Letusan Kelud Setahun Kemudian dan Kisah Senjakala Majapahit

Pulau Jawa, Indonesia, Kamis malam 13 Februari 2014 Tarikh Umum (TU). Tepat setahun silam. Selagi aktivitas sebagian besar insan yang mendiami pulau terpadat di Indonesia mulai menyurut dan bersiap-siap terlelap, ratusan ribu penduduk tiga kabupaten di kawasan Mataraman dan Arek Jawa Timur, yakni Kediri, Blitar dan Malang, justru dipaksa bersiaga. Mereka harus bergegas mengungsi, bergerak menjauh dari lereng dan kaki Gunung Kelud hingga radius minimal 10 kilometer dari kawah aktif. Arus pengungsi dimulai setelah Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG), Badan Geologi Kementerian Energi dan Sumber Daya Mineral RI meningkatkan status Gunung Kelud pada pukul 21:15 WIB. Dari semula berstatus Siaga (Level III), sejak saat itu Gunung Kelud kemudian menyandang status tertinggi dalam tingkat aktivitas gunung-gemunung berapi di Indonesia, yakni Awas (Level IV). Dasarnya adalah terjadinya lonjakan gempa frekuensi rendah yang disusul dengan tremor menerus. Selepas pukul 21:00 WIB, tremor menerus yang terekam bahkan telah melebihi batasan skala yang tersedia dalam radas (instrumen) seismometer.

Gambar 1. Gunung Kelud pada Jumat 14 Februari 2014 TU jelang fajar dari kaki gunung sebelah barat. Nampak asap pekat masih mengepul dari kawah hingga setinggi beberapa ratus meter, beberapa jam pasca letusan besarnya usai. Pemandangan ini diterangi oleh semburat cahaya kemerah-merahan yang khas menjelang terbitnya Matahari. Planet Venus yang berada dalam kondisi paling terang (magnitudo -4,7) mengapung di atas horizon (tanda panah), menyaksikan kisah Bumi yang sedang bergulir. Sumber: Akhmad Zainuddin, 2014 dalam Geomagz, 2014.

Gambar 1. Gunung Kelud pada Jumat 14 Februari 2014 TU jelang fajar dari kaki gunung sebelah barat. Nampak asap pekat masih mengepul dari kawah hingga setinggi beberapa ratus meter, beberapa jam pasca letusan besarnya usai. Pemandangan ini diterangi oleh semburat cahaya kemerah-merahan yang khas menjelang terbitnya Matahari. Planet Venus yang berada dalam kondisi paling terang (magnitudo -4,7) mengapung di atas horizon (tanda panah), menyaksikan kisah Bumi yang sedang bergulir. Sumber: Akhmad Zainuddin, 2014 dalam Geomagz, 2014.

Dengan status tertinggi ini, jelas hanya tinggal menunggu waktu bagi gunung berapi terlasak se-Jawa Timur ini untuk meletus. Perintah evakuasi pun diturunkan. Meski keraguan masih membayang tentang bagaimana skala letusan yang bakal segera terjadi. Enam setengah tahun sebelumnya, ribuan penduduk juga berduyun-duyun mengungsi setelah Gunung Kelud dinyatakan berstatus Awas (Level IV) pada pertengahan Oktober 2007 TU. Tetapi hari demi hari gunung itu tak kunjung menampakkan letusan eksplosif yang selama ini menjadi tabiatnya. Sebaliknya tiga minggu setelah berstatus Awas (Level IV), ia justru mulai melelerkan lava pijar panasnya di dalam kawahnya sendiri. Muntahan lava pijar yang terus-menerus pun membentuk gundukan besar membukit berisikan bongkahan bebatuan beragam ukuran beserta pasir yang masih terus berasap. Gundukan berasap berbentuk kerucut raksasa yang dasarnya selebar 470 meter dan tingginya 215 meter itu kemudian dikenal sebagai kubah lava 2007. Atau kerap pula disebut sebagai Anak Kelud. Letusan tak biasa semenjak November 2007 TU hingga Juni 2008 TU itu tak menelan korban jiwa ataupun luka-luka sama sekali. Juga tak ada bangunan/fasilitas yang rusak. Namun implikasi sosialnya tak sedikit, mulai dari banyaknya agenda pernikahan yang harus dijadwal ulang hingga tertundanya kegiatan-kegiatan kemasyarakatan.

Kali ini polah Gunung Kelud tak lagi malu-malu. Ia kembali ke tabiatnya semula. Pukul 22:46 WIB seismograf-seismograf di sekujur tubuh Gunung Kelud mulai menangkap geliat awal letusan. Tak lama kemudian kamera di dekat kawah merekam percikan-percikan api melesat dari dinding kubah lava 2007. Inilah pertanda kubah lava itu mulai merekah dan menyemburkan material pijar letusan. Letusan besar yang eksplosif pun terjadilah. Letusan demi letusan berikutnya kemudian menyusul secara beruntun selama tiga setengah jam kemudian. Rempah letusan disemburkan demikian cepat ke udara sebagai kolom letusan hingga membentuk awan cendawan raksasa yang menjadi salah satu ciri khas letusan besar. Mayoritas tudung cendawan raksasa tersebut terletak di ketinggian 17 kilometer dpl (dari paras air laut rata-rata). Namun puncaknya menjangkau ketinggian hingga 26 kilometer dpl. Gesekan antara material vulkanik yang kering dan melejit pada kecepatan tinggi dengan lapisan udara disekelilingnya menciptakan aliran listrik statis sangat intensif. Hingga petir pun menyambar-nyambar di sela-sela debu letusan yang sedang membumbung. Menambah horornya suasana.

Tak pelak pada Jumat dinihari 14 Februari 2014 TU tersebut, hampir sekujur Jawa Timur dibuat terjaga oleh Gunung Kelud yang sedang membara. Berselang beberapa jam kemudian sebagian besar pulau Jawa pun dibuat terhenyak. Menyaksikan fajar yang biasanya penuh suasana syahdu dan energi baru berubah total menjadi suram dengan guyuran debu. Hujan debu vulkanik terus-menerus mengguyur dari langit, membedaki semuanya.

Gambar 2. Masjid Agung Kauman di pusat kota Kebumen, Kabupaten Kebumen (Jawa Tengah) yang nampak suram berselimutkan debu vulkanik tebal pada Jumat pagi 14 Februari 2014 TU. Segenap Kabupaten Kebumen dihujani debu vulkanik Letusan Kelud 2014 yang demikian pekat hingga sanggup membentuk endapan setebal 2 sentimeter atau lebih. Padahal daerah ini berjarak lebih dari 300 kilometer di sebelah barat Gunung Kelud. Sumber: Warta Kebumen, 2014.

Gambar 2. Masjid Agung Kauman di pusat kota Kebumen, Kabupaten Kebumen (Jawa Tengah) yang nampak suram berselimutkan debu vulkanik tebal pada Jumat pagi 14 Februari 2014 TU. Segenap Kabupaten Kebumen dihujani debu vulkanik Letusan Kelud 2014 yang demikian pekat hingga sanggup membentuk endapan setebal 2 sentimeter atau lebih. Padahal daerah ini berjarak lebih dari 300 kilometer di sebelah barat Gunung Kelud. Sumber: Warta Kebumen, 2014.

Dampak

Kini setahun kemudian, kita telah mengetahui lebih banyak apa yang terjadi dengan Letusan Kelud 2014. Analisis pendahuluan Pyle (2014) menunjukkan amukan Gunung Kelud itu menghembuskan antara 30.000 hingga 100.000 ton material letusan sepadat batuan dalam setiap detiknya. Pada awalnya secara keseluruhan Letusan Kelud 2014 memuntahkan sekitar 130 juta meter kubik rempah vulkanik. Namun di kemudian hari PVMBG meralat estimasi volume muntahan letusan Gunung Kelud ke angka 105 juta meter kubik. Rempah letusan yang lebih berat seperti awan panas (piroklastika) mengalir menyusuri lembah-lembah di lereng barat yang terhubung ke kawah hingga sejauh 2 kilometer. Material yang lebih ringan seperti pasir dan kerikil menghujani kawasan sejauh 20 hingga 30 kilometer dari kawah. Guyuran pasir dan kerikil hingga sejauh ini merupakan fenomena yang tak pernah terjadi dalam letusan-letusan Kelud sebelumnya. Di luar radius 30 kilometer dari kawah, debu vulkanik meraja. Hujan debu vulkanik pekat yang menciptakan endapan debu setebal 5 sentimeter atau lebih mengguyur kawasan seluas sekitar 4.000 kilometer persegi. Sebaliknya hujan debu vulkanik ringan yang hanya sanggup memproduksi endapan dengan ketebalan 1 milimeter melanda lebih jauh, sehingga area yang tercakup mencapai sekitar 80.000 kilometer persegi.

Letusan besar ini merenggut 7 korban jiwa. Penyebab kematian para korban beragam, mulai dari tertimpa tembok yang runtuh terbebani debu vulkanik hingga gangguan pernafasan. Seluruh korban tinggal di kawasan yang terbedaki debu vulkanik hingga setebal 20 sentimeter. Selain korban jiwa, tercatat 70 orang mengalami gangguan pernafasan dan harus dirawat di rumah sakit. Badan Nasional Penanggulangan Bencana (BNPB) di Jumat pagi 14 Februari 2014 TU juga mencatat 100.248 orang harus mengungsi. Skala kerusakan yang ditimbulkannya pun luar biasa. Sebanyak 11.093 buah bangunan/rumah di tiga kabupaten (Kediri, Blitar dan Malang) rusak berat. Sementara 7.370 buah lainnya mengalami kerusakan sedang. Dan 8.044 buah dinyatakan rusak ringan. Ribuan hektar lahan perkebunan dan pertanian pun turut dibuat rusak.

Gambar 3. Pesawat Airbus A320-232 nomor 9V-JSN milik maskapai JetStar Asia saat berada di apron bandara Soekarno-Hatta. Saat pesawat ini jelang mendarat di Jakarta sebagai penerbangan JSA114 pada Jumat pagi 14 Februari 2014 TU, ia mendadak masuk ke dalam awan debu produk Letusan Kelud 2014. Pesawat berhasil mendarat dengan selamat, namun insiden ini membuat kedua mesinnya rusak parah akibat menghisap debu vulkanik. Sumber: Indo-Avtiation.com, 2014.

Gambar 3. Pesawat Airbus A320-232 nomor 9V-JSN milik maskapai JetStar Asia saat berada di apron bandara Soekarno-Hatta. Saat pesawat ini jelang mendarat di Jakarta sebagai penerbangan JSA114 pada Jumat pagi 14 Februari 2014 TU, ia mendadak masuk ke dalam awan debu produk Letusan Kelud 2014. Pesawat berhasil mendarat dengan selamat, namun insiden ini membuat kedua mesinnya rusak parah akibat menghisap debu vulkanik. Sumber: Indo-Avtiation.com, 2014.

Namun yang paling fenomenal adalah pada imbasnya terhadap lalu lintas udara domestik dan internasional Indonesia. Tebaran debu vulkanik memaksa ditutupnya delapan bandara di pulau Jawa. Masing-masing bandara Juanda (Surabaya), Abdulrahman Saleh (Malang), Adisumarmo (Surakarta), Adisucipto (Yogyakarta), Ahmad Yani (Semarang), Husein Sastranegara (Bandung) serta bandara di Cilacap dan Cirebon. Ratusan penerbangan pun terpaksa dibatalkan. Bahkan sebuah insiden terjadi, yang menimpa pesawat Airbus A320-232 9V-JSN milik maskapai JetStar Asia. Selagi melayani rute Perth (Australia)-Singapura dengan persinggahan di Jakarta (Indonesia) dalam penerbangan JSA114 pada Jumat fajar 14 Februari 2014 TU, pesawat tersebut tanpa diduga memasuki awan debu letusan Kelud. Ini terjadi hanya dalam 30 menit jelang mendarat di Jakarta. Bau asap pun merebak di dalam kabin pesawat dan pemandangan di sisi luar jendela pun mendadak gelap gulita.

Pesawat berhasil mendarat dengan selamat di bandara Soekarno-Hatta (Jakarta) pada pukul 05:50 WIB. Ia tidak mengalami mati mesin di udara, seperti yang tiga dasawarsa silam diderita jumbo jet Boeing 747-236B nomor G-BDXH British Airways penerbangan 009 akibat paparan debu vulkanik letusan Gunung Galunggung saat melintas di selatan pulau Jawa. Meski begitu inspeksi detail yang dilakukan teknisi pabrikan Airbus memperlihatkan kedua mesin pesawat Airbus A320-232 9V-JSN itu rusak parah akibat menghisap debu vulkanik Kelud. Sehingga keduanya harus diganti dan pesawat pun dipaksa grounded berhari-hari lamanya.

Dengan semua dampak tersebut, Letusan Kelud 2014 menelan kerugian hingga bertrilyun-trilyun rupiah. Namun demikian korban manusia relatif minimal, baik korban jiwa maupun luka-luka. Hal ini memperlihatkan bahwa sistem peringatan dini mitigasi bencana letusan Gunung Kelud yang diterapkan PVMBG bersama dengan BNPB berjalan dengan efektif. Minimnya korban juga ditunjang oleh sifat letusan yang kering. Letusan Kelud 2014 terjadi tatkala kawah gunung berapi tersebut dalam kondisi kering (minim kandungan air) seiring tiadanya genangan air signifikan sebagai danau kawah. Danau kawah Kelud telah menghilang pasca munculnya kubah lava 2007 dalam Letusan Kelud 2007. Hanya tersisa sedikit genangan air yang kerap keruh di sisi barat daya.

Gambar 4. Bagaimana wajah kawah Gunung Kelud berubah antara sebelum tahun 1990 (atas) dan 2008 TU (bawah), diabadikan dari titik yang sama di bibir kawah. Jelang Letusan Kelud 1990, mayoritas kawah Kelud digenangi air sebagai danau kawah dengan air berwarna hijau toska akibat pengaruh gas vulkanik. Sementara pasca Letusan Kelud 2007, hampir seluruh bagian danau kawah telah menghilang dan digantikan dengan gundukan kubah lava 2007 yang masih berasap. Hanya tersisa sedikit genangan air di sisi barat daya (latar depan). Sumber: Geomagz, 2014.

Gambar 4. Bagaimana wajah kawah Gunung Kelud berubah antara sebelum tahun 1990 (atas) dan 2008 TU (bawah), diabadikan dari titik yang sama di bibir kawah. Jelang Letusan Kelud 1990, mayoritas kawah Kelud digenangi air sebagai danau kawah dengan air berwarna hijau toska akibat pengaruh gas vulkanik. Sementara pasca Letusan Kelud 2007, hampir seluruh bagian danau kawah telah menghilang dan digantikan dengan gundukan kubah lava 2007 yang masih berasap. Hanya tersisa sedikit genangan air di sisi barat daya (latar depan). Sumber: Geomagz, 2014.

Sebelum 2007 TU, kawah Gunung Kelud selalu berupa danau kawah yang genangan airnya cukup signifikan meskipun volumenya dibatasi lewat terowongan pembuang, seperti terowongan Ampera. Upaya mengontrol volume danau kawah Kelud menjadi salah satu cara mengurangi keganasan letusannya. Catatan sejarah Kelud memperlihatkan betapa volume air danau kawah yang terlalu banyak akan menghasilkan lahar letusan yang menerjang jauh, hingga merenggut banyak korban. Letusan Kelud 1919 membunuh tak kurang dari 5.000 orang tatkala 40 juta meter kubik air danau bercampur dengan rempah letusan menjadi lahar letusan. Lahar letusan menderu ke setiap lembah sungai yang terhubung dengan kawah. Ia menerjang hingga 40 kilometer jauhnya dari kawah, mengubah bentang lahan lembah sungai yang dilintasinya dan mengubur apa saja yang dilaluinya. Hempasan lahar letusan yang luar biasa setiap kali meletus hingga menyapu apa saja yang dilaluinya membuat Gunung Kelud mendapatkan namanya (Kelud = sapu).

Letusan Kelud 2014 mengubah wajah kawahnya secara dramatis. Hampir seluruh kubah lava 2007 yang volumenya 16 juta meter kubik remuk menjadi debu, pasir dan batu. Remukan itu kemudian diterbangkan ke langit sebagai bagian dari kolom letusan. Lantai kawah yang sebelumnya ditempati kubah lava 2007 kini berlubang besar. Lubang letgusan itu berbentuk mirip lingkaran dengan diameter sekitar 400 meter. Lubang besar itu masih mengepulkan uap air dan gas belerang didasarnya. Tapi seiring waktu, lubang ini bakal kembali digenangi air, mungkin dalam 2 hingga 3 tahun pasca letusan. Maka Gunung Kelud pun akan kembali mempunyai danau kawahnya seperti halnya pemandangan 2.000 tahun terakhir, setelah menghilang sementara sepanjang periode 2007-2014 TU. Volume danau kawah Kelud yang baru ini masih sulit diprediksi. Namun bakal hadirnya kembali danau kawah Kelud membuat kebutuhan memfungsikan kembali terowongan pembuang menjadi hal yang mutlak. Terowongan pembuang bertujuan membatasi volume air danau kawah Kelud di sekitar 4 juta meter kubik saja, sehingga tak berubah menjadi lahar letusan dalam letusan mendatang.

Gambar 5. Perubahan dramatis wajah kawah Gunung Kelud antara sebelum (atas) dan sesudah Letusan Kelud 204 (bawah), diabadikan dari titik yang hampir sama. Letusan kelud 2014 membuat kubah lava 2007 yang diproduksi oleh Letusan Kelud 2007 sebelumnya remuk dan menjadi komponen rempah letusan. Sebagai gantinya terbentuk lubang letusan berdiameter sekitar 400 meter yang masih berasap. Tak ada lagi genangan air. Sumber: Geomagz, 2014.

Gambar 5. Perubahan dramatis wajah kawah Gunung Kelud antara sebelum (atas) dan sesudah Letusan Kelud 204 (bawah), diabadikan dari titik yang hampir sama. Letusan kelud 2014 membuat kubah lava 2007 yang diproduksi oleh Letusan Kelud 2007 sebelumnya remuk dan menjadi komponen rempah letusan. Sebagai gantinya terbentuk lubang letusan berdiameter sekitar 400 meter yang masih berasap. Tak ada lagi genangan air. Sumber: Geomagz, 2014.

Meski didahului penghancuran kubah lava 2007 namun durasi letusan utamanya (yakni pengeluaran material letusan) tetap singkat, yakni tak lebih dari empat jam. Setelah empat jam, Letusan Kelud 2014 tinggal menghembuskan uap air sebagai erupsi freatik. Hal ini sekali lagi mendemonstrasikan salah satu ciri khas Gunung Kelud, yakni ukuran kantung magma yang relatif kecil. Sehingga letusan selalu berlangsung singkat karena kandungan magma segar yang siap diletuskannya cepat terkuras. Tak peduli bahwa Letusan Kelud 2014 memiliki tekanan gas demikian besar, yang diperlihatkan oleh melimpahnya fragmen batuapung (pumis) dalam material letusan. Kelimpahan batuapung merupakan pertanda bahwa magma Kelud 2014 merupakan magma yang asam (kaya silikat), sehingga mampu menyekap gas vulkanik lebih banyak. Konsekuensinya tekanan gas vulkaniknya pun cukup besar. Hingga mampu membobol dan menghancurkan kubah lava 2007. Meski diawali penghancuran kubah lava, kecilnya jumlah magma yang tertumpuk dalam kantung magma Kelud membuat Letusan Kelud 2014 tak menjadi berkepanjangan seperti halnya Letusan Galunggung 1983-1984 yang berlangsung 9 bulan lamanya.

Di satu sisi, Letusan Kelud 2014 merupakan letusan gunung berapi yang menghembuskan kolom letusan tertinggi di Bumi sepanjang tahun 2014 TU. Namun dari sisi volume rempah letusannya, Letusan Kelud 2014 bukanlah yang terbesar. Ia masih kalah jauh dibanding Gunung Bardarbunga (Holuhraun) di Islandia, yang hingga kini telah memuntahkan tak kurang dari 1,3 kilometer kubik rempah letusan.

Majapahit

Kecilnya jumlah korban jiwa dan luka-luka menunjukkan bahwa pada salah satu sisi dampak Letusan Kelud 2014 relatif minimal. Sistem peringatan dini yang bekerja efektif ditunjang dengan sifat letusan yang kering (akibat menghilangnya danau kawah semenjak 2007) menjadi dua dari banyak faktor yang berkontribusi terhadapnya. Namun, bagaimana dengan letusan Gunung Kelud di masa silam? Bagaimana dampaknya terhadap umat manusia yang bermukim disekelilingnya di masa silam? Yakni saat sistem peringatan dini belum terbentuk dan Gunung Kelud masih mempunyai danau kawah dengan volume jumbo? Bagaimana imbas letusannya terhadap hidup-matinya kerajaan legendaris di lembah sungai Brantas, yakni Majapahit?

Geolog Awang Satyana (2014) menuturkan beberapa dari letusan Gunung Kelud di masa kerajaan Majapahit nampaknya tercatat dalam kronik sejarah Pararaton, meski singkat. Secara kronologis kerajaan Majapahit muncul semenjak tahun 1293 TU seiring bertahtanya Kertarajasa Jayawardhana. Setelah mengalami pasang-surut akibat beragam pemberontakan, Majapahit mencapai puncak kejayaannya di masa Rajasanegara (Hayam Wuruk) yang berkuasa pada 1359 hingga 1380 TU. Selepas masa kejayaannya, kerajaan besar ini kemudian melapuk. Pertikaian antar keluarga kerajaan yang berlarut-larut dan bahkan sempat berkembang menjadi perang saudara seperti Perang Paregreg (1404-1406 TU). Pertikaian keluarga dinasti ini kian melemahkan kendali Majapahit atas daerah-daerah taklukannya, sehingga satu persatu pun melepaskan diri. Pada akhirnya kertajaan yang telah mengecil ini pun runtuh di sekitar tahun 1521 TU di masa kekuasaan Patih Udara.

Gambar 6. Topografi lembah Brantas beserta gunung-gunung berapi yang mengapitnya. Trowulan adalah bekas ibukota kerajaan pada sebagian besar masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Gambar 6. Topografi lembah Brantas beserta gunung-gunung berapi yang mengapitnya. Trowulan adalah bekas ibukota kerajaan pada sebagian besar masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Kecuali di dekade-dekade terakhir kehidupannya, hampir dalam segenap masanya Majapahit beribukota di Trowulan. Trowulan merupakan kawasan seluas 11 x 9 kilometer persegi yang terletak di lahan datar lembah sungai Brantas. Kini situs arkeologis tersebut menjadi bagian dari kabupaten Mojokerto dan kabupaten Jombang (keduanya di Jawa Timur). Salah satu pintu gerbang utama untuk memasuki ibukota Trowulan adalah pelabuhan Canggu, yang juga menjadi pelabuhan utama Majapahit. Pelabuhan besar ini terletak tak jauh dari muara sungai Brantas. Lokasi pelabuhan besar tersebut di masa kini ada di sebelah utara kota Mojokerto, berjarak sekitar 10 hingga 15 kilometer saja dari situs Trowulan. Di masa Majapahit, muara sungai Brantas terletak tak jauh dari pelabuhan Canggu. Kawasan yang kini menjadi kota Surabaya dan sekitarnya di era Majapahit masih berupa delta berteluk yang ditebari pulau-pulau kecil diapit dua tanjung. Pada tanjung sisi utara terdapat pelabuhan kecil, yakni Hujung Galuh (Ujung Galuh). Perubahan dramatis bentanglahan surabaya antara era Majapahit dengan masakini salah satunya merupakan imbas aktivitas Gunung Kelud.

Dalam catatan Pararaton, sepanjang zaman Majapahit terdapat peristiwa letusan gunung berapi hingga lima kali. Yang pertama pada minggu Madasia suryasengkala pendeta-sunyi-sifat-tunggal, yang mungkin bertepatan dengan tahun 1307 Saka atau 1385 TU. Yang kedua terjadi pada minggu Prangbakat suryasengkala muka-orang-tindakan-ular, yang mungkin bertepatan dengan tahun 1317 Saka atau 1395 TU. Lalu yang ketiga pada minggu Kuningan suryasengkala belut-pendeta-menggigit-bulan, mungkin bertepatan dengan tahun 1373 Saka atau 1451 TU. Selanjutnya yang keempat pada minggu Landep suryasengkala empat-ular-tiga-pohon, mungkin bertepatan dengan tahun 1384 Saka atau 1462 TU. Dan yang kelima adalah pada minggu Watu Gunung suryasengkala tindakan-angkasa-laut-ekor, yang mungkin bertepatan dengan tahun 1403 Saka atau 1481 TU.

Pararaton memang tak menyebut nama-nama gunung berapi yang meletus dalam kelima letusan tersebut. Pararaton juga tidak secara spesifik spesifik menyebut nama Gunung Kampud (nama Kelud di masa silam) sebagai yang meletus. Namun bila kita memperhatikan sejarah aktivitas gunung-gemunung berapi di sekitar ibukota Trowulan, yang terdiri dari Gunung Wilis, Gunung Kelud, Gunung Arjuno-Welirang, Gunung Penanggungan dan Gunung Kawi-Butak, hanya Gunung Kelud yang memperlihatkan catatan aktivitas tinggi dan kerap meletus. Sehingga dapat diduga kelima letusan yang dicatat Pararaton tersebut merupakan letusan-letusan Gunung Kelud. Dibandingkan dengan sejarah letusan Gunung Kelud, nampak jelas bahwa kelima letusan yang dicatat Pararaton bersesuaian dengan letusan-letusan yang dicatat dalam Data Dasar Gunung Api Indonesia (1979).

Seberapa besar kelima letusan tersebut?

Kitab Pararaton tidak memerikan (menggambarkan)-nya. Untuk mengetahuinya kita harus melihat penelitian geologi yang pernah dikerjakan di kawasan Gunung Kelud dan sekitarnya. Misalnya dari Zainuddin dkk (2013), yang mengkaji singkapan-singkapan endapan letusan Kelud pada empat titik di lereng/kaki barat gunung. Keempat titik tersebut berjarak antara 0,7 hingga 20 kilometer dari kawah. Salah satu titik tersebut adalah situs candi Tondowongso (Kediri), yang baru ditemukan pada April 2007 TU. candi ini terpendam di bawah endapan produk letusan setebal 3 meter dan hingga kini masih terus diekskavasi. Zainuddin dkk menemukan bahwa pada keempat titik tersebut terdapat bukti kuat Gunung Kelud pernah meletus besar sebanyak dua kali dalam selang waktu antara 1380 hingga 1420 TU.

Gambar 7. Situs candi Tondowongso di Gayam, kediri (Jawa Timur) yang baru ditemukan pada April 2007 dan belum sepenuhnya diekskavasi. Situs ini berjarak 20 kilometer di sebelah barat laut kawah Gunung Kelud. Seluruh lapisan tanah yang menimbuni situs ini merupakan produk letusan Gunung Kelud, yang terbagi menjadi dua: jatuhan abu/debu vulkanik dan lahar. Endapan lahar di situs ini merupakan bukti dahsyatnya letusan Gunung Kelud di masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Gambar 7. Situs candi Tondowongso di Gayam, kediri (Jawa Timur) yang baru ditemukan pada April 2007 dan belum sepenuhnya diekskavasi. Situs ini berjarak 20 kilometer di sebelah barat laut kawah Gunung Kelud. Seluruh lapisan tanah yang menimbuni situs ini merupakan produk letusan Gunung Kelud, yang terbagi menjadi dua: jatuhan abu/debu vulkanik dan lahar. Endapan lahar di situs ini merupakan bukti dahsyatnya letusan Gunung Kelud di masa kerajaan Majapahit. Sumber: Zainuddin dkk, 2013.

Seberapa besar kedua letusan besar tersebut? Pada situs candi Tondowongso ditemukan endapan lahar setebal 70 sentimeter. Sebagai pembanding, sejumlah candi era Majapahit yang berdiri di berbagai situs di sekeliling Gunung Kelud pun banyak yang tertimbun endapan produk letusan tatkala ditemukan. Misalnya candi Sumbersugih, Purwosari dan Sumberagung di kaki selatan Gunung Kelud. Juga candi Modangan dan Candisewu di kaki barat daya. Ketebalan lahar dan tertimbunnya candi-candi tersebut mengindikasikan bahwa letusan Gunung Kelud saat itu demikian besar. Hingga mampu mengirimkan lahar letusan sampai sejauh antara 30 hingga 40 kilometer dari kawah.

Kita dapat membayangkan bagaimana besarnya letusan tersebut. Danau kawah Kelud, yang pada puncaknya sanggup memuat 40 juta meter kubik air, sontak tumpah bercampur dengan rempah letusan begitu Gunung Kelud mengamuk. Rempah letusan dalam jumlah mungkin mendekati 200 juta meter kubik yang langsung bercampur dengan air danau sontak membentuk lahar letusan. Lahar deras pun membanjir melalui alur-alur sungai yang berhulu ke Gunung Kelud. Derasnya lahar letusan tak sekedar membuat sungai-sungai tersebut meluap hebat hingga membanjiri lembah-lembahnya. Namun juga juga sanggup mengubah alur sungai-sungai tersebut akibat kuatnya gerusan. Tak heran jika kawasan yang terkena hempasan lahar letusan pun sangat luas di sepanjang lembah Brantas. Sungai Brantas pun mendangkal di sana-sini. Perikehidupan masyarakat masa itu yang menggantungkan diri pada dunia pertanian dan perdagangan memanfaatkan alur sungai pun bakal terganggu berat.

Gambar 8. Aliran lahar hujan Gunung Kelud pada 19 Februari 2014 TU di Pandansari (Malang). Lahar ini berasal dari material produk letusan yang bertumpukan di lereng dan kemudia dihanyutkan oleh air hujan. Selain lahar letusannya, salah satu dampak letusan Gunung Kelud terletak pada lahar hujannya. Terlebih hampir seluruh materi lahar hujan Gunung Kelud mengalir ke sungai Brantas. Aktivitas Gunung Kelud menjadi penyebab naik turunnya dasar sungai Brantas dan meluasya delta di muaranya. Hal ini tentu berdampak pada naik turunnya peradaban yang tumbuh dan berkembang di sepanjang lembah sungai ini. Sumber: Handoko, 2014 dalam Global Volcanism Program, 2014.

Gambar 8. Aliran lahar hujan Gunung Kelud pada 19 Februari 2014 TU di Pandansari (Malang). Lahar ini berasal dari material produk letusan yang bertumpukan di lereng dan kemudia dihanyutkan oleh air hujan. Selain lahar letusannya, salah satu dampak letusan Gunung Kelud terletak pada lahar hujannya. Terlebih hampir seluruh materi lahar hujan Gunung Kelud mengalir ke sungai Brantas. Aktivitas Gunung Kelud menjadi penyebab naik turunnya dasar sungai Brantas dan meluasya delta di muaranya. Hal ini tentu berdampak pada naik turunnya peradaban yang tumbuh dan berkembang di sepanjang lembah sungai ini. Sumber: Handoko, 2014 dalam Global Volcanism Program, 2014.

Bahkan hingga bertahun pasca letusan, dampaknya masih akan sangat terasa. Terlebih hampir segenap lahar letusan Kelud mengalir ke anak-anak sungai Brantas. Hulu anak-anak sungai tersebut menyebar di lereng selatan, barat dan utara Gunung Kelud. Hanya kawasan lereng timur yang relatif bebas dari anak-anak sungai Brantas, karena di sini berpagar jajaran gunung-gunung Arjuno-Welirang dan Kawi-Butak. Maka pada akhirnya hampir seluruh endapan lahar letusan Kelud bakal mengalir ke sungai Brantas kala hujan turun sebagai lahar hujan. Selain membuat alur sungai mendangkal sehingga banjir lebih mudah terjadi, lahar hujan Kelud juga bakal terikut aliran sungai hingga ke muaranya. Endapan bakal kian memperluas delta di muara sungai Brantas. Teluknya pun bakal mendangkal menjadi rawa-rawa dan akhirnya tertutup sepenuhnya. Sehingga apa yang semula hanyalah delta berteluk pun berkembang demikian rupa menjadi dataran rendah nan luas. Kelak di kemudian hari di sini berdiri kota Surabaya. Kian berkembangnya delta di muara sungai Brantas membuat jarak yang harus ditempuh perahu/kapal ke pelabuhan Canggu kian jauh. Pada saat yang sama alur sungai di pelabuhan itu kian mendangkal, membuat kapal berukuran besar kian sulit menambatkan diri.

Gambar 9. Diagram sederhana yang menunjukkan bagaimana aktivitas Gunung Kelud berpengaruh bagi kerajaan Majapahit. Saat Gunung Kelud meletus, terbentuk lahar letusan (panah hitam) yang sanggup mengalir hingga sejauh 40 kilometer dari kawah (garis titik-titik). Setelah beberapa lama, endapan lahar letusan bakal dihanyutkan lagi oleh air hujan deras menjadi lahar hujan (panah merah). Hampir seluruh materi lahar hujan akan masuk ke sungai Brantas, sungai utama di lembah Brantas. Di sungai Brantas, materi lahar hujan akan menghilir jauh hingga akhirnya sampai ke pelabuhan Canggu dan muaranya. Imbasnya pelabuhan Canggu menjadi kian dangkal dan muara sungai Brantas pun terus berkembang. Sumber: Sudibyo, 2014 dengan basis Google Maps dan data dari Zainuddin dkk, 2013.

Gambar 9. Diagram sederhana yang menunjukkan bagaimana aktivitas Gunung Kelud berpengaruh bagi kerajaan Majapahit. Saat Gunung Kelud meletus, terbentuk lahar letusan (panah hitam) yang sanggup mengalir hingga sejauh 40 kilometer dari kawah (garis titik-titik). Setelah beberapa lama, endapan lahar letusan bakal dihanyutkan lagi oleh air hujan deras menjadi lahar hujan (panah merah). Hampir seluruh materi lahar hujan akan masuk ke sungai Brantas, sungai utama di lembah Brantas. Di sungai Brantas, materi lahar hujan akan menghilir jauh hingga akhirnya sampai ke pelabuhan Canggu dan muaranya. Imbasnya pelabuhan Canggu menjadi kian dangkal dan muara sungai Brantas pun terus berkembang. Sumber: Sudibyo, 2014 dengan basis Google Maps dan data dari Zainuddin dkk, 2013.

Tambahkan segala kesulitan tersebut dengan situasi kerajaan Majapahit pasca kekuasaan Rajasanegara. Pertikaian dalam tubuh dinasti yang berlarut-larut membuat kerajaan besar tersebut mulai melemah. Jelas dalam situasi tersebut beragam problem sosial pun muncul. Keamanan mulai sulit dikendalikan. Apalagi saat pertikaian itu memuncak dalam perang Paregreg. Jelas sudah, dua letusan besar Gunung Kelud yang terjadi di antara tahun 1380 hingga 1420 TU merupakan salah satu faktor yang mungkin turut menggiring Majapahit menuju senjakalanya.

Referensi :

Pyle. 2014. Ash Fallout from The 2014 Kelut Eruption, a Preliminary Analysis. Earth Science Class, 18 February 2014. Oxford University, UK.

Sulaksana dkk. 2014. The Crater Configuration f Kelud Volcano, East Java, Indonesia after 2014 Eruption. International Journal of Science and Research, vol. 3 no. 3, March 2014, 419-422.

Global Volcanism Program. 2014. Kelut (Kelud), Java, Indonesia, Big 2014 Eruption. Smithsonian Institution.

Indo-Aviation. 2014. Imbas Abu Gunung Kelud, Airbus A320 Jetstar Asia Harus Ganti Mesin. Laman Indo-Aviation.com, reportase Achdiyatma Reza.

Zainuddin dkk. 2013. Letusan Gunung Kelud pada 690 ± 110 Tahun yang Lalu Merupakan Letusan yang Sangat Dahsyat dan Sangat Berdampak pada Kerajaan Majapahit. Jurnal Lingkungan dan Bencana Geologi, Vol. 4 No. 2 Agustus 2013: 117 – 133.

Triastuty dkk. 2014. Gelegar Kelud 2014. Majalah Geomagz, vol. 4 no. 1 Maret 2014, halaman 20-28.

Menyaksikan Letusan Plinian Gunung Kelud dari Keluasan Langit

Gunung Kelud (Jawa Timur) akhirnya meletus. Setelah ditingkatkan dari status Aktif Normal (level I) menjadi Waspada (Level II) sejak 2 Februari 2014 seiring migrasi magma segar ke tubuh gunung yang membuat kegempaan vulkaniknya meningkat di atas normal dan lantas diikuti status Siaga (Level III) pada 10 Februari 2014 menyusul injeksi magma segar ke kantung magma dangkal dan tubuh gunung sehingga kegempaan vulkaniknya kian riuh dan bahkan tubuh Gunung Kelud mulai menggelembung, Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) akhirnya menetapkan Gunung Kelud dalam status Awas (Level IV) pada 13 Februari 2014 pukul 21:15 WIB. Dan hanya berselang 95 menit kemudian Gunung Kelud pun memuntahkan magma segarnya sebagai letusan yang bergelora menjelang tengah malam. Gemuruh suara letusan terdengar hingga pelosok Jawa Tengah seperti di Kebumen dan Purbalingga, meski berjarak ratusan kilometer dari Gunung Kelud. Debu vulkaniknya pun melumuri sebagian besar pulau Jawa hingga sempat menghentikan aktivitas sehari-hari sebagian besar penduduk pulau terpadat di Indonesia ini. Delapan bandara pun turut ditutup sementara, mulai dari Juanda (Sidoarjo) di sisi timur hingga Husein Sastranegara (Bandung) di sisi barat. Sebagai imbasnya ratusan penerbangan domestik dan internasional pun dibatalkan. Angka kerugian masih dihitung, namun diduga mencapai trilyunan rupiah.

PVMBG mencatat letusan Gunung Kelud kali ini menghamburkan paling tidak 120 juta meter kubik rempah vulkanik atau hampir sama dengan apa yang disemburkan Gunung Merapi (Jawa Tengah-DIY) dalam letusan 2010-nya. Bedanya durasi letusan Gunung Kelud sangat singkat, yakni hanya beberapa jam saja, dibandingkan Merapi yang selama 1,5 bulan. Perbedaan tajam ini menunjukkan kecepatan pengeluaran rempah vulkanik Kelud jauh lebih besar. Singkatnya durasi letusan juga memperlihatkan bahwa gunung berapi yang galak ini kembali ke tabiatnya semula yang sudah dikenal sepanjang abad ke-20. Tabiat itu berupa cepatnya migrasi magma segar yang ditandai oleh cepatnya perubahan status aktivitasnya, durasi letusan cukup singkat sebagai indikasi dari kecilnya volume kantung magma dangkalnya (sehingga cepat terkuras habis) dan letusannya langsung besar atau besar sekali. Hanya satu sifat yang tak muncul, yakni lahar letusan yang umumnya terjadi kala magma segar yang dimuntahkan langsung bercampur dengan air danau kawah yang volumenya bisa puluhan juta meter kubik jika tak dikontrol. Danau kawah Kelud sendiri menghilang pasca November 2007 kala aktivitas gunung berapi ini di luar dugaan justru demikian kalem dan hanya berakhir dengan gundukan lava yang disebut kubah lava 2007. Kubah lava ini mengambil bentuk kerucut yang tingginya 215 meter dengan dasar selebar 470 meter dan bervolume 16 juta meter kubik.

Gambar 1.  Perkembangan awan debu vulkanik Kelud (panah kuning) dalam empat jam pertama letusannya seperti diabadikan satelit MTSAT-2 dalam kanal inframerah. Terlihat pada jam 00:00 WIB (sejam setelah mulai meletus), awan debunya masih kecil, sferis dan lebih padat dibanding tekstur awan disekelilingnya. Pada jam-jam berikutnya nampak awan debu semakin meluas dan kian melonjong mengikuti hembusan angin. Sumber: JMA, 2014.

Gambar 1. Perkembangan awan debu vulkanik Kelud (panah kuning) dalam empat jam pertama letusannya seperti diabadikan satelit MTSAT-2 dalam kanal inframerah. Terlihat pada jam 00:00 WIB (sejam setelah mulai meletus), awan debunya masih kecil, sferis dan lebih padat dibanding tekstur awan disekelilingnya. Pada jam-jam berikutnya nampak awan debu semakin meluas dan kian melonjong mengikuti hembusan angin. Sumber: JMA, 2014.

Awan Debu

Letusan Gunung Kelud terjadi di tengah malam waktu Indonesia. Kecuali daerah sekitar gunung yang bisa melihat langsung kolom debu vulkanik pekat yang menjulang vertikal menembus awan disertai kilat yang menyambar-nyambar dalam menit-menit pertama letusan, daerah lain yang lebih jauh tak bisa melihatnya dengan leluasa seiring gelapnya malam. Sehingga bagaimana sifat-sifat letusan sulit untuk diketahui secara kasat mata, termasuk tipe letusan.

Beruntung, keterbatasan mata manusia dalam gelapnya malam bisa digantikan oleh ketersediaan mata tajam di langit, dalam rupa armada satelit cuaca dan observasi Bumi. Keberadaan satelit-satelit ini menyajikan keuntungan tersendiri dalam mengamati letusan gunung berapi, sebab berada pada ketinggian cukup besar sehingga jauh lebih aman terhadap dampak langsung maupun tak langsung dari letusan tersebut. Posisi di ketinggian juga memungkinkan satelit memiliki cakupan area yang cukup luas sehingga mampu memantau dinamika awan debu letusan yang menjauh dari sumbernya hingga jarak ratusan atau bahkan ribuan kilometer. Dan mata tajam satelit memungkinkan kita mengamati kawah gunung berapi yang sedang meletus dalam resolusi yang cukup tinggi, bahkan kala gunung berapi tersebut masih cukup berbahaya untuk bisa didekati manusia.

Debu vulkanik Kelud pertama kali terdeteksi lewat satelit MTSAT-2 (Multifunctional Transport Satellite-2) atau yang dikenal juga sebagai satelit Himawari-7 (Jepang). Satelit yang berfungsi ganda guna kepentingan komunikasi dan pemantauan cuaca ini bertempat di obit geostasioner pada garis bujur 145 BT sehingga mampu memantau Asia timur, Asia tenggara, Australia dan Samudera Pasifik dengan leluasa dan menerus. Debu vulkanik Kelud pertama kali terdeteksi pada pukul 23:09 WIB, hanya 20 menit setelah letusan dimulai, melalui instrumen pencitra pada kanal inframerah yang memiliki resolusi spasial 5 km. Awan debu Kelud semula berukuran kecil dan bergeometri sferis. Namun seiring perjalanan waktu, ukurannya membesar hingga bergaris tengah lebih dari 100 km dengan bentuk sedikit lonjong, sebelum kemudian kian memanjang seiring hembusan angin. Pengukuran suhu awan debu ini menunjukkan bagian inti awan sedikit lebih hangat dibanding bagian tepinya, namun secara keseluruhan temperatur awan debu jauh di bawah titik nol derajat Celcius. Ini menjadi indikasi bahwa awan debu Kelud telah membumbung sedemikian tinggi sehingga memasuki lapisan stratosfer.

Pemandangan lebih menarik diperlihatkan oleh instrumen pada kanal cahaya tampak di satelit yang sama. Instrumen ini hanya berfungsi kala sinar Matahari mulai menerangi permukaan Bumi yang hendak dicitrakannya, sehingga baru bisa bekerja dalam enam jam setelah letusan dimulai. Meski telah enam jam berlalu, namun kedahsyatan letusan Kelud masih terlihat jelas. Pekat dan massifnya debu vulkanik yang disemburkan Gunung Kelud menghasilkan fenomena bow shock-wave di puncak awan debunya khususnya di sisi timur sehingga nampak bergelombang sekaligus menghalangi angin timuran untuk mengubah bentuknya. Hasil pencitraan kanal visual yang dipadukan dengan GOES-R Volcanic Ash Height menunjukkan terdapat bagian awan debu Kelud yang memasuki ketinggian 18 hingga 20 km dpl (dari permukaan laut), atau cukup jauh memasuki lapisan stratosfer.

Gambar 2. Hasil pengukuran lidar satelit CALIPSO terhadap awan debu Kelud dalam 1,5 jam sejak mulai meletus dipadukan dengan citra instrumen MODIS dari satelit Aqua dalam kanal cahaya tampak yang jelas memperlihatkan awan debu Kelud (plume) dan awan-awan disekelilingnya. Hasil pengukuran memperlihatkan sebagian besar awan debu Kelud membumbung hingga 20 km dpl, namun puncaknya menjangkau ketinggian 26 km dpl. Sumber: NASA, 2014.

Gambar 2. Hasil pengukuran lidar satelit CALIPSO terhadap awan debu Kelud dalam 1,5 jam sejak mulai meletus dipadukan dengan citra instrumen MODIS dari satelit Aqua dalam kanal cahaya tampak yang jelas memperlihatkan awan debu Kelud (plume) dan awan-awan disekelilingnya. Hasil pengukuran memperlihatkan sebagian besar awan debu Kelud membumbung hingga 20 km dpl, namun puncaknya menjangkau ketinggian 26 km dpl. Sumber: NASA, 2014.

Informasi lebih detil diperoleh satelit CALIPSO (Cloud-Aerosol Lidar dan Infrared Pathfinder Satellite Observation), satelit cuaca hasil kerjasama AS dan Perancis yang ditempatkan di orbit polar setinggi 676 hingga 687 km dpl dengan inklinasi 98,2 derajat. CALIPSO bertumpu pada teknologi lidar (laser imaging detection and ranging) berbasis cahaya tampak dan inframerah terpolarisasi, masing-masing pada panjang gelombang berbeda masing-masing 5.320 dan 10.640 Angstrom. CALIPSO melintas di atas Indonesia dalam 1,5 jam setelah letusan dimulai dan berkesempatan melakukan pengukuran lidar pada awan debu Kelud. Hasilnya mengonfirmasi temuan satelit MTSAT-2, bahwa sebagian besar debu vulkanik Kelud membumbung hingga setinggi 20 km dpl. Namun puncak awan debunya lebih tinggi lagi karena menjangkau ketinggian 26 km dpl.

Plinian

Satelit hanya sanggup mencitra bagian atas dan puncak awan debu Kelud pada jam-jam pertama letusan saat memperlihatkan awan debu Kelud bergeometri sferis yang kemudian menjadi sedikit lonjong saat ukurannya meraksasa. Kita tak bisa melihat kolom debunya saat sedang menanjak di lapisan atmosfer terbawah sebelum kemudian menjadi awan debu. Namun dapat diperkirakan bahwa ukuran kolom debu letusan jauh lebih kecil ketimbang awan debunya. Sehingga secara keseluruhan semburan rempah vulkanik Kelud dalam jam-jam pertama letusan menampilkan pemandangan menyerupai payung atau jamur. Sehingga awan debu semacam ini dikenal sebagai awan jamur (mushroom clouds) yang kemudian akan berkembang menjadi awan bunga kol (cauliflower clouds) sebelum kemudian tersebar mengikuti hembusan angin. Awan jamur merupakan ciri khas pelepasan energi sangat tinggi dalam singkat, baik alamiah maupun buatan (manusia). Kita bisa melihat pola awan jamur ini misalnya dalam ledakan nuklir, khususnya dengan titik ledak di atmosfer, atau permukaan tanah, ataupun bawah tanah dangkal. Sementara secara alamiah awan jamur tercipta dalam letusan gunung berapi berskala tinggi dan tumbukan benda langit (komet/asteroid).

Gambar 3. Bentuk awan jamur dari rempah vulkanik yang disemburkan dalam jam pertama letusan bertipe plinian, dalam hal ini di Gunung Pinatubo (Filipina) pada tahun 1991. Sumber: USGS, 1991.

Gambar 3. Bentuk awan jamur dari rempah vulkanik yang disemburkan dalam jam pertama letusan bertipe plinian, dalam hal ini di Gunung Pinatubo (Filipina) pada tahun 1991. Sumber: USGS, 1991.

Terbentuknya awan jamur pada letusan Gunung Kelud dan dipadukan dengan data ketinggian puncak awan debunya berdasarkan citra satelit MTSAT-2 dan CALIPSO memastikan bahwa letusan tersebut merupakan letusan plinian. Inilah letusan yang melibatkan gas-gas vulkanik bertekanan sangat tinggi sehingga dampaknya dirasakan dalam daerah cukup luas. Dengan rempah vulkanik yang diletuskan mencapai 120 juta meter kubik, maka amukan Gunung Kelud kali ini memiliki skala 4 VEI (Volcanic Explosivity Index), setara dengan skala Letusan Merapi 2010 maupun Letusan Galunggung 1982-1983. Letusan gunung berapi pada skala tersebut memang bisa bertipe vulkanian (tinggi awan debu di bawah 20 km dpl) namun bisa pula plinian. Semuanya bergantung kepada besarnya tekanan gas vulkanik dalam kantung magma gunung berapi itu tepat sebelum letusan terjadi. Menurut Walker (1980), tekanan gas vulkanik dalam kantung magma jelang letusan plinian terjadi bisa lebih besar dari 1 MPa. Sehingga begitu letusan terjadi, gas vulkanik segera berhembus kencang sembari mendorong rempah vulkanik menyembur keluar dengan kecepatan awal melebihi kecepatan suara. Besarnya tekanan gas vulkanik juga mampu memecah dan bahkan menghancurkan sumbat lava ataupun kubah lava yang semula menutupi ujung saluran magma. Hal ini pula yang terjadi pada Gunung Kelud, dimana kubah lava 2007 telah hancur lebur dan tak berbekas dalam letusan plinian ini.

Letusan plinian tergolong jarang terjadi. Dalam catatan Global Volcanism Program, secara statistik letusan tipe ini yang berskala 4 VEI terjadi rata-rata sekali setiap 10 tahun. Terakhir kali letusan tipe ini terjadi di Indonesia pada 1982 saat Gunung Galunggung (Jawa Barat) meletus. Sedangkan untuk kawasan Asia Tenggara letusan ini terakhir kali terjadi pada tahun 1991 di Gunung Pinatubo (Filipina). Dengan jarangnya peristiwa ini, maka citra-citra satelit yang memonitor Gunung Kelud selama jam-jam pertama letusannya sangat membantu memahami apa letusan plinian sekaligus bagaimana persebaran debu vulkaniknya sehingga langkah antisipasi yang lebih baik bisa disiapkan lebih dini. Di samping itu, pengetahuan tentang letusan plinian juga membantu kita dalam memahami bagaimana letusan gunung berapi di planet lain atau satelit alaminya. Misalnya di Io, salah satu satelit alami Jupiter, yang kerap meletuskan gunung berapinya dan memuntahkan rempah vulkanik hingga setinggi 100km atau lebih.

Catatan: ditulis juga di LangitSelatan.

Referensi:

Global Volcanism Program Smithsonian Institution, http://volcano.si.edu/

Walker, G.P.L. 1980 The Taupo pumice: product of the most powerful known (ultraplinian) eruption. Journal of Volcanology and Geothermal Research, 8 (1980) 69-94.

Kelud, Si Gunung Berapi Penyapu (Peradaban)

Hingga Jumat siang 14 Februari 2014, Gunung Kelud diperkirakan telah mengeluarkan rempah letusan hingga 120 juta meter kubik. Ini masih angka perkiraan, sebab ada kemungkinan volume rempah Letusan Kelud 2014 melebihi angka 200 juta meter kubik. Andaikata 120 juta meter kubik rempah Letusan Kelud 2014 ini dituangkan seluruhnya ke DKI Jakarta, maka propinsi itu akan terkubur di bawah endapan setebal 16 cm.

Gambar 1. Sambaran kilat dan kepulan awan panas letusan yang membara (warna kemerahan) dalam tahap awal Letusan Kelud 2014, diabadikan oleh Hilmi dari Nglegok, Blitar. Nampak pula kolom letusan telah terbentuk, yang lantas menjulang hingga setinggi 20 km. Sumber: Hilmi, 2014.

Gambar 1. Sambaran kilat dan kepulan awan panas letusan yang membara (warna kemerahan) dalam tahap awal Letusan Kelud 2014, diabadikan oleh Hilmi dari Nglegok, Blitar. Nampak pula kolom letusan telah terbentuk, yang lantas menjulang hingga setinggi 20 km. Sumber: Hilmi, 2014.

Letusan utama berlangsung selama 3 jam penuh mulai Kamis 13 Februari 2014 pukul 22:50 WIB, sementara letusan-letusan minor menyusul hingga berbelas jam kemudian. Rempah letusan disemburkan tinggi ke langit hingga menjangkau ketinggian 20 km, menandakan betapa kuatnya tekanan gas vulkanik yang menyertai letusan Gunung Kelud kali ini. Kuatnya tekanan gas serta karakteristik magma yang sebagiannya membeku menjadi partikel-partikel debu vulkanik saat menyeruak keluar dari kepundan membuat partikel-partikel debu itu melejit dengan kecepatan sangat tinggi, bahkan melebih kecepatan suara (supersonik). Tingginya kecepatan dan besarnya kepekatan debu (kerapatan partikel debu per satuan volume) membuat peluang terjadinya gesekan antar partikel debu vulkanik menjadi sangat besar. Dengan sifat debu yang kering, gesekan menghasilkan pemusatan listrik statis yang kemudian menyambar-nyambar sebagai kilat seiring membumbungnya rempah letusan menghasilkan kolom letusan tipe erupsi vulkanian, yakni tipe erupsi yang membentuk tiang asap raksasa di atas kawah hingga ketinggian berkilo-kilometer.

Sebagai pembanding, Gunung Merapi memuntahkan 150 juta meter kubik rempah letusan saat letusan 2010-nya. Namun rempah sebanyak itu dihamburkan dalam waktu 1,5 bulan mulai dari akhir Oktober hingga pertengahan Desember 2010. Sebaliknya Gunung Kelud hanya membutuhkan waktu kurang dari 24 jam untuk memuntahkan rempah letusan dalam jumlah yang hampir sama. Bila suhu dan karakteristik magma produk Letusan Kelud 2014 ini dianggap setara dengan Letusan Merapi 2010, maka Gunung Kelud pada kali ini melepaskan energi termal 21,6 megaton TNT. Energi tersebut setara dengan 1.080 butir bom nuklir Hiroshima yang diledakkan secara serempak. Dibandingkan dengan Letusan Sinabung 2013-2014 yang masih berlangsung hingga kini, energi Letusan Kelud 2014 adalah 50 kali lipat lebih besar.

Meletusnya Gunung Kelud ini terhitung cukup cepat mengingat Pusat Vulkanologi dan Mitigasi Bencana Geologi (PVMBG) Badan Geologi Kementerian Energi dan Sumber Daya Mineral RI baru menaikkan status aktivitasnya menjadi Waspada (Level 2) dari yang semula Aktif Normal (Level 1) pada 2 Februari 2014 lalu seiring melonjaknya jumlah gempa vulkanik dalam dan dangkal Gunung Kelud semenjak awal Januari 2014. Lonjakan ini menjadi pertanda bahwa magma segar di dalam perut bumi gunung berapi tersebut telah mulai bergerak. Hanya dalam 8 hari kemudian status Kelud kembali dinaikkan menjadi Siaga (Level 3) setelah aliran magma segar kian jelas terdeteksi lewat kian riuhnya gempa-gempa vlkanik dalam dan dangkal dengan jumlah energi seismik terus meningkat. Bahkan muncul indikasi magma segar telah mulai memasuki tubuh Gunung Kelud sehingga ia mulai membengkak/menggelembung seperti diperlihatkan oleh perubahan kemiringan lereng lewat pengukuran tiltmeter. Namun siapa sangka, hanya dalam 12 hari setelah dinyatakan Waspada, Gunung Kelud benar-benar meletus? Tetapi siapapun yang pernah mempelajari karakteristik gunung berapi yang satu ini takkan terkaget-kaget lagi melihatnya. Sebab memang seperti itulah Gunung Kelud.

Penyapu

Gambar 2. Panorama terakhir kawah Gunung Kelud dengan kubah lava 2007 (2007) yang masih berasap di latar depan dan kubah lava Kelud (Kd) di latar belakang pada Kamis 13 Februari 2014 pukul 17:55 WIB. Lima jam kemudian, kubah lava 2007 lenyap dalam Letusan Kelud 2014. Sumber: Badan Geologi, 2014.

Gambar 2. Panorama terakhir kawah Gunung Kelud dengan kubah lava 2007 (2007) yang masih berasap di latar depan dan kubah lava Kelud (Kd) di latar belakang pada Kamis 13 Februari 2014 pukul 17:55 WIB. Lima jam kemudian, kubah lava 2007 lenyap dalam Letusan Kelud 2014. Sumber: Badan Geologi, 2014.

Gunung Kelud adalah gunung berapi komposit yang menjulang di perbatasan Kabupaten Kediri, Blitar dan Malang (Jawa Timur) dengan puncak berelevasi 1.713 meter dari permukaan laut (dpl). Untuk ukuran dengan gunung-gemunung berapi di Indonesia pada umumnya, Gunung Kelud tergolong gunung berapi yang rendah. Jika mengacu dari dataran rendah Kediri-Blitar yang dikenal sangat subur dan berpenduduk sangat padat, tinggi Gunung Kelud hanyalah sekitar 1.650 meter. Dan berbeda pula dibanding gunung-gemunung berapi pada umumnya yang berbentuk kerucut indah dengan kemiringan lereng yang berubah secara gradual dari landai (di kaki gunung) hingga curam (di puncak gunung), bentuk Gunung Kelud sangat tidak beraturan dengan tonjolan-tonjolan besar memenuhi puncaknya diselingi cekungan besar di antaranya. Tonjolan tersebut adalah kubah lava, jejak yang tersisa dari aktivitas Gunung Kelud purba. Terdapat lima kubah lava yang mengelilingi cekungan besar, yakni kubah lava Kombang (elevasi 1.514 meter dpl), Gajahmungkur (1.488 meter dpl), Lirang (1.414 meter dpl), Sumbing (1.531 meter dpl) dan kubah lava Kelud (1.731 meter dpl). Sebuah kubah lava lainnya menyembul di dalam cekungan besar khususnya pada titik pusat aktivitas Gunung Kelud masa kini, yang disebut kubah lava 2007 karena baru muncul pada 2007 silam.

Bentuk gunung yang ‘jelek’ ini merupakan imbas dari aktivitasnya selama ini, yang gemar ber-erupsi eksplosif (ledakan) sehingga merusak dirinya sendiri. Letusan yang paling merusak, sekaligus paling besar, terjadi lebih dari 100.000 tahun silam sebagai letusan lateral (terarah/mendatar) ke barat. Letusan tersebut membobol tubuh gunung bagian barat sekaligus melongsorkannya dalam volume sangat besar dan tergelincir hingga jarak cukup jauh, yakni 5 hingga 6 km dari pusat cekungan besar di puncak saat ini. Sisa-sisa letusan lateral nan dahsyat ini dapat dijumpai dalam rupa bukit-bukit kecil setinggi 300 hingga 700 meter dpl yang bertebaran di lereng barat Gunung Kelud. Letusan lateral tersebut demikian dahsyat sehingga membuat bentuk kerucut sempurna dari Gunung Kelud purba hancur sekaligus membongkarnya demikian rupa yang membuat kantung/saku magmanya pun terbuka ke udara luar dan kini menjadi cekungan besar di antara kubah-kubah lava Gunung Kelud. Di dalam cekungan besar inilah pusat aktivitas Gunung Kelud masa kini berada, yang berpindah-pindah dalam 10 kawah dengan pusat aktivitas terkini di kawah Kelud. Kawah Kelud terbentuk dalam letusan besar 2.400 tahun dengan dasar terletak pada elevasi 1.107 meter dpl dan bersifat kedap air sehingga selama itu pula sempat digenangi air dalam jumlah besar sebagai danau (telaga) kawah. Danau kawah menghilang pada 2007 silam seiring erupsi efusif (leleran) yang memunculkan kubah lava 2007.

Gambar 3. Panorama Gunung Kelud dari arah selatan, diambil dari dalam rangkaian kereta api menjelang stasiun Blitar pada 6 Agustus 2013 silam. Garis titik-titik merupakan perkiraan bentuk Gunung Kelud purba sebelum tubuhnya rusak menyusul letusan lateral lebih dari 100.000 tahun silam. Sb = kubah lava Sumbing, Kd = kubah lava Kelud. Sumber: Sudibyo, 2013.

Gambar 3. Panorama Gunung Kelud dari arah selatan, diambil dari dalam rangkaian kereta api menjelang stasiun Blitar pada 6 Agustus 2013 silam. Garis titik-titik merupakan perkiraan bentuk Gunung Kelud purba sebelum tubuhnya rusak menyusul letusan lateral lebih dari 100.000 tahun silam. Sb = kubah lava Sumbing, Kd = kubah lava Kelud. Sumber: Sudibyo, 2013.

Letusan-letusan eksplosifnya pula yang membuat gunung berapi ini menyandang nama Kelud, yang bermakna sapu. Sebab dahsyatnya letusannya telah berualng kali menyapu peradaban umat manusia yang tumbuh dan berkembang di dataran rendah Kediri-Blitar dan tercatat dalam sejarah. Di masa silam gunung berapi ini dikenal pula sebagai Gunung Kampud. Kampud memiliki arti serupa dengan Kelud, yakni sapu. Ia menyandang nama demikian karena aktivitasnya kerap ‘menyapu’ kawasan sekelilingnya tanpa ampun, termasuk menyapu peradaban manusia yang tumbuh dan berkembang dari masa ke masa. Dengan danau menghiasi kawahnya dan berisikan hingga puluhan juta meter kubik air, maka setiap kali Gunung Kelud meletus, magma yang dimuntahkannya sontak bercampur dengan air danau hingga meluap dan menjadi lahar letusan. Lahar letusan inilah yang menyapu kawasan sekeliling gunung dengan mengikuti aliran sungai-sungai Bladak, Konto, Ngobo, Sumberagung, Petungombo, Gedok, Abab, Semut, Putih dan Soso. Terjangan lahar letusan bisa menyapu apa saja yang dilaluinya dengan aliran cukup deras dan sanggup menjangkau radius 40 km dari danau kawah. Tak jarang derasnya aliran lahar letusan Kelud mampu menciptakan alur-alur baru sehingga sungai yang dilintasinya pun bergeser cukup jauh dari alurnya semula. Begitu lahar letusan usai melanda, sontak lansekap sekitar Gunung Kelud berubah dramatis dengan timbunan lumpur yang bisa mencapai ketebalan bermeter-meter.

Catatan kedahsyatan letusan Gunung Kelud sudah tecermin dari 12 abad silam atau tepatnya sejak era kerajaan Medang (Mataram Kuno). Hempasan dan endapan lahar letusan telah cukup menyulitkan perikehidupan masyarakat disekitarnya. Sehingga upaya mengatasinya telah dilakukan lewat pembangunan bendungan (mula dawuhan) dan saluran air (dharma kali) guna menyudet Sungai Konto ke Sungai Harinjing. Bendungan itu terletak di Desa Siman, Kecamatan Kepung (Kediri), yang dibangun pada tahun 804. Seiring kerap meletusnya Gunung Kelud, pemeliharaan saluran pun berulang–kali dilakukan dan diabadikan dalam prasasti Harinjing yang berangka tahun 921 dan dikeluarkan pada masa pemerintahan Dyah Tulodhong.

Gambar 4. Peta topografi Gunung Kelud masa kini dengan posisi kawahnya, yang ditandai oleh kubah lava 2007. Lingkaran berangka 10, 12 dan 20 masing-masing adalah wilayah beradius mendatar 10 km, 12 km dan 20 km dari kubah lava 2007. Radius 10 km adalah kawasan terlarang yang dinyatakan PVMBG menyusul Letusan Kelud 2014. Radius 12 km adalah prakiraan jangkauan terjauh awan panas letusan Kelud menurut Zaenuddin (2009), dimana daerah yang kemungkinan terlanda awan panas letusan ditandai dengan warna merah. Nampak posisi Candi Penataran di sebelah utara kota Blitar. Panduan arah, atas = utara, kanan = timur. Sumber: Sudibyo, 2014 dengan peta dari Google Maps.

Gambar 4. Peta topografi Gunung Kelud masa kini dengan posisi kawahnya, yang ditandai oleh kubah lava 2007. Lingkaran berangka 10, 12 dan 20 masing-masing adalah wilayah beradius mendatar 10 km, 12 km dan 20 km dari kubah lava 2007. Radius 10 km adalah kawasan terlarang yang dinyatakan PVMBG menyusul Letusan Kelud 2014. Radius 12 km adalah prakiraan jangkauan terjauh awan panas letusan Kelud menurut Zaenuddin (2009), dimana daerah yang kemungkinan terlanda awan panas letusan ditandai dengan warna merah. Nampak posisi Candi Penataran di sebelah utara kota Blitar. Panduan arah, atas = utara, kanan = timur. Sumber: Sudibyo, 2014 dengan peta dari Google Maps.

Di kemudian hari, saat Mpu Sindok memutuskan untuk memindahkan ibukota kerajaan dari Medang i Bhumi Mataram (kemungkinan di sekitar Yogyakarta) dan memulai periode Jawa Timur, pada akhirnya lembah subur di dataran Kediri-Blitar pun dipilih sebagai tempat berdirinya ibukota yang baru, yang dinamakan Medang i Wwatan (kini Wotan, di sekitar Madiun). Kota ini memangs empat mengalami petaka seiring invasi besar–besaran kerajaan Lwaram (kini Ngloram, di dekat Blora, Jawa Tengah). Atas dukungan kuat imperium Sriwijaya, Lwaram menumpas habis isi istana Wwatan dan hanya menyisakan seorang Airlangga yang berhasil meloloskan diri ke Bali. Begitu situasi mereda, Airlangga kembali dan selanjutnya mendirikan kerajaan Kahuripan sebagai penerus Medang. Ibukotanya juga berpindah–pindah sebelum akhirnya kembali menempati dataran rendah Kediri-Blitar. Maka didirikanlah kota Dahanapura, yang secara harfiah berarti kota api. Nama Dahanapura (kini di sekitar Kediri) kemungkinan merujuk kepada Gunung Kelud yang memang ada di dekatnya. Dahanapura lebih dikenal dengan nama pendeknya, yakni Daha.

Raden Wijaya – Bung Karno

Dahanapura selanjutnya menjadi ibukota kerajaan Panjalu (Kadiri), yang muncul sekitar tahun 1042 dan bertahan hingga hampir dua abad kemudian sebelum pemberontakan Ken Arok menamatkannya pada 1222 lewat pertempuran Ganter (kini di dekat Pujon, Malang). Suburnya dataran Kediri–Blitar benar–benar dimanfaatkan dengan baik, sehingga Panjalu mencapai puncak kemakmurannya pada era Jayabhaya, sehingga menjadi kerajaan terkaya di Jawa. Kekayaannya sejajar dengan Abbasiyah (Arab) dan Sriwijaya (Sumatra), seperti termaktub dalam berita Ling wai tai ta (tahun 1178) dari Cina. Meski Panjalu kemudian punah, kota Dahanapura tetap bertahan berabad–abad kemudian, bahkan hingga akhir era kerajaan Majapahit. Selama waktu itu pula Gunung Kelud tetap memegang peranan penting bagi peradaban manusia masa itu. Letusan gunung berapi ini bahkan disebut-sebut sebagai salah satu peristiwa yang menandai kelahiran Dyah Wijaya (Raden Wijaya), pendiri kerajaan Majapahit. Berabad kemudian letusan Gunung Kelud pun dinisbatkan sebagai pertanda lahirnya Soekarno, yang kelak dikemudian hari menjadi presiden pertama Indonesia. Meski jika ditelaah lebih lanjut sejatinya tanggal kelahiran Bung Karno, yakni 6 Juni 1901, tidak persis benar bertepatan dengan Letusan Kelud 1901, yang hanya terjadi pada 22 hingga 23 Mei 1901.

Gambar 5. Bagaimana kolom debu Letusan Kelud 2014 menyeruak dalam citra satelit dalam empat jam pertama letusan. Kolom debu letusan Gunung Kelud ditandai dengan panah kuning. Terlihat pada jam 23:00 WIB (sejam setelah meletus), kolom debunya masih berukuran kecil, sferis (mendekati bundar) dan lebih padat dibanding tekstur awan disekelilingnya. Pada jam-jam berikutnya nampak kolom debu semakin meluas dan mulai melonjong mengikuti hembusan angin. Diabadikan dengan satelit MTSAT-2 pada spektrum cahaya inframerah. Sumber: NASA, 2014.

Gambar 5. Bagaimana kolom debu Letusan Kelud 2014 menyeruak dalam citra satelit dalam empat jam pertama letusan. Kolom debu letusan Gunung Kelud ditandai dengan panah kuning. Terlihat pada jam 23:00 WIB (sejam setelah meletus), kolom debunya masih berukuran kecil, sferis (mendekati bundar) dan lebih padat dibanding tekstur awan disekelilingnya. Pada jam-jam berikutnya nampak kolom debu semakin meluas dan mulai melonjong mengikuti hembusan angin. Diabadikan dengan satelit MTSAT-2 pada spektrum cahaya inframerah. Sumber: NASA, 2014.

Selama era Panjalu, Gunung Kelud dianggap sebagai gunung suci dan menjadi bagian dari Gunung Meru dalam perspektif Hindu dan Buddha. Kepercayaan lokal juga meyakini puncak Gunung Kelud merupakan tempat hunian dewa lokal. Untuk menghormatinya dibangun tempat pemujaan disekitar Gunung Kelud dalam rupa Candi Penataran (Palah), Wringinbranjang dan Gambarwetan. Selain sebagai tempat pemujaan, candi-candi tersebut khususnya Candi Penataran juga ditujukan untuk mitigasi bencana letusan secara religius–magis, yakni untuk meredam murka penguasa gunung. Pentingnya posisi Candi Penataran diperlihatkan prasasti Palah (berangka tahun 1197) dari era Kertajaya, yang menetapkan Desa Palah sebagai sima dengan kewajiban memelihara bangunan suci Candi Palah untuk pemujaan batara. Candi ini masih berfungsi hingga masa Majapahit, seperti diperlihatkan dalam kitab Nagarakertagama (Desawarnana) saat Hayam Wuruk mengunjungi candi ini dalam rangkaian perjalanan panjangnya ke pelosok-pelosok wilayah kerajaan.

Namun aktivitas Gunung Kelud pulalah yang menjadi salah satu faktor geologis penentu kejatuhan Majapahit. Tiap kali meletus, Gunung Kelud memencarkan lahar letusannya ke sungai-sungai yang seluruhnya bermuara ke sungai Brantas. Sehingga sebagian rempah letusan pun lambat laun akan memasuki aliran sungai Brantas, khususnya saat musim hujan sebagai lahar hujan (lahar dingin). Persoalan besar pun muncul karena di muara sungai ini berdiri pelabuhan Canggu (kini di utara Mojokerto), yang adalah pelabuhan utama Majapahit. Pelan namun pasti rempah letusan Kelud pun mendangkalkan muara sungai Brantas sekaligus membentuk daratan baru sebagai delta Brantas. Akibatnya pelabuhan Canggu pun kian menjorok ke daratan dan kian dangkal sehingga tak bisa lagi disinggahi kapal-kapal besar. Terbentuknya delta Brantas membuat Surabaya, yang semula adalah laut dangkal berhias pulau-pulau kecil, pun berubah menjadi daratan.

Letusan 2014

Gambar 6. Pesawat yang terpapar debu tergolek di landasan yang dipenuhi debu vulkanik Letusan Kelud 2014 di Bandara Adisucipto, Yogyakarta, pada Jumat 14 Februari 2014. Sumber: Tempo, 2014.

Gambar 6. Pesawat yang terpapar debu tergolek di landasan yang dipenuhi debu vulkanik Letusan Kelud 2014 di Bandara Adisucipto, Yogyakarta, pada Jumat 14 Februari 2014. Sumber: Tempo, 2014.

Sepanjang abad ke-20, Gunung Kelud telah meletus lima kali masing-masing pada 1901, 1919, 1951, 1966 dan 1990. Setiap letusan memuntahkan rempah letusan yang cukup banyak, namun berlangsung dengan durasi singkat (tak sampai 24 jam). Dari sifat inilah kini kita mengetahui bahwa kantung magma Kelud, yakni tempat penampungan (reservoir) magma yang tepat berada di bawah gunung berapi itu, berukuran kecil sehingga cepat terkuras habis kala meletus. Dalam setiap letusan, volume air danau kawah berbeda-beda. Semakin besar volume airnya, semakin besar pula jangkauan lahar letusannya dan semakin besar pula korban jiwa yang direnggutnya. Letusan Kelud 1919 terjadi kala danau kawah berisi 40 juta meter kubik air, sehingga lahar letusannya meluncur hingga sejauh 37,5 km dari danau kawah. Bersama lahar letusan meluncur pula awan panas letusan, yang menjalar hingga sejauh 10 km dari danau kawah. Sebagai akibatnya 5.110 orang meregang nyawa.

Letusan Kelud 1919 memberi pelajaran berharga bagi pemerintahan saat itu untuk mulai membentuk lembaga khusus pemantau gunung berapi. Dinas penjagaan gunung berapi (vulkaanbewakingdienst) pun dibentuk di bawah Dinas Pertambangan Hindia Belanda. Di kemudian hari setelah Indonesia merdeka, institusi ini berevolusi menjadi Direktorat Vulkanologi di bawah Departemen Pertambangan dan Energi dan kini menjadi PVMBG. Letusan itu sekaligus mengajarkan bahwa hanya dengan mengontrol volume air danau kawah Kelud sajalah marabahaya lebih besar bisa diminimalkan saat Gunung Kelud meletus. Maka terowongan pengontrol pun dibangun. Sehingga saat Gunung Kelud kembali meletus pada 1951, volume air danau kawah hanya sebesar 1,8 juta meter kubik dan langsung menguap tatkala bersentuhan dengan magma segar. Sehingga tak ada lahar letusan yang terbentuk. Pun pada Letusan Kelud 1990, dimana volume air danau kawah hanya sebesar 2,5 juta meter kubik dan juga langsung habis menguap tanpa sempat tumpah menjadi lahar letusan.

Gambar 7. Masjid Agung Kebumen yang berselimut debu vulkanik pekat pada Jumat 14 Februari 2014. Ketebalan debu mencapai 2 cm atau lebih, padahal lokasi ini terletak 300 km di sebelah barat Gunung Kelud. Sumber: Warta Kebumen, 2014.

Gambar 7. Masjid Agung Kebumen yang berselimut debu vulkanik pekat pada Jumat 14 Februari 2014. Ketebalan debu mencapai 2 cm atau lebih, padahal lokasi ini terletak 300 km di sebelah barat Gunung Kelud. Sumber: Warta Kebumen, 2014.

Bagaimana dengan Letusan Kelud 2014 ?

Pada Oktober-November 2007 silam, Gunung Kelud pun sebenarnya meletus. Namun berbeda dengan hampir sebagian besar letusannya sepanjang sejarah, letusan tersebut lebih bersifat efusif dan hanya memunculkan tumpukan magma segar yang membukit sebagai kubah lava. Saat itu diperkirakan Gunung Kelud siap memuntahkan 50 juta meter kubik magma dengan 16 juta meter kubik diantaranya menyembul sebagai kubah lava, yang disebut kubah lava 2007. Kubah lava ini berbentuk kerucut raksasa setinggi 215 meter dari dasar dengan lebar 470 meter. Terbentuknya kubah lava 2007 mengandung sejumlah implikasi. Salah satunya, letusan Gunung Kelud berikutnya akan cukup dahsyat karena butuh energi sangat besar untuk bisa menghancurkan kubah lava 2007 yang menjadi sumbat penutup mulut saluran magma. Sebab hanya dengan penghancuran sumbat itulah maka magma segar bisa muncul ke permukaan.

Penghancuran kubah lava 2007 inilah yang akhirnya benar-benar terjadi pada 13 Februari 2014 malam. Dengan volume kubah lava dan akarnya demikian besar, tentu butuh energi sangat besar yang dimanifestasikan oleh tekanan gas sangat kuat agar kubah lava 2007 bisa jebol. Inilah pula yang menyebabkan gemuruh suara letusan terdengar hingga jarak cukup jauh, bahkan hingga ke Kebumen-Purbalingga di Jawa Tengah yang secara geografis berjarak 300 km dari Gunung Kelud. Gemuruh suara letusan serta gempa-gempa yang menyertai jebolnya kubah lava 2007 bahkan terekam jelas di pos-pos pengamatan Gunung Merapi. Segera setelah kubah lava 2007 jebol dan hancur, magma segar menyeruak membentuk kolom letusan hingga setinggi 20 km untuk kemudian terbang ke barat-barat daya seiring hembusan angin. Bagian yang lebih berat yakni kerikil (lapili), bongkahan bebatuan (bom vulkanik) dan pasir berjatuhan di sekitar tubuh dan kaki gunung. Namun bagian yang lebih kecil, yakni debu, terbang terhanyut bersama angin dan menyebar ke area sangat luas hingga sejauh lebih dari 1.000 km. Hampir seluruh Jawa Timur dan Jawa Tengah serta sebagian Jawa Barat merasakan terpaan debu vulkanik Letusan Kelud 2014 ini. Hujan debu yang mengguyur kota-kota seperti Yogyakarta dan Kebumen bahkan dirasa lebih parah ketimbang peristiwa sejenis kala Letusan Merapi 2010 silam. Akibatnya sebagian pulau Jawa nyaris seperti kota mati saat hujan debu menerpa pada Jumat 14 Februari 2014.

Gambar 8. Sebaran debu vulkanik (plume) produk Letusan Kelud 2014 berdasarkan observasi instrumen MODIS pada satelit Aqua milik NASA hingga 14 Februari 2014. Nampak debu vulkanik lebih dominan menyebar ke arah barat daya menuju ke Samudera Hindia. Sumber: NASA, 2014 dengan garis putus-putus ditambahkan oleh Sudibyo, 2014.

Gambar 8. Sebaran debu vulkanik (plume) produk Letusan Kelud 2014 berdasarkan observasi instrumen MODIS pada satelit Aqua milik NASA hingga 14 Februari 2014. Nampak debu vulkanik lebih dominan menyebar ke arah barat daya menuju ke Samudera Hindia. Sumber: NASA, 2014 dengan garis putus-putus ditambahkan oleh Sudibyo, 2014.

Jika Letusan Kelud 2014 ini memuntahkan 120 juta meter kubik rempah vulkanik, maka letusan Gunung Kelud kali ini masih tetap bertengger di skala 4 VEI (Volcanic Explosivity Index) alias serupa dengan seluruh letusan di abad ke-20 kecuali Letusan Kelud 1966. Letusan berskala 4 VEI terjadi jika volume rempah letusan melebihi 100 juta meter kubik namun kurang dari 1 milyar meter kubik. Dengan demikian Letusan Kelud 2014 sekelas dengan Letusan Merapi 2010. Secara teoritis Letusan Kelud 2014 memuntahkan lebih dari 700 ribu ton gas belerang (SO2) yang bakal beraksi dengan uap air di udara membentuk 1,4 juta ton aerosol. Jumlah ini masih 20 kali lipat lebih rendah dibanding ambang batas jumlah aerosol vulkanik untuk memicu gangguan iklim global, yakni 30 juta ton. Dengan demikian Letusan Kelud 2014 masih belum cukup untuk memicu penurunan suhu global yang berakibat pada kekacauan iklim, sebagaimana yang dilakukan Letusan Krakatau 1883 dan Letusan Tambora 1815. Sekalipun tak berdampak global, namun dampak regionalnya cukup parah. Sejauh ini tujuh bandar udara telah ditutup akibat terpaan debu vulkanik, sehingga ratusan penerbangan terpaksa dibatalkan. Transportasi darat pun banyak yang tak beroperasi, baik dalam propinsi maupun antar propinsi. Jumlah pemukiman dan infrastruktur yang rusak masih belum diketahui, namun dengan dahsyatnya letusan maka jelas angkanya cukup besar khususnya untuk kawasan yang berjarak hingga 10 km dari kawah Gunung Kelud.

Namun begitu di balik semua dampak bencana Letusan Kelud 2014, patut disyukuri bahwa amukan Gunung Kelud kali ini tidak merenggut banyak korban. Hingga sejauh ini tercatat 12 orang meninggal sementara jumlah pengungsi secara akumulatif mencapai 76.388 jiwa yang berasal dari kawasan terdampak di lima kabupaten/kota. Patut disyukuri pula bahwa saat Gunung Kelud meletus, hembusan angin mengarah ke barat-barat daya. Sehingga debu vulkanik Kelud pun terhanyut ke sana. Tak terbayang jika saat itu hembusan angin mengarah ke barat laut. Sebab jika demikian maka debu vulkanik kelud akan menghujani pusat-pusat perekonomian utama di pulau Jawa dan Sumatra dengan potensi kerugian jauh lebih besar lagi.

Gambar 9. Distribusi gas belerang (SO2) produk Letusan Kelud 2014 seperti direkam oleh satelit MetOp-A dan MetOp-B milik ESA (European Space Agency) hingga 14 Februari 2014. Seperti halnya distribusi debu vulkaniknya, gas belerang pun lebih dominan mengarah ke barat daya, menjauhi daratan pulau Jawa. Sumber: ESA, 2014.

Gambar 9. Distribusi gas belerang (SO2) produk Letusan Kelud 2014 seperti direkam oleh satelit MetOp-A dan MetOp-B milik ESA (European Space Agency) hingga 14 Februari 2014. Seperti halnya distribusi debu vulkaniknya, gas belerang pun lebih dominan mengarah ke barat daya, menjauhi daratan pulau Jawa. Sumber: ESA, 2014.

Hingga Sabtu 15 Februari 2014, secara teknis Letusan Kelud 2014 sudah hampir usai. Seluruh magma segarnya sudah dimuntahkan khususnya tempo hanya sekitar 3 jam sejak letusan dimulai. Tidak ada lagi pasokan magma segar menuju kawah sebagaimana diperlihatkan oleh minimnya gempa-gempa vulkanik dangkal dan dalam. Yang masih tersisa tinggal erupsi minor, yakni semburan gas-gas vulkanik yang turut menyeret partikel-partikel debu/lebih besar sehingga nampak sebagai kepulan asap berwarna kehitaman. Kepulan debu dalam erupsi minor mungkin akan setinggi 1 hingga 3 km dari kawah, namun tak setinggi kolom erupsi utama yang sempat menembus ketinggian 20 km itu. Meski demikian PVMBG tetap bersikap menunggu dinamika sinyal-sinyal yang dipancarkan Gunung Kelud hingga beberapa hari ke depan sebelum mengevaluasi status Awas (Level 4). Sebab gunung berapi memang punya iramanya masing-masing. Maka kala aktivitasnya mulai menurun seperti saat ini, belum tentu dalam beberapa hari ke depan ia akan tetap bersikap sama.

Referensi :

Zaenuddin. 2009. Prakiraan Bahaya Erupsi Gunung Kelud. Buletin Vulkanologi dan Bencana Geologi vol 4 no 2 (Agustus 2009), 1-17.

Zaenuddin. 2008. Kubah Lava Sebagai Salah Satu Ciri Hasil Letusan Gunung Kelud. Buletin Vulkanologi dan Bencana Geologi vol 3 no 2 (Agustus 2008), 19-29.

Hidayati dkk. 2009. Emergence of Lava Dome from the Crater Lake of Kelud Volcano, East Java. Jurnal Geologi Indonesia vol 4 no 4 (Desember 2009), 229-238.

Haerani dkk. 2010. Deformasi Gunung Kelud Pascapembentukan Kubah Lava November 2007. Jurnal Geologi Indonesia vol 5 no 1 (Maret 2010), 13-30.

Pratomo. 2006. Klasifikasi Gunung Api Aktif Indonesia, Studi Kasus dari Beberapa Letusan Gunung Api dalam Sejarah. Jurnal Geologi Indonesia vol 1 no 4 (Desember 2006), 209-227.