Menembus Batas, Mengamati Komet Siding-Spring dari Indonesia

Peristiwa langka itu pun terjadilah. Komet Siding-Spring (C/2013 A1) akhirnya lewat juga di titik terdekatnya ke planet Mars pada Senin dinihari 20 Oktober 2014 Tarikh Umum (TU) waktu Indonesia. Observasi dari sekujur penjuru Bumi selama hari-hari menjelang peristiwa langka ini secara substansial telah menambahkan jumlah data posisi komet. Sehingga orbit komet dapat diperhitungkan dengan tingkat ketelitian jauh lebih baik. Sebagai implikasinya waktu saat sang komet tiba di titik terdekatnya ke planet merah pun sedikit mengalami revisi dari semula pukul 01:29 WIB menjadi 01:27 WIB atau dua menit lebih awal.

Gambar 1. Duet komet Siding-Spring dan planet Mars, diabadikan dari observatorium Imah Noong, Lembang, Kab. Bandung Barat (Jawa Barat) pada dua kesempatan berbeda menggunakan radas yang sama yakni teleskop refraktor Explore Scientific Triplet Apo 80 mm (f-ratio 6) dan kamera Nikon D5100 pada ISO 400. Inilah satu-satunya citra duet komet Siding-Spring dan planet Mars yang diabadikan dari Indonesia, di luar Observatorium Bosscha. Sumber: Imah Noong, 2014 diabadikan oleh Muflih Arisa Adnan & dilabeli oleh Muh. Ma'rufin Sudibyo.

Gambar 1. Duet komet Siding-Spring dan planet Mars, diabadikan dari observatorium Imah Noong, Lembang, Kab. Bandung Barat (Jawa Barat) pada dua kesempatan berbeda menggunakan radas yang sama yakni teleskop refraktor Explore Scientific Triplet Apo 80 mm (f-ratio 6) dan kamera Nikon D5100 pada ISO 400. Inilah satu-satunya citra duet komet Siding-Spring dan planet Mars yang diabadikan dari Indonesia, di luar Observatorium Bosscha. Sumber: Imah Noong, 2014 diabadikan oleh Muflih Arisa Adnan & dilabeli oleh Muh. Ma’rufin Sudibyo.

Peristiwa langit yang disebut-sebut sebagai peristiwa teramat langka yang belum tentu terulang kembali dalam ratusan atau bahkan ribuan tahun mendatang ini pun berlangsung relatif mulus. Sejumlah wahana antariksa aktif milik NASA (Amerika Serikat) di Mars, mulai dari si veteran Mars Odyssey dan Mars Reconaissance Orbiter hingga Mars Atmosphere and Volatile Environment (MAVEN) yang baru datang dilaporkan dalam keadaan sehat. Pun demikian wahana antariksa milik ESA (gabungan negara-negara Eropa) dan India, masing-masing Mars Express dan Manglayaan/Mars Orbiter Mission. Tak satupun dari kelimanya yang mengalami gangguan oleh semburan partikel-partikel debu berkecepatan sangat tinggi dari sang komet. Rupanya strategi penyelamatan yang telah diperbincangkan selama berbulan-bulan dan mencapai kulminasinya pada workshop Juni 2014 TU silam meraih suksesnya. Kala komet Siding-Spring melintasi titik terdekatnya ke planet Mars, seluruh wahana antariksa tersebut telah bermanuver demikian rupa menggunakan cadangan bahan bakar roketnya. Sehingga mereka semua berlindung di balik tubuh planet Mars tatkala memasuki saat-saat kritis.

Sembari bermanuver melindungi diri, mereka juga sempat mengamati komet Siding-Spring dari jarak dekat. Ini adalah kesempatan teramat langka yang setaraf nilainya dengan misi-misi antariksa terdahulu yang memang khusus ditujukan ke komet. Apalagi komet Siding-Spring merupakan komet yang diindikasikan berasal dari tepi tata surya, yakni dari awan komet Opik-Oort yang demikian besar dan dipenuhi oleh bayi-bayi komet yang siap melejit. Indikasi tersebut terlihat dari orbit komet ini yang begitu lonjong, dengan jarak rata-rata ke Matahari (setengah sumbu orbit) demikian besar hingga jauh melampaui benda langit anggota tata surya lainnya (kecuali komet) yang telah kita kenal. Karena orbitnya demikian rupa maka tak mengherankan bila periodenya amat sangat panjang. Komet Siding-Spring butuh waktu berjuta-juta tahun lamanya guna mengelilingi Matahari sekali putaran. Ia menghabiskan hampir seluruh waktunya melata di kegelapan tepian tata surya kita yang dingin membekukan. Karena itu peristiwa duet komet Siding-Spring dan planet Mars memberikan keberuntungan kosmik yang memungkinkan manusia menyelidiki sebuah komet dari awan komet Opik-Oort secara mendetail, untuk pertama kalinya. Seluruh misi antariksa ke komet terdahulu hanyalah ditujukan ke komet-komet yang berasal dari lingkungan lebih dekat ke kawasan planet-planet, yakni dari sabuk Kuiper-Edgeworth. Komet-komet dari sabuk yang mirip sabuk asteroid ini dikenal sebagai komet berperiode pendek dan berkecepatan jauh lebih rendah sehingga lebih mudah dijangkau.

Gambar 2. Komet Siding-Spring diamati dari jarak 138.000 kilometer oleh wahana Mars Reconaissance Orbiter. Setiap piksel citra ini mewakili 138 meter. Bagian terterang yang mengindikasikan inti komet dalam citra ini hanya mencakup area tiga piksel, menandakan bahwa inti komet Siding-Spring mungkin hanya berukuran 400 meter saja atau separuh lebih kecil dari yang semula diduga. Sumber: NASA, 2014.

Gambar 2. Komet Siding-Spring diamati dari jarak 138.000 kilometer oleh wahana Mars Reconaissance Orbiter. Setiap piksel citra ini mewakili 138 meter. Bagian terterang yang mengindikasikan inti komet dalam citra ini hanya mencakup area tiga piksel, menandakan bahwa inti komet Siding-Spring mungkin hanya berukuran 400 meter saja atau separuh lebih kecil dari yang semula diduga. Sumber: NASA, 2014.

Sejauh ini baru wahana Mars Reconaissance Orbiter yang sudah melaporkan hasil observasinya. Ia mengamati komet Siding-Spring pada jarak 138.000 kilometer dan menyajikan gambaran lebih utuh akan komet itu. Jika semula kita menduga ukuran inti komet siding-Spring sekitar 700 meter, maka kini lewat Mars Reconaissance Orbiter kita tahu ukurannya lebih kecil lagi, yakni berkisar 400 meter atau kurang. Komet yang cemerlang dengan inti komet relatif kecil menunjukkan bahwa komet Siding-Spring ternyata lebih aktif dibanding yang semula diduga. Sehingga menguatkan dugaan bahwa komet ini memang baru pertama kali berkunjung tata surya bagian dalam setelah dihentakkan keluar dari kungkungan awan komet Opik-Oort dalam berjuta tahun silam. Selain wahana Mars Reconaissance Orbiter, salah satu robot penjelajah aktif di Mars juga menyajikan hasil observasi yang positif akan komet itu. Adalah Opportunity (Mars Exploration Rover-B), robot penjelajah veteran yang telah lebih dari satu dekade ‘hidup’ di Mars, yang berhasil mengamati komet Siding-Spring tinggi di langit Mars. Ia mencitra lewat radas PanCam (Panoramic Camera), sepasang lensa kamera berdiameter 2,15 mm dengan f-ratio 20 yang sejatinya tidak dirancang untuk mengamati benda langit dari permukaan Mars. Di luar dugaan, ternyata ia mampu mengabadikan komet Siding-Spring dengan baik.

Gambar 3. Komet Siding-Spring diamati dari permukaan planet Mars oleh radas PanCam pada robot penjelajah Opportunity dengan waktu penyinaran 50 detik. Citra ini dibuat dalam 2,5 jam sebelum sang komet mencapai titik terdekatnya ke planet merah itu. Komet nampak cemerlang dibanding beberapa bintang terang yang ada dilatarbelakangnya. Inilah untuk pertama kalinya sebuah komet berhasil diamati dari permukaan planet lain. Sumber: NASA, 2014 dilabeli oleh Muh. Ma'rufin Sudibyo.

Gambar 3. Komet Siding-Spring diamati dari permukaan planet Mars oleh radas PanCam pada robot penjelajah Opportunity dengan waktu penyinaran 50 detik. Citra ini dibuat dalam 2,5 jam sebelum sang komet mencapai titik terdekatnya ke planet merah itu. Komet nampak cemerlang dibanding beberapa bintang terang yang ada dilatarbelakangnya. Inilah untuk pertama kalinya sebuah komet berhasil diamati dari permukaan planet lain. Sumber: NASA, 2014 dilabeli oleh Muh. Ma’rufin Sudibyo.

Selain dari wahana dan robot penjelajah di Mars, citra-citra duet komet Siding-Spring dan planet Mars dari berbagai observatorium atau titik pengamatan di sekujur penjuru Bumi pun membanjiri linimasa media sosial. Nah adakah yang berasal dari Indonesia?

Menembus Batas

Beberapa titik pengamatan di Indonesia telah menyiapkan diri dalam menyambut duet komet Siding-Spring dan planet Mars yang langka ini. Antara lain Observatorium Bosscha di Lembang, Bandung Barat (Jawa Barat), observatorium pribadi Imah Noong di Kampung wisata Areng (juga di Lembang) dan observatorium pribadi Jogja Astro Club di Yogyakarta (DIY).

Persiapan pengamatan duet komet Siding-Spring dan planet Mars di observatorium Imah Noong telah dikerjakan semenjak beberapa waktu sebelumnya oleh astronom amatir Muflih Arisa Adnan. Imah Noong adalah observatorium pribadi yang berlokasi di kediaman Hendro Setyanto, astronom yang pernah bertugas di Observatorium Bosscha. Ia terletak di kampung wisata Areng, desa Wangunsari, Lembang, Kab, Bandung Barat (Jawa Barat). Radas yang disiapkan untuk mengamati duet komet Siding-Spring dan planet Mars adalah teleskop refraktor Explore Scientific Triplet Apo dengan lensa obyektif berdiameter 80 mm (8 cm). Teleskop ini memiliki dudukan (mounting) GOTO sehingga dapat mengikuti gerak benda langit yang disasarnya secara otomatis seiring waktu, sepanjang benda langit tersebut ada dalam basisdatanya. Teleskop kemudian dirangkai dengan radas kamera Nikon D5100 dengan teknik fokus prima yang disetel pada ISO 400 dan waktu penyinaran 15 detik.

Sedangkan penulis bertugas membantu identifikasi sang komet. Radas yang digunakan adalah komputer jinjing (laptop) yang terkoneksi ke internet. Laman Astrometry menjadi salah satu rujukan untuk mengidentifikasi posisi benda langit yang menjadi target, pun demikian laman-laman institusi/pribadi yang sedari awal sudah memproklamirkan akan menggelar siaran langsung observasi duet komet Siding-Spring dan planet Mars.

Teleskop berlensa 80 mm secara teoritis tak memungkinkan untuk mengidentifikasi komet Siding-Spring. Saat mencapai titik terdekatnya ke Mars, konsorsium Coordinated Investigations of Comets (CIOC) memprediksi magnitudo semunya berkisar +11 hingga +12. Sebaliknya teleskop 80 mm, di atas kertas, hanya akan sanggup menyasar benda langit seredup +10,5 saja. Sehingga masih ada defisit minimal +0,5 magnitudo. Namun di sisi lain penggunaan kamera yang disetel untuk waktu penyinaran cukup lama, setidaknya dibandingkan selang waktu kedipan mata manusia pada umumnya, mungkin mampu mengatasi defisit tersebut. Apalagi sensor kamera digital masakini bersifat mengumpulkan cahaya, sehingga obyek yang semula redup bakal terkesan menjadi lebih terang. Sifat ini berbeda dengan syaraf-syaraf penglihatan manusia, yang tak bersifat mengumpulkan cahaya, sehingga benda langit redup pun akan tetap terlihat redup meski telah kita tatap selam berjam-jam. Maka dapat dikatakan upaya mengamati komet Siding-Spring dengan radas-radas tersebut merupakan percobaan untuk menembus batas.

Gambar 4. Proses identifikasi komet Siding-Spring dengan membandingkan citra hasil observasi Peter Lake (kiri) dan Imah Noong (kanan). Keduanya berselisih waktu 3 jam saat pemotretan. Label HD 159865 dan HD 159845 adalah untuk dua bintang yang tercantum dalam katalog bintang. Sementara label A, B, C, D, E dan F adalah versi penulis untuk bintang-bintang yang tak tercantum dalam katalog. Bila antara bintang HD 159865, HD 159845 dan B ditarik garis lurus khayali (digambarkan sebagai garis putus-putus), maka komet berada di sekitar pertengahan garis ini. Komet ditandai dengan panah merah. SUmber: Sudibyo, 2014.

Gambar 4. Proses identifikasi komet Siding-Spring dengan membandingkan citra hasil observasi Peter Lake (kiri) dan Imah Noong (kanan). Keduanya berselisih waktu 3 jam saat pemotretan. Label HD 159865 dan HD 159845 adalah untuk dua bintang yang tercantum dalam katalog bintang. Sementara label A, B, C, D, E dan F adalah versi penulis untuk bintang-bintang yang tak tercantum dalam katalog. Bila antara bintang HD 159865, HD 159845 dan B ditarik garis lurus khayali (digambarkan sebagai garis putus-putus), maka komet berada di sekitar pertengahan garis ini. Komet ditandai dengan panah merah. SUmber: Sudibyo, 2014.

Percobaan pertama berlangsung pada Minggu 19 Oktober 2014 TU pukul 19:00 WIB, bertepatan dengan saat momen pra perlintasan-dekat komet Siding-Spring ke Mars. Seperti halnya langit bagian barat pulau Jawa pada umumnya, langit Lembang pun bertaburan awan yang berarak-arak. Namun masih tersisa celah-celah sempit diantaranya, sehingga Mars masih bisa dilihat meski hanya untuk selang waktu pendek. Pada salah satu momen teleskop berhasil menjejak Mars untuk waktu yang relatif lumayan sehingga kamera bisa merekam Mars dan lingkungannya dalam 8 frame secara berturut-turut, setara dengan waktu penyinaran (exposure time) 90 detik. Kedelapan citra yang didapat lantas digabungkan menjadi satu lewat teknik stacking.

Awalnya cukup sulit untuk mengidentifikasi komet Siding-Spring di percobaan pertama ini. Namun beruntung terdapat hasil observasi di mancanegara yang membantu mempercepat identifikasi. Berselang 3 jam sebelum observasi percobaan pertama di Imah Noong, astronom amatir Peter Lake juga mengamati duet komet Siding-Spring dan planet Mars dengan mengambil lokasi di observatorium iTelescope.net (Q62) dalam kompleks Observatorium Siding Spring (Australia), tempat sang komet terlihat manusia untuk pertama kalinya secara resmi. Peter Lake bersenjatakan teleskop Planewave dengan cermin obyektif berdiameter 50 cm yang secara teoritis mampu menyasar benda langit hingga seredup magnitudo +14,5 sehingga cukup mudah mendeteksi komet Siding-Spring. Ia membagikan hasil observasinya lewat Google+ dalam sebuah siaran langsung. Setelah dibandingkan dengan citra Peter Lake, kejutan pun terkuak. Komet Siding-Spring ternyata terekam dalam citra percobaan pertama tersebut! Komet terlihat sangat redup, ada di sebelah kiri (selatan) dari Mars dan nyaris tak terbedakan dibanding bintang-bintang disekelilingnya. Baru setelah dicermati lebih lanjut terlihat bahwa titik cahaya komet Siding-Spring tidaklah setegas bintang-bintang pada umumnya dan terkesan berkabut.

Gambar 5. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan pertama, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Gambar 5. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan pertama, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Sukses dengan percobaan pertama, percobaan kedua pun digelar pada Senin 20 Oktober 2014 TU, juga pada pukul 19:00 WIB. Momen observasi kali ini merupakan momen pasca perlintasan-dekat komet Siding-Spring dengan planet Mars. Kali ini observatorium pribadi Imah Noong ‘ditemani’ Observatorium Bosscha, yang juga mengarahkan teleskop reflektor Schmidt Bimasakti (diameter cermin 71 cm), meski masing-masing tetap bekerja sendiri-sendiri. Kali ini juga langit Lembang jauh lebih baik ketimbang sehari sebelumnya. Teleskop pun menjejak dan merekam Mars beserta lingkungannya dalam 9 frame berturut-turut, yang setara dengan waktu penyinaran 105 detik. Sama seperti sehari sebelumnya, kesembilan citra ini pun langsung digabungkan menjadi satu lewat teknik stacking.

Gambar 6. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan kedua, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Gambar 6. Komet Siding-Spring dan planet Mars sebagai hasil observasi percobaan kedua, disajikan dalam warna nyata. Sumber: Imah Noong, 2014.

Langit yang jauh lebih bagus kali ini membuat kualitas citra hasil percobaan kedua pun lebih baik ketimbang sebelumnya. Bintang-gemintang yang padat sebagai bagian dari selempang Bima Sakti pun terlihat jelas di latar belakang. Komet pun jauh lebih mudah diidentifikasi. Komet Siding-Spring teramati berada di sebelah kanan (utara) dari planet Mars. Sama seperti sebelumnya, komet juga tetap terlihat sebagai titik cahaya taktegas yang terkesan berkabut. Namun kali ini ekor komet bisa diidentifikasi. Pun demikian dengan warna kehijauan yang menyelubungi komet. Cahaya kehijauan ini diemisikan oleh senyawa karbon diatom (C2) dan sianogen (CN) yang berada dalam atmosfer temporer (coma) sang komet.

Gambar 7. Dua wajah berbeda komet Siding-Spring kala diabadikan dari observatorium Imah Noong saat langit kurang mendukung (kiri) dan saat relatif lebih mendukung (kanan). Kala langit lebih mendukung, komet nampak jelas berwarna kehijauan, sebagai hasil emisi senyawa-senyawa karbon diatom dan sianogen. KOmet juga mudah dibedakan dari bintang dilatarbelakangnya (misalnya HD 159746). Bintang terlihats ebagai titik cahaya tegas, sementara komet lebih samar dan seakan berkabut. Sumber: Imah Noong, 2014.

Gambar 7. Dua wajah berbeda komet Siding-Spring kala diabadikan dari observatorium Imah Noong saat langit kurang mendukung (kiri) dan saat relatif lebih mendukung (kanan). Kala langit lebih mendukung, komet nampak jelas berwarna kehijauan, sebagai hasil emisi senyawa-senyawa karbon diatom dan sianogen. Komet juga mudah dibedakan dari bintang dilatarbelakangnya (misalnya HD 159746). Bintang terlihats ebagai titik cahaya tegas, sementara komet lebih samar dan seakan berkabut. Sumber: Imah Noong, 2014.

Selain turut berpartisipasi dalam pengamatan duet komet Siding-Spring dan planet Mars, yang hasilnya pun telah dipublikasikan di laman konsorsium Coordinated Investigations of Comets dan mendapat sambutan cukup baik, pengamatan ini juga menunjukkan suksesnya upaya menembus batas. Dengan menggunakan radas yang lebih sederhana, yang secara teoritis takkan sanggup mendeteksi komet Siding-Spring saat itu, ternyata sang komet bisa diamati.

Menebak Hujan Meteor dan Aurora dari Komet Siding-Spring di Mars

Inilah peristiwa langit terbesar di tahun 2014. Sekaligus yang terlangka. Ia disebut-sebut takkan bakal terulang lagi hingga berpuluh tahun ke depan. Bahkan hingga beratus tahun kemudian. Atau bahkan sampai beribu tahun mendatang. Inilah sebuah keajaiban kosmik, kala dua benda langit yang sifat-sifatnya demikian bertolak-belakang ibarat Bumi dan langit kini demikian saling berdekatan. Sehingga laksana sedang berduet, meski hanya untuk sesaat. Inilah peristiwa tatkala komet Siding-Spring (C/2013 A1) bakal melintas-dekat planet Mars dalam jarak yang sangat, untuk ukuran astronomi. Peristiwa langka itu bakal terjadi pada Minggu 19 Oktober 2014 pukul 18:29 UTC, atau Senin dinihari 20 Oktober 2014 pukul 01:29 WIB. Saat peristiwa langka itu terjadi, komet Siding-Spring melejit secepat 56 km/detik pada ketinggian 131.800 kilometer dari paras (permukaan rata-rata) planet merah itu.

Gambar 1. Komet Siding-Spring (C/2013 A1) nampak berdampingan dengan Mars pada jarak sudut hanya 1,5 derajat. Diabadikan oleh Kevin Parker (Australia) dengan teleskop ED80 dengan f/4,4 dan kamera Pentak-K5. Citra ini terdiri dari 10 citra terpisah masing-masing dibuat dengan waktu penyinaran 60 detik yang lantas digabungkan menjadi satu lewat proses stacking. Diabadikan pada Jumat 17 Oktober 2014 pukul 10:00 UTC. Sumber: Parker, 2014.

Gambar 1. Komet Siding-Spring (C/2013 A1) nampak berdampingan dengan Mars pada jarak sudut hanya 1,5 derajat. Diabadikan oleh Kevin Parker (Australia) dengan teleskop ED80 dengan f/4,4 dan kamera Pentak-K5. Citra ini terdiri dari 10 citra terpisah masing-masing dibuat dengan waktu penyinaran 60 detik yang lantas digabungkan menjadi satu lewat proses stacking. Diabadikan pada Jumat 17 Oktober 2014 pukul 10:00 UTC. Sumber: Parker, 2014.

Komet Siding-Spring adalah komet yang pertama ditemukan pada tahun 2013 lewat mata tajam Robert McNaught, orang dibalik sistem penyigi langit Siding Spring Survey bersenjatakan teleskop reflektor Uppsala Southern Schmidt 50 cm di Observatorium Siding-Spring (Australia). Sesuai aturan tatanama komet baru, nama sistem penyigi langit ini pun tersemat sebagai nama komet tersebut. Sedari awal mula komet Siding-Spring sudah membikin gempar. Awalnya ia terindikasi berpotensi menubruk planet Mars. Awalnya pula ia diduga memiliki inti komet cukup besar, hingga diameter 50 km. Andai tumbukan benar-benar terjadi, dampaknya bagi planet Mars tentu luar biasa dahsyat mengingat komet ini melejit pada kecepatan 56 km/detik relatif terhadap sang planet merah. Simulasi daring dengan laman Crater milik Lunar Planetary Laboratory University of Arizona memperlihatkan dengan diameter dan kecepatan tersebut, permukaan Mars akan berlubang besar hingga selebar 600 kilometer. Energi tumbukan yang bakal terlepas pun sangat besar, mencapai 24 milyar megaton TNT atau setara dengan 1,2 trilyun bom nuklir Hiroshima yang diledakkan secara serempak !

Tetapi potensi tumbukan ke Mars dan segala implikasi mengerikan yang menyertainya telah dicoret dengan pasti semenjak 8 April 2013, kala observasi demi observasi dari berbagai penjuru menghasilkan segudang data yang memungkinkan orbit komet Siding-Spring dihitung kembali dengan tingkat ketelitian lebih tinggi. Kini kita tahu bahwa komet yang nampaknya baru kali ini melata di zona planet-planet dalam tata surya kita hanya akan lewat sejarak 131.800 kilometer saja dari paras planet Mars. Peluang terjadinya tumbukan adalah nihil. Dalam perspektif Mars, ketinggian komet ini masih lebih jauh dibanding ketinggian dua satelit alamiahnya, masing-masing Phobos (tinggi rata-rata 6.000 kilometer dari paras planet) dan Deimos (tinggi rata-rata 20.000 kilometer dari paras planet). Namun dalam 100 menit pasca inti komet Siding-Spring menempati posisi terdekatnya dengan planet Mars, Mars akan mencapai titik dimana ia memiliki jarak terpendek terhadap orbit komet itu. Yakni sejarak ‘hanya’ 23.500 kilometer dari paras planet. Jarak yang cukup dekat terhadap benda langit yang dikenal senantiasa menyemburkan debu, pasir dan kerikil laksana gunung berapi itu tentu bakal berimplikasi tersendiri.

Gambar 2. Gambaran artis saat inti komet Siding-Spring (latar depan) berada pada titik terdekatnya dengan planet Mars. Inilah peristiwa langit yang langka dan belum tentu bakal terulang kembali dalam berpuluh atau malah bahkan hingga beratus tahun lagi. Sumber: NASA, 2014.

Gambar 2. Gambaran artis saat inti komet Siding-Spring (latar depan) berada pada titik terdekatnya dengan planet Mars. Inilah peristiwa langit yang langka dan belum tentu bakal terulang kembali dalam berpuluh atau malah bahkan hingga beratus tahun lagi. Sumber: NASA, 2014.

Bukan Topan Meteor

Lewat sejumlah observasi termasuk dengan teleskop landasbumi Spitzer, kini diketahui bahwa inti komet Siding-Spring tidaklah sebesar 50 kilometer melainkan hanya berdiameter 700 meter saja. Ia juga tergolong cukup aktif. Per 28 Januari 2014 diketahui inti komet Siding-Spring menyemburkan sedikitnya 100 kilogram debu dalam setiap detiknya. Pada hari-hari selanjutnya produksi debu ini diduga menguat, seiring kian memendeknya jarak antara inti komet dengan Matahari sehingga intensitas sinar Matahari yang diterima permukaan inti komet pun kian bertambah. Sehingga kian banyak pula butir-butir es dan bekuan senyawa volatil (mudah menguap) yang tersublimasi. Gas-gas yang terproduksi awalnya terakumulasi dalam cebakan-cebakan bawah permukaan, untuk kemudian tersembur keluar ke lingkungan sekitar begitu tekanannya mencukupi. Semburan gas dari inti komet juga mengangkut partikel-partikel material mulai dari seukuran debu hingga sebesar bongkah.

Melintas-dekatnya komet Siding-Spring dengan planet Mars bakal membuat partikel-partikel material inti komet khususnya yang berukuran debu mikroskopis melaju ke arah planet merah itu pada kecepatan 56 km/detik sebagai meteoroid. Hujan meteor pun tak terhindarkan. Namun terungkapnya fakta ukuran inti komet Siding-Spring mengubah prakiraan besarnya jumlah meteor yang memasuki atmosfer Mars setiap jamnya secara dramatis. Kala ukuran inti komet masih dianggap sebesar 50 kilometer, Vaubaillon dkk meramalkan Mars akan diguyur hujan meteor Siding-Spring teramat deras. Intensitasnya, yakni nilai ZHR (zenith hourly rate), diperkirakan bakal sebesar 195 hingga 4.750 juta meteor per jam! Sebagai pembanding, hujan meteor terbesar di Bumi pun (yakni Leonid 1966) memiliki intensitas ‘hanya’ sejuta meteor dalam setiap jamnya. Dengan prediksi tersebut, tak heran jika Vaubaillon mengapungkan istilah ‘topan meteor’ bagi duet Mars dan Siding-Spring itu.

Gambar 3. Contoh hujan meteor berintensitas tinggi, dalam hal ini Leonids 1998, seperti diamati dari Bratislava (Slowakia) pada 1998. Selempang galaksi Bima Sakti terlihat jelas di latar belakang. Pemandangan yang mirip bakal terlihat di Mars kala hujan meteor Siding-Spring mengguyur pada 20 Oktober 2014. Sumber: NASA, 1998.

Gambar 3. Contoh hujan meteor berintensitas tinggi, dalam hal ini Leonids 1998, seperti diamati dari Bratislava (Slowakia) pada 1998. Selempang galaksi Bima Sakti terlihat jelas di latar belakang. Pemandangan yang mirip bakal terlihat di Mars kala hujan meteor Siding-Spring mengguyur pada 20 Oktober 2014. Sumber: NASA, 1998.

Namun pasca observasi Spitzer, prediksi ‘topan meteor’ itu pun luruh dengan sendirinya. Dengan dimensi inti komet hanya seukuran 700 meter, hujan meteor yang bakal menerpa planet Mars diprediksikan berintensitas jauh lebih kecil pula. Yakni sekitar 1.500 meteor per jam seperti disimulasikan oleh Peterson. Dengan begitu hujan meteor Siding-Spring di Mars masih lebih deras ketimbang, katakanlah, hujan meteor Perseids maupun Geminids di Bumi kita (100-an meteor per jam). Hanya badai meteor Leonids 1999 saja yang mengunggulinya. Karena melebihi ambang batas 1.000 meteor per jamnya, maka hujan meteor Siding-Spring di Mars ini bolehlah disebut sebagai ‘badai meteor.’

Gambar 4. Salah satu hasil kajian NASA tentang potensi hujan meteor di Mars seiring mendekatnya komet Siding-Spring. Kiri: planet Mars tersapu debu mikroskopis komet Siding-Spring meski tidak dalam intensitas terbesar. Kanan: prakiraan jumlah hujan meteor Siding-Spring (CSS) di Mars (ellips merah), dibandingkan dengan beberapa hujan meteor di Bumi seperti Perseids (ellips hitam). Hujan meteor Perseids berintensitas sekitar 100 meteor/jam, sementara hujan meteor Siding-Spring diprakirakan bakal mencapai 1.500 meteor/jam. Sumber: NASA, 2014.

Gambar 4. Salah satu hasil kajian NASA tentang potensi hujan meteor di Mars seiring mendekatnya komet Siding-Spring. Kiri: planet Mars tersapu debu mikroskopis komet Siding-Spring meski tidak dalam intensitas terbesar. Kanan: prakiraan jumlah hujan meteor Siding-Spring (CSS) di Mars (ellips merah), dibandingkan dengan beberapa hujan meteor di Bumi seperti Perseids (ellips hitam). Hujan meteor Perseids berintensitas sekitar 100 meteor/jam, sementara hujan meteor Siding-Spring diprakirakan bakal mencapai 1.500 meteor/jam. Sumber: NASA, 2014.

Aurora

Imbas menarik lainnya yang bakal dialami planet Mars adalah ketampakan aurora di langit Mars untuk waktu tertentu. Aurora di Mars sejatinya bukan hal yang baru. Ia sudah terdeteksi semenjak 2005 melalui wahana antariksa Mars Express yang dioperasikan European Space Agency (ESA). Seperti halnya di Bumi, aurora di Mars merupakan efek dari tersekapnya partikel-partikel bermuatan listrik dari antariksa, khususnya proton dan elektron dari Matahari, oleh medan magnet Mars. Selagi ion dan elektron diarahkan garis-garis gaya magnet ke tubuh planet Mars, mereka bakal berbenturan dengan atom-atom dalam atmosfer atas Mars. Sehingga terjadi emisi foton cahaya tertentu yang terlihat sebagai aurora.

Salah satu kekhasan Mars terletak pada geometri medan magnetnya yang unik. Tak seperti di Bumi yang garis-garis gaya magnetnya bersumber dari kutub-kutub geomagnet dan membentuk magnetosfer, medan magnet Mars amat sangat lemah. Magnetosfer Mars sudah lama lenyap, kemungkinan semenjak bermilyar tahun silam. Kini yang masih tersisa hanyalah titik-titik tertentu di kerak Mars yang memancarkan garis-garis gaya magnetnya sendiri-sendiri dengan geometri mirip payung. Ada ratusan titik seperti itu di planet merah ini.

Bagaimana respon medan magnet Mars yang unik tersebut terhadap mendekatnya komet Siding-Spring? Semburan gas beserta partikel material inti komet menyusun sejenis atmosfer temporer menyelubungi inti komet yang dikenal sebagai kepala komet (coma). Penyinaran Matahari dan faktor-faktor lain membuat sebagian atom dalam coma terlucuti elektronnya. Sehingga terbentuklah plasma, campuran antara ion-ion dan elektron-elektron bebas, dalam coma. Per 28 Januari 2014, observasi menunjukkan dimensi coma Siding-Spring adalah 19.300 kilometer. Namun seiring kian intensifnya semburan gas dan debu kala komet kian mendekat ke Matahari, ukuran coma Siding-Spring pun turut membesar. Saat tiba di titik terdekatnya dengan Mars, dimensi coma Siding-Spring diperkirakan telah meraksasa hingga sepuluh kali lipat diameter planet Mars, atau hingga sebesar 70.000 kilometer. Praktis kala komet berada di titik terdekatnya ke Mars, segenap tubuh planet merah itu akan ‘tercelup’ ke dalam coma Siding-Spring hingga berjam-jam lamanya.

Gambar 5. Gambaran artis aurora yang bakal terbentuk di Mars seiring mendekatnya komet Siding-Spring. Kiri; dilihat dari langit. Kanan: dilihat dari permukaan Mars. Sumber: NASA, 2014.

Gambar 5. Gambaran artis aurora yang bakal terbentuk di Mars seiring mendekatnya komet Siding-Spring. Kiri; dilihat dari langit. Kanan: dilihat dari permukaan Mars. Sumber: NASA, 2014.

Pada situasi itu, plasma dalam coma Siding-Spring berpotensi berinteraksi dengan atmosfer dan medan magnet unik Mars. Banjir ion dan elektron dari coma Siding-Spring ke titik-titik pemancar medan magnet di Mars diprediksi bakal menghasilkan fenomena aurora yang spektakuler. Seberapa besar auroranya? Hal itulah yang ingin kita ketahui.

Referensi :

Zurek. 2014. Comet C/2013 A1 Siding-Spring, Comet Environment Modeling. NASA Jet Propulsion Laboratory, 6 Juni 2014.

Vaubaillon dkk. 2014. Meteor hurricane at Mars on 2014 October 19 from comet C/2013 A1. MNRAS 439, (2014), pp. 3294–3299.

Bagaimana Mengamati Duet Mars dan Komet Siding-Spring?

Seperti diketahui sebuah peristiwa langka bakal tersaji di langit malam kita sebentar lagi. Melintas-dekatnya komet Siding-Spring (C/2013 A1) ke planet Mars pada Senin dinihari 20 Oktober 2014 pukul 01:29 WIB membuat sang planet merah akan terlihat berjarak sudut (berelongasi) cukup kecil terhadap sang komet kala disaksikan dari Bumi kita. Maka pada saat itu kita akan menyaksikan Mars nampak berduet dengan komet Siding-Spring. Duet dua benda langit yang sangat berbeda ini, yang satu planet dan satunya lagi komet, adalah pemandangan langit yang sangat jarang terjadi.

Karena langkanya, tak heran jika para astronom dan ilmuwan keplanetan beserta institusi ilmiah sejagat sudah bersiap-siap berpesta-pora menyambutnya. Badan Antariksa Amerika Serikat (NASA) pun tak mau kalah. Tidak tanggung-tanggung, NASA mengerahkan sepasukan armadanya di langit untuk memelototi “duet maut” Mars dan Siding-Spring. Tak kurang dari sebelas wahana antariksa aktif telah disiapkan, baik yang berada di Bumi maupun Mars. Pasukan di orbit Bumi meliputi korps teleskop landasbumi yang mencakup teleskop legendaris Hubble, teleskop pemburu eksoplanet Kepler, teleskop inframerah Spitzer, teleskop sinar roentgen (sinar-X) Chandra, teleskop sinar gamma Swift, teleskop pemburu asteroid NeoWISE serta sepasang teleskop pemantau Matahari yakni STEREO dan SOHO. Sementara pasukan di Mars terbagi ke dalam dua kelompok, yakni yang berada di orbit dan di daratan. Pasukan di orbit Mars antara lain adalah wahana Mars Odyssey, Mars Reconaissance Orbiter dan Mars Atmosphere and Volatile Evolution Mission yang baru saja datang. Sementara pasukan di daratan Mars meliputi dua robot penjelajah aktif, yakni si veteran Opportunity (Mars Exploration Rover) dan si gendut Curiosity (Mars Science Laboratory).

Gambar 1. Komet Siding-Spring (C/2013 A1) pada 16 Oktober 2014, diabadikan oleh astronom amatir Damian Peach (Amerika Serikat) dengan latar belakang adalah bintang-gemintang penghuni selempang galaksi Bima Sakti yang fenomenal. Komet nampak diselimuti cahaya kehijauan sebagai representasi atom-atom CN (sianida) dalam atmosfer/kepala komet. Perhatikan perbedaan mendasar ketampakan komet dengan bintang 3 Sagittarii (magnitudo semu +4,5) dimana jarak sudut (elongasi) mereka berdua adalah 2 derajat. Sumber: Damian Peach, 2014.

Gambar 1. Komet Siding-Spring (C/2013 A1) pada 16 Oktober 2014, diabadikan oleh astronom amatir Damian Peach (Amerika Serikat) dengan latar belakang adalah bintang-gemintang penghuni selempang galaksi Bima Sakti yang fenomenal. Komet nampak diselimuti cahaya kehijauan sebagai representasi atom-atom CN (sianida) dalam atmosfer/kepala komet. Perhatikan perbedaan mendasar ketampakan komet dengan bintang 3 Sagittarii (magnitudo semu +4,5) dimana jarak sudut (elongasi) mereka berdua adalah 2 derajat. Sumber: Damian Peach, 2014.

Institusi lain di luar daratan Amerika Serikat pun enggan melepaskan kesempatan ini. Antara lain gabungan negara-negara Eropa melalui badan antariksanya (ESA). Selain berkolaborasi bersama NASA lewat teleskop landasbumi pengamat Matahari SOHO, ESA juga berupaya memaksimalkan kinerja wahana penyelidik Mars miliknya, yakni Mars Express. Demikian pula India, pemain baru dalam era eksplorasi Mars sekaligus negara Asia pertama yang sukses mengirim wahana penyelidik ke planet merah dengan selamat. Melalui wahana antariksa murah meriah Manglayaan/Mars Orbiter Mission (MOM) yang baru tiba di orbit planet merah ini per September 2014 TU (Tarikh Umum) lalu, India akan turut mencoba mengamati duet maut ini. Di luar ketiga negara/gabungan negara-negara tersebut, tak terhitung banyaknya observatorium maupun titik-titik pengamatan yang bakal mengerahkan segenap sumberdaya teleskopnya ke langit.

Nah, bagaimana dengan kita di Indonesia? Adakah kita dapat turut menyaksikan duet maut Mars dan Siding-Spring dengan radas (instrumen) yang jauh lebih sederhana dibanding mereka?

Waktu Pengamatan

Satu hal yang harus digarisbawahi adalah saat duet maut Mars dan Siding-Spring itu benar-benar terjadi, Indonesia sejatinya berada di posisi yang tak demikian beruntung. Kala komet Siding-Spring mencapai jarak terdekatnya terhadap planet Mars, sang planet merah (dan juga sang komet) sudah terbenam semenjak berjam-jam sebelumnya di manapun tempatnya bagi negeri ini. Manusia Indonesia hanya berkesempatan menyaksikan momen pendahuluan dan penutupan. Yakni saat komet Siding-Spring mulai mendekat ke planet Mars dan diikuti dengan saat sang komet mulai menjauhi planet merah itu.

Gambar 2. Gambaran langit barat dan barat daya pada Senin 20 Oktober 2014 pukul 20:00 WIB, disimulasikan dengan Starry Night Backyard 3.0 untuk Kebumen (Jawa Tengah). Beberapa bintang terang/populer masih terlihat. Planet Mars nampak seakan-akan menyatu dengan komet Siding-Spring di latar depan selempang galaksi Bima Sakti. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0.

Gambar 2. Gambaran langit barat dan barat daya pada Senin 20 Oktober 2014 pukul 20:00 WIB, disimulasikan dengan Starry Night Backyard 3.0 untuk Kebumen (Jawa Tengah). Beberapa bintang terang/populer masih terlihat. Planet Mars nampak seakan-akan menyatu dengan komet Siding-Spring di latar depan selempang galaksi Bima Sakti. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0.

Secara umum Mars terbenam di Indonesia menjelang pukul 22:00 WIB sehingga menyediakan peluang cukup lama guna mengamati planet ini dan lingkungan sekitarnya semenjak Matahari terbenam. Mars adalah benda langit yang cukup terang dan saat ini berbinar dengan magnitudo semu +0,9. Sehingga ia mudah dilihat dan telah nampak di langit dalam setengah jam atau lebih pasca terbenamnya Matahari di langit barat daya, meskipun langit masih dibaluri cahaya senja. Karena cukup terang, Mars juga mudah dideteksi dengan mata meski tak dibantu alat optik apapun. Tapi tidak demikian halnya dengan komet Siding-Spring. Komet tersebut cukup redup, dengan magnitudo semu antara +11 hingga +12. Benda langit seredup ini hanya bisa dilihat dengan teleskop yang tepat. Dan ia pun hanya akan memperlihatkan diri jika langit telah benar-benar gelap tanpa sapuan cahaya senja.

Karena itu waktu yang tepat guna mengamati duet maut Mars dan Siding-Spring adalah setelah cahaya senja benar-benar menghilang. Di Indonesia, momen itu mudah sekali dikenali karena bertepatan dengan berkumandangnya azan Isya’. Dengan memperhitungkan saat-saat dimana elongasi Mars dan Siding-Spring bernilai sangat kecil, maka momen terbaik untuk menyaksikan duet maut itu adalah pada Minggu 19 Oktober 2014 TU dan Senin 20 Oktober 2014 TU. Pada kedua saat tersebut, kita cukup mengarahkan teleskop ke Mars. Sebagai bekal observasi, berikut disajikan koordinat ekuatorial Mars (dan juga komet Siding-Spring) sepanjang Sabtu-Selasa, 18-21 Oktober 2014 untuk pukul 19:00 hingga 21:00 WIB.

ss-mars_simulasi_kebumen_waktu-amat

Teleskop

Teleskop menjadi kebutuhan mutlak dalam mengamati duet maut ini. Dan tak sembarang teleskop, karena ia harus mempunyai lensa/cermin obyektif berdiameter yang mencukupi. Sehingga berkas cahaya yang dilesatkan dari komet Siding-Spring, aslinya adalah cahaya Matahari yang dipantulkan komet itu, akan terkumpul dalam jumlah yang cukup melampaui ambang batas sehingga ia dapat terlihat. Secara umum hubungan antara diameter minimum lensa/cermin obyektif bagi sebuah teleskop dengan magnitudo semu benda langit teredup yang bisa disaksikannya dinyatakan sebagai berikut :

ss-mars_simulasi_rumus

Dengan komet Siding-Spring memiliki magnitudo semu +11 hingga +12 pada saat duet maut terjadi, maka dibutuhkan teleskop dengan lensa/cermin berdiameter minimal 16 cm untuk menyaksikannya. Meski demikian masih ada aspek lain yang harus ipertimbangkan. Komet adalah benda langit yang terlihat lebih samar (baur). Jika bintang-bintang akan nampak sebagai titik cahaya tegas kala dilihat dengan teleskop, tidak demikian dengan komet. Karena itu meski di atas kertas kita bisa memakai teleskop dengan lensa/cermin obyektif berdiameter 16 cm, dalam praktiknya dibutuhkan lensa/cermin obyektif yang lebih besar. Sehingga lebih disarankan untuk menggunakan teleskop dengan lensa/cermin obyektif berdiameter 20 cm.

Gambar 3. Simulasi posisi komet Siding-Spring pada 19 dan 20 Oktober 2014 TU diamati lewat teleskop dengan medan pandang selebar 2 derajat yang diarahkan tepat ke posisi planet Mars. Lingkaran merah menunjukkan batas area medan pandang teleskop tersebut. Nampak posisi komet berpindah relatif terhadap posisi planet Mars. Sumber: Sudibyo, 2014.

Gambar 3. Simulasi posisi komet Siding-Spring pada 19 dan 20 Oktober 2014 TU diamati lewat teleskop dengan medan pandang selebar 2 derajat yang diarahkan tepat ke posisi planet Mars. Lingkaran merah menunjukkan batas area medan pandang teleskop tersebut. Nampak posisi komet berpindah relatif terhadap posisi planet Mars. Sumber: Sudibyo, 2014.

Pembaharuan: Siaran Langsung

Sejumlah kalangan baik institusi ilmiah maupun astronom amatir telah menyiapkan diri untuk menyajikan siaran langsung/hampir langsung terkait peristiwa langit yang amat langka ini. Siaran langsung/hampir langsung memungkinkan siapapun yang cukup antusias terhadap duet komet Siding-Spring dan planet Mars namun terkendala lingkungan (baik cuaca maupun waktu) dan peralatan untuk bisa menikmatinya. Hingga Sabtu 18 Oktober 2014 ini, mereka yang akan menyajikan siaran langsung/hampir langsung tersebut meliputi :

1. Virtual Telescope. Siaran langsung mulai Minggu 19 Oktober 2014 pukul 23:45 WIB dengan dipandu astronom Gianluca Masi (Italia).

2. European Space Agency (ESA). Siaran langsung mulai Senin dinihari 20 Oktober 2014 pukul 00:50 WIB dipandu oleh para astronom Eropa yang bergabung bersama ESA.

3. SLOOH. Menyelenggarakan dua siaran langsung yang berbeda. Siaran pertama mulai Senin dinihari 20 Oktober 2014 pukul 01:15 WIB. Dan siaran kedua berselang 8 jam kemudian yakni pada Senin 20 Oktober 2014 pukul 08:30 WIB. Kedua siaran langsung ini akan dipandu oleh astronom Robert Berman dan David Grinspoon secara interaktif lewat tanya-jawab melalui media sosial twitter dengan tagar (hashtag) #SloohComet.

4. Astronom amatir Peter Lake. Siaran langsung melalui media sosial Google+ mulai Minggu 19 Oktober 2014 pukul 18:00 WIB dari Observatorium iTelescope.net (Q62) di kompleks Observatorium Siding Spring (Australia), tempat komet Siding-Spring (C/2013 A1) ditemukan.

Referensi :

Lakdawalla. 2014. Watching Siding Spring’s Encounter with Mars. Planetary.org, 17 Oktober 2014.

Komet Siding-Spring, Komet Yang Bakal Nyaris Menubruk Planet Mars

Minggu 19 Oktober 2014 pukul 18:29 UTC (GMT). Atau di Indonesia Senin dinihari 20 Oktober 2014 pukul 01:29 WIB. Inilah saat-saat dimana sebutir benda langit yang tak terlalu besar, dengan dimensi sekitar 700 meter atau seukuran sebuah bukit, bakal melesat cepat dalam jarak teramat dekat untuk skala astronomi. Ia melesat pada kecepatan 56 km/detik atau 201.600 kilometer perjamnya pada jarak hanya 131.800 kilometer. Jika dibandingkan dengan jarak rata-rata Bumi-Bulan yang besarnya 384.400 kilometer, maka benda langit itu lewat dalam jarak nyaris tiga kali lipat lebih dekat dibanding Bulan. Beruntung situasi ini tidak terjadi di Bumi kita, melainkan pada planet tetangga terdekat kedua kita. Yakni si planet merah: Mars. Dan benda langit yang bakal melesat cepat sekaligus melintas-cukup dekat itu pun juga bukan benda langit biasa, yakni komet. Inilah benda langit mini dan eksotis anggota tata surya yang dikenal gemar menyemburkan debu, pasir dan bahkan kadang kerikil hingga bongkahan seukuran batu beserta gas-gas tertentu, menyerupai letusan gunung berapi kosmik di langit. Komet ini memang tak bakal bertubrukan dengan Mars. Namun debu dan pasir yang disemburkannya bakal sampai ke planet itu. Kala menembus atmosfer Mars, rombongan debu itu bakal menciptakan panorama hujan meteor yang mengagumkan. Sekaligus mengkhawatirkan.

Gambar 1. Komet Siding-Spring (titik potong garis kuning vertikal dan horizontal) pada 24 September 2014 TU lalu. Diabadikan dengan teleskop Schmidt Bimasakti di Observatorium Bosscha oleh Evan Irawan Akbar. Inilah komet yang bakal melintas-sangat dekat dengan planet Mars pada 20 Oktober 2014 dinihari waktu Indonesia kelak. Sumber: Observatorium Bosscha, 2014.

Gambar 1. Komet Siding-Spring (titik potong garis kuning vertikal dan horizontal) pada 24 September 2014 TU lalu. Diabadikan dengan teleskop Schmidt Bimasakti di Observatorium Bosscha oleh Evan Irawan Akbar. Inilah komet yang bakal melintas-sangat dekat dengan planet Mars pada 20 Oktober 2014 dinihari waktu Indonesia kelak. Sumber: Observatorium Bosscha, 2014.

Komet yang bakal mencetak sejarah itu adalah komet Siding-Spring (C/2013 A1). Semenjak ditemukan pada hari pertama tahun 2013 Tarikh Umum (TU) silam lewat mata tajam sistem penyigi langit yang bersenjatakan teleskop reflektor Uppsala Southern Schmidt 50 cm di Observatorium Siding-Spring (Australia), darinya nama komet ini berasal, komet Siding-Spring sudah menggemparkan jagat ilmu pengetahuan. Observasi awal mengindikasikan orbit komet ini berpotongan dengan orbit Mars hingga tingkat ketelitian tertentu. Dan observasi awal memprakirakan pada 20 Oktober 2014 dinihari waktu Indonesia, baik planet Mars maupun sang komet Siding-Spring akan sama-sama sedang melintasi titik perpotongan orbit tersebut, sehingga tumbukan benda langit diprakirakan tak terhindarkan.

Lebih hebohnya lagi, dengan kecepatan 56 km/detik dan ukuran inti komet berdasar observasi awal diperkirakan bergaris tengah hingga 50 kilometer, tumbukan akan berlangsung sangat dahsyat. Simulasi awal menunjukkan permukaan Mars bakal berhias sebentuk kawah raksasa bergaris tengah hingga 500 kilometer alias separuh panjang pulau Jawa! Bersamaan dengan pembentukan kawah raksasa ini akan terlepas energi hingga 24 milyar megaton TNT. Itu setara dengan 1,2 trilyun bom nuklir Hiroshima yang diledakkan secara serempak, tingkat pelepasan energi yang belum pernah disaksikan umat manusia sepanjang sejarah peradabannya.

Di pekan-pekan berikutnya sang komet terus menjadi target observasi yang berlangsung dari berbagai titik di sekujur Bumi. Segudang data berharga pun diperoleh. Kini kita mengetahui bahwa komet Siding-Spring ini adalah komet dengan periode yang amat sangat panjang hingga beberapa juta tahun. Akibatnya orbitnya pun demikian lonjing hingga nyaris tak terbedakan dengan orbit parabola. Fakta ini menunjukkan bahwa komet Siding-Spring nampaknya mirip komet ISON di tahun silam, yakni sama-sama komet yang baru beranjangsana untuk pertama kalinya ke lingkungan tata surya bagian dalam setelah melejit keluar dari awan komet Opik-Oort, ‘rumah’-nya bayi-bayi komet. Dengan perihelion 1,399 SA (satuan astronomi) atau setara 209 juta kilometer dari Matahari, komet Siding-Spring takkan mendekat ke Matahari hingga melampaui orbit Bumi kita. Namun yang paling menarik perhatian adalah bagaimana komet ini akan berposisi demikian dekat dengan planet Mars.

Gambar 2. Gambaran sederhana bagaimana posisi planet Mars beserta kedua satelit alamiahnya (yakni Phobos dan Deimos) terhadap komet Siding-Spring saat komet mencapai jarak terdekatnya dengan planet itu. Sumber: Wikipedia, 2014.

Gambar 2. Gambaran sederhana bagaimana posisi planet Mars beserta kedua satelit alamiahnya (yakni Phobos dan Deimos) terhadap komet Siding-Spring saat komet mencapai jarak terdekatnya dengan planet itu. Sumber: Wikipedia, 2014.

Perhitungan dan simulasi terbaru berdasarkan segudang data observasi termutakhir memang menunjukkan bahwa prakiraan tumbukan yang mengerikan di atas ternyata tak beralasan. Orbit komet Siding-Spring ternyata tak berpotongan dengan Mars, melainkan hanya saling berjejeran cukup dekat. Hal itu terjadi pada Senin dinihari 20 Oktober 2014 waktu Indonesia. Inti komet Siding-Spring bakal lewat pada ketinggian 131.800 kilometer dari paras planet Mars. Dalam perspektif Mars, jarak perlintasan ini masih lebih jauh ketimbang ketinggian dua satelit alamiahnya, masing-masing Phobos (tinggi rata-rata 6.000 kilometer dari paras planet) dan Deimos (tinggi rata-rata 20.000 kilometer dari paras planet). Namun dalam 100 menit kemudian planet Mars akan mencapai situasi yang lebih ekstrim, yakni berjarak terdekat terhadap orbit komet Siding-Spring yakni sejarak ‘hanya’ 23.500 kilometer dari paras planet itu. Jarak yang cukup dekat ini tentu bakal menghasilkan implikasi tersendiri. Apalagi Mars adalah target paling seksi dalam misi-misi antariksa termutakhir. Kini tercatat tujuh misi antariksa aktif di Mars, 5 pengorbit dan 2 robot penjelajah, yang dikelola oleh 3 negara/gabungan negara-negara.

Mengamplas Mars

Potensi tubrukan komet Siding-Spring ke planet Mars memang telah dikesampingkan sepenuhnya semenjak 8 April 2013 TU lewat segudang data observasi terbaru. Namun melintas-dekatnya sebuah komet di dekat sebuah planet tetap akan berdampak tersendiri.

Data terbaru memperlihatkan inti komet Siding-Spring tidaklah sebesar 50 kilometer, melainkan hanya 700 meter saja. Namun saat melintas-sangat dekat dengan Mars, paparan intensitas cahaya Matahari sudah cukup tinggi karena jaraknya terhadap Matahari sudah lebih kecil dibanding ambang batas 3,5 SA (satuan astronomi). Akibatnya sudah cukup banyak butir-butir es dan bekuan senyawa volatil (mudah menguap) di dalam inti komet yang tersublimasi. Gas-gas tersebut awalnya terakumulasi dalam cebakan-cebakan di bawah permukaan inti komet, untuk kemudian tersembur keluar ke lingkungan sekitar. Semburan ini mengangkut pula partikel-partikel material penyusun inti komet mulai dari seukuran debu hingga bongkah. Gas dan partikel yang tersembur menyusun sejenis atmosfer sementara (temporer) di sekeliling inti komet, yang disebut kepala komet (coma). Tekanan angin Matahari akan membuat sebagian material penyusun kepala komet terhembus menjauhi inti komet menjadi ekor komet.

Gambar 3. Gambaran artis saat komet Siding-Spring melintas-sangat dekat dengan planet Mars dalam skala astronomi. Kombinasi unik posisi Mars dan Matahari membuat ekor gas dan ekor debu komet tidak mengarah langsung ke planet Mars. Wahana antariksa tidak digambarkan dalam ukuran sebenarnya. Sumber: NASA, 2014.

Gambar 3. Gambaran artis saat komet Siding-Spring melintas-sangat dekat dengan planet Mars dalam skala astronomi. Kombinasi unik posisi Mars dan Matahari membuat ekor gas dan ekor debu komet tidak mengarah langsung ke planet Mars. Wahana antariksa tidak digambarkan dalam ukuran sebenarnya. Sumber: NASA, 2014.

Di sinilah potensi masalah muncul. Saat melintas-sangat dekat dengan planet Mars, dimensi coma Siding-Spring diperkirakan akan sepuluh kali lipat lebih besar ketimbang dimensi Mars sendiri. Sehingga praktis selama beberapa jam di Senin dinihari 20 Oktober 2014 waktu Indonesia itu, segenap planet Mars beserta satelit-satelit alamiahnya bakal tercelup ke dalam coma Siding-Spring yang penuh debu. Maka partikel-partikel debu Siding-Spring pun bakal melejit ke planet Mars pada kecepatan 56 km/detik relatif terhadap planet tersebut. Hujan meteor pun bakal terjadi saat partikel-partikel debu tersebut mencoba menembus atmosfer Mars. Ini akan menampakkan pemandangan hujan meteor nan luar bisa di planet tersebut, dengan intensitas cukup besar hingga berpotensi menjadi badai. Simulasi memperlihatkan hujan meteor Siding-Spring di Mars akan jauh lebih intensif ketimbang hujan meteor Perseids maupun Geminids di Bumi kita dengan prediksi ZHR (zenith hourly rate) mencapai sekitar 1.500 meteor/jam sehingga bisa menyandang status badai meteor. Hanya badai meteor Leonids 1999 saja yang mengungguli pesona hujan meteor Siding-Spring ini.

Dengan ukuran mikroskopisnya, tiada meteor Siding-Spring yang bakal sampai ke permukaan planet Mars. Masalahnya adalah bagaimana jika partikel-partikel meteoroid dari debu komet Siding-Spring ini berbenturan dengan wahana-wahana antariksa tak berawak aktif di orbit di Mars? Saat ini terdapat lima wahana antariksa aktif. Diurutkan dari yang paling senior masing-masing adalah Mars Odyssey (Amerika Serikat), Mars Reconaissance Orbiter/MRO (Amerika Serikat), Mars Express (gabungan negara-negara Eropa) serta dua yang baru datang pada September 2014 TU lalu yakni Mars Atmosphere and Volatile Evolution Mission/MAVEN (Amerika Serikat) dan Manglayaan/Mars Orbiter Mission (India). Seluruh wahana penyelidik ini tentu telah dirancang untuk menghadapi situasi tubrukan meteoroid, baik yang bersifat periodik maupun sporadik. Namun sanggupkah mereka bertahan kala berhadapan dengan guyuran meteoroid Siding-Spring? Akankah meteoroid-meteoroid Siding-Spring laksana mengamplas wahana-wahana antariksa antariksa tersebut?

Badan antariksa Amerika Serikat (NASA) memandang cukup serius potensi ancaman meteoroid Siding-Spring ini. Sehingga sejumlah kajian pun dilakukan guna mengevaluasi status meteor dan mitigasinya. Sejauh ini NASA menyimpulkan, kombinasi unik posisi Mars dan Matahari membuat meteoroid Siding-Spring takkan berdampak banyak sepanjang wahana-wahana antariksa tersebut di-reorientasi sehingga tidak berhadapan langsung dengan arah kedatangan partikel-partikel meteoroid. Hal ini berlaku sepanjang partikel-partikel meteoroid tersebut adalah debu-debu mikroskopis, yang di atas kertas merupakan ukuran partikel yang paling mungkin menjangkau planet Mars. Lain halnya jika wahana-wahana antariksa tersebut ditubruk material seukuran kerikil atau malah yang lebih besar lagi, meski menurut NASA peluang kejadian ini adalah kecil.

Gambar 4. Salah satu hasil kajian NASA terkait potensi terjadinya hujan/badai meteor di Mars seiring perlintasan-sangat dekat komet Siding-Spring. Kiri: planet Mars terlihat tersapu oleh debu mikroskopis komet Siding-Spring meski tidak dalam intensitas terbesar. Kanan: prakiraan fluks hujan meteor Siding-Spring (CSS) di Mars (ellips merah), dibandingkan dengan beberapa hujan meteor di Bumi seperti Perseids (ellips hitam). Hujan meteor Perseids berintensitas sekitar 100 meteor/jam, sementara hujan meteor Siding-Spring diprakirakan bakal mencapai 1.500 meteor/jam. Hanya badai meteor Leonids 1999 (Lst) yang bisa menandinginya. Sumber: NASA, 2014.

Gambar 4. Salah satu hasil kajian NASA terkait potensi terjadinya hujan/badai meteor di Mars seiring perlintasan-sangat dekat komet Siding-Spring. Kiri: planet Mars terlihat tersapu oleh debu mikroskopis komet Siding-Spring meski tidak dalam intensitas terbesar. Kanan: prakiraan fluks hujan meteor Siding-Spring (CSS) di Mars (ellips merah), dibandingkan dengan beberapa hujan meteor di Bumi seperti Perseids (ellips hitam). Hujan meteor Perseids berintensitas sekitar 100 meteor/jam, sementara hujan meteor Siding-Spring diprakirakan bakal mencapai 1.500 meteor/jam. Hanya badai meteor Leonids 1999 (Lst) yang bisa menandinginya. Sumber: NASA, 2014.

Masalah lainnya yang juga menjadi perhatian adalah bagaimana coma Siding-Spring akan berinteraksi dengan atmosfer atas Mars selama perlintasan-terdekatnya. Diprediksikan akan terjadi kenaikan suhu bersamaan dengan meningkatnya jumlah atom Hidrogen di lapisan atmosfer atas Mars selama puluhan jam kemudian. Ini akan membuat atmosfer Mars secara umum sedikit mengembang sehingga bakal mencakup sebagian kecil orbit wahana antariksa MRO dan MAVEN. Keduanya diprediksi bakal mengalami gaya gesek atmosfer antara 2 hingga 40 kali lipat lebih besar ketimbang normal. Sehingga kecepatannya bakal menurun dan akibatnya orbitnya pun bakal kian menurun merendah terhadap paras planet ini. Masalah ini dapat diatasi dengan menyalakan mesin roket kedua wahana guna mengembalikannya ke orbit normal. Meski seberapa banyak bahan bakar yang akan dikonsumsinya belum bisa diketahui untuk saat ini.

Pelajaran

Saat komet Siding-Spring berada pada jarak terdekatnya dengan planet Mars, kedua benda langit itu sama-sama akan berjarak cukup jauh dari Bumi kita. Yakni sejauh 1,6 SA atau 240 juta kilometer. Karena itu tak ada yang perlu dikhawatirkan. Bumi sama sekali tak terimbas oleh peristiwa langit yang satu ini. Apalagi komet Siding-Spring sendiri takkan mendekat ke Matahari hingga melampaui orbit Bumi.

Gambar 5. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Tumbukan bakal melepaskan energi 61.000 megaton TNT dan menghasilkan bola api ledakan bersuhu 10.000 derajat Celcius sebesar 13 km sembari membentuk kawah berdiameter 5,4 kilometer. Sumber: DowntoEarth, 2014.

Gambar 5. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Tumbukan bakal melepaskan energi 61.000 megaton TNT dan menghasilkan bola api ledakan bersuhu 10.000 derajat Celcius sebesar 13 km sembari membentuk kawah berdiameter 5,4 kilometer. Sumber: DowntoEarth, 2014.

Namun demikian ada banyak pelajaran yang bisa dipetik dari peristiwa langit nan langka ini. Salah satunya, umat manusia dapat lebih memahami apa yang terjadi tatkala sebuah komet melintas terlalu dekat dengan sebuah planet. Sepanjang sejarah umat manusia, kita belum pernah mengalami situasi yang sama dengan planet Mars pada saat ini. Komet yang pernah melintas-terdekat ke Bumi kita masihlah berjarak 2,26 juta kilometer yakni komet Lexell (D/1770 L1) pada 1 Juli 1770 TU dan komet SOHO (P/1999 J6) yang melintas sejauh 1,79 juta kilometer pada 12 Juni 1999 TU. Tak seperti yang dialami komet Shoemaker-Levy 9 saat melintas-terlalu dekat dengan planet Jupiter pada Juli 1992 TU, jarak terdekat komet Siding-Spring ke planet Mars masih jauh lebih besar ketimbang orbit Roche Mars. Sehingga gaya pasang surut gravitasi Mars masih belum cukup mampu untuk meremukkan inti komet ini menjadi kepingan-kepingan lebih kecil. Namun gaya gravitasi tersebut bakal cukup mampu untuk menggeser orbit komet Siding-Spring. Sehingga periodenya diprediksikan bakal memendek menjadi sekitar 1 juta tahun.

Selain bagaimana partikel-partikel debu komet dan kepala komet bakal berdampak terhadap sebuah planet, peristiwa langit ini juga menyediakan kesempatan langka mempelajari komet secara langsung dari dekat seiring adanya lima wahana antariksa aktif di orbit Mars. Data-data yang bakal diperoleh akan sangat menambah pengetahuan kita tentang dunia per-komet-an. Ini melengkapi apa yang sedang diupayakan misi antariksa Rosetta di orbit inti komet Churyumov-Gerasimenko, meski dalam aspek yang sedikit berbeda.

Gambar 6. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Terbentuk kawah berdiameter 5,4 kilometer dengan kedalaman hampir 500 meter sehingga mampu menampung segenap bangunan monumental seperti Menara Eiffel dengan mudah. Sumber: DowntoEarth, 2014.

Gambar 6. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Terbentuk kawah berdiameter 5,4 kilometer dengan kedalaman hampir 500 meter sehingga mampu menampung segenap bangunan monumental seperti Menara Eiffel dengan mudah. Sumber: DowntoEarth, 2014.

Di atas semua itu, pengamatan mendetail akan peristiwa langit yang langka ini bakal turut membantu mengembangkan mitigasi menghadapi bencana kosmik tumbukan benda langit. Mari anggap terdapat sebuah komet hipotetis yang sifat-sifatnya sangat mirip dengan komet Siding-Spring ini, namun orbitnya berpotongan dengan orbit Bumi dan tepat sedang menuju ke Bumi. Jika massa jenis inti kometnya dianggap 1 gram per sentimeter kubik, maka dengan diameter 700 meter dan kecepatan 56 km/detik, tumbukan komet hipotetik ini dengan Bumi akan melubangi kerak Bumi dengan sebentuk kawah besar: diameter 5.400 meter dan kedalaman hampir 500 meter. Saat komet tepat mencium Bumi, akan terbentuk fireball (bola api tumbukan) bersuhu sangat panas (hingga 10.000 derajat Celcius) berukuran sekitar 13 kilometer. Bumi pun akan berguncang keras dengan magnitudo hingga 8 skala Richter. Energi kinetik yang terlepas dalam tumbukan ini pun sungguh luar biasa, mencapai 61.000 megaton TNT atau setara 3 juta bom nuklir Hiroshima yang diledakkan secara serempak.

Gambar 7. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Atas: gelombang kejutnya sanggup berdampak hingga sejauh Bandung, sementara sinar inframerahnya menghasilkan dampak termal hingga sejauh Lampung dan Jawa Tengah. Bawah: tsunami yang akan terbentuk apabila titik tumbuk komet hipotetik ini di tengah-tengah Samudera Indonesia (Hindia). Sumber: KillerAsteroids, 2014.

Gambar 7. Hasil simulasi apabila sebuah komet hipotetik dengan sifat-sifat yang sama persis dengan komet Siding-Spring jatuh menghantam kawasan Monas (Jakarta). Atas: gelombang kejutnya sanggup berdampak hingga sejauh Bandung, sementara sinar inframerahnya menghasilkan dampak termal hingga sejauh Lampung dan Jawa Tengah. Bawah: tsunami yang akan terbentuk apabila titik tumbuk komet hipotetik ini di tengah-tengah Samudera Indonesia (Hindia). Sumber: KillerAsteroids, 2014.

Andaikata komet hipotetik ini jatuh di kawasan Monas (Jakarta), maka bola api tumbukannya akan tumbuh dan berkembang demikian rupa menjadi gelombang kejut. Kekuatan gelombang kejutnya sanggup merontokkan bangunan beton hingga sejauh Merak di sebelah barat dan Karawang-Bandung di sebelah timur. Sinar inframerah berintensitas tinggi yang dihasilkannya sanggup menghasilkan luka bakar tingkat satu hingga kawasan Jawa Tengah di sebelah timur dan Lampung di sebelah barat. Dipindah kemanapun lokasi titik tumbuknya, dampaknya akan serupa. Sebaliknya andaikata komet hipotetik ini jatuh di tengah-tengah Samudera Indonesia (Hindia), tsunami setinggi minimal 7 meter akan menerpa segenap pesisir Asia selatan dan tenggara. Korban jiwa dan kerugian material yang berjatuhan tentu bakal tak terperi. Harus dicatat, itu semua merupakan dampak tumbukan komet hipotetik berdiameter ‘hanya’ 700 meter. Komet yang lebih besar tentu akan menghasilkan dampak berlipat ganda.

Semua itu memang hanya simulasi, meski memiliki basis latar belakang ilmiah yang cukup kuat. Bagaimana melindungi umat manusia dari bencana kosmik yang mengerikan semacam itu menjadi salah satu sasaran yang ingin dicapai ilmu pengetahuan dan teknologi termutakhir. Harapannya agar umat manusia bisa melanjutkan peradabannya hingga batas kemampuannya. Dan agar kita tak senaas kawanan dinosaurus, yang punah secara besar-besaran pada 65 juta tahun silam dilumat dampak global tumbukan benda langit seukuran Gunung Everest.

Perhatian:

Pemilihan kawasan Monas (Jakarta) sebagai lokasi titik tumbuk komet hipotetik di atas hanyalah pemisalan. Ia dapat digantikan oleh tempat-tempat lainnya dimanapun di permukaan Bumi sepanjang berada di daratan.

Referensi :

Zurek. 2014. Comet C/2013 A1 Siding-Spring, Comet Environment Modeling. NASA Jet Propulsion Laboratory, 6 Juni 2014.

Gerhana Bulan dan Uranus Si Planet Biru Telur

Gerhana Bulan Total 8 Oktober 2014 baru saja usai. Meski di atas kertas seluruh Indonesia merupakan wilayah gerhana ini, dalam praktiknya tak setiap tempat mendapatkan kesempatan untuk menikmati meredupnya sekaligus bersalin warnanya sang rembulan menjadi kemerah-merahan mirip warna darah. Gangguan besar di ruang udara Asia Tenggara seiring tumbuh dan berkembangnya kehadiran topan Vongfong (Ompong) semenjak 30 September 2014 membuat banyak tempat di Indonesia yang tertutupi awan tebal dan mendung. Bahkan hanya berbelas jam sebelum Gerhana Bulan terjadi, topan ini telah menguat hingga menyandang status tertinggi sebagai topan super (kategori 5) seiring pergerakannya di atas perairan Samudera Pasifik lepas pantai timur Filipina yang lebih hangat dan banyak memproduksi uap air. Hanya di sejumlah tempat saja langit relatif terbuka ataupun hanya tertutupi awan tipis, sehingga publik disana pun berkesempatan menikmati gerhana.

Gambar 1. Saat-saat 'menghilang'nya Bulan ke dalam kerucut umbra Bumi pada Gerhana Bulan Total 8 Oktober 2014 saat disaksikan dari jarak 107 juta kilometer. Film pendek ini dibuat dari 31 citra terpisah yang diambil secara beruntun lantas diperbesar dua kali lipat dan kecerlangan Bulan dilipatgandakan 25 kali lipat. Skala waktu dalam UTC/GMT (WIB minus 7). Diabadikan oleh wahana MESSENGER. Sumber: NASA, 2014.

Gambar 1. Saat-saat ‘menghilang’nya Bulan ke dalam kerucut umbra Bumi pada Gerhana Bulan Total 8 Oktober 2014 saat disaksikan dari jarak 107 juta kilometer. Film pendek ini dibuat dari 31 citra terpisah yang diambil secara beruntun lantas diperbesar dua kali lipat dan kecerlangan Bulan dilipatgandakan 25 kali lipat. Skala waktu dalam UTC/GMT (WIB minus 7). Diabadikan oleh wahana MESSENGER. Sumber: NASA, 2014.

Dalam peristiwa langit ini hampir segenap mata tertuju kepada Bulan. Selain di Bumi, observasi terhadap Gerhana Bulan Total kali ini juga dilakukan dari luar Bumi. Tepatnya dari lokasi sejauh 107 juta kilometer, yakni dari lingkungan planet Merkurius. Adalah wahana antariksa MESSENGER (Mercury Surface, Space Environment, Geochemistry and Ranging) yang mengabadikannya dalam rentang waktu antara pukul 16:18 hingga 17:18 WIB. Satelit tak berawak yang sejatinya ditugaskan untuk menyelidiki fisik dan lingkungan planet terdekat ke Matahari itu memotret Bumi dan Bulan secara beruntun sehingga citra-citranya bisa digunakan untuk mengonstruksi sebuah film pendek yang bagaimana saat-saat Bulan ‘menghilang’ dalam kegelapan begitu kian jauh memasuki kerucut bayangan inti (umbra) Bumi.

Herschel

Selain Bulan, benda langit yang juga menarik perhatian di saat gerhana seiring posisinya yang cukup berdekatan dengan Bulan adalah sebuah obyek redup bernama Uranus. Tak seperti Bulan yang terlihat demikian besar dan sungguh kasat mata sehingga tak butuh alat bantu optik apapun dalam menyaksikannya, Uranus sungguh redup. Sehingga tak begitu menarik perhatian. Sejauh ini hanya Chandra Firmansyah (Jember) dan Joshua Anderson (Surabaya) yang sempat mengabadikan panorama Uranus bersanding dengan Bulan di saat gerhana barusan.

Gambar 2. Citra satelit cuaca MTSAT-2 untuk kawasan Asia Tenggara sejam setelah puncak Gerhana Bulan Total 8 Oktober 2014, dalam kanal inframerah. Nampak topan Vongfong (Ompong) yang telah berkembang menjadi topan super (kategori 5) dengan mata badainya yang khas. Sumber: Kochi University, 2014.

Gambar 2. Citra satelit cuaca MTSAT-2 untuk kawasan Asia Tenggara sejam setelah puncak Gerhana Bulan Total 8 Oktober 2014, dalam kanal inframerah. Nampak topan Vongfong (Ompong) yang telah berkembang menjadi topan super (kategori 5) dengan mata badainya yang khas. Sumber: Kochi University, 2014.

Uranus memang nyaris tak ada bedanya dengan bintang-bintang redup. Sebagai planet terjauh kedua terhadap Matahari (setelah Neptunus), geraknya sungguh lambat apalagi bila dibandingkan dengan gerak planet Mars, Jupiter maupun Saturnus. Karenanya meski ia dalam waktu-waktu tertentu dapat disaksikan mata tanpa alat bantu apapun sepanjang ada di lingkungan cukup gelap dan langit mendukung, sebelum abad ke-18 tak seorang pun menyangka Uranus adalah planet. Padahal benda langit ini sudah teramati setidaknya sejak era astronomi Yunani kuno, kala Hipparchos mendaftarnya sebagai salah satu bintang dalam katalognya yang dipublikasikan pada 128 STU (Sebelum Tarikh Umum). Berbelas abad kemudian, Uranus lagi-lagi didaftar sebagai bintang dalam katalog John Flamsteed, astronom kerajaan Inggris Raya sekaligus salah satu pelopor pendirian Observatorium Greenwich, yang dipublikasikan tahun 1690 TU (Tarikh Umum). Flamsteed menganggap Uranus sebagai bagian dari rasi Taurus sehingga memberinya nama bintang 34 Tauri. Di Perancis, astronom Pierre Lemonier bahkan mengamati ‘bintang 34 Tauri’ hingga 12 kali sepanjang periode 1750 hingga 1769 TU, tanpa pernah menyadarinya sebagai planet.

Adalah seorang William Herschel yang pertama menyadari ‘bintang 34 Tauri’ bukanlah bintang. Terlahir sebagai Friedrich Wilhelm Herschel di Hannover (Jerman), ia tumbuh sebagai musisi klasik untuk kemudian bermigrasi ke Inggris pada tahun 1761 TU guna bergabung dengan orkestra Newcastle. Menetap di kota kecil Bath, Herschel segera terkenal dengan kegiatan-kegiatan musiknya hingga pada puncaknya menjabat direktur orkestra Bath sekaligus salah satu musisi klasik papan atas Inggris Raya dewasa itu. Posisinya membuatnya berteman dengan banyak orang, termasuk Nevil Maskelyne sang astronom kerajaan. Pertemanan ini menumbuhkan minatnya akan astronomi hingga tiba pada suatu titik dimana ia memutuskan harus membuat teleskop. Herschel memilih membangun teleskop pemantul (reflektor) dengan cermin obyektif dari logam spekulum (paduan logam tembaga 67 % dan timah putih 33 %) yang dicetak dan dipoles sendiri. Enambelas jam dihabiskannya setiap hari guna membangun teleskop impian di ruang bawah tanah kediamannya. Suatu saat ia harus terbirit-birit menyelamatkan diri kala cetakan yang terbuat dari kotoran-kuda mendadak pecah dan logam cair membanjir kemana-mana.

Gambar 3. Citra panoramik Bulan dan sekitarnya pada saat puncak Gerhana Bulan Total 8 Oktober 2014, diabadikan dari Jember (Jawa Timur) menggunakan panjang fokus 55 mm, ISO tinggi dan waktu penyinaran 15 detik. Bulan nampak sangat terang (pertanda tersaturasi). Planet Uranus diperlihatkan dengan tanda panah. Sumber: Chandra Firmansyah, 2014.

Gambar 3. Citra panoramik Bulan dan sekitarnya pada saat puncak Gerhana Bulan Total 8 Oktober 2014, diabadikan dari Jember (Jawa Timur) menggunakan panjang fokus 55 mm, ISO tinggi dan waktu penyinaran 15 detik. Bulan nampak sangat terang (pertanda tersaturasi). Planet Uranus diperlihatkan dengan tanda panah. Sumber: Chandra Firmansyah, 2014.

Lewat teleskopnya, Herschel memulai karirnya sebagai astronom amatir per Mei 1773 TU. Ia memusatkan perhatian pada sistem bintang ganda. Belakangan ia pun tertarik mengamati benda-benda langit non bintang yang disebutnya nebula. Herschel menemukan dan mengamati tak kurang dari 2.400 nebula. Di kemudian hari disadari sebagian besar nebula temuan Herschel merupakan galaksi yang menjadi tetangga galaksi Bima Sakti kita. Namun penemuannya yang paling fenomenal terjadi pada Maret 1781 TU: Uranus. Kala mengamati bintang-bintang di rasi Taurus pada 17 Maret 1781 TU malam, teleskopnya (yang memiliki kemampuan perbesaran 227 kali) bersirobok dengan ‘bintang 34 Tauri.’ Ia mendapati bintang ini sedikit berbeda dibanding bintang zeta Tauri disampingnya. Tertarik dengannya, Herschel mengganti-ganti lensa okuler teleskopnya sehingga kemampuan perbesarannya meningkat menjadi 460 dan 932 kali. Herschel mendapati, semakin besar kekuatan perbesaran teleskop maka semakin besar pula diameter sudut ‘bintang 34 Tauri’ secara proporsional. Berdasarkan pengalamannya sifat semacam ini tak pernah didapati pada bintang-bintang sesungguhnya. Sehingga ‘bintang 34 Tauri’ bukanlah bintang. Kesimpulan ini menguat setelah Herschel juga mendapati posisi ‘bintang 34 Tauri’ ternyata sedikit berubah dari hari ke hari. Dalam pandangan Herschel, benda langit itu mungkin komet.

Herschel pun menceritakan temuan ‘komet’-nya pada sahabatnya Maskelyne dan sang sahabat bergegas menyisir langit. Hampir sebulan mereka kembali bertemu, namun kali ini Maskelyne datang dengan wajah sedikit kebingungan. Baginya ‘komet’ yang dimaksud Herschel nampaknya bukanlah komet seiring tidak adanya bentuk kepala (coma) maupun ekor. Namun jika bukan merupakan komet, satu-satunya penjelasan memungkinkan adalah ‘komet’ temuan Herschel merupakan planet tak dikenal yang beredar mengelilingi Matahari dalam sebentuk orbit hampir mendekati lingkaran. Tapi pemikiran konservatif Maskelyne menganggap gagasan akan planet baru yang tak dikenal sebelumnya sebagai hal yang nyaris mustahil.

Gambar 4. Citra Bulan dan sekitarnya pada puncak Gerhana Bulan Total 8 Oktober 2014 diabadikan dari Jember (Jawa Timur) menggunakan panjang fokus 55 mm, ISO tinggi dan waktu penyinaran 15 detik. Citra telah diolah. Separuh wajah Bulan nampak berwarna kemerah-merahan (pertanda gerhana). Planet Uranus diperlihatkan dengan tanda panah. Sumber: Chandra Firmansyah, 2014.

Gambar 4. Citra Bulan dan sekitarnya pada puncak Gerhana Bulan Total 8 Oktober 2014 diabadikan dari Jember (Jawa Timur) menggunakan panjang fokus 55 mm, ISO tinggi dan waktu penyinaran 15 detik. Citra telah diolah. Separuh wajah Bulan nampak berwarna kemerah-merahan (pertanda gerhana). Planet Uranus diperlihatkan dengan tanda panah. Sumber: Chandra Firmansyah, 2014.

Selagi Maskelyne kebingungan dan Herschel tetap berkukuh dengan anggapan ‘komet’-nya, kabar menyebar ke seantero Eropa. Para astronom pun ramai-ramai mengarahkan teleskopnya ke ‘komet’ ini dengan antusias. Data demi data pengamatan pun terkumpul. Posisi ‘komet’ dari hari ke hari pun terekam. Berbekal segudang data ini maka astronom Anders Johan Lexell (Rusia) mulai mencoba menentukan orbitnya. Ia mendapatkan sebentuk orbit yang hampir mendekati lingkaran, persis seperti temuan Maskelyne. Orbit semacam ini sangat janggal untuk ukuran komet sehingga Lexell menyimpulkan bahwa benda langit temuan Herschel itu sejatinya planet baru. Kesimpulan Lexell didukung penuh astronom Johann Elert Bode (Jerman), yang melakukan perhitungan terpisah dan mendapatkan hasil hampir sama. Benda langit itu adalah planet baru, yang beredar mengelilingi Matahari dalam orbit yang lebih jauh ketimbang Saturnus. Herschel sendiri akhirnya mengubah pendapatnya. Kepada Joseph Banks, presiden Royal Society (perhimpunan ilmuwan Inggris Raya) saat itu, ia menyatakan benda langit itu memang planet.

Segera temuan Herschel menggemparkan dunia. Untuk pertama kalinya semenjak awal peradaban, umat manusia berhasil menemukan sebuah planet baru. Untuk pertama kalinya pula tata surya disadari tak hanya berhenti sebatas orbit Saturnus, namun ternyata masih lebih luas lagi. Raja George III demikian terpesona dengan prestasi ini sehingga mengundang Herschel dan Caroline, saudara perempuan penuh pengabdiannya yang berperan sebagai notulis selama Herschel melaksanakan observasi, ke istana Windsor sekaligus memberikan anugerah 200 poundsterling per tahun. Bahkan pada 1816 TU ia dianugerahi gelar bangsawan, sehingga menjadi Sir Frederick William Herschel. Penghormatan ini membuat Herschel pada awalnya menamai planet itu sebagai Georgium Sidus (bintang George). Namun nama ini tak populer. Di Perancis, yang secara politis bersitegang dengan Inggris, planet baru itu lebih dikenal sebagai planet Herschel. Bode kemudian menyodorkan nama yang lebih bisa diterima segenap pihak dengan mengacu pada mitologi Yunani, yakni Uranus. Demikian besar pengaruh penemuan Uranus sehingga saat Klaproth berhasil mengekstraksi unsur logam baru pada 1789 TU, ia pun menyematkan nama Uranium.

Telur

Semenjak penemuannya, Uranus baru sekali dieksplorasi dalam jarak cukup dekat oleh wahana antariksa tak berawak. Tepatnya pada 1986 TU, saat Voyager 2 milik NASA (Amerika Serikat) melintas-dekat planet ini dalam perjalanan akbarnya mengarungi tata surya. Jarak terdekat yang berhasil dicapai Voyager 2 ke Uranus adalah 81.500 kilometer pada 24 Januari 1986 TU. Kesan pertama yang muncul saat menyaksikan wajah Uranus dari dekat, setidaknya melalui Voyager 2, adalah warnanya. Bagi kita di Indonesia, warna Uranus sangat mirip dengan warna telur bebek. Yakni sama-sama berwarna aqua, atau biru kehijauan, atau biru telur. Uranus mendapatkan warna khas ini dari berlimpahnya gas metana dalam atmosfernya. Molekul-molekul metana bersifat menyerap cahaya dalam spektrum cahaya tampak dan inframerah dekat, sehingga membuat sang planet berwarna biru telur.

Gambar 5. Carilah persamaannya. Telur bebek (atas) dan planet Uranus (bawah) sama-sama menampakkan warna aqua, atau biru kehijauan, atau biru telur. Sumber: Sudibyo, 2014; NASA, 1986.

Gambar 5. Carilah persamaannya. Telur bebek (atas) dan planet Uranus (bawah) sama-sama menampakkan warna aqua, atau biru kehijauan, atau biru telur. Sumber: Sudibyo, 2014; NASA, 1986.

Dengan melewati Uranus, Voyager 2 tak hanya mendapat tambahan kecepatan guna melanjutkan perjalanannya melintas-dekat planet Neptunus kelak (terjadi pada 1989 TU), namun juga menguak banyak misteri dunia ajaib nan menakjubkan ini. Ia menemukan planet ini berotasi secara menggelinding di ekliptika akibat sumbu rotasi yang miring hingga 98 derajat terhadap bidang tegak ekliptika. Tak pelak selama setengah periode revolusinya (yakni 42 tahun), kutub selatan Uranus selalu menghadap ke Matahari. Dan selama setengah periode revolusi selanjutnya giliran kutub utara yang demikian. Voyager 2 pun menemukan cincin-cincin Uranus (yang lantas menjadi ciri khas planet-planet raksasa dalam tata surya), beberapa satelit alamiah (Bulan-Bulan Uranus) dan magnetosfer nan ajaib.

Pasca Voyager 2, sejauh ini belum ada rencana baru untuk mengeksplorasi Uranus. Beberapa usulan memang sempat muncul. Salah satunya memaksimalkan peran wahana antariksa Cassini, yang masih aktif bekerja di lingkungan Saturnus. Secara teknis Cassini bisa diarahkan untuk melepaskan diri dari kungkungan gravitasi planet Saturnus dan terbang menuju Uranus. Namun keterbatasan bahan bakar membuat perjalanan dari Saturnus menuju Uranus membutuhkan waktu hingga dua puluh tahun. Ini lebih lama ketimbang waktu yang dibutuhkan sebuah wahana antariksa untuk terbang langsung dari Bumi menuju Uranus, yakni 12-13 tahun. Seiring tiadanya rencana baru eksplorasi Uranus, umat manusia masih harus berpuas diri mengamati planet biru telur dan lingkungannya ini dari kejauhan dengan memanfaatkan teleskop-teleskop tercanggih.

Referensi:

Lakdawalla. 2014. From Mercury Orbit, MESSENGER Watches a Lunar Eclipse. Planetary.org, 10 Oct 2014.

Morison. 2008. Introduction to Astronomy and Cosmology. West Sussex : John Wiley & Sons, UK.

Menuju Gerhana Bulan Total Rabu 8 Oktober 2014

Seperti telah diduga Umat Islam di Indonesia pun mengumandangkan takbir merayakan Idul Adha 1435 H pada saat yang berbeda setelah Menteri Agama Lukman Saifuddin menetapkan 1 Zulhijjah 1435 H di Indonesia bertepatan dengan Jumat 26 September 2014. Keputusan ini berdasar pada hasil sidang itsbat penetapan Idul Adha 1435 H di Kementerian Agama RI yang kali ini kembali bersifat tertutup untuk umum. Dengan keputusan tersebut maka Kementerian Agama RI menetapkan Idul Adha 1435 H bertepatan dengan Minggu 5 Oktober 2014. Dalam konteks regional, keputusan Menteri Agama RI senada dengan keputusan sejumlah negara Asia Tenggara seperti Malaysia dan Brunei Darussalam maupun komunitas Umat Islam seperti di Singapura dan Filipina.

Namun sebagian Umat Islam Indonesia merayakannya lebih dulu pada Sabtu 4 Oktober 2014. Dasarnya adalah maklumat Pengurus Pusat Muhammadiyah terkait penetapan Idul Adha 1435 H (2014). Selain itu ada pula yang mengacu keputusan pemerintah kerajaan Saudi Arabia dimana 1 Zulhijjah 1435 H di Saudi Arabia bertepatan dengan Kamis 25 September 2014, atau sehari lebih awal ketimbang keputusan Menteri Agama RI. Dan ada pula yang berpatokan pada hasil rukyatul hilaal Cakung (DKI Jakarta) sebagai kalangan pengguna sistem hisab Sullam yang dikenal bersifat taqriby (aproksimasi) sehingga akurasinya lebih rendah. Mengulangi yang sudah-sudah, pada Rabu 24 September 2014 maghrib tim Cakung melaporkan “melihat” hilaal. “Melihat” di sini dalam tanda kutip, mengingat kesaksian tersebut (dan juga kesaksian-kesaksian Cakung sebelumnya) telah lama cukup diragukan seiring tiadanya landasan ilmiah yang menopangnya, bahkan saat dilakukan observasi pembanding di lokasi yang hampir sama dengan alat bantu standar observasi hilaal.

Meski terasa tak mengenakkan, perbedaan semacam ini sejatinya bukanlah yang pertama. Empat tahun silam. Idul Adha 1431 H (2010) pun dirayakan di Indonesia dengan berbeda. Saat itu pun keputusan Menteri Agama RI juga berbeda dengan keputusan pemerintah kerajaan Saudi Arabia. Namun waktu itu tak banyak yang meributkan. Apalagi membanding-bandingkan mana yang lebih dominan antara yang ber-Idul Adha pada Sabtu 4 Oktober 2014 dengan Minggu 5 Oktober 2014. Pembanding-bandingan itu ahistoris jika dikaitkan dengan fakta saat Ramadhan 1435 H (2014) lalu, dan juga Ramadhan 1434 H (2013). Saat itu baik Menteri Agama RI maupun pemerintah kerajaan Saudi Arabia menetapkan awal puasa Ramadhan pada hari yang sama. Dan pada kedua saat itu pun di Indonesia terdapat kalangan Umat Islam yang memulai berpuasa Ramadhan sehari lebih awal. Namun dalam kedua saat itu pun tak ada ribut-ribut.

Gambar 1. Wajah Bulan yang 'hilang' separo saat mengalami Gerhana Bulan dalam fase parsial (sebagian), diabadikan pada 16 Juni 2011 di Kebumen. Pada Gerhana Bulan 8 Oktober 2014, pemandangan seperti ini pun akan terulang. Sumber: Sudibyo, 2011.

Gambar 1. Wajah Bulan yang ‘hilang’ separo saat mengalami Gerhana Bulan dalam fase parsial (sebagian), diabadikan pada 16 Juni 2011 di Kebumen. Pada Gerhana Bulan 8 Oktober 2014, pemandangan seperti ini pun akan terulang. Sumber: Sudibyo, 2011.

Justru yang harus menjadi perhatian adalah apa yang terjadi setelah hari raya Idul Adha 1435 H. Setelah tiga hari menjalani hari tasyrik (hari Mina), dimana gema takbir senantiasa dikumandangkan pada hari-hari tersebut, kita akan bersua dengan satu peristiwa langit yang juga (dianjurkan) dirayakan kehadirannya dengan gema takbir. Inilah peristiwa Gerhana Bulan 8 Oktober 2014.

Gerhana

Gerhana Bulan 8 Oktober 2014 merupakan Gerhana Bulan Total (GBT), dimana Bulan tak terkena sinar Matahari secara langsung pada saat puncak gerhananya. Perhitungan dengan algoritma gerhana Jean Meeus memperlihatkan gerhana ini akan dimulai pada Rabu 8 Oktober 2014 pukul 15:16 WIB saat terjadi kontak awal penumbra (P1) yang memandakan awal fase penumbra. Selanjutnya disusul kontak awal umbra (U1) pada pukul 16:15 WIB sebagai awal fase parsial (sebagian). Totalitas gerhana dimulai pada pukul 17:26 WIB sebagai kontak awal totalitas (U2) dan mencapai puncaknya pada pukul 17:55 WIB. Pada saat puncak, magnitudo gerhana adalah 1,152 yang bermakna bahwa diameter sudut lingkaran umbra (bayangan inti) gerhana adalah 1,152 kali lipat lebih besar ketimbang diameter sudut Bulan. Dengan diameter lingkaran umbra gerhana sebesar itu dan lintasan Bulan pada saat itu, maka totalitas gerhana yakni durasi tatkala Bulan benar-benar tak terpapar sinar Matahari secara langsung terjadi selama 58 menit. Totalitas berakhir dengan kontak akhir totalitas (U3) pada pukul 18:24 WIB. Setelah itu Bulan kembali memasuki gerhana dalam fase parsial (sebagian) hingga pukul 19:34 WIB saat terjadi kontak akhir umbra (U4). Selepas itu Bulan tinggal menyusuri lingkaran penumbra (bayangan tambahan) gerhana sebagai fase penumbra hingga saat terjadi kontak akhir penumbra (P4) pada pukul 20:33 WIB.

Jika dihitung dari saat kontak awal penumbra (P1) hingga kontak akhir penumbra (P4), maka durasi Gerhana Bulan Total 8 Oktober 2014 ini adalah sebesar 5 jam 17 menit. Namun gerhana yang kasatmata hanya berdurasi 3 jam 19 menit, yakni semenjak awal kontak umbra (U1) hingga akhir kontak umbra (U4). Sepanjang 3 jam 19 menit itu kita akan menyaksikan Bulan mengalami fase parsial (sebagian) dan disusul totalitas dalam menjalani gerhananya. Bila durasi keseluruhan gerhana dikurangi durasi gerhana yang kasatmata, maka akan kita peroleh sisanya sebesar 1 jam 58 menit. Inilah durasi dimana Bulan berada dalam fase penumbra dalam menjalani gerhananya kali ini. Dalam fase penumnbra, secara kasat mata kita hanya akan melihatnya sebagai Bulan yang nyaris bundar utuh sebagai ciri khas Hanya dengan menggunakan alat bantu optik yang memadai (misalnya teleskop dilengkapi kamera tertentu) sajalah gerhana dalam fase penumbra bisa kita saksikan.

Gambar 2. Peta wilayah Gerhana Bulan Total 8 Oktober 2014 secara global. Sumber: Sudibyo, 2014.

Gambar 2. Peta wilayah Gerhana Bulan Total 8 Oktober 2014 secara global. Sumber: Sudibyo, 2014.

Dalam lingkup global, Gerhana Bulan Total 8 Oktober 2014 dapat disaksikan di Australia, sebagian besar Asia serta hampir seluruh Amerika. Hanya Eropa dan Afrika serta Asia barat (timur Tengah) saja yang tak berkesempatan menikmati gerhana ini. Namun wilayah yang dapat menyaksikan gerhana ini secara penuh dalam setiap fasenya tanpa terganggu aktivitas terbit ataupun terbenamnya Bulan hanyalah Amerika Serikat bagian barat, Canada bagian barat, Australia bagian timur, Rusia bagian timur, separuh Jepang dan Papua Nugini.

Shalat Gerhana dan Observasi

Gambar 3. Peta wilayah Gerhana Bulan Total 8 Oktober 2014 untuk Indonesia. Garis U1 adalah garis dimana kontak awal umbra bertepatan dengan saat Bulan terbit setempat, garis U2 adalah garis saat awal totalitas bertepatan dengan saat Bulan terbit setempat, garis puncak adalah garis saat kontak puncak gerhana bertepatan dengan saat Bulan terbit setempat dan garis U3 adalah garis saat akhir totalitas bertepatan dengan saat Bulan terbit setempat. Sumber: Sudibyo, 2014.

Gambar 3. Peta wilayah Gerhana Bulan Total 8 Oktober 2014 untuk Indonesia. Garis U1 adalah garis dimana kontak awal umbra bertepatan dengan saat Bulan terbit setempat, garis U2 adalah garis saat awal totalitas bertepatan dengan saat Bulan terbit setempat, garis puncak adalah garis saat kontak puncak gerhana bertepatan dengan saat Bulan terbit setempat dan garis U3 adalah garis saat akhir totalitas bertepatan dengan saat Bulan terbit setempat. Sumber: Sudibyo, 2014.

Seluruh Indonesia berkesempatan menyaksikan Gerhana Bulan Total ini, meski berbeda-beda dari satu lokasi ke lokasi lainnya. Indonesia bagian timur khususnya propinsi Papua, Irian Jaya Barat, Maluku dan Maluku Utara mampu menyaksikan gerhana semenjak fase penumbra (tidak utuh) hingga usai begitu Matahari terbenam karena lokasinya berada di sisi barat garis P1. Sisanya menyaksikan gerhana hanya setelah memasuki fase parsial ataupun totalitas. Bulan terbit sebagai gerhana fase parsial dapat dinikmati di tempat-tempat yang berada di sebelah barat garis U1, meliputi pulau Sulawesi, seluruh kepulauan Nusa Tenggara dan sebagian besar pulau Kalimantan (kecuali Kalimantan Barat) serta Jawa bagian timur. Sementara Bulan terbit sebagai gerhana dalam fase totalitas dapat dilihat di hampir segenap pulau Jawa (kecuali Jawa Timur), propinsi Kalimantan Barat, propinsi Lampung dan Sumatra Selatan karena tempat-tempat ini berada di sebelah barat garis U2. Sementara sebagian besar pulau Sumatra mengalami situasi dimana Bulan terbit tepat setelah puncak gerhana (berada di sebelah barat garis puncak). Bahkan di kota Banda Aceh, garis U3 tepat melintasi kota ini sehingga di sini terjadi situasi dimana Bulan terbit bertepatan dengan berakhirnya gerhana fase totalitas. Sehingga Banda Aceh hanya menikmati gerhana fase sebagian sampai usai.

Seluruh Indonesia berada dalam kawasan Gerhana Bulan Total 8 Oktober 2014 ini Dan seluruhnya mampu menikmati gerhana secara kasat mata, baik fase parsial maupun totalitas. Sehingga Umat Islam di seluruh Indonesia berkesempatan menunaikan ibadah shalat gerhana bulan, tanpa terkecuali. Dan sebelum menunaikan shalat gerhana, dianjurkan untuk mengumandangkan gema takbir. Di samping itu alangkah baiknya jika turut mengamati gerhana ini, sebagai bagian dari mengagumi kebesaran Illahi dan memahami bagaimana semesta bekerja. Fase gerhana yang kasatmata berakhir pada pukul 19:34 WIB, sehingga kesempatan untuk menunaikan shalat gerhana bulan pun berakhir pada pukul 19:34 WIB, Untuk itu perlu disusun strategi kapan mengamati gerhana dan kapan melaksanakan shalat gerhana bulan. Fase totalitas adalah tahap gerhana yang paling mengesankan, maka dianjurkan meletakkan waktu observasi bersamaan dengan fase totalitas ini. Dengan demikian untuk pulau-pulau Irian, Sulawesi, Kalimantan, Sumatra bagian barat dan pulau-pulau kecil disekitarnya serta kepulauan Nusa Tenggara, shalat gerhana bulan dapat dilaksanakan segera selepas usai shalat maghrib berjamaah di masjid. Sebaliknya untuk pulau Jawa dan pulau Sumatra bagian timur, shalat gerhana dapat dilaksanakan tepat setelah shalat isya berjamaah.

Gambar 4. Posisi Bulan semenjak terbit hingga ke fase gerhana selanjutnya seperti disimulasikan untuk Kebumen (Jawa Tengah). Angka-angka di sumbu mendatar (kaki langit timur) menunjukkan azimuth, dimana azimuth 45 = titik timur laut dan azimuth 90 = titik timur. Sumber: Sudibyo, 2014.

Gambar 4. Posisi Bulan semenjak terbit hingga ke fase gerhana selanjutnya seperti disimulasikan untuk Kebumen (Jawa Tengah). Angka-angka di sumbu mendatar (kaki langit timur) menunjukkan azimuth, dimana azimuth 45 = titik timur laut dan azimuth 90 = titik timur. Sumber: Sudibyo, 2014.

Seiring sebagian Indonesia masih berada dalam situasi musim kemarau dengan langit malam relatif cerah, maka Gerhana Bulan Total ini relatif bisa diamati dengan mudah dimana saja, termasuk di lingkungan perkotaan sekalipun. Namun ada teknik tersendiri untuk mengabadikan peristiwa langit ini. Prinsip dasarnya, Gerhana Bulan menyebabkan adanya perubahan pencahayaan Bulan dari yang semula cukup benderang (sebagai purnama) menjadi jauh lebih redup ketimbang Bulan sabit (pada puncak gerhana). Perubahan pencahayaan ini memerlukan pengaturan khusus. Jika anda menggunakan kamera jenis DSLR (digital single lens reflex), maka atur kamera ke kondisi manual dan fokus lensa juga ke posisi manual. Pilih panjang fokus tertentu saja. Juga pilih f-ratio pada satu nilai tertentu dan demikian pula ISO-nya. Lalu arahkan ke Bulan dan atur waktu penyinarannya (exposure time) mengikut fase gerhana seperti diperlihatkan tabel di bawah ini:

gbt081014_fotografi_dslr

Salah satu kelebihan kamera DSLR adalah dapat dihubungkan ke teleskop dengan penambahan adapter dan t-ring yang tepat sehingga menghasilkan teknik fotografi fokus prima. Namun bila disambungkan dengan teleskop, maka nilai f-ratio dan panjang fokusnya menjadi tetap seperti apa yang dimiliki oleh teleskop tersebut tanpa bisa diubah-ubah. Jika kamera DSLR ini disambungkan ke teleskop menghasilkan teknik fokus prima, maka nilai waktu penyinarannya (exposure time) bergantung pada ISO yang dipilih. Misalkan teleskop yang digunakan adalah teleskop pembias 70 mm dengan panjang fokus 900 mm, maka nilai ISO dan waktu penyinarannya mengikuti fase gerhana diperlihatkan tabel berikut :

gbt081014_fotografi_teleskop

Bagaimana jika anda tak memiliki kamera DSLR dan juga tak mempunyai teleskop? Jangan khawatir, Gerhana Bulan Total ini tetap dapat diabadikan meski dengan kamera digital sederhana atau bahkan kamera ponsel/ponsel pintar sekalipun. Kuncinya adalah mengeset kamera dengan nilai ISO yang besar (bila memungkinkan). Juga mengatur nilai EV ke yang terbesar (bila memungkinkan). Jika pilihan-pilihan tersebut tak tersedia, masih terbuka jalan untuk mengabadikannya dengan mengeset pencahayaan kamera lewat daylight atau sejenisnya saat fase penumbra dan fase parsial serta mengeset ke night atau sejenisnya saat fase totalitas gerhana.

Bulan Merah Darah dan Bonus Uranus

Satu hal yang akan diuji dalam Gerhana Bulan Total 8 Oktober 2014 ini adalah kualitas udara global. Jika udara relatif bersih (maksudnya bebas dari partikulat dan aerosol pengotor hingga kadar tertentu), maka tatkala Gerhana Bulan Total terjadi sinar Matahari yang sempat menerobos atmosfer Bumi (bersinggungan dengan tepi cakram Bumi) akan dibiaskan demikian rupa. Sehingga saat berkas cahaya (khususnya cahaya dengan komponen kemerah-merahan) ini keluar dari atmosfer, lintasannya telah berbelok demikian rupa sehingga akan jatuh ke permukaan Bulan. Maka Bulan akan terlihat berwana kemerah-merahan yang redup mirip warna darah bahkan tatkala puncak gerhana sekalipun. Lain persoalannya jika udara Bumi dalam keadaan relatif kotor, membuat cahaya yang masuk ke atmosfer mengalami penyerapan dan hamburan demikian rupa oleh partikulat dan aerosol pengotor. Akibatnya jumlah cahaya terbiaskan yang jatuh ke permukaan Bulan sangat sedikit sehingga Bulan bakal terlihat betul-betul gelap di saat puncak gerhana. Pengotoran atmosfer Bumi dalam jumlah yang cukup signifikan untuk mengubah tampilan Bulan saat puncak gerhana bisa diakibatkan oleh letusan dahsyat gunung berapi, atau tumbukan benda langit (komet/asteroid) berdiameter besar (minimal 500 meter).

Gambar 5. Dramatisnya perbedaan wajah Bulan yang terabadikan saat puncak Gerhana Bulan Total 30 Januari 1972 kala atmosfer relatif bersih (kiri) dengan saat puncak Gerhana Bulan Total 30 Desember 1982 pasca letusan el-Chichon (kanan). Kedua citra diambil dengan menggunakan teleskop, kamera, film dan waktu penyinaran (exposure time) yang sama. Citra Bulan sebelah kiri adalah 400 kali lebih benderang (6,5 magnitudo lebih cerlang) dibanding citra Bulan sebelah kanan. Sumber: Keen, 2008.

Gambar 5. Dramatisnya perbedaan wajah Bulan yang terabadikan saat puncak Gerhana Bulan Total 30 Januari 1972 kala atmosfer relatif bersih (kiri) dengan saat puncak Gerhana Bulan Total 30 Desember 1982 pasca letusan el-Chichon (kanan). Kedua citra diambil dengan menggunakan teleskop, kamera, film dan waktu penyinaran (exposure time) yang sama. Citra Bulan sebelah kiri adalah 400 kali lebih benderang (6,5 magnitudo lebih cerlang) dibanding citra Bulan sebelah kanan. Sumber: Keen, 2008.

Bagaimana dengan Gerhana Bulan Total 8 Oktober 2014 ini? Pada saat ini kita pun sedang mengalami letusan gunung berapi, yang terbesar adalah letusan Holuhraun di Islandia. Dimulai semenjak 29 Agustus 2014, hingga 1 Oktober 2014 letusan ini sudah memuntahkan tak kurang dari 650 juta meter kubik magma atau lima kali lipat volume Letusan Kelud 2014. Namun tak ada partikulat debu vulkanik dalam jumlah signifikan yang tersembur ke ketinggian atmosfer dalam letusan ini, mengingat sifat letusannya yang efusif (leleran). Letusan Holuhraun juga menyemburkan gas belerang namun dalam jumlah 30.000 ton per hari, angka yang terhitung relatif kecil untuk letusan gunung berapi. Maka pengotoran atmosfer dalam jumlah signifikan pada saat ini nampaknya tak terjadi. Sehingga Bulan pada saat puncak Gerhana Bulan Total 8 Oktober 2014 diprakirakan tetap akan berwarna kemerah-merahan redup menyerupai darah.

Gambar 6. Bulan dan lingkungan sekitarnya tepat setelah akhir totalitas gerhana, disimulasikan dengan Starry Night Backyard v 3.0 untuk Kebumen (Jawa Tengah). Planet Uranus nampak di sisi kanan atas Bulan. Sumber: Sudibyo, 2014.

Gambar 6. Bulan dan lingkungan sekitarnya tepat setelah akhir totalitas gerhana, disimulasikan dengan Starry Night Backyard v 3.0 untuk Kebumen (Jawa Tengah). Planet Uranus nampak di sisi kanan atas Bulan. Sumber: Sudibyo, 2014.

Gerhana Bulan kali ini pun bakal berbonus peluang langka, yakni kesempatan untuk mengamati planet Uranus. Planet ketujuh di lingkungan tata surya kita dan planet pertama yang ditemukan manusia sepanjang sejarah lewat teleskop ini akan berbinar di sudut kanan atas Bulan selama fase gerhana. Dengan magnitudo semu +5,7 maka planet ini bahkan berkemungkinan terlihat mata manusia tanpa alat bantu, asalkan berada di lingkungan yang betul-betul gelap dan langit dalam kondisi sempurna.

1256: Bumi Merekah, Magma Melimpah dan Nyaris Mengubur Madinah

Solah tingkah gunung berapi telah mengharu biru Indonesia sepanjang 2014 ini. Akhir-akhir ini Gunung Slamet menyedot perhatian besar khususnya bagi yang bertempat tinggal di pulau Jawa seiring ulahnya. Meski letusannya tergolong kecil dan terlokalisir di seputar puncak saja sehingga kawasan terlarang pun ditetapkan hanya sejarak 4 kilometer dari kawah aktif, banyak orang dibikin cemas. Apalagi isu tak berkeruncingan bertaburan dimana-mana. Sementara di luar pulau Jawa tepatnya di pulau Sumatra, Gunung Sinabung masih terus saja bergemuruh. Meski statusnya telah diturunkan menjadi Siaga (Level III), atau sejajar status Gunung Slamet, namun Sinabung terlihat lebih aktif. Gunung berapi yang lama tertidur tersebut kini terus saja membangun lidah lava. Ia menjulur kian panjang ke arah tenggara dan kian tebal. Berulangkali awan panas (piroklastika) guguran masih terjadi tatkala bagian-bagian tertentu lidah lava rontok seiring labilnya strukturnya dan oleh pengaruh gravitasi. Di pulau Sulawesi, dua gunung berapi lasak dengan status Siaga (Level III) yang sama pun masih rajin memuntahkan magmanya meski relatif sepi dari perhatian. Masing-masing adalah Gunung Lokon-Empung dan Gunung Karangetang (keduanya di propinsi Sulawesi utara).

Gambar 1. Semburan magma basaltik hingga setinggi sekitar 100 meter menyeruak dari retakan di padang Holuhraun, sebagai perwujudan dari erupsi efusif Gunung Bardarbunga di Islandia. Letusan tidak menyemburkan debu vulkanik pekat ke langit, namun melelerkan lava panas membara yang mengukir permukaan tanah layaknya sungai api. Diabadikan oleh tim Reykjavik Helicopters pada awal September 2014. Sumber: Reykjavik Helicopters, 5 September 2014.

Gambar 1. Semburan magma basaltik hingga setinggi sekitar 100 meter menyeruak dari retakan di padang Holuhraun, sebagai perwujudan dari erupsi efusif Gunung Bardarbunga di Islandia. Letusan tidak menyemburkan debu vulkanik pekat ke langit, namun melelerkan lava panas membara yang mengukir permukaan tanah layaknya sungai api. Diabadikan oleh tim Reykjavik Helicopters pada awal September 2014. Sumber: Reykjavik Helicopters, 5 September 2014.

Jangan lupakan letusan besar Gunung Kelud (propinsi Jawa Timur) pada 13 Februari 2014 lalu yang demikian menggetarkan. Amukannya sempat melumpuhkan sebagian pulau Jawa. Menyusul letusan besar Gunung Sangeang Api (propinsi Nusa Tenggara Barat) pada 30 Mei 2014. Meski tak sepopuler dan tak sebesar letusan Kelud, namun muntahan debu vulkaniknya sempat melumpuhkan lalu lintas udara negeri tetangga: Australia. Syukurlah dua letusan besar tersebut tak banyak menelan korban jiwa, meski angka kerugian material yang diakibatkannya mencapai ratusan milyar rupiah. Di antara kedua letusan besar tersebut, patut dicatat pula aksi Gunung Merapi (propinsi Jawa Tengah dan DIY) yang telah berulangkali menghembuskan debu vulkaniknya dalam kejadian erupsi freatik yang demikian sekonyong-konyong dan nyaris tak didului tanda-tanda umum. Meski tak menyebabkan korban jiwa maupun luka, tetap saja rasa cemas sempat membara.

Holuhraun

Di mancanegara, sejumlah gunung berapi pun unjuk gigi. Satu yang menyedot perhatian adalah letusan unik Gunung Bardarbunga di Islandia. Islandia sendiri sudah merupakan keajaiban. Secara geologis inilah pulau yang berdiri tepat di atas punggungan tengah Samudera Atlantik, jalur rekahan memanjang yang menjadi tempat menyeruaknya magma dari perutbumi. Tak sekedar membentuk pegunungan memanjang yang hampir seluruhnya berada di dasar samudera, magma ini juga mendorong lempeng-lempeng tektonik yang mengapitnya ke dua arah berlawanan. Masing-masing lempeng Amerika Utara ke barat dan lempeng Eurasia ke timur. Sementara secara geografis, Islandia terletak di dalam lingkar kutub utara sehingga memiliki iklim kutub. Bahkan Islandia menjadi satu dari dua daratan besar dalam lingkar kutub utara yang selalu berselimutkan es, selain pulau Greenland. Maka Islandia lah tempat merah (baca: magma) dan putih (baca: es) bertemu, tempat di mana panas (magma) dan dingin (es) bersua.

Gambar 2. Islandia dalam peta sederhana, yang menunjukkan posisinya persis di punggungan tengah Samudera Atlantik. Sumber: USGS, 2014.

Gambar 2. Islandia dalam peta sederhana, yang menunjukkan posisinya persis di punggungan tengah Samudera Atlantik. Sumber: USGS, 2014.

Magma yang menyuplai gunung-gemunung berapi Islandia sangat berbeda dibanding Indonesia. Di Islandia magmanya berasal dari lokasi yang jauh lebih dalam. Yakni dari selubung (mantel) Bumi, lapisan plastis sangat tebal dan panas yang terletak tepat di bawah kerak bumi mulai kedalaman 40 kilometer. Magma Islandia adalah magma basaltik sehingga lebih encer, lebih banyak mengandung mineral-mineral logam, miskin gas vulkanik dan bersuhu lebih tinggi. Karena encernya, pucuk gunung-gemunung berapi Islandia cenderung berketinggian rendah dengan lereng relatif lebih landai. Saat meletus, magma basaltik cenderung keluar dari lubang letusan sebagai lava cair encer yang meleleh kemana-mana laksana lilin cair dalam erupsi tipe efusif. Sangat jarang terjadi letusan yang menyemburkan berjuta-juta meter kubik debu vulkanik ke langit. Perkecualian adalah Gunung Eyjafjallajokul dalam letusan 2010-nya. Saat itu letusan menyemburkan sekitar 100 juta meter kubik debu vulkanik pekat hingga setinggi 8 kilometer. Hembusan angin mendorong debu vulkanik menutupi ruang udara Eropa bagian utara. Akibatnya parah. 107.000 penerbangan terpaksa dibatalkan dalam 8 hari berturut-turut, angka yang setara 48 % total penerbangan global. Total kerugian yang ditimbulkannya melampaui angka Rp 16 trilyun.

Meski terkesan tak segalak gunung-gemunung berapi Indonesia, namun aktivitas gunung berapi Islandia jauh lebih intensif. Sepanjang 500 tahun terakhir volume lava akumulatif yang dihasilkannya setara sepertiga total volume lava di Bumi. Episode letusan terdahsyat terjadi pada 1783-1784 di Gunung Laki. Tak ada semburan debu vulkanik tebal yang membumbung tinggi hingga berkilo-kilometer ke langit menciptakan suasana horor. Namun Laki memuntahkan 14.000 juta meter kubik lava basaltik lewat 130 lubang letusan selama delapan bulan berturut-turut. Bersamanya tersembur pula gas-gas vulkanik, termasuk 8 juta ton gas asam fluorida dan 120 juta ton gas belerang (sulfurdioksida). Udara Islandia pun tercemar berat sehingga 80 % domba, 50 % sapi dan 50 % kuda mati perlahan-lahan setelah gigi-geliginya rontok akibat paparan gas asam fluorida berlebihan. Matinya hewan-hewan ternak itu membuat segenap Islandia dilanda bencana kelaparan tiada tara. Pada puncaknya sebanyak 20 hingga 25 % populasi penduduknya tewas berkalang tanah.

Gambar 3. Plot episentrum gempa-gempa vulkanik di sekitar Gunung Bardarbunga beserta kedalamannya dalam periode antara 16 hingga 24 Agustus 2014. Nampak episentrum berkerumun di sebuah garis irregular sepanjang sekitar 40 kilometer yang menjulur ke timur laut dari Gunung Bardarbunga. Inilah pertanda terbentuknya pematang instrusi magmatik sebagai tempat dimana amagma berakumulasi tepat sebelum keluar ke permukaan Bumi. Tanda bintang (*) adalah tempat terbentuknya retakan yang selanjutnya menjadi pusat letusan Holuhraun mulai 29 Agustus 2014. Sumber: Icelandic Meteorological Office, 2014.

Gambar 3. Plot episentrum gempa-gempa vulkanik di sekitar Gunung Bardarbunga beserta kedalamannya dalam periode antara 16 hingga 24 Agustus 2014. Nampak episentrum berkerumun di sebuah garis irregular sepanjang sekitar 40 kilometer yang menjulur ke timur laut dari Gunung Bardarbunga. Inilah pertanda terbentuknya pematang instrusi magmatik sebagai tempat dimana amagma berakumulasi tepat sebelum keluar ke permukaan Bumi. Tanda bintang (*) adalah tempat terbentuknya retakan yang selanjutnya menjadi pusat letusan Holuhraun mulai 29 Agustus 2014. Sumber: Icelandic Meteorological Office, 2014.

Islandia kembali mengeliat pada 2014 ini lewat Gunung Bardarbunga. Awalnya adalah krisis seismik selama sebulan penuh ditandai terjadinya gempa demi gempa kecil yang datang beruntun. Bersamaan dengannya bagian kerak bumi di sektor timurlaut gunung juga mulai menggelembung. Keduanya adalah pertanda bahwa magma segar dalam jumlah cukup signifikan sedang menanjak naik dari perut Gunung Bardarbunga hendak mencari jalan keluar. Krisis seismik juga memperlihatkan magma segar telah berkumpul demikian rupa hingga menghasilkan pematang intrusi magmatik sepanjang sekitar 40 kilometer pada segmen kerak bumi yang membentang di antara Gunung Bardarbunga dan padang Holuhraun. Di Holuhraun inilah, tepatnya di sekitar ujung pematang intrusi magmatik, tanah merekah sepanjang 2 kilometer pada 29 Agustus 2014 dinihari. Darinya magma basaltik tumpah keluar, beberapa sebagai pancuran lava yang menyembur hingga setinggi lebih dari 100 meter. Bersamaan dengan itu tubuh Gunung Bardarbunga kontan mengempis, terjadi penurunan pada lantai kaldera Bardarbunga hingga 15 meter dari semula.

Lava basaltik yang encer membanjir ke timur laut, laksana sungai api, dalam volume teramat besar. Hingga 1 Oktober 2014 lava telah menutupi area seluas 48 kilometer persegi dengan ketebalan rata-rata 14 meter, setinggi gedung berlantai tiga. Dengan demikian volume lava pada saat itu mencapai sekitar 650 juta meter kubik, lima kali lipat volume Letusan Kelud 2014. Sehingga sejauh ini letusan Holuhraun adalah letusan dengan material vulkanik terbesar di Bumi sepanjang 2014. Maka setiap detiknya letusan Holuhraun melepaskan 290 meter kubik lava. Dengan kata lain setiap detiknya retakan Holuharun memuntahkan lava dalam jumlah yang setara muatan 12 truk tanki pengangkut BBM berkapasitas 24.000 liter. Total energinya pun sangat besar. Jika suhu magmanya dianggap 900 derajat Celcius, maka energi termal yang dihasilkan letusan Holuhraun hingga 1 Oktober 2014 mencapai 117 megaton TNT. Ini setara energi yang dilepaskan 5.850 butir bom nuklir Hiroshima.

Gambar 4. Sebaran lava basaltik letusan Holuhraun hingga 1 Oktober 2014. Lava telah menutupi area seluas 48,2 kilometer persegi dengan panjang sekitar 16 kilometer. Volume magma yang diletuskan hingga 1 Oktober 2014 telah sekitar 650 juta meter kubik. Tak ada tanda-tanda aktivitas letusan mulai menyurut. Sumber: University of Iceland, 2014.

Gambar 4. Sebaran lava basaltik letusan Holuhraun hingga 1 Oktober 2014. Lava telah menutupi area seluas 48,2 kilometer persegi dengan panjang sekitar 16 kilometer. Volume magma yang diletuskan hingga 1 Oktober 2014 telah sekitar 650 juta meter kubik. Tak ada tanda-tanda aktivitas letusan mulai menyurut. Sumber: University of Iceland, 2014.

Sejauh ini tak ada korban jiwa maupun luka-luka akibat letusan Holuhraun. Kerugian material juga relatif tidak ada, seiring tidak terganggunya lalu lintas penerbangan sipil setempat maupun regional (Eropa) dan tidak adanya infrastruktur yang dilalap sang lava. Namun letusan ini mengirimkan pesan sangat jelas pada segenap manusia, bahwa vulkanisme di Bumi tak hanya menghasilkan gunung-gemunung berapi yang tinggi mengerucut dengan erupsi sentral di kawah utamanya seperti umum dijumpai di Indonesia. Namun juga sanggup menghasilkan gunung-gemunung berapi ‘aneh’ berbentuk retakan panjang yang sanggup membanjirkan lava basalt dalam erupsi retakan. Erupsi retakan seperti letusan Holuhraun memang jarang dijumpai di Bumi. Hanya di tempat-tempat dimana terjadi aktivitas vulkanisme titik-panas (hotspot) sajalah letusan sejenis terjadi. Dan Islandia adalah salah satu tempat tersebut.

Di luar Islandia pun masih ada sejumlah tempat yang menjadi panggung vulkanisme titik-panas. Salah satunya sangat dikenal Umat Islam sedunia mengingat kedudukannya demikian dekat dengan satu dari dua kotasuci, yakni Madinah. Dan 7,5 abad silam, gunung berapi dengan retakan panjang yang tak begitu kita kenal ini meletus dengan skala kedahsyatan menyerupai letusan Holuhraun. Banjir lava panas membaranya demikian mencekam, hingga hampir mengubur kotasuci Madinah dalam lautan bara. Inilah Letusan Madinah.

Letusan Madinah

Bandar udara internasional Pangeran Muhammad bin Abdulaziz adalah pintu gerbang utama kotasuci Madinah al-Munawwarah. Ia juga menjadi satu dari dua pintu masuk utama ke dua kotasuci bagi Umat Islam selain bandar udara internasional King Abdul Aziz di Jeddah. Bandar udara ini terletak di pinggiran utara kotasuci Madinah, tak seberapa jauh dari Gunung Uhud yang bersejarah. Jika kita melayangkan pandangan mata dari sini, Gunung Uhud yang tandus dengan hiasan warna coklat tanah kemerah-merahan nampak memanjakan mata di arah barat daya. Lansekap sewarna juga dijumpai di arah barat, utara dan timur. Namun tidak dengan arah selatan. Sejauh mata memandang hanya nampak bukit-bukit tandus kehitaman, dengan bongkahan bebatuan penyusunnya yang jauh lebih kasar ketimbang bebatuan Gunung Uhud. Sangat sedikit informasi yang tersedia tentang bukit-bukit kehitaman ini. Namun siapa sangka, di balik minimnya informasi, bukit-bukit kehitaman ini sejatinya adalah jejak kasat mata dari salah satu periode paling mencekam sepanjang sejarah kotasuci Madinah. Inilah endapan lava basaltik dari Letusan Madinah, letusan besar yang hampir saja memanggang Madinah.

Gambar 5. Citra satelit Landsat dalam warna nyata untuk kotasuci Madinah dan sekitarnya. Nampak hampir seluruh permukaan tanah di sekitar kota ini didominasi warna coklat kemerah-merahan. Terkecuali di sisi tenggara kota yang permukaan tanahnya bewarna hitam/gelap. Inilah endapan lava jejak Letusan Madinah 1256. Sumber: Google Earth, 2014.

Gambar 5. Citra satelit Landsat dalam warna nyata untuk kotasuci Madinah dan sekitarnya. Nampak hampir seluruh permukaan tanah di sekitar kota ini didominasi warna coklat kemerah-merahan. Terkecuali di sisi tenggara kota yang permukaan tanahnya bewarna hitam/gelap. Inilah endapan lava jejak Letusan Madinah 1256. Sumber: Google Earth, 2014.

Kalender menunjukkan hari Senin 1 Jumadil Akhir 654 Hijriyyah kala sebuah getaran mulai mengguncang kotasuci Madinah. Para pedagang, peziarah tanah suci, penduduk dan segenap manusia lainnya yang sedang berada maupun tinggal di kotasuci itu merasakannya. Semuanya berharap getaran tadi hanyalah getaran tanah biasa yang akan berhenti dengan segera secepat kedatangannya. Namun harapan itu sirna laksana uap menghilang di udara. Betapa tidak, dalam empat hari kemudian secara beruntun getaran demi getaran tanah justru terus saja terjadi berulang-ulang. Kekerapannya kian mengencang dan sering. Di Jumat pagi, sedikitnya 18 getaran keras mengguncang hanya dalam waktu singkat. Dan siang harinya, kala orang-orang sedang berkumpul di Masjid Nabawi menanti waktu shalat Jumat, sebuah getaran keras, terkeras di antara semua getaran sebelumnya, mengagetkan semuanya. Tak pelak semua itu mengundang tanya di hati setiap orang. Rasa cemas pun mulai membersit. Apalagi getaran demi getaran terus saja terjadi selepas shalat Jumat, meski tak sekeras sebelumnya.

Drama mencapai klimaksnya pada Sabtu pagi usai shalat Shubuh, bertepatan dengan 1 Juli 1256. Secara mendadak ketenangan dan keheningan pagi dibuyarkan suara bergemuruh susul-menyusul yang datang dari arah al-Hijaz di tenggara. Bersamanya muncul pancuran bola-bola api merah kebiruan ke langit dalam jumlah besar. Demikian banyaknya bola-bola api yang mirip kembang api ini sehingga cahayanya benderang menyinari cakrawala laksana tersorot Matahari. Selama berhari-hari kemudian pancuran api terus berlangsung tanpa henti dan bahkan kian bertambah banyak saja. Kini malam-malam di kotasuci Madinah pun berubah dramatis menjadi seterang siang hari. Demikian terangnya malam-malam itu sehingga bagian Raudhah dan makam Nabi SAW yang ada di dalam kompleks Masjid Nabawi bagaikan tersorot cahaya Matahari secara terus-menerus. Cahaya terang itu bahkan bisa disaksikan dengan jelas dari Tayma’ dan kotasuci Makkah al-Mukarramah, padahal keduanya berjarak 300 kilometer dari sumber bola-bola api ini.

Sejarawan al-Qastalani menulis, orang-orang Badui pemberani yang mencoba mendekati titik sumber lontaran api tercengang menyaksikan pemandangan menggidikkan. Cairan panas kental mirip bubur yang sangat encer berwarna merah-kebiruan dengan beberapa bagiannya telah menghitam nampak menggelegak. Di latar belakangnya terlihat enam titik pancuran bola-bola api membara yang terus-menerus muncrat ke langit. Seluruh cairan tersebut bergerak mengalir perlahan laksana sungai sembari menyeret batu, pohon, tanah dan apa saja yang dilaluinya. Suara bergemuruh mirip petir yang sambung-menyambung terus saja terdengar. Asap pekat beraroma belerang terus mengepul, memedihkan mata dan menyesakkan dada. Demikian pekat asapnya sehingga udara laksana berkabut terus-menerus. Akibatnya Matahari pun hanya terlihat sebagai bundaran kemerah-merahan saja, hatta telah berkedudukan cukup tinggi di langit. Udara di dekat cairan kental nan aneh ini demikian panasnya, sehingga tak seorang pun berani mendekatinya lebih dekat dari dua lontaran anak panah (+/- 200 m).

Gambar 6. Citra satelit Landsat dalam warna nyata untuk salah satu lokasi retakan yang menjadi sumber Letusan Madinah 1256. Nampak sejumlah kerucu skoria (cinder cone) yang dikelilingi bebatuan berwarna gelap (yang adalah endapan lava basaltik). Sumber: Google Earth, 2014.

Gambar 6. Citra satelit Landsat dalam warna nyata untuk salah satu lokasi retakan yang menjadi sumber Letusan Madinah 1256. Nampak sejumlah kerucu skoria (cinder cone) yang dikelilingi bebatuan berwarna gelap (yang adalah endapan lava basaltik). Sumber: Google Earth, 2014.

Di masa kini kita mengetahui apa yang dihadapi orang-orang Madinah saat itu adalah lava panas produk letusan gunung berapi. Dengan teknologi terkini, relatif lebih mudah mengetahui apa yang sedang terjadi dengan menerbangkan radas (instrumen) dalam kedudukan cukup tinggi di atas lava panas membara itu, baik di dalam pesawat udara nir-awak maupun via satelit penginderaan jauh. Layaknya letusan Holuhraun, Letusan Madinah bersumber pada sebuah retakan di segmen kerak bumi berbelas kilometer sebelah tenggara kotasuci Madinah. Entah seberapa panjangnya retakan itu, namun darinya magma basaltik membanjir keluar sembari muncrat hingga puluhan meter ke udara. Sejumlah gundukan mengerucut yang membukit pun terbentuk di sepanjang retakan ini, yang disebut kerucut skoria (cinder cone). Magma encer itu lantas mengalir sebagai lava menyusuri kontur rupabumi setempat menuju tempat-tempat yang lebih rendah. Pada puncaknya lava panas ini pun terkumpul demikian rupa hingga laksana sejenis danau lava berkedalaman 3 meter yang membentang sepanjang 23 kilometer.

Teknologi di abad ke-13 memang belum memungkinkan manusia masa itu melihat keseluruhan dinamika Letusan Madinah. Apalagi memprakirakan kemana danau lava itu bakal bergerak mengalir dan menelan apa saja yang ada dihadapannya. Namun orang-orang Badui yang pemberani itu terus mengamati pergerakan cairan kental panas nan aneh (yang adalah tepi danau lava) itu dari hari ke hari. Sehingga mereka pun menyadari bahwa cairan panas menggelegak itu secara perlahan namun pasti sedang beringsut mengarah ke kotasuci Madinah yang memang berketinggian lebih rendah. Jelas sudah. Jika semua terus berlangsung seperti itu, maka segenap isi kotasuci tersebut akan tenggelam dalam lautan bara. Kini rasa cemas yang melanda penduduk Madinah pun bermetamorfosis menjadi ketakutan luar biasa. Juga kebingungan. Belum pernah mereka atau nenek moyang mereka, atau bahkan Bangsa Arab sekalipun, menghadapi peristiwa alam semacam ini. Dapat dipahami jika di tengah ketakutan dan kebingungan ini kisah-kisah akan hari akhir pun menyebar kemana-mana. Apalagi salah satu di antara tanda-tanda besar kedatangan hari akhir adalah munculnya api di tanah Hijaz. Dan kini kotasuci Madinah (yang berada di kawasan Hijaz) benar-benar berhadapan dengan api panas membara dalam ukuran yang sungguh tak pernah terbayangkan pada zaman itu.

Menyadari bahaya yang mengancam kotasuci Madinah seisinya, gubernur sigap bertindak. Seluruh penduduk maupun musafir, baik laki-laki maupun perempuan, baik orang dewasa maupun anak-anak, dimintanya untuk segera berkumpul di Masjid Nabawi khususnya di bagian Raudhah dan sekitarnya yang merupakan kawasan mustajab. Semua pun berdoa dengan sepenuh hati, bertaubat dan memohon ampunan Allah SWT atas segala kesalahan yang telah dilakukan. Mereka juga memohon agar cairan kental panas itu, yang kian mendekat saja ke kotasuci, untuk dihentikan atau dialihkan. Banyak yang mencucurkan air mata di tengah kekhusukan doanya ketika menyadari bahwa jika Allah SWT menghendaki, dengan mudah cairan kental panas itu menelan kotasuci Madinah beserta seluruh isinya dan menghapusnya dari muka bumi tanpa sisa dan tiada sesuatu pun yang dapat menghalanginya.

Dan keajaiban pun terjadilah. Seperti bernyawa, lava panas itu berhenti sebelum tapal batas kotasuci dan lantas lantas berbelok ke utara untuk kemudian melambat, berhenti dan membeku. Letusan Madinah sendiri berakhir dalam 52 hari setelah bermula. Sepanjang 52 hari tersebut 500 juta meter kubik magma dimuntahkan dari dalam perut bumi. Sehingga rata-rata Letusan Madinah memuntahkan lebih dari 100 meter kubik magma dalam setiap detiknya.

Harrat Rahat

Gambar 7. Retakan di padang Holuhraun pada 30 Agustus 2014, sehari setelah letusan Holuhraun bermula. Nampak lava panas membara sedang meluap dan mengendap ke sekelilingnya sembari mendingin sehingga berubah warna menjadi gelap. Gas vulkanik pekat nampak terus mengepul. Panorama semacam ini pula yang dilihat orang-orang Madinah kala terjadi Letusan Madinah 1256 pada 7,5 abad silam. Sumber: Dailykos, 2014.

Gambar 7. Retakan di padang Holuhraun pada 30 Agustus 2014, sehari setelah letusan Holuhraun bermula. Nampak lava panas membara sedang meluap dan mengendap ke sekelilingnya sembari mendingin sehingga berubah warna menjadi gelap. Gas vulkanik pekat nampak terus mengepul. Panorama semacam ini pula yang dilihat orang-orang Madinah kala terjadi Letusan Madinah 1256 pada 7,5 abad silam. Sumber: Dailykos, 2014.

Letusan Madinah merupakan wujud nyata eksistensi gunung berapi di semenanjung Arabia. Ya. Meski mayoritas bagiannya beriklim gurun, namun bentang lahan semenanjung terbesar di muka bumi ini tidaklah melulu berisi lautan pasir gersang. Padang pasir semacam itu hanya dijumpai di sisi selatan dan tenggara sebagai padang pasir ar-Rub’ al-Khali, yang adalah lautan pasir lepas terluas di muka bumi. Semenanjung ini juga bukan sekedar tanah tempat agama-agama samawi dilahirkan, tanah tempat para nabi dan rasul diutus serta tanah tempat berdirinya dua kotasuci Umat Islam. Namun lebih dari itu, semenanjung ini juga adalah salah satu keajaiban geologi yang sulit dicari padanannya di tempat lain. Sebagian Semenanjung Arabia khususnya daratan yang sebelah-menyebelah Laut Merah (termasuk kawasan Hijaz) adalah salah satu daratan tertua di muka bumi. Daratan ini dikenal sebagai Tameng Arabia-Nubia (Arabian-Nubian Shield). Dengan umur sedikitnya 600 juta, batuan di Tameng Arabia-Nubia sejatinya telah begitu padat sehingga jauh lebih stabil dibanding daratan lainnya yang lebih muda.

Namun di Tameng Arabia-Nubia pula kita kita bisa menyaksikan momen lahirnya kerak bumi baru dan meluasnya lempeng tektonik. Bentangan panjang Laut Merah yang menghiasi kawasan ini sejatinya adalah lembah besar yang dalam sehingga tergenangi air asin yang mengalir dari Samudera Hindia. Lembah besar ini bukanlah lembah biasa, sebab dibentuk oleh pergerakan tektonik intensif. Ia bersambung dengan lembah-lembah lurus lainnya yang menjulur dari Turki hingga ke Afrika Tengah dalam sebuah ekspresi yang disebut Lembah Retakan Besar (Great Rift Valley) sepanjang sekitar 4.000 kilometer. Di sejumlah bagian lembah inilah magma panas menyeruak dari lapisan selubung, terutama di sepanjang retakan kecil sumbu dasar Laut Merah, khususnya di sisi selatan. Begitu keluar, magma panas mulai mendingin dan membeku menjadi bayi lempeng tektonik oseanik. Jika pola semacam ini berlangsung secara menerus, maka dalam puluhan juta tahun ke depan Laut Merah akan demikian meluas menjadi samudera baru sementara retakan kecil sumbu dasarnya berevolusi menjadi punggungan tengah samudera seperti Islandia saat ini. Maka jangan heran jika saat ini di tengah-tengah Laut Merah dijumpai sejumlah gunung berapi. Ada yang tetap terbenam di bawah permukaan air dan ada pula yang menyembul di atas laut sebagai pulau vulkanis.

Tetapi retakan tidak hanya muncul di dasar Laut Merah. Di kawasan Hijaz, sejumlah retakan yang mirip pun terbentuk dan menjadi panggung bagi vulkanisme titik-panas serupa. Di retakan-retakan inilah magma menyeruak keluar membentuk gunung berapi Hijaz yang khas. Jangan bayangkan gunung berapi Arabia berbentuk kerucut tinggi yang indah seperti halnya gunung-gunung berapi komposit (stratovulcan) di Indonesia. Vulkanisme titik-panas menghasilkan magma basaltik yang lebih encer, sehingga gunung berapi Hijaz sejatinya hanyalah tumpukan lava yang tersebar menutupi area sangat luas dengan sejumlah kerucut skoria berketinggian rendah muncul didalamnya. Dapat dikata gunung berapi Hijaz memiliki panorama yang ‘jelek.’ Namun dibalik ‘kejelekan’-nya, vulkanisme di tanah Hijaz ini sungguh luar biasa. Secara akumulatif dalam 10 juta tahun terakhir ia telah memuntahkan lava basaltik yang menutupi area seluas 180 ribu kilometer persegi, setara sepersepuluh luas Indonesia.

Gambar 8. Lava basaltik panas membara sedang merayap menyusuri tanah Islandia, diabadikan pada 15 September 2014. Pelan namun pasti lava basaltik ini terus bergerak maju menutupi wilayah lebih luas dari hari ke hari. Panorama sejenis tersebut juga disaksikan orang-orang Madinah kala terjadi Letusan Madinah 1256 pada 7,5 abad silam. Sumber: University of Iceland, 2014.

Gambar 8. Lava basaltik panas membara sedang merayap menyusuri tanah Islandia, diabadikan pada 15 September 2014. Pelan namun pasti lava basaltik ini terus bergerak maju menutupi wilayah lebih luas dari hari ke hari. Panorama sejenis tersebut juga disaksikan orang-orang Madinah kala terjadi Letusan Madinah 1256 pada 7,5 abad silam. Sumber: University of Iceland, 2014.

Salah satu retakan di sini adalah yang berpangkal dari sekitar kotasuci Makkah al-Mukarramah dan menerus ke utara-timur laut melintas di dekat kotasuci Madinah hingga kemudian berujung di Nafud. Karenanya retakan sepanjang sekitar 600 kilometer ini lebih dikenal sebagai retakan Makkah-Madinah-Nafud atau Makkah-Madinah-Nafud volcanic line. Lewat retakan inilah magma melimpah ke permukaan tanah dan membentuk sedikitnya empat gunung berapi Hijaz. Dari selatan ke utara, masing-masing adalah Harrat Rahat, Harrat Kurama, Harrat Khaybar dan Harrat Ithnayn. Harrat Rahat menjadi gunung berapi terbesar di jalur retakan ini, bahkan di seantero Semenanjung Arabia. Ia membentang sepanjang 310 kilometer dari Jeddah ke Madinah dengan lebar rata-rata sekitar 75 kilometer. Harrat Rahat pada dasarnya adalah tumpukan lava basaltik yang telah membeku dengan total volume sebesar 2.000 kilometer kubik. Lava sebanyak itu diletuskan secara bertahap lewat 400 saluran magma serta lebih dari 2.000 kerucut skoria sepanjang 10 juta tahun terakhir. Praktis kotasuci Makkah dan Madinah sebenarnya berdiri tepat di tubir gunung berapi raksasa menggetarkan yang memiliki nama lain Harrat Bani Abdullah, atau Harrat Madinah, atau Harrat Rashid, atau Harrat Turrah, atau Harrat el-Medina, atau Harrat er-Raha, atau Jabal Ma’tan, atau Jabal Umm Ruqubah, atau Jabal al-Hurus, atau Jibal Diba’ Al Hurus ini. Dan di ujung utara gunung berapi raksasa inilah Letusan Madinah terjadi dalam 7,5 abad silam.

Gambar 9. Peta Semenanjung Arabia bagian barat khususnya kawasan Hijaz. Nampak gunung-gemunung berapi Arabia (harrat) dengan yang terbesar adalah Harrat Rahat. Praktis kotasuci Makkah dan Madinah berdiri di tubir gunung berapi raksasa ini. Tanda bintang (*) menunjukkan lokasi Letusan Madinah 1256. Aktivitas terakhir gunung-gemunung berapi ini adalah di Harrat Lunayyir, 200 kilometer barat laut kotasuci Madinah. Sumber: Zahrani dkk, 2013.

Gambar 9. Peta Semenanjung Arabia bagian barat khususnya kawasan Hijaz. Nampak gunung-gemunung berapi Arabia (harrat) dengan yang terbesar adalah Harrat Rahat. Praktis kotasuci Makkah dan Madinah berdiri di tubir gunung berapi raksasa ini. Tanda bintang (*) menunjukkan lokasi Letusan Madinah 1256. Aktivitas terakhir gunung-gemunung berapi ini adalah di Harrat Lunayyir, 200 kilometer barat laut kotasuci Madinah. Sumber: Zahrani dkk, 2013.

Letusan Madinah bukanlah akhir dari aktivitas gunung berapi Hijaz. Gunung-gunung berapi unik ini terus aktif bahkan hingga kini. Pada 2009 lalu terjadi lonjakan jumlah gempa vulkanik secara mendadak di Harrat Lunayyir, sebuah gunung berapi Hijaz berukuran kecil yang terletak di barat laut kotasuci Madinah. Selama bulan April hingga Juni 2009 terjadi 40.000 guncangan gempa vulkanik dengan magnitudo antara 2 hingga 5,4 skala Richter. Inilah pertanda sangat jelas bahwa magma basaltik di perutbumi kawasan Hijaz masih tetap berupaya mencari jalan keluar ke permukaan. Pertanda tersebut kian jelas lewat terbentuknya retakan sepanjang 8 kilometer selebar 45 sentimeter. Belajar dari pengalaman Letusan Madinah 7,5 abad silam, otoritas Saudi Arabia tak menyia-nyiakan waktu untuk mengevakuasi sekitar 30.000 orang di kota al-Ays yang ada dalam kompleks gunung berapi ini. Namun tak seperti Harrat Rahat, Harrat Lunayyir ternyata tak kunjung memuntahkan magmanya. Ia urung meletus. Mungkin masih menunggu kesempatan lain di masa depan.

Referensi :

Sudibyo. 2012. Ensiklopedia Fenomena Alam dalam al-Qur’an, Menguak Rahasia Ayat-Ayat Kauniyah. Surakarta: Tinta Medina, cetakan pertama.

Rei. 2014. Bardarbunga: Sorry, Ireland (Update 2x). DailyKos.com, 5 September 2014.

Frimann. 2014. Bardarbunga Daily Update. Iceland Geology, Volcano and Earthquake Activity in Iceland.

al-Zahrani dkk. 2013. Aftershock Sequence Analysis of 19 May, 2009 Earthquake of Lunayyir Lava Flow, Northwest Saudi Arabia. International Journal of the Physical Sciences Vol. 8(7), 23 February 2013, pp. 277-285.