik pertanggalan radioaktif) kini sedang gencar-gencarnya dilakukan di pesisir selatan Jawa oleh sejumlah lembaga terkait.

Beberapan temuan yang telah mengemuka misalnya bukti terjadinya peristiwa Tsunami 1921 dan Tsunami 1930 seperti dipaparkan tim ilmuwan gabungan BMKG (Badan Meteorologi Klimatologi dan Geofisika) dan ITB (Institut Teknologi Bandung). Endapan kedua peristiwa tersebut tersingkap baik di pantai Teleng (Kabupaten Pacitan) dan pantai Prigi (Kabupaten Trenggalek). Juga endapan dari peristiwa tsunami besar empat abad silam yang tersingkap di pantai Cikembulan di dekat Pangandaran (Kabupaten Ciamis), seperti ditemukan oleh tim LIPI (Lembaga Ilmu Pengetahuan Indonesia). Tsunami besar yang menghasilkan endapan di Cikembulan dipastikan lebih besar ketimbang Tsunami 2006. Kandidat endapan tsunami purba juga telah ditemukan pada tiga pantai di Kabupaten Gunungkidul dan Pacitan oleh tim gabungan Maipark Indonesia dan ITB. Ketiga lokasi endapan tsunami purba tersebut adalah di pantai Sepanjang (kedalaman 1,8 meter), pantai Baron (kedalaman 1,7 meter) dan pantai Teleng (kedalaman 0,6 meter). Kandidat endapat tsunami purba juga telah diidentifikasi tim BMKG di pesisir Teluk Penyu. Di pantai Logending, endapan tersebut terletak pada jarak sekitar 1 kilometer dari garis pantai.

Gambar 7. Dua contoh endapan paleotsunami. Kiri: endapan paleotsunami di tepi sungai Cikembulan, Pangandaran (Kabupaten Ciamis), produk tsunami besar empat abad silam. Kanan: kandidat endapan paleotsunami di pesisir Teluk Penyu (Kabupaten Cilacap) sejauh sekitar 1 kilometer dari garis pantai (kanan). Sumber: Yulianto dkk, 2010 & Daryono, 2015.

Gambar 7. Dua contoh endapan paleotsunami. Kiri: endapan paleotsunami di tepi sungai Cikembulan, Pangandaran (Kabupaten Ciamis), produk tsunami besar empat abad silam. Kanan: kandidat endapan paleotsunami di pesisir Teluk Penyu (Kabupaten Cilacap) sejauh sekitar 1 kilometer dari garis pantai (kanan). Sumber: Yulianto dkk, 2010 & Daryono, 2015.

Dengan penelitian yang sedang berjalan, tentu masih jauh dari pengambilan kesimpulan tentang segmentasi zona subduksi Jawa dan karakteristiknya. Tetapi pada saat ini, secara kasar, dapatlah dikatakan bahwa zona subduksi Jawa khususnya di busur luar terbagi ke dalam sedikitnya empat segmen berbeda. Segmen pertama terletak di selatan Jawa Barat, membentang dari tepian Selat Sunda hingga ke segmen kedua. Segmen pertama ini dapat disebut sebagai segmen Sunda, karena berhadapan dengan selat Sunda. Sementara segmen kedua, sebutlah segmen Pangandaran, adalah segmen sepanjang sekitar 200 kilometer yang menjadi lokasi sumber Gempa Pangandaran 17 Juli 2006. Segmen ketiga terletak di selatan Jawa Tengah dan DIY serta (sebagian) Jawa Timur. Segmen ketiga ini dapatlah disebut segmen Jawa Tengah. Dan yang keempat adalah segmen sepanjang sekitar 200 kilometer yang menjadi sumber Gempa Banyuwangi 3 Juni 1994. Segmen ini juga bisa dinamakan segmen Banyuwangi.

Di antara keempat segmen tersebut, segmen Pangandaran dan segmen Banyuwangi telah melepaskan energinya dalam gempa tektonik besar yang juga memproduksi tsunami signifikan dan mematikan. Sementara segmen Sunda dan Jawa Tengah belum. Kedua segmen tersebut memiliki perbedaan yang sangat jelas dibanding segmen Pangandaran dan Banyuwangi dalam peta seismisitas regional. Karena jarang terjadi gempa tektonik di segmen Sunda maupun Jawa Tengah, khususnya sejak pencatatan gempa modern dimulai pada 1960-an TU, apabila dibandingkan dengan kawasan sekitarnya. Area di zona subduksi yang jarang mengalami gempa tektonik dikenal sebagai kawasan kesenjangan seismik atau seismic gap. Kawasan semacam ini dicurigai sedang menimbun energi, yang kelak bakal dilepaskan dalam gempa kuat ataupun malah gempa besar.

Gambar 8. Estimasi tiga kawasan kesenjangan seismik (seismic gap) di zona subduksi Jawa, semata berdasar pada rendahnya frekuensi kegempaan di tiga lokasi tersebut. Tiga seismic gap ini memiliki potensi untuk menjadi sumber gempa besar (atau bahkan malah gempa akbar) dan tsunami merusak bagi pesisir selatan pulau Jawa di masa yang akan datang. Sumber: Sudibyo, 2015 berbasis data IRIS, 2015 dan Natawidjaja, 2007.

Gambar 8. Estimasi tiga kawasan kesenjangan seismik (seismic gap) di zona subduksi Jawa, semata berdasar pada rendahnya frekuensi kegempaan di tiga lokasi tersebut. Tiga seismic gap ini memiliki potensi untuk menjadi sumber gempa besar (atau bahkan malah gempa akbar) dan tsunami merusak bagi pesisir selatan pulau Jawa di masa yang akan datang. Sumber: Sudibyo, 2015 berbasis data IRIS, 2015 dan Natawidjaja, 2007.

Seismic gap pada segmen Sunda memiliki panjang sekitar 260 kilometer. Bila lebarnya dianggap 100 kilometer, maka magnitudo maksimum gempa tektonik yang bisa dilepaskannya mencapai 8,4. Sementara seismic gap di segmen Jawa Tengah panjangnya pun hampir sama, yakni sekitar 250 kilometer. Dengan lebar seismic gap ini juga dianggap 100 kilometer, maka magnitudo maksimum gempanya juga berkisar pada angka 8,4. Selain kedua segmen tersebut, ada pula kawasan menyerupai seismic gap namun berposisi lebih dekat ke daratan, yakni di cekungan busur muka. Kawasan tersebut berlokasi di lepas pantai Kabupaten Cilacap, Kebumen, Purworejo dan Kulonprogo. Karena juga berada di selatan Jawa Tengah, maka kawasan seismic gap ini dapatlah disebut sebagai segmen Jawa Tengah 2. Luas seismic gap pada segmen Jawa Tengah 2 lebih kecil, dengan panjang sekitar 150 kilometer dan lebar sekitar 100 kilometer. Dengan dimensi tersebut magnitudo maksimum untuk gempa tektonik yang bisa dilepaskan dari segmen Jawa Tengah 2 bisa mencapai 8,2. Dari angka-angka prakiraan ini dapat dimengerti mengapa ilmuwan kegempaan menempatkan gempa hipotetik dengan magnitudo maksimum 8,5 sebagai basis penyusunan peta bahaya tsunami dan peta evakuasi tsunami di pesisir selatan pulau Jawa.

Dengan ketiga seismic gap tersebut, maka pulau Jawa khususnya bagian selatan lebih rentan akan guncangan oleh gempa tektonik kuat atau malah gempa besar. Pesisir selatan pulau Jawa juga tetap berpotensi dilimbur tsunami. Bila segmen Sunda melepaskan energinya, tsunami merusak yang dibentuknya berpotensi menghantam pesisir selatan Jawa Barat, mulai dari Ujungkulon hingga Garut. Sebaliknya bila segmen Jawa Tengah yang melepaskan energinya, tsunami merusak berpotensi menghajar garis pantai selatan Jawa Tengah dan DI Yogyakarta serta sebagian Jawa Timur. Yakni mulai dari Cilacap hingga Blitar. Pesisir selatan Jawa Tengah dan DIY khususnya di antara Cilacap hingga Bantul juga berpotensi terkena hantaman tsunami merusak bilamana segmen Jawa Tengah 2 melepaskan energinya.

Gambar 9. Peta tingkat risiko bencana tsunami bagi pulau Jawa seperti dipublikasikan Badan Nasional Penanggulangan Bencana. Nampak jelas hampir segenap kabupaten/kota yang terletak di pesisir selatan pulau Jawa berisiko tinggi terhadap bencana tsunami. Sumber: BNPB, 2012.

Gambar 9. Peta tingkat risiko bencana tsunami bagi pulau Jawa seperti dipublikasikan Badan Nasional Penanggulangan Bencana. Nampak jelas hampir segenap kabupaten/kota yang terletak di pesisir selatan pulau Jawa berisiko tinggi terhadap bencana tsunami. Sumber: BNPB, 2012.

Meski karakteristik lebih lengkap dari zona subduksi Jawa belum sepenuhnya dipahami, namun kemungkinan eksistensi tiga seismic gap tersebut telah memberikan gambaran risiko pesisir selatan pulau Jawa terhadap ancaman bencana alam gempa bumi tektonik (khususnya gempa kuat atau bahkan gempa besar) dan bencana tsunami. Dengan risiko tersebut, langkah-langkah mitigasi pun mulai disusun. Khususnya dalam hal mitigasi bencana tsunami, yang memang lebih terprediksi, dalam aras mitigasi non fisik. Kabupaten dan kota yang berbatasan langsung dengan garis pantai selatan pulau Jawa telah mulai menyusun peta bahaya tsunami dan peta evakuasi tsunaminya masing-masing.

Secara akumulatif BNPB (Badan Nasional Penanggulangan Bencana) mencatat terdapat 23 kabupaten/kota yang berisiko terkena bencana tsunami di pulau Jawa. Secara akumulatif terdapat hampir 1,7 juta jiwa yang tinggal di pesisir kabupaten/kota yang berisiko tersebut. Berdasarkan jumlah jiwa yang berpotensi terpapar tsunami, Kota Cilacap (propinsi Jawa Tengah) adalah kawasan paling berisiko tsunami di pulau Jawa. Disusul dengan Kabupaten kebumen (juga di propinsi Jawa Tengah) pada peringkat kedua.

tsunami-jawa_kabupaten-terpaparBahan acuan:
Kementerian Pekerjaan Umum dan Perumahan Rakyat; 2006; Rehabilitasi Bencana Alam Gempa Bumi dan Tsunami di Selatan Pulau Jawa ; 25 Juli 2006

Anugrah dkk; 2015; A Preliminary Study of Paleotsunami Deposit Along the South Coast of East Java: Pacitan-Banyuwangi; AIP Conf. Proc. 1658, 050003 (2015). Bandung, Indonesia, 11–12 November 2014.

Adriansyah dkk; 2011; Pre-eliminary Results of Paleotsunami Investigation on Gunungkidul and Pacitan; Joint Convention IAGI-HAGI 2011, Makassar, Indonesia, 26-29 September 2011.

Kanamori; 2006; Seismological Aspects of the December 2004 Great Sumatta-Andaman Earthquake; Earthquake Spectra, 22 (S3). S1-S12. ISSN 8755-2930.

BNPB; 2012; Masterplan Pengurangan Risiko Bencana Tsunami; Badan Nasional Penanggulangan Bencana, Juni 2012.

Natawidjaja; 2007; Tectonic Setting Indonesia dan Pemodelan Gempa dan Tsunami; Pelatihan Pemodelan Tsunami Run-up, Kementerian Negara Riset dan Teknologi RI, 20 Agustus 2007.

Lavigne dkk; 2007; Field Observations of the 17 July 2006 Tsunami in Java; Nat. Hazards Earth Syst. Sci., 7 (2007), 177–183.

Synolakis dkk; 1995; Damage, Conditions of East Java 1994 of Tsunami Analyzed. Eos. Trans. AGU, vol. 76 no. 26 (June 1995), 257 & 261-261.

Yulianto dkk; 2010; Where the First Wave Arrives in Minutes, Indonesian Lessons on Surviving Tsunamis Near Their Sources; Intergovernmental Oceanographic Commission, United Nations Educational Scientific and Cultural Organisation, IOC-Brochure 2010-4.