Kupas-Hoax: Bila Bumi Datar, Maka Arah Kiblat di Indonesia (Hampir) ke Utara

Ada sebuah riakan yang sedang mencoba menggeliat pada  semesta Indonesia dalam setahun terakhir. Riakan tersebut bertajuk Bumi datar. Ya Bumi datar, gagasan yang sejatinya telah demikian lama ditinggalkan peradaban manusia seiring melimpahnya bukti-bukti ilmiah gagasan oposannya (yakni Bumi bulat) dalam rentangan masa. Terlebih di masakini, tatkala penerbangan antariksa sudah menjadi rutinitas khususnya bagi sejumlah bangsa dan ilmu pengetahuan telah melangkah demikian jauh keluar dari Bumi kita dan lingkungannya mengeksplorasi semesta yang seakan tak bertepi. Kini kita tak lagi memahami Bumi sebagai raksasa di jagat raya yang kecil, namun hanyalah setitik debu di sudut alam raya yang demikian luas.

Gagasan Bumi datar sejatinya tak pernah benar-benar hilang meski telah tersisih sepenuhnya dari dunia ilmu pengetahuan semenjak berabad silam. Ia tetap hidup dan mendapat asupan nutrisi memadai dalam sejumlah komunitas kecil yang ultra konservatif dan cenderung antisains. Terutama pada sekte-sekte Kristiani tertentu yang tumbuh subur di daratan Amerika Serikat. Gagasan itu hidup dalam lingkungan yang dipenuhi nada konspirasi akan segala hal, termasuk perkembangan ilmu pengetahuan. Dalam lingkungan tersebut, segala perkembangan maju ilmu pengetahuan yang diraih umat manusia pada zaman ini diklaim tak lebih dari pembohongan massif hasil konspirasi para cendekiawan sejagat.

Di tahun 1893 Tarikh Umum (TU), seorang konservatif bernama Orlando Ferguson menggambar peta Bumi datar. Peta inilah yang menjadi pijakan gagasan Bumi datar pada saat ini. Bedanya, Orlando Ferguson mengklaim Bumi datar berbentuk kotak dengan cekungan Bulat di tengahnya. Sementara gagasan Bumi datar masa kini secara diam-diam menghilangkan bentuk kotak itu.

Gambar 1. Peta Bumi datar menurut Orlando Ferguson, berangka tahun 1893 TU. Dalam peta yang bernafas Kristiani ini, seperti tersurat dari kutipan ayat-ayat Injil, Bumi dianggap berbentuk persegi panjang yang masing-masing sudutnya dijaga sesosok malaikat. Namun seluruh daratan dan lautan terletak dalam cekungan berbentuk lingkaran di dalam kotak. Sumber: Ferguson, 1893 dalam arsip Library of Congress, United States.

Gambar 1. Peta Bumi datar menurut Orlando Ferguson, berangka tahun 1893 TU. Dalam peta yang bernafas Kristiani ini, seperti tersurat dari kutipan ayat-ayat Injil, Bumi dianggap berbentuk persegi panjang yang masing-masing sudutnya dijaga sesosok malaikat. Namun seluruh daratan dan lautan terletak dalam cekungan berbentuk lingkaran di dalam kotak. Sumber: Ferguson, 1893 dalam arsip Library of Congress, United States.

Revolusi teknologi informasi dengan hadirnya internet di awal abad ke-21 membuat gagasan tersebut pun mulai tersebar keluar dalam aneka rupa cerita dan multimedia. Ia pun mulai disambut oleh kalangan di luar komunitas klasiknya, termasuk sejumlah pemeluk Islam. Bagi sejumlah kalangan Muslim, gagasan Bumi datar dirasa cocok dengan terjemah literal sejumlah ayat dalam al-Qur’an. Ia juga dianggap bersesuaian dengan pendapat sejumlah penafsir (mufassirin) Qur’an era klasik. Lebih lanjut lagi, gagasan Bumi datar dianggap bisa melengkapi gagasan aneh lainnya, yakni Matahari mengelilingi Bumi, sekaligus memperkukuh sikap ‘anti hegemoni Barat’ yang selama ini digaungkan.

Gagasan Bumi datar zaman ini mendeskripsikan bahwa Bumi adalah datar. Yup datar seperti papan raksasa. Titik pusat papan adalah kutub utara, sementara kutub selatan berupa tembok es yang membatasi bidang Bumi. Tembok es ini diklaim dijaga sangat ketat oleh sejumlah negara. Sementara langit berbentuk kubah dengan ketinggian tertentu. Matahari hanya berjarak 5.000 kilometer di atas paras Bumi datar. Matahari beredar dalam lintasannya yang mengelilingi proyeksi vertikal kutub utara menuju kubah langit. Demikian halnya Bulan dan benda-benda langit lainnya. Baik Bulan maupun Matahari diklaim tidaklah berukuran besar. Bersama bintang dan benda-benda langit lainnya, Matahari dan Bulan diklaim sebagai serakan api di dalam kubah langit.

Penggambaran akan bentuk Bumi yang datar dan dilingkupi (ditutupi) oleh kubah langit itu sekilas mengingatkan kita pada dongeng mitologis rakyat Jermania tentang raksasa Ymir. Ymir sang raksasa yang kemudian tewas dan tubuhnya membentuk daratan (datar). Sedangkan batok kepalanya menjadi kubah raksasa yang menutupi daratan. Sehingga daratan itu gelap sepenuhnya. Demikian halnya deskripsi Matahari, Bulan, bintang dan benda-benda langit sebagai serakan api untuk menghias dan menerangi kubah langit, yang sekali lagi mirip sekali dengan penggambaran mitologi yang sama. Dongeng rakyat Jermania itu menuturkan, agar daratan (Bumi) tidak kegelapan maka para dewa memungut api Muspelheim dan menyebarkannya ke dalam kubah batok kepala Ymir hingga menjadi percikan-percikan.

Gambar 2. Peta Bumi datar modern. Sejatinya ini adalah peta Bumi dalam proyeksi azimuthal sama-jarak (equidistant), namun oleh pemuja model Bumi datar dibajak dan diklaim sebagai gambaran sesungguhnya tentang Bumi. Perhatikan bahwa bentuk peta ini hampir sama persis dengan Peta Ferguson 1893, hanya saja pemuja model Bumi datar modern diam-diam menghilangkan bentuk persegi panjang di luar lingkaran. Sumber: Anonim, 2016.

Gambar 2. Peta Bumi datar modern. Sejatinya ini adalah peta Bumi dalam proyeksi azimuthal sama-jarak (equidistant), namun oleh pemuja model Bumi datar dibajak dan diklaim sebagai gambaran sesungguhnya tentang Bumi. Perhatikan bahwa bentuk peta ini hampir sama persis dengan Peta Ferguson 1893, hanya saja pemuja model Bumi datar modern diam-diam menghilangkan bentuk persegi panjang di luar lingkaran. Sumber: Anonim, 2016.

Baiklah, tulisan ini hanya ingin menekankan pada satu aspek semata. Yakni bagaimana arah kiblat Umat Islam khususnya di Indonesia dan Asia tenggara pada umumnya terkait gagasan Bumi datar. Riset yang saya lakukan, yang akan dipaparkan secara ringkas di bawah ini, menyimpulkan dengan gamblang betapa Umat Islam di Indonesia harus dipaksa menghadapkan wajah lebih ke utara pada saat menunaikan ibadah shalat jika mempercayai gagasan Bumi datar. Konsekuensinya sangat serius, sebab dengan demikian maka arah kiblat di Indonesia akan dipaksa melenceng mulai dari sebesar +14° di Banda Aceh hingga sebesar +38° di Merauke. Dalam kata-kata lain, jika kita mempercayai gagasan Bumi datar maka kita harus memaksa arah kiblat untuk melenceng sejauh antara 1.800 kilometer (Banda Aceh) hingga 4.300 kilometer (Merauke) dari lokasi Ka’bah yang sesungguhnya.

Konsep Arah Kiblat Bumi Datar

Menghadap kiblat merupakan satu hal yang esensial bagi Umat Islam sejagat. Sebab merupakan bagian dari syarat sahnya shalat. Dan menghadap kiblat sangat erat hubungannya dengan arah kiblat. Dalam situasi darurat yakni tatkala seorang Muslim mengalami kondisi buta arah, terdapat keringanan untuk menentukan arah kiblat sendiri ke arah manapun yang diyakini. Namun tidak demikian halnya bila ia tahu kedudukan dan arah mataangin yang tepat di lokasinya. Teladan dan tutur dari Rasulullah SAW menjadi pegangan betapa pentingnya menentukan arah kiblat secara tepat hingga ke tingkatan tertentu.

Gambar 3. Ilustrasi peristiwa pemindahan kiblat pada saat perintah berkiblat ke Ka'bah diturunkan, dengan latar belakang citra satelit Masjid Qiblatain masakini di kotasuci Madinah (Saudi Arabia). Sebelum surat al-Baqarah ayat 144 diturunkan, Rasulullah SAW dan para sahabat menunaikan shalat Dhuhur berjamaah dengan menghadap ke Masjidil Aqsha (utara). Namun begitu ayat tersebut diturunkan, mereka beralih dengan menghadap ke Ka'bah/Masjidil Haram (selatan) tanpa membatalkan shalat. Sumber: Sudibyo, 2012.

Gambar 3. Ilustrasi peristiwa pemindahan kiblat pada saat perintah berkiblat ke Ka’bah diturunkan, dengan latar belakang citra satelit Masjid Qiblatain masakini di kotasuci Madinah (Saudi Arabia). Sebelum surat al-Baqarah ayat 144 diturunkan, Rasulullah SAW dan para sahabat menunaikan shalat Dhuhur berjamaah dengan menghadap ke Masjidil Aqsha (utara). Namun begitu ayat tersebut diturunkan, mereka beralih dengan menghadap ke Ka’bah/Masjidil Haram (selatan) tanpa membatalkan shalat. Sumber: Sudibyo, 2012.

Hal itu dapat dilihat misalnya dalam peristiwa berbaliknya Rasulullah SAW dan para sahabat di Madinah dari semula menghadap ke utara menjadi menghadap ke selatan tatkala menunaikan ibadah shalat Dhuhur bersamaan dengan turunnya ketetapan  Ka’bah adalah kiblat Umat Islam. Begitu halnya dengan perintah Rasulullah SAW kepada sahabat Wabir ibn Yuhannas al-Khuza’i RA yang hendak berangkat ke Yaman. Perintah tersebut menekankan bahwa arah kiblat bagi penduduk kota adalah dengan jalan memandang lurus ke arah Gunung Jabal Dayn tatkala mereka berdiri di Bathan, salah satu bagian kota yang saat itu berupa taman. Pengukuran modern di lokasi tersebut melalui fenomena Istiwa’ Azzam memperlihatkan kebenaran sabda Rasulullah SAW, dimana antara taman Bathan dengan Gunung Jabal Dayn dan Ka’bah tepat berada dalam satu garis lurus.

Gambar 4. Citra satelit yang menggambarkan bagaimana jika penduduk kota San'a berdiri di taman Bathan (kini Masjid Jami' al-Kabir) dengan menghadap ke arah Gunung Jabal Dayn (atas), maka pada hakikatnya mereka tepat menghadap ke Ka'bah (bawah). Garis lurus merupakan garis sepanjang 815 kilometer yang menghubungkan taman Bathan dengan Ka'bah, dimana garis tersebut tepat melintas di lokasi Gunung Jabal Dayn. Sumber: Sudibyo, 2012.

Gambar 4. Citra satelit yang menggambarkan bagaimana jika penduduk kota San’a berdiri di taman Bathan (kini Masjid Jami’ al-Kabir) dengan menghadap ke arah Gunung Jabal Dayn (atas), maka pada hakikatnya mereka tepat menghadap ke Ka’bah (bawah). Garis lurus merupakan garis sepanjang 815 kilometer yang menghubungkan taman Bathan dengan Ka’bah, dimana garis tersebut tepat melintas di lokasi Gunung Jabal Dayn. Sumber: Sudibyo, 2012.

Arah kiblat pada dasarnya merupakan arah menuju ke kiblat yang mengikuti jarak terpendek antara sebuah tempat terhadap kiblat. Pengertian arah disini sejatinya merupakan pengertian umum. Misalnya seseorang yang sedang berada di kota Bandung hendak mencari arah Jakarta. Maka arah yang logis ditempuhnya adalah ke barat laut, sebab itulah jarak terpendek antara Bandung dengan Jakarta  secara geometris. Jika ia mengambil arah yang berlawanan, yakni ke tenggara, maka ia justru mengambil jarak yang terjauh. Apabila tetap memaksakan diri ke tenggara, ia tetap akan tiba di Jakarta namun dalam waktu tempuh yang amat sangat lama. Sebaliknya jika ia mengambil arah ke utara atau ke selatan maka sampai kapanpun ia mustahil tiba di Jakarta. Karena arahnya keliru.

Dalam perspektif geometri, cara menentukan arah dari suatu titik menuju ke suatu tempat adalah dengan menggunakan segitiga. Baik di permukaan datar (seperti halnya gagasan Bumi datar) maupun di permukaan lengkung. Dari segitiga tersebut, maka arah dapat ditentukan sebagai sebuah sudut yang dihitung dari garis referensi universal (misalnya arah Utara sejati). Nilai arah diturunkan dari persamaan-persamaan trigonometri, dimana untuk permukaan datar berlaku trigonometri segitiga planar (datar) sementara pada permukaan melengkung seperti bola berlaku trigonometri segitiga bola. Cendekiawan Muslim di era keemasannya memberikan sumbangan yang sangat signifikan dalam pembentukan pengetahuan trigonometri yang kini kita pahami dalam geometri.

Gambar 5. Ilustrasi arah ke Jakarta jika hendak berangkat dari Bandung dalam peta. Panah kuning utuh menunjukkan jarak terdekat Bandung-Jakarta yang menjadikannya arah ke Jakarta paling rasional, yakni ke barat laut. Panah kuning putus-putus menunjukkan jarak terjauh Bandung-Jakarta, rute yang tidak rasional namun masih akan tiba di Jakarta dalam waktu yang sangat lama (ke tenggara). Sebaliknya kedua panah merah utuh menunjukkan arah ke Jakarta yang mustahil, karena sampai kapanpun bila mengikuti kedua arah tersebut maka takkan tiba di tempat tujuan. Sumber: Sudibyo, 2016 dengan basis Google Maps.

Gambar 5. Ilustrasi arah ke Jakarta jika hendak berangkat dari Bandung dalam peta. Panah kuning utuh menunjukkan jarak terdekat Bandung-Jakarta yang menjadikannya arah ke Jakarta paling rasional, yakni ke barat laut. Panah kuning putus-putus menunjukkan jarak terjauh Bandung-Jakarta, rute yang tidak rasional namun masih akan tiba di Jakarta dalam waktu yang sangat lama (ke tenggara). Sebaliknya kedua panah merah utuh menunjukkan arah ke Jakarta yang mustahil, karena sampai kapanpun bila mengikuti kedua arah tersebut maka takkan tiba di tempat tujuan. Sumber: Sudibyo, 2016 dengan basis Google Maps.

Dalam hal arah kiblat, baik di permukaan datar maupun melengkung, kita membutuhkan informasi tentang tiga titik. Yakni titik lokasi yang hendak kita tentukan arah kiblatnya, lalu titik Kutub Utara dan selanjutnya titik Makkah (dimana Ka’bah berada). Informasi terkait titik-titik tersebut dicerminkan oleh koordinat geografisnya. Dalam gagasan Bumi datar, masalah koordinat geografis ini lumayan ribet mengingat koordinat garis lintang dan garis bujur yang tersaji pada saat ini adalah yang bertumpu pada konsep Bumi bulat. Karena itu saya mengembangkan sistem koordinat tersendiri dengan bertumpu pada koordinat Cartesian, yang lantas dikorelasikan (disetarakan) dengan koordinat garis lintang dan garis bujur.

Dengan telah diketahuinya koordinat titik-titik Kutub Utara dan Makkah, maka tinggal berkonsentrasi pada penentuan nilai sudut arah. Dalam gagasan Bumi datar (atau secara matematis disebut model Bumi datar), karena berbasis trigonometri segitiga planar maka digunakan aturan cosinus sebagai berikut :

Gambar 6. Geometri segitiga planar, koordinat dan persamaan aturan cosinus untuk menghitung arah kiblat model Bumi datar. Sumber: Sudibyo, 2016.

Gambar 6. Geometri segitiga planar, koordinat dan persamaan aturan cosinus untuk menghitung arah kiblat model Bumi datar. Sumber: Sudibyo, 2016.

Sedangkan pada konsep Bumi bulat (atau secara matematis disebut model Bumi bulat), maka basisnya adalah trigonometri segitiga bola dengan salah satu rumus yang digunakan sebagai berikut :

Gambar 7. Geometri segitiga bola, koordinat dan persamaan untuk menghitung arah kiblat model Bumi bulat. Sumber: Sudibyo, 016 dengan basis Google Earth.

Gambar 7. Geometri segitiga bola, koordinat dan persamaan untuk menghitung arah kiblat model Bumi bulat. Sumber: Sudibyo, 016 dengan basis Google Earth.

Penelitian

Area penelitian dibatasi pada  bagian Bumi yang terletak di antara garis lintang 15° LU hingga 15° LS dan di antara garis bujur 90° BT hingga 150° BT. Area tersebut mencakup segenap Indonesia dan sejumlah negara tetangga seperti Malaysia, Brunei Darussalam, Filipina, Singapura, sebagian Papua Nugini, sebagian Thailand, sebagian Myanmar, sebagian Vietnam, sebagian India (khususnya kepulauan Andaman dan Nicobar) dan sedikit Australia bagian utara.

Nilai arah kiblat dalam penelitian ini adalah nilai sudut antara arah Utara sejati dengan arah menuju kiblat di lokasi tersebut. Nilai itu lantas dinyatakan sesuai standar astronomi sebagai nilai azimuth. Azimuth adalah busur yang ditarik dari arah Utara sejati menuju ke timur hingga tiba di posisi arah kiblat yang dimaksud. Dalam sistem ini, Utara sejati memiliki azimuth 0 (nol) atau 360, sementara Timur berazimuth 90, Selatan berazimuth 180 dan Barat berazimuth 270. Jika misalnya arah kiblat adalah 25° ke sebelah utara dari arah Barat, maka dalam sistem azimuth dinyatakan sebagai azimuth kiblat 295.

Hasil perhitungan azimuth kiblat model Bumi datar dan perbandingannya dengan azimuth kiblat model Bumi bulat untuk area penelitian dinyatakan dalam tabel berikut :fe-tabel1_perbandingan-aq

Terlihat jelas ada selisih yang signifikan antara azimuth kiblat model Bumi datar dengan azimuth kiblat dalam konsep Bumi bulat. Dimana seluruh nilai azimuth kiblat Bumi datar adalah lebih besar. Selisihnya berkisar mulai yang terkecil +8,3° di koordinat 15° LU 105° BT hingga yang terbesar  +46,3° di koordinat 15° LS 150° BT (tanda + menunjukkan nilai azimuth kiblat Bumi datar lebih besar ketimbang azimuth kiblat Bumi bulat).

Temuan menarik lainnya adalah pola pada garis-garis isokiblatnya. Garis isokiblat adalah sebuah garis yang menghubungkan titik-titik di paras Bumi yang memiliki nilai azimuth kiblat yang persis sama. Garis-garis isokiblat untuk area penelitian baik dalam model Bumi datar maupun model Bumi bulat disajikan sebagai berikut :

Gambar 8. Perbandingan garis-garis isokiblat untuk area penelitian antara model Bumi datar (atas) dan model Bumi bulat (bawah). Perhatikan kedua model menghasilkan garis-garis isokiblat dengan orientasi yang sangat berbeda. Perbedaan tersebut menjadi indikasi bahwa arah kiblat dalam model Bumi datar memiliki perbedaan dengan arah kiblat dalam model Bumi bulat. Sumber: Sudibyo, 2016.

Gambar 8. Perbandingan garis-garis isokiblat untuk area penelitian antara model Bumi datar (atas) dan model Bumi bulat (bawah). Perhatikan kedua model menghasilkan garis-garis isokiblat dengan orientasi yang sangat berbeda. Perbedaan tersebut menjadi indikasi bahwa arah kiblat dalam model Bumi datar memiliki perbedaan dengan arah kiblat dalam model Bumi bulat. Sumber: Sudibyo, 2016.

Terlihat jelas bahwa pola garis-garis isokiblat model Bumi datar jauh berbeda dengan garis isokiblat model Bumi bulat. Dalam model Bumi datar, orientasi garis isokiblatnya adalah seragam dari barat daya menuju timur laut. Sementara dalam model Bumi bulat, orientasi garis isokiblatnya bervariasi dan unik. Sebagian berorientasi dari selatan dan tenggara menuju barat laut. Sebagian lagi dari utara dan timur laut menuju barat laut. Bahkan ada yang berorientasi dari selatan menuju tenggara dan juga dari utara menuju tenggara. Keunikan ini terjadi karena Indonesia menjadi salah satu dari hanya dua tempat unik di Bumi terkait arah kiblat. Yakni karena memiliki lokasi di garis khatulistiwa yang tepat berjarak 90° (seperempat belahan bola Bumi) dari Ka’bah. Lokasi tersebut berada di Indonesia bagian timur , tepatnya di garis bujur 130° BT yang terletak di dekat pulau Waigeo dan termasuk ke dalam kawasan kabupaten Raja Ampat (Papua Barat). Satu titik istimewa lainnya terletak di muara Sungai Amazon (Brazil) di benua Amerika bagian selatan.

Selisih angka yang signifikan dalam nilai azimuth kiblat dan perbedaan mendasar orientasi garis-garis isokiblatnya memperlihatkan bahwa arah kiblat model Bumi datar adalah berbeda dibandingkan dengan arah kiblat model Bumi bulat. Dengan kata lain, meski sama-sama berkiblat ke titik yang satu dalam hal ini Ka’bah atau Masjidil Haram atau wilayah tanah haram Makkah al-Mukarramah jika mengacu pada klasifikasi kiblat (lihat Sudibyo, 2012), namun arah kiblat model Bumi datar ternyata berbeda dibanding arah kiblat model Bumi bulat. Perbedaan antara keduanya berimplikasi pada satu konsekuensi pahit: tentu ada model yang benar sementara model lainnya keliru.

Maka, mana yang benar? Apakah arah kiblat model Bumi datar? Ataukah arah kiblat model Bumi bulat?

Bumi Datar Keliru

Astronomi atau ilmu falak tak hanya sekedar berkemampuan menghasilkan model dan menyajikan perhitungan matematis terkait azimuth kiblat, baik dalam model Bumi datar maupun model Bumi bulat. Melainkan juga berkemampuan mengujinya secara empiris, berdasarkan pengukuran langsung di lapangan. Ada beragam cara guna mengukur arah kiblat bagi suatu tempat. Pada prinsipnya cara pengukuran arah kiblat adalah dengan mengukur kedudukan arah-arah mataangin tertentu di lokasi tersebut, pengukuran yang bisa dilakukan misalnya dengan bantuan kompas magnetik ataupun dengan posisi benda langit.

Pengukuran dengan kompas magnetik memungkinkan kita untuk mengetahui kedudukan arah Utara sejati, tentunya setelah faktor-faktor pengganggu dieliminasi mulai dari deklinasi magnetik hingga badai Matahari. Hal serupa juga dapat dilakukan dengan pengukuran terhadap posisi benda-benda langit. Namun dalam hal benda langit, terdapat satu keistimewaan. Yakni kita bisa memperoleh langsung nilai azimuth kiblat suatu tempat manakala benda langit tersebut tepat berada di titik zenith kiblat. Atau dalam bahasa ilmu falak, saat benda langit tersebut mengalami Istiwa’ Azzam di kiblat.

Gambar 9. Citra fenomena Istiwa' Azzam di kota Surakarta (Jawa Tengah) pada 13 Oktober 2010 TU pada radas jam Matahari bencet) di Masjid Tegalsari. Jam Matahari ini memungkinkan berkas sinar Matahari masuk ke dalam masjid sehingga proyeksinya bisa disaksikan secara langsung di lantai masjid. Nampak proyeksi cakram Matahari tepat sedang menyentuh titik proyeksi zenith Surakarta, fenomena yang hanya terjadi dua kali setahun di tempat itu. Sumber: Sugeng Riyadi, 2010.

Gambar 9. Citra fenomena Istiwa’ Azzam di kota Surakarta (Jawa Tengah) pada 13 Oktober 2010 TU pada radas jam Matahari bencet) di Masjid Tegalsari. Jam Matahari ini memungkinkan berkas sinar Matahari masuk ke dalam masjid sehingga proyeksinya bisa disaksikan secara langsung di lantai masjid. Nampak proyeksi cakram Matahari tepat sedang menyentuh titik proyeksi zenith Surakarta, fenomena yang hanya terjadi dua kali setahun di tempat itu. Sumber: Sugeng Riyadi, 2010.

Salah satu benda langit yang berkemampuan seperti itu adalah Matahari. Setiap tahun Tarikh Umum, yakni pada tanggal 28 Mei pukul 12:16 waktu Arab Saudi dan tanggal 16 Juli pukul pukul 12:26 waktu Arab Saudi, Matahari akan berkedudukan di titik zenith kotasuci Makkah. Hal itu berlaku untuk tahun basitas (tahun biasa), sementara untuk tahun kabisat tanggalnya maju sehari lebih awal. Pada saat itu sebuah benda panjang (misal tiang) yang didirikan demikian rupa di kotasuci Makkah sehingga berkedudukan tegak lurus paras air rata-rata setempat akan kehilangan bayang-bayangnya tepat pada saat Matahari berada di titik zenith Makkah.

Inilah hari tanpa bayang Matahari atau Istiwa’ Azzam di kotasuci Makkah. Fenomena menghilangnya bayang-bayang akibat Istiwa’ Azzam sejatinya tidak hanya terjadi di kotasuci Makkah saja. Namun juga dialami setiap tempat dimanapun di Bumi sepanjang terletak di antara garis lintang 23° 27′ LU hingga 23° 27′ LS. Misalnya kota Kebumen (propinsi Jawa Tengah), dengan posisinya di garis bujur 7° 40′ LS maka ia juga mengalami situasi hari tanpa bayang Matahari yang terjadi setiap tanggal 1 Maret dan 13 Oktober. Jadi tak hanya titik-titik lokasi di sepanjang garis khatulistiwa’ saja yang bisa mengalaminya seperti  tuturan urban legend.

Gambar 10. Ilustrasi fenomena Hari Kiblat, yakni Istiwa' Azzam di Ka'bah. Tatkala Matahari dalam kondisi demikian, yang terjadi dua kali setiap tahunnya, maka bayang-bayang obyek yang terpasang tegaklurus paras air rata-rata setempat akan tepat berimpit dengan azimuth kiblat setempat. Fenomena ini juga menyajikan peluang pengukuran arah kiblat dengan ketelitian sangat tinggi. Sumber: Mutoha Arkanuddin, 2006.

Gambar 10. Ilustrasi fenomena Hari Kiblat, yakni Istiwa’ Azzam di Ka’bah. Tatkala Matahari dalam kondisi demikian, yang terjadi dua kali setiap tahunnya, maka bayang-bayang obyek yang terpasang tegaklurus paras air rata-rata setempat akan tepat berimpit dengan azimuth kiblat setempat. Fenomena ini juga menyajikan peluang pengukuran arah kiblat dengan ketelitian sangat tinggi. Sumber: Mutoha Arkanuddin, 2006.

Pada saat kotasuci Makkah mengalami Istiwa’  Azzam, maka pada dimanapun tempatnya di Bumi sepanjang tersinari cahaya Matahari pada saat itu akan mengalami situasi unik. Yakni bayang-bayang benda yang didirikan tegaklurus paras air rata-rata setempat akan tepat berimpit dengan arah kiblat setempat. Inilah yang kemudian menjadi populer sebagai Hari Kiblat. Hari Kiblat adalah waktu yang istimewa karena hanya pada saat itu pengukuran kiblat dapat dilaksanakan dengan akurasi sangat tinggi dengan cara yang paling sederhana. Dengan membandingkan nilai hasil pengukuran azimuth kiblat pada saat Hari Kiblat terhadap hasil perhitungan azimuth kiblat, maka akan dapat diuji mana yang lebih tepat apakah model Bumi datar ataukah model Bumi bulat.

Berdasarkan pengukuran di dua lokasi berbeda dalam waktu yang berbeda pula, diketahui bahwa arah kiblat model Bumi bulat adalah konsisten. Untuk kota Kebumen (Jawa Tengah) misalnya, hasil perhitungan menunjukkan azimuth kiblatnya 295. Pengukuran dengan menggunakan bayang Matahari pada saat Hari Kiblat juga menghasilkan azimuth kiblat 295, dalam batas ketelitian pengukuran setelah dikomparasikan dengan kompas magnetik. Demikian halnya di Jakarta. Perhitungan menunjukkan azimuth kiblatnya juga 295. Sementara pengukuran pengukuran bayang Matahari saat Hari Kiblat juga menghasilkan azimuth kiblat 295.

Sebaliknya arah kiblat model Bumi datar sangat tidak konsisten. Perhitungan di kota Kebumen menghasilkan nilai azimuth kiblat model Bumi datar sebesar 320. Namun saat diukur dengan bayang Matahari pada saat Hari Kiblat, ternyata bayang-bayang tersebut (yang berimpit dengan arah kiblat Kebumen) jatuh pada azimuth 295. Demikian halnya di Jakarta. Perhitungan menghasilkan nilai azimuth kiblat sebesar 318, namun pengukuran bayang Matahari saat Hari Kiblat menghasilkan bayang-bayang (yang adalah arah kiblat Jakarta) yang jatuh pada azimuth 295.

Gambar 11. Diagram azimuth kiblat model Bumi datar (warna biru) dan model Bumi bulat (warna merah) untuk lokasi Kebumen (propinsi Jawa Tengah) dan Jakarta (propinsi DKI Jakarta) beserta hasil perhitungan dan pengukuran pada saat Hari Kiblat. Terlihat jelas bahwa hasil pengukuran hanya bersesuaian dengan perhitungan arah kiblat dalam model Bumi bulat. Sementara perhitungan dengan model Bumi datar memiliki selisih cukup besar dibanding hasil pengukurannya. Sumber: Sudibyo, 2016.

Gambar 11. Diagram azimuth kiblat model Bumi datar (warna biru) dan model Bumi bulat (warna merah) untuk lokasi Kebumen (propinsi Jawa Tengah) dan Jakarta (propinsi DKI Jakarta) beserta hasil perhitungan dan pengukuran pada saat Hari Kiblat. Terlihat jelas bahwa hasil pengukuran hanya bersesuaian dengan perhitungan arah kiblat dalam model Bumi bulat. Sementara perhitungan dengan model Bumi datar memiliki selisih cukup besar dibanding hasil pengukurannya. Sumber: Sudibyo, 2016.

Analisis lebih lanjut memperlihatkan bahwa untuk kota Kebumen, bayang Matahari saat Istiwa’ Azzam akan berada di azimuth 320 hanya jika posisi kotasuci Makkah jauh lebih ke utara dibanding sekarang. Demikian halnya untuk kota Jakarta. Ekstrapolasi dari azimuth 320 (Kebumen) dan azimuth 318 (Jakarta) menghasilkan titik koordinat di sekitar Laut Kaspia, berdekatan dengan negara bagian  Chechnya (Rusia). Dengan kata lain, agar hasil pengukuran bayang Matahari saat Istiwa’ Azzam bersesuaian dengan hasil perhitungan azimuth kiblat model Bumi datar untuk Jakarta dan Kebumen, maka posisi Ka’bah harus berada di sekitar Laut Kaspia. Tentu ini mustahil.  Di sisi yang lain, Matahari juga tidak mungkin mengalami Istiwa’ Azzam di atas Laut Kaspia, mengingat gerak semu tahunan Matahari membatasinya hanya bisa mengalami Istiwa’ Azzam di  antara Garis Balik Utara atau Tropic of Cancer (yakni garis lintang 23° 27′ LU) hingga Garis Balik Selatan atau Tropic of Capricorn (yakni garis lintang 23° 27′ LS) saja.

Ketidakkonsistenan ini menunjukkan bahwa ada yang keliru dalam model Bumi datar. Penelitian lanjutan, yang akan dipaparkan dalam tulisan berikutnya (tidak dalam artikel ini), juga memperlihatkan besarnya inkonsistensi model Bumi datar antara perhitungan dengan hasil pengamatan/pengukuran dalam aspek-aspek ibadah Umat Islam lainnya. Yakni dalam hal waktu shalat, hilaal dan gerhana.

Implikasi dan Kesimpulan

Kelirunya model Bumi datar dalam hal arah kiblat membawa implikasi yang jauh lebih serius. Seorang Muslim yang meyakini bahwa model Bumi datar adalah benar seharusnya juga konsisten untuk mengubah arah kiblat shalatnya menjadi lebih ke utara dibanding yang dipedomani di Indonesia saat ini.

Misalnya di Kebumen, seharusnya ia mengarah ke azimuth 320 yang berarti lebih miring atau bergeser 25° ke utara dibanding arah kiblat yang tepat. Demikian halnya di Jakarta, seharusnya ia juga mengarah ke azimuth 318 atau bergeser 23° lebih ke utara.  Namun pergeseran ini  akan berimplikasi serius. Mengingat model Bumi datar adalah keliru kala ditinjau dari persoalan arah kiblat seperti diulas di atas, maka menyengaja menghadap ke azimuth 320 (Kebumen) atau azimuth 318 (Jakarta) sama halnya dengan menyengaja menyimpang dari arah kiblat sesungguhnya. Perbuatan menyengaja untuk menyimpang dari arah kiblat tentu memiliki konsekuensi syar’i tersendiri.

Seperti apa besarnya penyimpangan atau pergeseran arah terhadap azimuth kiblat yang sebenarnya sebagai akibat penerapan model Bumi datar?  Untuk area penelitian, hal tersebut dapat dilihat dalam peta berikut :

Gambar 12. Garis-garis yang menunjukkan besarnya penyimpangan arah dari arah kiblat yang sebenarnya (dalam satuan derajat) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +14° yang terjadi di Banda Aceh (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, penyimpangan arahnya kian besar. Sumber: Sudibyo, 2016.

Gambar 12. Garis-garis yang menunjukkan besarnya penyimpangan arah dari arah kiblat yang sebenarnya (dalam satuan derajat) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +14° yang terjadi di Banda Aceh (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, penyimpangan arahnya kian besar. Sumber: Sudibyo, 2016.

Dapat dilihat dalam peta bahwa untuk Indonesia, besarnya penyimpangan arah terhadap arah kiblat yang tepat akibat aplikasi model Bumi datar  adalah bervariasi. Yang terkecil adalah +14° di Banda Aceh (propinsi Aceh). Sementara yang terbesar adalah  +39° di Merauke (propinsi Papua). Khusus di pulau Jawa, besar penyimpangan arahnya bervariasi antara +26° hingga +29°.

Saat seorang Muslim menyimpang dari arah kiblat, maka pada hakikatnya ia telah bergeser dari Ka’bah hingga jarak tertentu yang bergantung kepada besarnya nilai sudut simpangannya. Semakin besar sudut penyimpangan arahnya maka semakin jauh ia bergeser dari Ka’bah. Dalam kasus kota Jakarta, dengan sudut penyimpangan arah sebesar +23° maka titik proyeksi model Bumi datar adalah bergeser sejauh 2.500 kilometer dari Ka’bah. Untuk area penelitian, besarnya jarak antara titik proyeksi model Bumi datar dengan Ka’bah dapat dilihat dalam peta berikut :

Gambar 13. Garis-garis yang menunjukkan besarnya jarak pergeseran dari Ka'bah (dalam satuan kilometer) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +1.800 kilometer di Sabang (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, jarak pergeserannya pun kian membengkak. Sumber: Sudibyo, 2016.

Gambar 13. Garis-garis yang menunjukkan besarnya jarak pergeseran dari Ka’bah (dalam satuan kilometer) akibat model Bumi datar bagi area penelitian. Nilai terkecil adalah +1.800 kilometer di Sabang (propinsi Aceh), ujung barat Indonesia. Nampak bahwa semakin ke Indonesia timur, jarak pergeserannya pun kian membengkak. Sumber: Sudibyo, 2016.

Dapat dilihat dalam peta bahwa untuk Indonesia, jarak antara titik proyeksi model Bumi datar dengan Ka’bah juga bervariasi. Yang terkecil senilai 1.800 kilometer di Sabang (propinsi Aceh). Sementara yang terbesar adalah senilai 4.300 kilometer di Merauke (propinsi Papua). Di pulau Jawa, jarak antara titik proyeksi arah kiblat Bumi datar dengan Ka’bah bervariasi antara 2.450 kilometer hingga 3.000 kilometer. Jarak penyimpangan ini sangat besar, jauh lebih besar ketimbang jarak maksimum yang dapat ditoleransi yakni maksimum 45 kilometer dari Ka’bah (lihat Sudibyo, 2012).

Jadi, berdasarkan penelitian ini, saya mengkategorikan model Bumi datar sebagai kabar-bohong atau hoax. Model tersebut sama sekali tidak konsisten dengan aspek-aspek ibadah Umat Islam yang bertumpu pada ruang dan waktu, dalam hal ini arah kiblat.

Referensi :

Sudibyo. 2012. Sang Nabi Pun Berputar, Arah Kiblat dan Tata Cara Pengukurannya. Surakarta : Tinta Medina Tiga Serangkai.

Sugeng Riyadi. 2010. Dauroh I Ilmu Falak RHI Surakarta. Blog Pak AR Guru Fisika, 23 Oktober 2010.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s