Asteroid Jatuh di Samudera Atlantik dan (Mungkin di) India

Sabtu 6 Februari 2016 Tarikh Umum (TU) seharusnya menjadi salah satu tanggal yang dikenang dalam astronomi modern. Inilah saat dimana dua peristiwa berbeda yang sempat diduga terkait dengan tumbukan benda langit (meteor) terjadi di dua belahan dunia yang berbeda. Peristiwa pertama mengambil arena di kota kecil Vellore, negara bagian Tamil Nadu (India). Dimana tiga orang mengalami luka-luka akibat hempasan repihan kaca dan logam di sebuah kampus perguruan tinggi. Salah seorang bahkan luka-lukanya cukup berat hingga akhirnya berpulang di tengah perjalanan ke rumah sakit. Semula muncul dugaan peristiwa yang merenggut korban jiwa dan luka ini akibat jatuhnya obyek dari langit, dengan meteor sebagai salah satu kandidat tersangka.
Pada saat hampir sama, meteor sesungguhnya justru menuju ke Bumi dengan mengambil titik tumbuk di seberang benua. Tepatnya di tengah-tengah Samudera Atlantik bagian selatan, sejarak 1.940 kilometer sebelah timur-timur laut kota Rio de Janeiro (Brazil). Meteor yang sangat terang hingga berkualifikasi boloid ini nampaknya berasal dari sebongkah asteroid yang massanya hampir 480 ton. Ia melepaskan hampir segenap energi kinetiknya, yang sedikit lebih besar dibanding separuh kekuatan ledakan bom nuklir Hiroshima, di ketinggian atmosfer. Luar biasanya lagi, dengan energi yang terlepas sebesar itu hampir tak seorang pun yang menyadarinya. Badan ruang angkasa Amerika Serikat (NASA) baru melansir terjadinya peristiwa ini dalam dua minggu kemudian.

India

Kampus Bharatidasan Engineering College adalah sebuah kampus perguruan tinggi teknik yang berlokasi di kota kecil Vellore, negara bagian Tamil Nadu, India. Sebuah ledakan menggelegar di lapangan kampus ini pada Sabtu 6 Februari 2016 TU siang, kala rutinitas akademis berlangsung seperti hari-hari biasanya. Kaca-kaca jendela dari ruangan-ruangan yang menghadap ke lapangan pun bergetar keras. Bahkan kaca dari lima buah bus yang sedang parkir di lapangan itu pun bergetar keras dan pecah berkeping-keping. Di dekatnya dijumpai sebuah lubang aneh dengan garis tengah sekitar 1,5 meter dan kedalaman sekitar 1 meter. Tak jauh darinya dua orang tergeletak berlumuran darah, masing-masing Kamaraj (40 tahun) dan Sultan (57 tahun). Malang bagi Kamaraj, luka-lukanya terlalu parah sehingga ia berpulang selagi dalam perjalanan menuju rumah sakit Vaniyambadi, pusat medis terdekat. Selain Kamaraj dan Sultan, seorang mahasiswa tingkat tiga bernama Santosh (20 tahun) pun dilaporkan mengalami luka-luka ringan dalam bentuk gangguan pendengaran. Baik Sultan maupun Santosh segera dilarikan ke rumah sakit Tirupattur, yang fasilitasnya lebih lengkap, untuk segera menjalani perawatan lebih lanjut.

Gambar 1. Lokasi kampus Bharatidasan Engineering College di Vellore, negara bagian Tamil Nadu (India) beserta citra satelitnya. Tanda bintang (*) adalah prakiraan lokasi terbentuknya lubang aneh yang diduga produk tumbukan benda langit. Sumber: Google Maps, 2016.

Gambar 1. Lokasi kampus Bharatidasan Engineering College di Vellore, negara bagian Tamil Nadu (India) beserta citra satelitnya. Tanda bintang (*) adalah prakiraan lokasi terbentuknya lubang aneh yang diduga produk tumbukan benda langit. Sumber: Google Maps, 2016.

Kepolisian Vellore yang segera datang ke tempat kejadian awalnya menduga ledakan ini disebabkan oleh bahan peledak biasa. Mereka menjelaskan bahwa tepat sebelum saat kejadian, dua tukang kebun kampus yang masing-masing bernama Sasikumar (42 tahun) dan Murali (26 tahun) membersihkan taman kampus dari rerumputan dan segala jenis sampah lainnya. Sampah tersebut lalu ditumpuk di salah satu sudut lapangan, lalu dibakar. Api dari pembakaran itu nampaknya secara tak sengaja menyulut batang selatin ledak yang telah terbengkelai dan tertimbun tanah. Selatin ledak atau gelignite adalah bahan peledak konvensional hasil campuran antara nitrogliserin (nitroselulosa), bubur kayu dan natrium/kalium nitrat. Bahan peledak ini disintesis pertama kali oleh sosok legendaris Alfred Nobel pada 1875 TU (catatan: benar, Alfred Nobel adalah sosok di balik penghargaan Nobel yang prestisius itu). Penemuan selatin ledak menjadi bagian dari upaya Nobel untuk membuat nitrogliserin lebih stabil. Sehingga mudah diangkut, diperdagangkan dan tak gampang meledak dalam situasi tertentu. Selatin ledak dapat dikatakan sebagai saudara tua dari dinamit, hasil campuran nitrogliserin dengan tanah diatom (kieselguhr) yang juga ditemukan Nobel di kemudian hari namun kemudian jauh lebih populer.

Selatin ledak banyak digunakan di India untuk keperluan-keperluan sipil. Termasuk di antaranya untuk membersihkan dan mempersiapkan lahan sebelum didirikan bangunan. Sejumlah kalangan di India kerap menimbun selatin ledak secara ilegal. Kasus terakhir yang terkait dengannya adalah kejadian di Petlawad (negara bagian Madhya Pradesh) pada 12 September 2015 TU. Saat sebuah gudang dan restoran didekatnya meledak hebat, menewaskan tak kurang dari 105 orang. Penyelidikan lebih lanjut memperlihatkan pemilik gudang, yang turut tewas dalam ledakan tersebut, menimbun selatin ledak dalam jumlah besar secara ilegal.

Masalah mulai membayangi ‘teori’ selatin ledak ini setelah tim penjinak bahan peledak menganalisis lubang aneh tersebut dan lingkungan sekitarnya. Mereka datang lengkap dengan anjing pelacak terlatih. Ternyata tak satupun sisa-sisa substansi selatin ledak yang dijumpai. Bahkan demikian halnya dengan substansi bahan peledak konvensional lainnya yang telah dikenal. Hasil nihil ini memaksa polisi Vellore mengesampingkan ‘teori’ selatin ledak dan memikirkan alternatif penjelasan lain. Dan bersualah mereka dengan apa yang dianggap paling mungkin: jatuhnya benda langit. Meteor pun segera beranjak menjadi salah satu kandidat tersangka dalam peristiwa di Vellore. Terlebih setelah sebuah tim ISRO (Indian Space Research Organization) berhasil mengangkat sekeping benda aneh seukuran 2 cm seberat 10 gram yang sekilas nampak mirip meteorit. Benda mirip meteorit kemudian ditemukan pula di belakang kantin kampus.

Tak pelak mata dunia astronomi pun segera berpaling ke Vellore. Andaikata peristiwa di Vellore benar-benar disebabkan oleh tumbukan benda langit, maka inilah kejadian pertama sepanjang sejarah modern yang berakibat fatal bagi manusia. Sebelumnya hanya ada catatan hewan-hewan yang dilaporkan terbunuh akibat hantaman meteor di paras Bumi. Misalnya ratusan ekor rusa yang bergelimpangan dalam Peristiwa Tunguska (Russia) pada 30 Juni 1908 TU. Atau seekor anjing yang tewas dalam Peristiwa Nakhla (Mesir) pada 28 Juni 1911 TU. Dalam peristiwa ini ditemukan meteorit yang kemudian diketahui berasal dari Mars. Dan juga seekor sapi yang terbunuh dalam Peristiwa Valera (Venezuela) pada 15 Oktober 1972 TU. Pada peristiwa Valera juga dijumpai meteorit.

Gambar 2. Tim penjinak bahan peledak sedang menggali dasar lubang aneh yang terbentuk dalam peristiwa di lapangan kampus Bharatidasan Engineering College, Vellore. Selain mencoba mencari bukti-bukti yang mungkin terpendam di dasar lubang, tim juga mengerahkan anjing pelacak untuk mengendus sisa-sisa substansi bahan peledak konvensional. Sumber: Express, 2016.

Gambar 2. Tim penjinak bahan peledak sedang menggali dasar lubang aneh yang terbentuk dalam peristiwa di lapangan kampus Bharatidasan Engineering College, Vellore. Selain mencoba mencari bukti-bukti yang mungkin terpendam di dasar lubang, tim juga mengerahkan anjing pelacak untuk mengendus sisa-sisa substansi bahan peledak konvensional. Sumber: Express, 2016.

Sementara pada manusia, tumbukan meteor hanya menyebabkan luka-luka. Misalnya dalam Peristiwa Sylacauga (Amerika Serikat) 30 November 1954 TU. Saat sebongkah meteorit seberat 3,8 kilogram menembus atap rumah, memantul di lantai dan lantas menghantam raga Ann Hodges. Luka-luka pun diderita di pinggangnya, meski tak sampai membahayakan jiwanya. Korban luka terakhir dijumpai dalam Peristiwa Chelyabinsk (Russia) pada 13 Februari 2013 TU, dimana tak kurang dari 1.613 orang mengalami luka-luka.

Dan segera setelah ‘teori’ tumbukan meteor Vellore mengapung, nada skeptis bersenandung dari berbagai penjuru. Salah satunya dari daratan Amerika Serikat, melalui NASA. Berbekal perbandingan antara citra lubang aneh di kampus Bharatidasan dengan morfologi kawah-kawah produk tumbukan meteor yang telah dikonfirmasi, NASA menduga lubang aneh di kampus Bharatidasan tidaklah dibentuk oleh hantaman benda langit (apapun itu). Melainkan produk ledakan di dalam tanah. Rasa skeptis juga muncul mengingat penggambaran peristiwa di Vellore tergolong ‘aneh’ untuk sebuah tumbukan benda langit. Luka-luka yang diderita korban peristiwa ini disebutkan berasal dari pecahan kaca dan material kecil-kecil ringan yang terhempas melesat bersama gelombang kejut. Agar dapat menghasilkan gelombang kejut signifikan, sebuah meteor harus menyandang kualifikasi boloid. Sehingga hanya bisa berasal dari kepingan asteroid dan memiliki dimensi cukup signifikan, hingga beberapa belas meter. Persoalannya, meteoroid dengan garis tengah belasan meter itu seharusnya memproduksi dampak yang serupa dengan Peristiwa Chelyabinsk. Dimana gelombang kejutnya akan berdampak pada daerah yang cukup luas dengan beragam tingkat keparahan. Sehingga berdampak pada lebih banyak orang. Selain itu, jatuhnya boloid juga akan disertai dengan suara dentuman yang terdengar di daerah yang cukup luas disertai kilatan cahaya cukup terang di langit. Dua hal ini yang absen dalam peristiwa di Vellore.

Kita bisa menyimulasikan andaikata para korban mendapatkan luka-lukanya langsung dari hantaman meteorit tanpa perlu melibatkan gelombang kejut. Dengan memanfaatkan persamaan-persamaan Collins dkk (2005), maka simulasi yang saya jalankan memperlihatkan sebuah lubang bergaris tengah 1,5 meter dengan kedalaman hampir 1 meter dapat dibentuk oleh pecahan meteorit kondritik (massa jenis 3,7 gram/cc) bergaris tengah 24 cm yang jatuh menumbuk dengan kecepatan 270 km/jam. Bila hanya 1 % massa meteoroid yang bisa sampai ke paras Bumi menjadi meteorit, maka meteorit seukuran 24 cm itu berasal dari meteoroid bergaris tengah 2,4 meter (massa 26 ton) yang melesat secepat 20 km/detik (72.000 km/jam). Meteoroid semacam itu akan melepaskan energi kinetik sebesar 1,3 kiloton TNT. Meski ‘hanya’ 6,5 % energi bom nuklir Hiroshima, namun kuantitas energi ini tergolong cukup besar. Ia mudah diindra oleh satelit mata-mata pemantau detonasi senjata nuklir matra atmosfer/angkasa dan juga menghasilkan gelombang kejut yang mudah diindra jaringan stasiun mikrobarometer pengawas ujicoba nuklir global.

Gambar 3. Benda mirip meteorit seukuran 2 cm dengan berat 10 gram yang ditemukan di dasar lubang aneh. Nampak bagian sisi yang hangus. Sekilas terdapat bentuk mirip gelembung udara yang 'membeku' di permukaannya, morfologi yang mengingatkan pada regmaglif khas meteorit. Sumber: Kepolisian Tamil Nadu, 2016.

Gambar 3. Benda mirip meteorit seukuran 2 cm dengan berat 10 gram yang ditemukan di dasar lubang aneh. Nampak bagian sisi yang hangus. Sekilas terdapat bentuk mirip gelembung udara yang ‘membeku’ di permukaannya, morfologi yang mengingatkan pada regmaglif khas meteorit. Sumber: Kepolisian Tamil Nadu, 2016.

Dan yang terpenting meteoroid tersebut, yang bertransformasi menjadi boloid saat memasuki atmosfer Bumi, akan terpecah-belah di ketinggian sekitar 40 kilometer dpl (dari paras laut rata-rata), menghasilkan aneka pecahan meteor yang sebagian kecil diantaranya akan mendarat di paras Bumi dalam area cukup luas. Apabila sudut yang dibentuk antara lintasan boloid dengan paras Bumi adalah 45°, maka meteorit-meteorit itu akan tersebar dalam area berbentuk ellips dengan sumbu panjang 700 meter dan sumbu pendek 500 meter. Masalah utamanya bagi peristiwa di Vellore adalah, kecuali dua benda-mirip-meteorit yang sudah diamankan, sampai saat ini belum dijumpai meteorit dalam area dalam luasan tersebut di sekitar kampus Bharatidasan. Juga belum ada data hasil pantauan satelit mata-mata, maupun data infrasonik hasil pantauan stasiun mikrobarometer.

Hingga kini, hampir sebulan pasca kejadian, apa yang sebenarnya terjadi di kampus Bharatidasan Engineering College itu masih menjadi teka-teki.

Atlantik

Bila peristiwa di Vellore tetap berselimutkan teka-teki, tak demikian halnya dengan kejadian di ketinggian Samudera Atlantik bagian selatan. Pada tanggal yang sama namun pada jam yang jauh berbeda (yakni pukul 20:55 WIB), sebuah meteoroid berukuran besar menerobos atmosfer. Ia segera bertransformasi menjadi boloid yang sangat terang. Namun atmosfer Bumi masih sanggup menahan serbuan dari langit ini. Sehingga boloid tersebut terpecah-belah demikian rupa hingga pada akhirnya ia melepaskan hampir segenap energinya di ketinggian 31 kilometer dpl. Energi sebanyak 13 kiloton TNT dilepaskan pada saat itu. Dibandingkan kekuatan ledakan bom nuklir Hiroshima, yang mencapai 20 kiloton TNT, maka Peristiwa Atlantik Selatan 2016 (demikian ia bisa dinamakan) berenergi lebih dari separuhnya. Inilah kejadian tumbukan benda langit terbesar dalam tiga tahun terakhir pasca Peristiwa Chelyabinsk. Ia juga tiga kali lipat lebih bertenaga ketimbang Peristiwa Bangkok 2015, tumbukan meteor berenergi terbesar sepanjang 2015 TU lalu.

Gambar 4. Lokasi Peristiwa Atlantik Selatan 2016 di tengah-tengah Samudera Atlantik bagian selatan, dilihat dari sebuah titik nan tinggi di atas Antartika. Garis-garis merah merupakan garis imajiner yang menghubungkan lokasi terdeteksinya pelepasan energi kinetik boloid dengan dua stasiun infrasonik yang tergabung dalam jejaring CTBTO. Masing-masing stasiun IS27 (Jerman) dan IS55 (Amerika Serikat). Sumber: Sudibyo, 2016 berbasis Google Earth.

Gambar 4. Lokasi Peristiwa Atlantik Selatan 2016 di tengah-tengah Samudera Atlantik bagian selatan, dilihat dari sebuah titik nan tinggi di atas Antartika. Garis-garis merah merupakan garis imajiner yang menghubungkan lokasi terdeteksinya pelepasan energi kinetik boloid dengan dua stasiun infrasonik yang tergabung dalam jejaring CTBTO. Masing-masing stasiun IS27 (Jerman) dan IS55 (Amerika Serikat). Sumber: Sudibyo, 2016 berbasis Google Earth.

Karena sangat jauh dari pusat pemukiman manusia, tak seorang pun menyadari bahwa sesuatu yang luar biasa telah terjadi di Samudera Atlantik bagian selatan. Kecuali operator satelit mata-mata rahasia pelacak detonasi nuklir dalam matra atmosferik dan antariksa. Inilah satelit rahasia yang diperasikan oleh Departemen Pertahanan Amerika Serikat (Pentagon). Selain melacak detonasi senjata nuklir atmosferik/antariksa, sensor sensitif satelit juga berkemungkinan melacak peristiwa lain yang melepaskan energi setara (yang disebut ‘zoo event‘). Salah satunya adalah peristiwa tumbukan benda langit. Lewat sensor satelit inilah diketahui bahwa Peristiwa Atlantik Selatan 2016 melepaskan energi 13 kiloton TNT pada ketinggian 31 kilometer dpl dengan kecepatan boloid 15 km/detik (54.000 km/jam). Data inilah yang kemudian disampaikan kepada publik melalui kantor NASA Near Earth Environment, sebuah ‘tradisi’ yang baru terbentuk pasca Peristiwa Chelyabinsk 2013.

Di luar Departemen Pertahanan AS, pihak lain yang beruntung mengendus peristiwa ini (dan tak begitu ditutupi tabir rahasia layaknya Pentagon) adalah jejaring pengawas penegakan larangan ujicoba nuklir global dalam segala matra atau CTBTO (The Comprehensive nuclear Test Ban Treaty Organization). Dua radas mikrobarometer pada dua stasiun infrasonik berbeda di Antartika merekam gelombang infrasonik khas boloid yang dilepaskan peristiwa tersebut. Kedua stasiun itu masing-masing adalah stasiun Georg von Neumayer (IS27) milik Jerman dan stasiun Windless Bight (IS55) milik Amerika Serikat. Jarak antara lokasi Peristiwa Atlantik Selatan 2016 dengan stasiun IS27 dan IS55 masing-masing adalah 5.000 dan 8.000 kilometer.

Berbekal data yang relatif lengkap ini, kita dapat memprakirakan bagaimana sifat-sifat meteoroid kala masih di antariksa maupun setelah memasuki atmosfer Bumi sebagai boloid. Simulasi yang saya lakukan, juga berdasarkan persamaan-persamaan Collins dkk (2005) memperlihatkan meteoroid dalam Peristiwa Atlantik Selatan 2016 mungkin memiliki komposisi yang sama dengan meteorit kondritik. Jika dianggap berbentuk bola sempurna, maka dimensinya 6,3 meter dengan massa 480 ton. Begitu memasuki atmosfer Bumi dengan sudut lintasan 45° terhadap paras Bumi, maka ia berubah menjadi boloid yang berpijar terang. Tekanan ram menyebabkan materi boloid mulai terpecah-belah pada ketinggian 45 kilometer dpl. Pemecah-belahan ini terus berlangsung dan kian intensif seiring boloid kian memasuki lapisan udara yang lebih padat. Sehingga pada suatu titik ia melepaskan hampir segenap energi kinetiknya dalam kejadian mirip ledakan (airburst), yang terjadi pada ketinggian 31 kilometer dpl. Pada energi dan ketinggian tersebut gelombang kejut yang khas terbentuklah. Namun intensitasnya terlalu kecil sehingga hanya bisa sekedar menggetarkan kaca jendela di paras Bumi yang tepat ada dibawahnya (andaikata ada). Dan bila 1 % massa meteoroidnya masih tersisa dan berjatuhan ke paras Bumi sebagai meteorit, mungkin ada sekitar 4 ton meteorit (dalam pecahan-pecahan yang ratusan/ribuan banyaknya) yang jatuh tercebur ke Samudera Atlantik dalam peristiwa ini.

Gambar 5. Kilatan cahaya benderang di siang bolong yang terekam kamera dasbor kendaraan di pinggiran kota Bangkok (Thailand) 7 September 2015 TU lalu. Inilah meteor-terang Peristiwa Bangkok, yang melepaskan energi 3,9 kiloton TNT. Peristiwa Atlantik Selatan 2016 tiga kali lipat lebih berenergi ketimbang Bangkok, namun tak satupun yang berkesempatan menyaksikannya secara langsung. Sumber: Anonim, 2015.

Dari sisi energinya, peristiwa tumbukan meteor ini adalah yang paling berenergi sepanjang tiga tahun terakhir pasca Peristiwa Chelyabinsk. Energinya memang tak ada apa-apanya dibandingkan Chelyabinsk (yang mencapai hampir 600 kiloton TNT). Namun tumbukan meteor ini kembali menyalakan peringatan bahwa potensi ancaman dari langit masih tetap ada. Memang sejauh ini belum ada seorang pun yang tewas akibat tumbukan meteor di era modern dan jauh lebih banyak nyawa yang melayang akibat sikap ugal-ugalan dalam berkendara di jalan raya, atau akibat rajin mengakumulasi asap rokok di paru-paru. Namun begitu dalam derajat tertentu, tumbukan meteor sanggup menghasilkan bencana tak terperi yang jauh melampaui daya rusak bencana alam lainnya. Sekaligus mampu melampaui ambang batas daya tahan umat manusia, bahkan makhluk hidup kompleks yang lain, dengan mudah.

Di sisi lain, peristiwa ini kembali menggamit kesadaran manusia bahwa masih banyak lubang dalam sistem peringatan dini kita akan ancaman dari langit. Sistem-sistem penyigian langit semi-otomatis yang telah bekerja pada saat ini sejatinya mampu melacak asteroid berdiameter hingga sekecil 1 meter pada kondisi yang tepat. Dan asteroid-tanpa-nama yang menjadi penyebab Peristiwa Atlantik Selatan 2016 berdiameter paling tidak 6 meter. Seharusnya bisa dideteksi, namun nyatanya ia tak terlacak. Di sisi lain, kita masih bisa menghela nafas lega, mengingat hingga sejauh ini Bumi kita masih tetap aman dari jangkauan asteroid/komet besar yang berpotensi menimbulkan tubrukan amat sangat dahsyat dalam skala kosmos.

Referensi :

Express. 2016. Meteorite? Satellite Junk? Vellore Rock Was Object from Space. The New Indian Express, 7 Februari 2016.

Discovery News. 2016. Meteorite Did Not Kill Man in India: Experts. Space.com, 10 Februari 2016.

Menemukan Chicxulub, di Balik Perburuan Kawah Pembunuh Dinosaurus

Tiap kali berbincang akan benda langit anggota tata surya yang berjuluk asteroid dan komet, di benak saya langsung terbayang sosok-sosok dinosaurus. Ya, pada kawanan hewan-hewan purba yang selama ini dipersepsikan berbadan besar dan tambun, meski sesungguhnya tidak seluruhnya demikian. Dinosaurus merajai seluruh benua selama ratusan juta tahun semenjak zaman Trias, tepatnya semenjak 231 juta tahun silam. Namun fosil-fosil mereka mendadak tak lagi dijumpai di lapisan-lapisan batuan yang berasal dari zaman Tersier awal, tepatnya mulai 65 juta tahun silam (atau dalam penelitian termutakhir, mulai 66 juta tahun silam). Dinosaurus tak menghilang sendirian. Dalam kurva kelimpahan genera makhluk hidup dari masa ke masa sepanjang 250 juta tahun terakhir yang disusun palentolog Jack Sepkoski dan David Raup yang dipublikasikan pada 1982 Tarikh Umum (TU) silam, jelas terlihat dinosaurus adalah bagian dari 76 % makhluk hidup sezaman yang mendadak menghilang. Selain dinosaurus, sejumlah anggota genera nanoplankton, tumbuhan darat, binatang laut dan darat tak bertulang belakang dan amfibi pun turut punah. Bedanya, mereka masih menyisakan sejumlah genera lainnya khususnya yang bertubuh kecil untuk bertahan hidup, sehingga tetap muncul dan bahkan berkembang pesat pada zaman geologi sesudahnya. Sementara sisanya beserta segenap dinosaurus, khususnya dinosaurus non burung, tak lagi dijumpai dalam kala dan zaman geologi sesudahnya.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Gambar 1. Ilustrasi saat kawanan dinosaurus seakan merajai Bumi hingga akhir zaman Kapur (kiri) dan kemudian mendadak mati bergelimpangan di zaman geologi setelahnya (kanan). Punahnya kawanan dinosaurus beserta 76 % genera makhluk hidup lainnya terjadi dalam waktu bersamaan pada 65 juta tahun silam. Inilah peristiwa pemusnahan massal terdahsyat kedua di Bumi dalam kurun 250 juta tahun terakhir. Sekaligus menandai transisi zaman Kapur ke Tersier. Sumber: Penfield, 2009.

Dinosaurus dan 76 % makhluk hidup sezaman itu menjadi korban dari peristiwa pemusnahan massal dalam skala global yang amat mencekik. Mulai dasawarsa 1980-an pencarian akan penyebab peristiwa dramatis tersebut mewarnai dunia ilmu pengetahuan yang terus berlanjut hingga ke abad ke-21 TU. Pencarian pun mengerucut pada dua kandidat. Yang pertama adalah dugaan peristiwa tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub (baca : chic-sa-lube) di sebagian Semenanjung Yucatan dan Teluk Meksiko (kini bagian dari Meksiko). Sementara kandidat kedua adalah dugaan letusan mahadahsyat gunung berapi areal yang memuntahkan magma basaltik dalam volume gigantis yang memproduksi Dataran Tinggi Dekan (kini bagian dari India). Keduanya terjadi pada rentang waktu hampir bersamaan dalam skala waktu geologi, yakni di perbatasan zaman Kapur dan Tersier sekitar 65 juta tahun silam. Sifat kedua kandidat itu sangat berbeda. Tumbukan pembentuk kawah Chicxulub berlangsung sangat singkat, hanya dalam waktu beberapa detik hingga beberapa jam saja. Sementara letusan gigantis Dataran Tinggi Dekan berlangsung dalam waktu hingga sejuta tahun

Setiap kandidat memiliki pendukungnya masing-masing. Namun hampir tiga dasawarsa kemudian, tepatnya pada tahun 2010 TU, terbentuk konsensus yang menyimpulkan tumbukan asteroid sebagai pembunuh dinosaurus dan pemusnah 76 % kelimpahan makhluk hidup sezaman. Setelah menganalisis seluruh literatur ilmiah terkait beserta segenap buktinya yang telah dihasilkan dalam dua dasawarsa terakhir, 41 ilmuwan prestisius dari berbagai disiplin ilmu seperti astronomi, kebumian dan geofisika menyepakati kesimpulan tersebut. Sebagai konsekuensinya, letusan gigantis Dataran Tinggi Dekan tak lagi dianggap sebagai penyebab peristiwa kepunahan massal 65 juta tahun silam. Meski mungkin berkontribusi dalam memperparah dampak lingkungan global akibat tumbukan asteroid raksasa tersebut.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Gambar 2. Peta anomali gravitasi kawasan Semenanjung Yucatan bagian utara yang memperlihatkan dengan jelas Struktur Chicxulub. Lingkaran putus-putus ditambahkan untuk mempertegas lokasi struktur. Terlihat jelas busur setengah lingkaran yang adalah cincin kawah raksasa Chicxulub. Kawah raksasa ini terkubur di bawah sedimen berumur Tersier setebal 600 meter. Sumber: Hildebrand dkk, 1990.

Kawah raksasa Chicxulub adalah jejak paling jelas dari peristiwa tumbukan asteroid raksasa itu. Kawah tumbukan ini demikian akbar, berbentuk membulat dengan garis tengah tak kurang dari 170 kilometer. Namun ukuran sesungguhnya mungkin lebih besar lagi karena ada juga yang berpendapat terdapat tanda-tanda bahwa diameter kawah ini mencapai 300 kilometer. Kawah raksasa Chicxulub lahir kala asteroid raksasa bergaris tengah antara 5 hingga 15 kilometer jatuh menumbuk Bumi 65 juta tahun silam dalam peristiwa tumbukan benda langit. Tumbukan ini melepaskan energi kinetik yang sungguh luar biasa besar. Paling tidak 100 juta megaton energi dilepaskan, yang setara dengan peletusan 5 milyar bom nuklir Hiroshima secara serempak. Jika dibandingkan dengan energi letusan Gunung Toba 74.000 tahun silam, maka letusan gunung berapi terdahsyat di Bumi dalam 27 juta tahun terakhir itu hanyalah seper duaratus energi tumbukan asteroid raksasa ini. Apalagi jika dibandingkan dengan Peristiwa Chelyabinsk 2013 kemarin. Jelas sudah, inilah bencana alam terdahsyat dengan skala yang luar biasa !

Asteroid raksasa itu jatuh di perairan Teluk Meksiko purba yang adalah laut dangkal dengan kedalaman sekitar 150 meter. Maka megatsunami pun tercipta dan segera berderap mengarungi samudera. Gelombang setinggi ratusan meter menderu membanjiri pesisir-pesisir Amerika purba yang berhadapan. Bahkan di Eropa dan Afrika purba yang sudah cukup jauh dari lokasi tumbukan, tinggi megatsunami itu masih sekitar 100 meter kala tiba di pesisir.Namun bukan megatsunaminya yang menjadi masalah global yang sangat serius. Pembentukan kawah raksasa Chicxulub dibarengi semburan milyaran ton debu hingga jauh tinggi ke atmosfer. Pada saat yang sama, bongkah-bongkah batuan produk tumbukan yang terlontar ke angkasa sebagian berjatuhan lagi ke Bumi menjadi meteor dalam jumlah luar biasa besar. Udara pun terpanaskan hebat hingga kebakaran hutan spontan pun terjadilah dimana-mana bersamaan dengan badai api. Sebagai hasilnya milyaran ton jelaga pun terhembus ke udara. Selain debu dan jelaga, milyaran ton aerosol sulfat pun terlepas. Sulfat ini berasal dari gas belerang (sulfur dioksida), yang terbebaskan saat asteroid raksasa menumbuk dasar Teluk Meksiko yang dipenuhi endapan gipsum. Gas Belerang yang terproduksi segera bertemu uap air di atmosfer menjadi aerosol sulfat.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Gambar 3. Detik-detik tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub, berdasarkan simulasi tiga dimensi oleh laboratorium nuklir Los Alamos (Amerika Serikat). Asteroid datang dari arah selatan-tenggara dari altitud 45°. Skala suhu dinyatakan dalam eV (elektronvolt), dengan 0,5 eV = 5.527° Celcius dan 0,01 eV = minus 157° Celcius. Simulasi memperlihatkan saat asteroid menumbuk Bumi di Teluk Meksiko purba, milyaran ton material tumbukan disemburkan ke langit selagi kawah tumbukan raksasa terbentuk. SUmber: Los Alamos National Laboratory, 2007.

Ketiganya membumbung tinggi hingga memasuki lapisan stratosfer dan terdistribusikan ke segala arah. Karena berada di lapisan stratosfer, mereka tak bisa terlarut dan turun bersama air hujan. Hanya gravitasi yang mampu menurunkannya kembali ke permukaan Bumi. Namun dengan ukuran butir-butir debu, jelaga dan aerosol sulfat yang kecil, butuh waktu bertahun-tahun bagi gravitasi untuk bekerja mengendapkannya. Sepanjang waktu itu milyaran ton debu halus, jelaga dan aerosol sulfat terus melayang-layang dalam lapisan stratosfer. Tak sekedar melayang, mereka berkoalisi membentuk lapisan tabir surya alamiah khas produk tumbukan. Aerosol sulfat merupakan penyerap sinar Matahari yang efektif. Sementara debu dan jelaga menjadi pemantul sinar Matahari yang tak kalah efektifnya. Kehadiran ketiganya dalam jumlah luar biasa besar sebagai tabir surya alamiah di lapisan stratosfer menghalangi pancaran sinar Matahari yang seharusnya tiba di paras Bumi. Selain diserap, tabir surya tersebut juga memantulkan kembali sejumlah sinar Matahari ke angkasa, yang membuat albedo Bumi meningkat. Kombinasi kedua efek tersebut membuat intensitas sinar Matahari yang diterima di daratan dan lautan merosot demikian dramatis. Sehingga Bumi menjadi remang-remang gulita. Simulasi menunjukkan bahkan di siang bolong sekalipun situasinya masih lebih gelap ketimbang malam berhias Bulan purnama di hari yang normal.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Gambar 4. Bagaimana tumbukan asteroid raksasa pembentuk kawah raksasa Chicxulub mampu membangkitkan kebakaran hutan spontan dalam lingkup global diperlihatkan dalam simulasi ini. Pada detik-detik pertama pasca tumbukan (kiri), suhu tinggi akibat paparan sinar panas dan guyuran material produk tumbukan hanya mewarnai daratan Amerika Utara purba, hingga menimbulkan badai api. Namun dalam hampir 17 jam pasca tumbukan (kanan), badai api telah melingkupi sebagian besar permukaan Bumi. Khususnya akibat guyuran material produk tumbukan yang sempat terlontar melampaui atmosfer dan kembali ke Bumi sebagai trilyunan meteor. Jejak kebakaran hutan spontan yang bersifat global ini terekam jelas pada lapisan lempung tipis di batas sedimen zaman Kapur dan Tersier. Sumber: Penfield, 2009.

Akibatnya sungguh buruk. Selain membuat suhu rata-rata paras Bumi anjlok dramatis dan jumlah penguapan pun berkurang dramatis dengan segala implikasinya ke sistem iklim dan cuaca Bumi, minimnya sinar Matahari juga memaksa tumbuh-tumbuhan darat dan fitoplankton di lautan berhenti berfotosintesis. Pelan namun pasti produsen makanan itu pun mati. Imbasnya segera merambat ke rantai makanan dan jaring-jaring makanan di segenap penjuru. Hewan-hewan yang menjadi konsumen, baik konsumen tingkat 1, 2 maupun 3 segera menyusul bergelimpangan akibat kelaparan. Dapat dikatakan segenap makhluk hidup yang bobotnya lebih dari 20 kilogram tewas bertumbangan. Hanya hewan-hewan kecil dan tumbuh-tumbuhan perintis saja yang sanggup bertahan.

Gravitasi dan Magnetik

Tumbukan asteroid raksasa yang membentuk kawah raksasa Chicxulub mendorong kehidupan di Bumi memasuki saat-saat terpedihnya. Di era kontemporer, khususnya semenjak dasawarsa 1990-an, kengerian akan peristiwa ini mulai mengetuk pintu kesadaran umat manusia akan Bumi yang tidaklah steril dari hantaman komet dan asteroid, sebagaimana yang juga dialami planet-planet lainnya. Wajah Bumi pun pernah diwarnai kawah-kawah raksasa produk tumbukan, meski perjalanan waktu membuatnya dipahat erosi intensif atau bahkan terkubur di bawah ketebalan sedimen. Mata dunia semakin terbuka setelah menyaksikan untuk pertama kalinya bagaimana tumbukan benda langit bekerja, di planet lain. Selama tujuh hari berturut-turut semenjak 16 hingga 22 Juli 1994 TU, dunia menyaksikan bagaimana 21 fragmen komet Shoemaker-Levy 9 berjatuhan ke planet Jupiter. Secara akumulatif energi yang dilepaskannya pun mencapai ratusan juta megaton TNT, sebanding dengan peristiwa tumbukan asteroid raksasa 65 juta tahun silam. Kini asteroid dan komet pun dipandang dalam perspektif baru. Komet misalnya, tak lagi hanya dilihat sebagai benda langit eksotik yang mempunyai ‘ekor’ mempesona, namun juga menjadi salah satu potensi bahaya bagi Bumi meski dalam perspektif yang sangat berbeda dibanding ungkapan Aristoteles 2.000 tahun silam.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Gambar 5. Saat-saat megatsunami setinggi ratusan meter menjalar di Teluk Meksiko hanya dalam beberapa detik pasca tumbukan asteroid raksasa, dalam simulasi Ward. Asteroid jatuh dari arah selatan-tenggara. Simulasi tsunami disesuaikan dengan situasi Teluk Meksiko purba 65 juta tahun silam, yang lebih luas dari sekarang. Garis hitam menunjukkan garis pantai modern. Megatsunami produk tumbukan asteroid raksasa ini menjalar ke segala arah dan meninggalkan jejak dimana-mana. Termasuk ke dalam laut pedalaman Amerika, yang kini telah tertutup. Sumber: Ward, t.t.

Namun jarang diketahui bahwa upaya pencarian, penemuan dan hubungan antara kawah raksasa Chicxulub dengan peristiwa pemusnahan massal 65 juta tahun silam berjalan dalam rangkaian yang mirip kisah-kisah detektif. Di dalamnya ada luapan energi dan semangat para pencarinya, yang ditingkahi pula dengan penolakan demi penolakan hingga hampir tiga dasawarsa seiring benturan asimetrik antara ‘kubu’ amatir vs profesional, sebelum kemudian bukti-bukti yang meyakinkan datang.

Ilmu tumbukan benda langit merupakan salah satu cabang ilmu pengetahuan yang usianya masih sangat muda. Secara formal cabang ilmu ini lahir pada 1963 TU seiring kerja keras Eugene M. Shoemaker, Nicholas M. Short, Edward Chao, B.M. French dan W. von Engelhardt dalam menganalisis dampak ledakan nuklir di medan percobaan nuklir Nevada (Amerika Serikat). Kala sebuah bom nuklir yang berjuluk Sedan (kekuatan 104 kiloton TNT) diledakkan di kedalaman 192 meter dari paras Bumi pada 5 Juli 1962 TU dan membentuk lubang kawah yang besar, Shoemaker sangat tertarik dengan morfologi kawahnya. Kawah produk ledakan Sedan memiliki diameter 426 meter dengan kedalaman 107 meter. Ia pun segera membandingkan kawah Sedan dengan kawah Barringer (Meteor) di Arizona (juga di Amerika Serikat) yang telah lama mengundang kontroversi akan asal-usulnya.

Perbandingan itu menunjukkan kawah Barringer nampaknya terbentuk oleh pelepasan energi 3,5 megaton TNT. Sementara analisis petrologi oleh M. Short menyimpulkan mineral-mineral kuarsa di dasar kawah Sedan telah mengalami metamorfosis dinamik tingkat tinggi akibat hadirnya tekanan sangat tinggi, minimal 200 ribu ton per meter persegi. Sementara di Arizona, analisis petrologi serupa yang dilakukan trio Chao, French dan Engelhardt di dasar kawah Barringer pun menemukan pola metamorfosis kuarsa yang sama. Ini memperlihatkan kawah Barringer juga dibentuk oleh aksi pelepasan energi yang melibatkan tekanan sangat tinggi. Secara alamiah hal semacam itu hanya bisa dihasilkan oleh tumbukan komet atau asteroid ke Bumi. Inilah tonggak berdirinya cabang ilmu tumbukan benda langit, sebagai hasil perkawinan silang antara ilmu kebumian dengan astronomi. Mulai saat itu para geolog harus lebih berhati-hati dalam mendeskripsikan morfologi cekungan bulat (bowl-shaped) di paras Bumi, tidak lagi sekedar mengidentifikasinya sebagai kawah maar, dolina, kaldera mud volcano ataupun erosi kubah garam.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Gambar 6. Perbandingan antara rekaman stratigrafis dan skematis kehidupan biotik di sekitar batas zaman Kapur dan Tersier, atau di sekitar batas Kapur-Paleogene, dengan catatan kimiawi dan mineralogis dari lubang bor Atlantik Utara (ODP 207), yang diperbandingkan lagi dengan unit-unit erupsi di Dataran Tinggi Dekan. Nampak jelas mayoritas spesies zaman Kapur punah di batas Kapur-Paleogene (A). Sementara spesies oportunistik sempat bertahan hingga awal Paleogene (B). Spesies baru juga muncul di awal Paleogene dan tersebar luas ke zaman berikutnya (C). Kepunahan ini ditandai pula dengan merosotnya isotop Karbon-13 (D), pertanda terjadinya gangguan berat terhadap siklus karbon. Juga terjadi penurunan kalsit (E), yang menandakan aktivitas pengendapan karbonat di lautan terganggu. Sementara konsentrasi Iridium, sebagai penanda utama terjadinya tumbukan komet/asteroid, sempat melonjak dramatis di batas Kapur-Paleogene (F). Tak satupun dari rekaman kehidupan biotik dan catatan kimiawi-mineralogis tersebut yang berkorespondensi dengan letusan-letusan di Dataran Tinggi Dekan/Deccan traps (G), mengingat letusan gigantis tersebut telah dimulai semenjak 600 ribu tahun sebelum batas Kapur-Paleogene. Sumber: Schulte dkk, 2010.

Pada tahun 1966 TU pemuda belia Robert Baltosser yang juga geofisikawan yunior di Seismographic Service Corp, Tulsa (Amerika Serikat) berangkat ke Meksiko. Ia bertugas menganalisis data gravitasi PEMEX (perusahaan perminyakan nasional Meksiko) di kawasan Semenanjung Yucatan bagian utara, seiring terpilihnya tempat kerjanya sebagai salah satu kontraktor PEMEX. Sudah hampir dua dasawarsa PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan. Selama lima tahun sejak 1947 TU, PEMEX telah melakukan survei gravitasi di kawasan ini dengan harapan menemukan cekungan-cekungan potensial kaya minyak bumi. Mereka berhasil mengidentifikasi pola aneh setengah-melingkar di Semenanjung Yucatan bagian utara. Pola seperti itu biasanya menunjukkan ada sesuatu yang terpendam di dalam tanah. Berharap menjumpai cadangan minyak baru, PEMEX mengebor bagian utara kawasan berpola aneh tersebut di dua titik berbeda, yakni di Chicxulub Puerto dan Sacapuc. Sayangnya pengeboran yang menembus kedalaman hampir 1.000 meter itu tidak menghasilkan setetes minyak pun. Namun geolog yang mengawasi pengeboran itu mencatat satu hal yang aneh. Jika pada 800 meter pertama pemboran hanya menembus sedimen karbonat dan gipsum yang cerah, sejak kedalaman 800 meter pengeboran mulai menembus batuan beku kegelapan. Geolog itu menginterpretasikannya sebagai andesit, batuan beku khas di gunung berapi. Maka PEMEX pun berkesimpulan sumurnya telah menembus gunung berapi purba yang telah lama mati. Sumur pun ditutup dan pemburu minyak beralih ke lokasi lain.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Gambar 7. Atas: dua buah cekungan/kawah yang morfologinya mirip meski dibentuk oleh penyebab yang berbeda. Kawah Sedan (diameter 426 meter) dibentuk oleh ujicoba peledakan nuklir Sedan yang melepaskan energi 104 kiloton TNT (kiri). Sementara Kawah Barringer (diameter 1.186 meter) dibentuk oleh tumbukan asteroid 50.000 tahun silam dengan pelepasan eenrgi 3,5 megaton TNT (kanan). Bawah: Sayatan tipis batuan pasir di bawah Kawah Sedan (kiri) dan Kawah Barringer (kanan) saat dilihat dengan mikroskop terpolarisasi. Nampak butir-butir batuannya memperlihatkan pola garis-garis lurus yang sama. Pola ini disebut planar deformation features (PDF) dan merupakan khas terjadinya metamorfosa akibat menerima tekanan yang sangat tinggi. Secara alamiah tekanan yang sangat tinggi di Bumi hanya bisa diproduksi oleh tumbukan komet/asteroid. Sumber: Atomic Energy Comission, 1965; French, 2008; M. Short, 2000.

Dua dasawarsa kemudian, pola setengah-melingkar itu tetap mengusik benak geofisikawan PEMEX. Apalagi harga minyak sedang meningkat sehingga penemuan cekungan-cekungan baru menjadi kebutuhan mendesak. Maka dipanggillah perusahaan yang mempekerjakan Baltosser. Kebetulan pemuda ini baru saja usai memetakan struktur Wells Creek di Tennesse (Amerika Serikat) secara gravitasi. Wells Creek adalah sebuah struktur bergaris tengah 13 kilometer yang sudah dipastikan sebagai produk tumbukan asteroid/komet, seiring telah teridentifikasinya kuarsa termetamorfosis dinamik tingkat tinggi didasarnya. Survei gravitasi Baltosser mengukuhkan hal itu, khususnya melalui peta anomali gravitasinya. Tatkala geofisikawan PEMEX menyodorkannya peta gravitasi Semenanjung Yucatan, Baltosser segera menyadari pola aneh setengah-melingkar itu memiliki banyak kemiripan dengan Wells Creek, hanya saja ukurannya 10 kali lebih besar. Maka spontan Baltosser pun berargumen pola setengah-melingkar di Semenanjung Yucatan itu jejak kawah tumbukan.

Namun sebuah perubahan dramatis tak terduga datang menerpa. Manajemen PEMEX sedang melaksanakan reorganisasi disertai perampingan pada semua lini. Geofisikawan PEMEX yang menjadi partner Baltosser turut diberhentikan. PEMEX juga menerapkan peraturan baru yang lebih ketat. Sehingga semua data hasil survei, termasuk peta yang dilihat Baltosser, tidak diperbolehkan keluar dari lingkungan PEMEX apalagi digandakan dan disebarluaskan. Baltosser pun pulang ke Tulsa sembari memendam rasa penasaran akan apa yang dilihatnya. Namun tanpa data di tangan untuk dianalisis, ia tak bisa berbuat apa-apa.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Gambar 8. Glenn Penfield (tengah) dan Antonio Camargo (kanan), bersama dengan Luis Alvarez (kiri) dalam sebuah pertemuan ilmiah di Houston, tahun 1994 TU. Penfield dan Camargo adalah sepasang detektif sains yang memburu kawah raksasa Chicxulub dengan gigih dan berusaha menunjukkannya sebagai kawah raksasa produk tumbukan asteroid yang memusnahkan dinosaurus dan 76 % makhluk hidup lainnya. Sumber: Penfield, 2009.

Bonanza minyak pasca berkecamuknya Perang Arab-Israel 1973 membuat permintaan minyak dunia kian melonjak. Seperti perusahaan minyak lainnya, PEMEX pun kian agresif mencari cekungan-cekungan minyak yang baru untuk mempertahankan dan bahkan meningkatkan produksinya. Segera PEMEX kembali mendiskusikan pola setengah-melingkar yang unik di Semenanjung Yucatan. Meski satu dasawarsa sebelumnya Baltosser menganggapnya sebagai kawah tumbukan, tak satupun geolog dan geofisikawan PEMEX yang sepaham. Mereka tetap memperkukuhi argumen gunung berapi purba dan menyebut kawasan Semenanjung Yucatan itu sebagai Central Yucatan Igneous Zone. Atas nama profesionalitas, mereka mengabaikan pendapat Baltosser dan menganggapnya sebagai sekedar imajinasi anak muda amatiran yang penuh energi menggelegak, masih idealis dan belum tahu apa-apa tentang realitas dunia. Namun PEMEX tetap membutuhkan survei baru sebagai pembanding guna mengetahui lebih lanjut apa yang tersembunyi di bawah Semenanjung Yucatan dan kawasan lepas pantainya. Syukur-syukur ada prospek minyak yang bisa dibor.

Maka pada 1978 TU datanglah perusahaan survei Western Geophysical (juga dari Amerika Serikat) sebagai pemain baru. Dalam rombongan ini terdapat pula Glenn Penfield, seorang geofisikawan ingusan namun sudah berpengalaman dengan pengukuran dan pembuatan peta magnetik kawasan. Selama tiga bulan di tahun 1976 TU Penfield menghabiskan waktunya di Alaska untuk melaksanakan survei aeromagnetik menggunakan radas magnetometer yang diterbangkan pesawat. Lebih dari 25.000 kilometer lintasan penerbangan ditempuhnya, beberapa melalui gunung-gemunung berapi besar di Alaska. Sehingga bagaimana anomali magnetis khas gunung berapi telah menjadi pengetahuannya, baik gunung berapi aktif yang tersingkap di paras Bumi maupun gunung berapi purba yang terpendam jauh di dalam tanah.

Divisi Aerosurvey perusahaan Western Geophysics mulai melaksanakan survei aeromagnetik di Semenanjung Yucatan sejak April 1978 TU. Selama berbulan-bulan kemudian Penfield dan rekan-rekannya menghabiskan waktu untuk terbang di atas kawasan pada altitud 5.000 meter dpl dengan lintasan barat-timur sejauh 400 kilometer. Lintasan terbang selanjutnya hanya bergeser 4 kilometer di sebelah lintasan terbang sebelumnya. Setelah usai, rute pesawat diubah menjadi berarah utara-selatan juga sejauh 400 kilometer, Namun selisih antar lintasan kali ini lebih lebar, yakni 20 kilometer. Dengan cara ini maka dihasilkan peta magnetik Teluk Meksiko dengan resolusi hingga 30 meter. Secara akumulatif panjang lintasan penerbangan survei tersebut mencapai kurang lebih 25.000 kilometer.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Gambar 9. Kiri: dua dari sekian banyak rekaman analog akan anomali magnetik di Semenanjung Yucatan bagian utara, yang diperoleh Penfield selama survei aeromagnetik bersama perusahaan Western Geophysics di tahun 1978 TU. Kanan: saat rekaman-rekaman anomali magnetik diolah dalam perangkat lunak geofisika, terlihat bahwa semua anomali magnetik tersebut terkumpul dalam satu kawasan besar berbentuk melingkar dengan diameter tak kurang dari 90 kilometer. Kawasan anomali magnetik ini berimpit dengan Central Yucatan Igneous Zone, namun Penfield kemudian memperkenalkan istilah Struktur Chicxulub. Sumber: Penfield, 2009.

Sejak hari pertama survei aeromagnetik, Penfield sudah mendeteksi anomali medan magnetik di titik tertentu. Anomalinya memang kecil, antara 1 hingga 5 nanoTesla di atas rata-rata. Namun cakupan areanya cukup besar. Titik-titik anomali tersebut dijumpai di hampir setiap lintasan penerbangan survei, sepanjang April hingga Agustus 1978 TU. Setelah penerbangan usai, mulailah analisis dilakukan dalam periode September 1978 hingga Maret 1979 TU. Titik-titik anomali tiap lintasan penerbangan survei dimasukkan dalam perangkat lunak pengolah data Western Geophysics. Perangkat lunak itu juga memadukannya dengan peta topografi daratan Semenanjung Yucatan dan batimetri Teluk Meksiko. Hasilnya, ditemukanlah sebuah kawasan anomali magnetik yang sangat besar. Kawasan tersebut terkonsentrasi dalam sebuah struktur sirkular mengesankan berdiameter lebih dari 90 kilometer dan berimpit dengan Central Yucatan Igneous Zone.

Selain memanfaatkan perangkat lunak, Penfield juga menggunakan cara konvensional. Mereka mengeplot titik-titik anomali tersebut ke dalam peta kawasan. Keduanya merasa takjub saat melihat sejumlah titik di peta ternyata membentuk pola setengah-melingkar. Penfield pun berbagi cerita dengan rekan geofisikawannya di PEMEX. Si rekan, yang sama takjubnya, segera menggali timbunan arsip dan menyodorkan peta gravitasi Semenanjung Yucatan yang dilihat Baltosser satu dasawarsa sebelumnya. Kala dua peta ini digabungkan, jelas terlihat terlihat bagaimana pola setengah-melingkar peta gravitasi dan pola setengah-melingkar peta aeromagnetik membentuk satu kesatuan struktur sirkular bergaris tengah lebih dari 100 kilometer. Sama persis dengan hasil olahan perangkat lunak. Mengacu pengalamannya selama di Alaska, pola anomali magnetik berskala besar di Semenanjung Yucatan sangat berbeda dengan yang umumnya dijumpai di gunung berapi, baik aktif maupun purba. Penfield pun sependapat dengan Baltosser, bahwa Central Yucatan Igneous Zone lebih mungkin merupakan kawah tumbukan raksasa yang terpendam. Maka, sejak Agustus 1978 TU nama Struktur Chicxulub pun mulai bergaung.

Tapi senasib dengan Baltosser, PEMEX pun mengabaikan pendapat Penfield dan melemparkan laporannya ke kolong arsip di gudang data. Sesuai kebijakannya, PEMEX juga melarang Penfield memublikasikan apapun yang berbasis data PEMEX. Pada 1979 TU, PEMEX kembali mengebor daratan Yucatan di Yaxcopoil. Pengeboran sedalam 1.800 meter itu lagi-lagi tidak menemukan minyak, sehingga sumur pun ditutup dan ditinggalkan. Namun geolog yang menyupervisi pengeboran, yakni Burkhard Dressler dan David Kring, menjumpai keanehan yang mirip dengan temuan di sumur Chicxulub Puerto dan Sacapuc tiga dasawarsa sebelumnya. Pada kedalaman 800 meter tidak lagi dijumpai sedimen karbonat dan gipsum, namun justru ditemukan bebatuan mirip breksi, sejenis batuan sedimen yang tersusun dari bongkahan-bongkahan batu bersudut tajam. Breksi juga biasa dijumpai di kawasan gunung berapi, sehingga PEMEX tanpa ragu mengatakan sumur Yaxcopoil pun menembus gunung berapi purba di Central Yucatan Igneous Zone.

Menemukan Chicxulub

Selagi PEMEX dibingungkan oleh teka-teki Semenanjung Yucatan namun sibuk memperkukuhi argumen gunung berapi purba, satu kuartet ilmuwan menggoncangkan dunia ilmu geologi, astronomi, biologi dan fisika lewat publikasi menggemparkan. Dalam bulan Juni 1980 TU kuartet ilmuwan Luis W. Alvarez, Walter Alvarez, Frank Asaro dan Helen Michel dari University of California (Berkeley) mengumumkan temuan tentang hubungan peristiwa pemusnahan massal 65 juta tahun silam dengan sumber ekstraterestrial berupa tumbukan komet/asteroid. Lewat analisis terhadap lapisan lempung hitam tipis yang terjepit di antara sedimen zaman Kapur dan Tersier dari sejumlah singkapan seperti di Gubbio (Italia), Stevns Klint (Denmark) dan Woodside Creek (Selandia Baru), mereka menemukan konsentrasi Iridium cukup pekat. Yakni antara 30 hingga 160 kali di atas normal. Iridium adalah salah satu logam yang ditemukan berlimpah dalam meteorit namun tidak di paras Bumi. Sehingga jika di daratan atau lautan terdapat temuan konsentrasi Iridium nan pekat, jelas sumbernya adalah debu-debu meteor dari langit. Jika Iridium di lempung hitam tipis tersebut dianggap berasal dari pengendapan debu-debu antariksa, maka butuh waktu setidaknya 500 ribu tahun untuk mencapai konsentrasi sepekat itu. Namun berselang setahun kemudian lewat analisis singkapan Caravaca (Spanyol), Jan Smit menyimpulkan deposisi lempung hitam berlangsung jauh lebih cepat yakni hanya dalam waktu sekitar 50 tahun.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Gambar 10. Contoh lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di lembah Raton, Colorado (Amerika Serikat). Di bawahnya terdapat sedimen zaman Kapur yang mengindikasikan lingkungan pengendapan berawa-rawa. Sementara diatasnya terdapat sedimen zaman Tersier (Paleogene). Karena relatif dekat dengan kawah raksasa Chicxulub, lempung hitam di sini relatif tebal dan terdiri dari dua sub-lapisan. Sub-lapisan bawah merupakan endapan produk pembentukan kawah raksasa Chicxulub. Sementara sub-lapisan atas (tebal 5 mm) berasal dari material asteroid penumbuk dan debu jelaga produk kebakaran hutan global. Sumber: Brien, 2006.

Karena lapisan lempung hitam sejenis tersingkap pula di berbagai penjuru (dalam catatan terkini, ditemukan di lebih dari 350 singkapan di lima benua) Alvarez dkk meyakini skala peristiwa yang menyebabkannya bersifat global. Perhitungan Alvarez dkk menyimpulkan bahwa lempung hitam tipis tersebut hanya bisa dibentuk oleh tumbukan komet/asteroid berdiameter 10 +/- 4 km. Tumbukan komet/asteroid sebesar itu bakal menimbulkan kawah tumbukan raksasa bergaris tengah tak kurang dari 200-an kilometer. Tumbukan seukuran ini memproduksi debu sangat banyak yang terhambur ke atmosfer dan berperan sebagai tabir surya sehingga intensitas sinar Matahari di di paras Bumi turun drastis. Perhitungan menunjukkan pada puncaknya intensitas sinar Matahari yang diterima paras Bumi tinggal sepersepuluh juta dari normalnya. Maka fotosintesis akan terhenti, yang segera membunuh fitoplankton dan flora berdaun hijau. Selanjutnya giliran kawanan fauna yang tumbang berkalang tanah. Sayangnya Alvarez dkk tidak bisa menyodorkan bukti dimana lokasi kawah raksasa tersebut. Belakangan pada tahun 1984 TU Bruce Bohor dkk dari United States Geological Survey memperkuat argumen Alvares dkk. Bohor dkk menemukan butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi dalam lempung hitam di tepi Madrid Road, Colorado (Amerika Serikat). Setahun kemudian giliran Wendy Wolbach yang menemukan bahwa lapisan lempung hitam itu sangat kaya dengan butir-butir karbon mikro hasil kebakaran hutan konifer dalam skala global.

Penfield menyimak publikasi menggemparkan tersebut dan segera menyadari Struktur Chicxulub mungkin adalah kawah raksasa yang dibicarakan Alvarez dkk. Berdasar ketebalan sedimen di atas batuan mirip andesit/breksi di sumur Chicxulub Puerto dan Yaxcopoil, Penfield mengetahui umur struktur itu sekitar 80 juta tahun. Namun jika betul kawah tumbukan, umurnya bisa lebih muda karena faktor deposisi sedimen dasar kawah. Sehingga umur 65 juta tahun adalah masuk akal. Dengan rasa gembira meluap Penfield menghubungi Antonio Camargo, koleganya di Meksiko, menceritakan apa yang diketahuinya. Mereka akhirnya bersepakat untuk melaporkan Struktur Chicxulub serta kemungkinannya sebagai kawah raksasa penyebab pemusnahan massal 65 juta tahun silam dalam pertemuan ilmiah. Yang dituju adalah temu ilmiah geofisikawan dibawah tajuk Society of Exploration Geophysicist di Los Angeles (Amerika Serikat) pada bulan Oktober 1981. Di forum ini Penfield dan camargo memaparkan apa yang selama ini dikenal sebagai Central Yucatan Igneous Zone merupakan Struktur Chicxulub yang adalah kawah raksasa produk tumbukan komet/asteroid dan berkaitan dengan pemusnahan massal 65 juta tahun silam.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber:  Wilson, 2010.

Gambar 11. Contoh lain lapisan lempung hitam di batas zaman Kapur-Tersier (batas Kapur-Paleogene) yang tersingkap sangat baik di dalam gua Geulhemmergroeve di dekat Geulhem (Belanda). Di sini baik sedimen zaman kapur maupun Tersier merupakan lempung. Dua orang geolog nampak sedang mengamati lapisan tipis lempung hitam yang memiliki nilai ilmiah sangat tinggi ini. Sumber: Wilson, 2010.

Namun pertemuan Society of Exploration Geophysicist berlangsung bersamaan dengan pertemuan lain yang lebih presitisius, yakni Snowbird Conference di Utah (juga di Amerika Serikat). Berbeda dengan Society of Exploration Geophysicist, Snowbird conference dihadiri oleh para ilmuwan keplanetan, palentolog dan geolog yang secara khusus membahas peristiwa pemusnahan massal dan tumbukan komet/asteroid. Maka kala presentasi Penfield dan Camargo di Los Angeles ditanggapi dengan biasa-biasa saja dan bahkan cenderung dingin, konferensi di Utah justru begitu bersemangat menunggu pemaparan penyelidikan kandidat-kandidat kawah raksasa produk tumbukan yang memicu pemusnahan massal. Utah tak mengetahui sedikitpun bahwa Struktur Chicxulub sedang dipaparkan di Los Angeles. Nestapa Penfield bertambah setelah pejabat PEMEX mengecamnya secara terbuka. PEMEX kecewa data anomali magnetik milik mereka ternyata menjadi basis pemaparan di di Los Angeles.

Tapi Los Angeles jugalah yang mempertemukan Penfield dengan Carlos Byars, wartawan Houston Chronicle dan satu-satunya orang yang tertarik dengan presentasinya. Tanpa membuang waktu, Houston Chronicle edisi 13 Desember 1980 TU memajang artikel Penfield dan Camargo di halaman pertama dengan judul provokatif, lengkap dengan peta Struktur Chicxulub. Byars juga mempublikasikan tulisannya di majalah astronomi prestisius Sky and Telescope edisi Maret 1982 TU. Belakangan editor Sky and Telescope memangkas habis-habisan tulisannya sehingga hanya ditempatkan pada kolom singkat di halaman 249 dan 250. Byars pun khawatir tidak semua orang membacanya. Penfield sendiri terbang ke Houston (juga di Amerika Serikat) dan bertemu dengan pakar-pakar keplanetan di NASA Johnston Spaceflight Center. Salah satunya William Phinney. Phinney menekankan bahwa gagasan Struktur Chicxulub tidak akan dianggap remeh jika Penfield sanggup memperlihatkan bukti batuan metamorf dinamik tingkat tinggi dari struktur tersebut.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Gambar 12. Citra rupabumi kawasan Semenanjung Yucatan, diproduksi dengan peta DEM (digital elevation model) berdasarkan data SRTM (Shuttle Radar Topographic Mission) NASA. Sebagian lengkungan tepi kawah (cincin kawah) Struktur Chicxulub nampak jelas dalam citra ini, seperti diperlihatkan dalam tanda panah. Sumber: NASA, 2000.

Saran Phinney membakar obsesi Penfield. Segera ia terbang ke Meksiko dan mencari sampel batuan khususnya di sekitar sumur-sumur yang pernah dibor PEMEX, atas biaya sendiri. Setelah tahu batuan dari sumur yang dibor di dasawarsa 1970-an dikirim ke Quetzalcoalcos, ia pun menyewa taksi dan pergi ke sana, hanya untuk mendapati gudang penyimpanan batuan sudah dibongkar dan diratakan dengan tanah. Tanpa patah semangat, Penfield menyigi jengkal demi jengkal puing-puing gudang guna mencari sisa-sisa batuan, namun tanpa hasil. Pencarian ke seluruh penjuru hingga 600 kilometer dari Merrida, dengan meneliti setiap cenote (telaga dolina) yang ada pun tidak mendapati batuan andesit/basalt yang dicarinya. Dari Merrida, ia pergi ke Sacapuc. Lokasi sumur Sacapuc ternyata sudah berubah jadi kandang babi dan berada di bawah timbunan kotoran. Mengabaikan bau kotoran dan rasa jijik, ia menggali hingga posisi sumur ketemu dan mencari batuan yang diinginkannya, lagi-lagi tanpa hasil. Lantas pergilah ia ke sumur di Chicxulub Puerto. Ketika sumur digali, disinilah bongkahan-bongkahan batuan yang dicarinya dijumpai sebagai penutup sumur. Penfield mengambil sampel seberat 9 kilogram, membersihkannya dari sisa-sisa semen penutup sumur dan segera dikirim ke Houston.

Lidah memang tak bertulang. Kerja keras Penfield tidak diapresiasi Phinney. Rupanya argumen gunung api purba di Semenanjung Yucatan juga telah merasuki benak ilmuwan-ilmuwan keplanetan NASA. Lebih dari itu, ilmuwan-ilmuwan itu pun terhinggapi penyakit profesionalitas layaknya geolog dan geofisikawan PEMEX. Mereka menganggap, sebagai profesional, merekalah yang lebih paham akan sifat dan dinamika kawah tumbukan. Apalagi dengan gencarnya misi antariksa antarplanet sejak dasawarsa 1960-an. Sementara Penfield yang hanya anak bawang. Sehingga meski Penfield datang membawa gagasan Stuktur Chicxulub dan segerobak sampel, ia hanyalah sosok amatir yang dianggap tidak memahami persoalan dan apa yang diungkapkannya sendiri, apalagi mengaitkannya dengan pemusnahan massal. So, genta perang amatir vs profesional kembali ditabuh. Sampel kiriman Penfield dicueki di Houston dan ilmuwan-ilmuwan NASA menganggap teka-teki Yucatan sudah usai dengan penjelasan tentang gunung api purba (Central Yucatan Igneous Zone).

Perang serupa juga dialami Byars. Setiap tahun, sebagai jurnalis, ia menghadiri pertemuan demi pertemuan di bawah Lunar and Planetary Science Conference (LPSC) di Houston. Dalam setiap sesi ia selalu berupaya meyakinkan ilmuwan yang dijumpainya mengenai Struktur Chicxulub, namun selalu ditolak. Byars dianggap sebagai jurnalis ilmiah yang baik, namun pembahasan kawah tumbukan dianggap bukan kompetensinya. Dalam salah satu pertemuan bahkan tulisan tentang Struktur Chicxulub yang disiapkannya langsung diserahkan seorang ilmuwan kepada mahasiswa S-1 binaannya. Belakangan sang mahasiswa malah menghilangkan tulisan tersebut. Situasi tak berubah memasuki tahun 1988 TU kala Snowbird Conference kedua diselenggarakan, juga mengambil tempat di Utah. Kelak Penfield menyebut periode sulit sepanjang Maret 1979 hingga Februari 1990 TU sebagai tahun-tahun yang penuh kebisuan.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Gambar 13. Salah satu citra sayatan tipis sampel batuan hasil pengeboran di lokasi Struktur Chicxulub saat dilihat dengan mikroskop polarisasi. Nampak garis-garis yang merupakan pola planar deformation features (PDF), penanda khas metamorfosis akibat tekanan sangat tinggi. Inilah bukti kuat bahwa Struktur Chicxulub merupakan kawah raksasa produk tumbukan asteroid/komet. Sumber: Penfield, 2009.

Pada bulan Maret 1990 TU, kegigihan Byars menemukan hasilnya, Ia bersua Alan Hildebrand, pemuda tanggung lulusan University of Arizona yang sedang bersemangat mencari kawah tumbukan penyebab pemusnahan massal 65 juta tahun silam tanpa sponsor siapapun. Hildebrand sudah mendengar dari Jan Smit bahwa lapisan lempung hitam di Karibia lebih tebal dibanding tempat lain dimanapun, sehingga kawah tumbukan yang dicari tentu berada di dekat Kini. Hildebrand sebelumnya meneliti lapisan serupa di Beloc (Haiti) yang tebalnya mencapai 1 meter. Dari koleganya William Boynton, Hildebrand juga tahu lempung hitam tebal juga dijumpai di Texas, namun tidak setebal di Beloc. Esktrapolasi ketebalan lempung Texas, Beloc dan Karibia membuat Hildebrand dan Boynton berpendapat kawah raksasa itu mungkin saja ada di Colombia. Mereka segera menulis makalah ilmiah tentangnya yang akan dikirim ke jurnal Science. Menjelang pengiriman, Byars mempertemukannya dengan Penfield dan segera keduanya terlibat diskusi intensif akan Struktur Chicxulub. Hildebrand terpukau dengan teori Penfield dan mencantumkannya dalam tulisannya di Science.

Saat mengikuti wawancara kerja di Geological Survey of Canada, Hildebrand menyadari institusi ini menyimpan peta-peta gravitasi seluruh benua Amerika, termasuk Colombia dan Semenanjung Yucatan. Hildebrand agak kecewa ketika menemukan Colombia ternyata tidak memiliki anomali gravitasi yang diharapkannya. Sebaliknya justru di Semenanjung Yucatan-lah anomali gravitasi tersebut berada. Segera benaknya berbinar dengan satu nama : Penfield. Tanpa membuang waktu, Hildebrand terbang kembali ke Amerika Serikat untuk berdiskusi panjang lebar dengan Boynton, Penfield dan Camargo dengan disaksikan Byars. Akhirnya disusunlah makalah tentang Struktur Chicxulub. Pada April 1990 TU ia dikirim ke Nature, hanya untuk menerima penolakan langsung dari juri. Hildebrand menyadari salah satu alasan penolakan adalah tiadanya bukti langsung tentang Struktur Chicxulub sebagai kawah tumbukan.

Hildebrand segera bertanya-tanya pada semua orang yang dianggapnya tahu tentang nasib batuan hasil pengeboran PEMEX di dasawarsa 1970-an. Akhirnya didapat informasi akurat bahwa sebagian sampel batuan itu dikirim PEMEX ke Al Weidie di University New Orleans. Rupanya sampel-sampel itu dijadikan bahan untuk mempelajari sistem air bawah tanah di Semenanjung Yucatan. Begitu dikabarkan ke Penfield, segera ia terbang ke New Orleans dan berhasil memperoleh 600 kotak sampel yang dimaksud. Tanpa membuang waktu ia mengirimkan beberapa kotak ke Hildebrand. Hildebrand segera mengirimnya lagi ke Arizona dimana David Kring, mantan supervisor sumur Yaxcopoil yang kemudian bekerja di University of Arizona, telah menunggu bersama partnernya Jacobsen dan Pilkington. Segera terkuak bahwa sampel itu memang mengandung butir-butir kuarsa yang termetamorfosis dinamik tingkat tinggi. Inilah bukti yang dicari-cari itu. Struktur Chicxulub memang dibentuk oleh tumbukan komet/asteroid raksasa.

Kini teori Struktur Chicxulub telah menemukan bukti penyokong terkuatnya. Namun masih ada satu halangan menghadang: perang amatir vs profesional. Hildebrand segera menulis makalah ilmiah tentang bukti Struktur Chicxulub sebagai kawah tumbukan dengan menyertakan Penfield, Camargo, Boynton, Kring, Jacobsen dan Pilkington sebagai penulis tambahan. Makalah segera dikirimkan ke Nature, namun kembali juri menolaknya kali ini tanpa alasan yang jelas. Tapi alasannya diduga sangat personal, terkait status Hildebrand dkk yang dianggap amatiran. Tak menyerah dengan penolakan Nature, Hildebrand mengirimkan makalahnya ke jurnal lain, Geology, yang akhirnya memuatnya di edisi September 1991 TU. Dengan cepat publikasi ini memukau dunia. Ibarat bak air yang lepas sumbatnya, publikasi ini segera memantik perhatian besar akan Struktur Chicxulub.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Gambar 14. Gambaran artis saat-saat asteroid raksasa (diameter 5 hingga 15 kilometer) jatuh di Teluk Meksiko purba dengan kawanan Pterosaurus berterbangan di latar depan. Tumbukan ini memicu bencana global yang menyebabkan 76 % makhluk hidup zamannya musnah, termasuk dinosaurus. Digambar oleh Donald E. Davis untuk NASA pada 1994 TU. Sumber: Davis, 1994.

Satu demi satu dukungan pun berdatangan. Carl C. Swisher dari Berkeley datang menyodorkan hasil pertanggalan radioaktif berbasis Kalium-Argon dengan kesimpulan umur struktur itu memang 65 juta tahun. Di tahun yang sama, 1991, Kevin Pope bersama Adriana Ocampo dan Charles Duller menuturkan pola sebaran cenote di Semenanjung Yucatan ternyata sangat dipengaruhi Stuktur Chicxulub. Konsentrasi terbesar cenote terletak di atas tepi kawah (cincin kawah) dan sebagian lagi di luar tepi kawah dimana produk tumbukan sebagian besar diendapkan. Hanya sebagian kecil saja yang dijumpai di dalam kawah, yakni di dalam area yang disebut puncak pusat (central peak). Jika Struktur Chicxulub tidak ada, cenote-cenote tersebut pun tak terbentuk. Implikasinya bakal membuat umat manusia mulai dari masa peradaban Maya di masa silam hingga sekarang sulit berkembang.

Referensi :

Penfield. 2009. Finding Chicxulub.

Verschuur. 1996. Impact! The Threat of Comets and Asteroids. Oxford University Press, New York, USA.

French. 1998. Traces of Catastrophe, A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures. Lunar Planetary Institute, Arizona, USA.

Schulte dkk. 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science 327, 5 March 2010, pp 1214-1218 + Supporting Materials .

Brien. 2006. Raton Basin Field Trip, Southern Colorado / Northern New Mexico, September 28 – October 1, 2006. Lunar Planetary Institute, Arizona, USA.

Wilson. 2010. The Best Cretaceous-Paleogene Boundary Yet. Wooster Geologist Blog.

Hildebrand dkk. 1990. Chicxulub Crater Size and Structure as Revealed by Horizontal Bouguer Gravity Gradients and Cenote Distribution. Lunar & Planetary Science XXVI, 603-604.

Asteroid (357439) 2004 BL86 dan Kawah Misterius Antartika

Senin 26 Januari 2015 Tarikh Umum (TU) jelang tengah malam. Sebagian besar Indonesia sudah terlelap dalam tidurnya. Apalagi hujan menguyur di berbagai tempat, menambah dinginnya malam. Sangat sedikit yang menyadari, bahkan mungkin tak ada sama sekali, bahwa malam itu sesuatu yang tak biasa sedang muncul di langit. Khususnya di langit Indonesia bagian selatan.

Sebongkah batu sebesar gunung kecil melesat cepat jauh tinggi di atas Samudera Indonesia (Hindia) pada malam itu. Jika dianggap berbentuk bulat seperti bola, diameternya sekitar 325 meter. Massanya berkisar antara 36 juta ton hingga 72 juta ton, jika massa jenisnya diasumsikan bernilai antara 2 hingga 4 gram per sentimeter kubik. Bongkahan batu raksasa ini melejit secepat 19,24 km/detik atau 69.200 km/jam relatif terhadap Bumi kita. Kecepatan yang amat sangat cepat untuk ukuran manusia, namun sejatinya masih tergolong ‘lambat’ bagi benda-benda langit anggota tata surya. Pada pukul 23:20 WIB, bongkahan batu raksasa itu mencapai titik terdekatnya ke Bumi. Titik tersebut berjarak 1,19 juta kilometer atau 3,13 kali lipat jarak rata-rata Bumi-Bulan. Dalam skala astronomi, jarak perlintasan itu tergolong amat sangat dekat.

Gambar 1. Asteroid (357439) 2004 BL86 diabadikan dari Observatorium Nasional Langkawi (Malaysia) oleh tim pengamat Kementerian Sains, Teknologi dan Inovasi Malaysia bersama Badan Angkasa Negara pada Selasa dinihari 27 Januari 2015 TU. Kiri: asteroid diabadikan lewat teleskop yang diarahkan untuk mengikuti gerakan bintang-bintang dalam waktu penyinaran relatif lama, sehingga asteroid nampak sebagai garis lurus. Kanan: asteroid diabadikan dengan teknik yang sama, namun teleskop diarahkan mengikuti gerakan asteroid dalam waktu penyinaran yang sama, sehingga asteroid nampak sebagai titik sementara bintang-bintang dilatarbelakangnya menjadi garis-garis lurus. Sumber: Kementerian Sains, Teknologi dan Inovasi Malaysia , 2015.

Gambar 1. Asteroid (357439) 2004 BL86 diabadikan dari Observatorium Nasional Langkawi (Malaysia) oleh tim pengamat Kementerian Sains, Teknologi dan Inovasi Malaysia bersama Badan Angkasa Negara pada Selasa dinihari 27 Januari 2015 TU. Kiri: asteroid diabadikan lewat teleskop yang diarahkan untuk mengikuti gerakan bintang-bintang dalam waktu penyinaran relatif lama, sehingga asteroid nampak sebagai garis lurus. Kanan: asteroid diabadikan dengan teknik yang sama, namun teleskop diarahkan mengikuti gerakan asteroid dalam waktu penyinaran yang sama, sehingga asteroid nampak sebagai titik sementara bintang-bintang dilatarbelakangnya menjadi garis-garis lurus. Sumber: Kementerian Sains, Teknologi dan Inovasi Malaysia , 2015.

Untungnya, lintasan bongkahan batu raksasa ini punya peluang untuk berdekat-dekat apalagi berpotongan dengan orbit Bumi. Sehingga peluang bongkahan batu raksasa itu untuk meluncur deras membentur Bumi adalah nol. Umat manusia patut bersyukur dan menghela nafas lega. Betapa tidak. Andaikata bongkahan batu raksasa ini meluncur ke Bumi dan jatuh dengan kerasnya, dampaknya bakal demikian buruk. Tumbukan itu akan melepaskan energi antara 1.590 hingga 3.180 megaton TNT (trinitrotoluena). Energi tersebut setara dengan 79.000 hingga 159.000 butir bom nuklir sekelas bom Hiroshima yang diledakkan secara serempak. Permukaan tanah yang ditubruk bongkahan batu raksasa ini bakal berubah menjadi cekungan kawah besar bergaris tengah antara 4,8 hingga 6,3 kilometer. Dari cekungan kawah ini akan terhambur material produk tumbukan sebanyak antara 9 hingga 18 kilometer kubik. Jika dibandingkan, volume material ini setara dengan yang dimuntahkan letusan dahsyat gunung berapi berskala 6 VEI (Volcanic Explosivity Index) seperti Letusan Pinatubo 1991 dan Letusan Krakatau 1883.

Bongkahan batu raksasa tersebut adalah asteroid, salah satu anggota tata surya kita yang berukuran relatif sangat kecil kala dibandingkan dengan planet-planet maupun satelitnya. Ia ditemukan tepat sebelas tahun silam yakni pada 30 Januari 2004 TU lewat sistem penyigian langit semi-otomatis LINEAR (Lincoln Near-Earths Asteroids Research) di White Sands, New Mexico (Amerika Serikat). Asteroid ini adalah bagian keluarga asteroid dekat-Bumi kelas Apollo. Yakni kelompok asteroid yang gemar lewat di dekat Bumi dengan orbit demikian rupa, sehingga titik perihelionnya (titik terdekat ke Matahari) lebih kecil ketimbang orbit Bumi dan sebaliknya titik aphelionnya (titik terjauh ke Matahari) lebih besar dari orbit Bumi. Asteroid ini memiliki perihelion 134 juta kilometer dan aphelion 315 juta kilometer dengan inklinasi orbit 23 derajat. Orbit tersebut ditempuhnya sekali putaran setiap 1,84 tahun sekali. Kombinasi orbitnya dengan orbit Bumi menghasilkan fenomena unik, dimana asteroid akan melintas-dekat Bumi sekali dalam tiap dasawarsa.

Gambar 2. Proyeksi lintasan asteroid (357439) 2004 BL86 di permukaan Bumi dalam momen-momen perlintasan dekatnya, mulai Senin 26 Januari 2015 TU pukul 14:00 WIB hingga 18 jam kemudian. Proyeksi lintasan asteroid digambarkan dengan garis merah tak terputus. Tanda bintang (*) menunjukkan proyeksi koordinat asteroid saat berada pada titik terdekatnya dengan Bumi. Sumber: Sudibyo, 2015 dengan data dari NASA Solar System Dynamics.

Gambar 2. Proyeksi lintasan asteroid (357439) 2004 BL86 di permukaan Bumi dalam momen-momen perlintasan dekatnya, mulai Senin 26 Januari 2015 TU pukul 14:00 WIB hingga 18 jam kemudian. Proyeksi lintasan asteroid digambarkan dengan garis merah tak terputus. Tanda bintang (*) menunjukkan proyeksi koordinat asteroid saat berada pada titik terdekatnya dengan Bumi. Sumber: Sudibyo, 2015 dengan data dari NASA Solar System Dynamics.

Sesuai aturan IAU (International Astronomical Union), segera setelah ditemukan asteroid tersebut diberi penanda/kode oleh MPC (Minor Planet Center) sebagai asteroid 2004 BL86. Karena dimensinya yang tergolong besar, dimana pada saat ditemukan diduga bergaris tengah sekitar 700 meter, maka IAU pun menindaklanjutinya dengan penomoran. Sehingga asteroid tersebut kemudian secara resmi dipanggil dengan asteroid (357439) 2004 BL86.

Asteroid Berbulan

Berbeda dengan sejumlah peristiwa sejenis sebelumnya, perlintasan-dekat asteroid (357439) 2004 BL86 kali ini tergolong istimewa. Karena inilah momen dimana asteroid tersebut akan berjarak paling dekat hingga kurun 200 tahun ke depan. Kali terakhir Bumi dihampiri asteroid sebesar ini adalah pada 9 November 2011 TU (pukul 06:28 WIB) silam. Yakni kala asteroid (308635) 2005 YU55 (diameter 360 meter) melintas hingga sedekat 323.000 kilometer di atas paras (permukaan) Bumi kita. Peristiwa langka ini tentu menjadi kesempatan yang tak boleh dilewatkan begitu saja bagi kalangan astronomi. Sebab ini menawarkan momen untuk mengenali asteroid (357439) 2004 BL86 lebih baik. Tak heran jika kalangan astronom amatir maupun profesional bergegas menyiapkan teleskop beserta radas (instrumen) pendukungnya. Baik yang bekerja dalam cahaya tampak (visual), inframerah maupun gelombang radio.

Gambar 3. Proyeksi lintasan asteroid (357439) 2004 BL86 di permukaan Indonesia dalam momen-momen perlintasan dekatnya, mulai Senin 26 Januari 2015 TU pukul 23:00 WIB hingga 1,5 jam kemudian. Proyeksi lintasan asteroid digambarkan dengan garis merah tak terputus. Tanda bintang (*) menunjukkan proyeksi koordinat asteroid saat berada pada titik terdekatnya dengan Bumi. Sumber: Sudibyo, 2015 dengan data dari NASA Solar System Dynamics.

Gambar 3. Proyeksi lintasan asteroid (357439) 2004 BL86 di permukaan Indonesia dalam momen-momen perlintasan dekatnya, mulai Senin 26 Januari 2015 TU pukul 23:00 WIB hingga 1,5 jam kemudian. Proyeksi lintasan asteroid digambarkan dengan garis merah tak terputus. Tanda bintang (*) menunjukkan proyeksi koordinat asteroid saat berada pada titik terdekatnya dengan Bumi. Sumber: Sudibyo, 2015 dengan data dari NASA Solar System Dynamics.

Badan antariksa Amerika Serikat (NASA) misalnya, mengerahkan fasilitas IRTF (Infra red Telescope Facility) di puncak Gunung Mauna Kea, Hawaii (Amerika Serikat) guna melongok asteroid (357439) 2004 BL86. Dengan teleskop ini diketahui bahwa asteroid (357439) 2004 BL86 secara spektroskopik mirip dengan asteroid jumbo Vesta, asteroid terbesar kedua di seantero tata surya kita. Selain itu NASA juga mengerahkan teleskop radio raksasa Deep Space Network, dengan antenna parabola bergaris tengah 70 meter, di fasilitas Goldstone, California (Amerika Serikat) untuk membidik sang asteroid dengan gelombang radar. Dari hasil bidikan itu diketahui bahwa ukuran asteroid (357439) 2004 BL86 lebih kecil dari yang semula diduga, yakni hanya berdiameter 325 meter. Asteroid tersebut hampir bulat sepenuhnya, hanya sedikit menggelembung di kawasan ekuatornya. Ia berputar cukup cepat pada sumbunya sehingga hanya butuh waktu 2,6 jam untuk berotasi.

Kejutan lainnya, asteroid (357439) 2004 BL86 ternyata mempunyai satelit alamiah atau Bulan asteroid. Satelit alamiah itu berdimensi 70 meter. Ia berputar mengelilingi asteroid (357439) 2004 BL86 sekali dalam tiap 13,8 jam. Temuan ini mengonfirmasi apa yang telah diduga sebelumnya oleh trio astronom Joseph Pollock (Universitas Negara Appalachia Amerika Serikat), Petr Pravec (Observatorium Ondrejov, Ceko) dan Julian Oey (Observatorium Blue Mountains, Australia). Sebelumnya trio astronom itu memperlihatkan bahwa asteroid (357439) 2004 BL86 mungkin merupakan asteroid berbulan (memiliki satelit alamiah), atas dasar kurva cahaya yang dihasilkan dalam observasi mereka.

Gambar 4. Asteroid (357439) 2004 BL86 diabadikan dengan fasilitas teleskop radio Deep Space Network 70 meter milik NASA di Goldstone, California (Amerika Serikat). Sebanyak 20 citra asteroid dalam gelombang radar dibuat untuk kemudian disatukan menjadi sebuah film pendek yang menggambarkan sejumlah sifat asteroid. Dua diantaranya adalah sebagai asteroid sferis (hampir bulat) dan memiliki satelit alamiah (asteroid Berbulan). Sumber: NASA, 2015.

Gambar 4. Asteroid (357439) 2004 BL86 diabadikan dengan fasilitas teleskop radio Deep Space Network 70 meter milik NASA di Goldstone, California (Amerika Serikat). Sebanyak 20 citra asteroid dalam gelombang radar dibuat untuk kemudian disatukan menjadi sebuah film pendek yang menggambarkan sejumlah sifat asteroid. Dua diantaranya adalah sebagai asteroid sferis (hampir bulat) dan memiliki satelit alamiah (asteroid Berbulan). Sumber: NASA, 2015.

Asteroid berbulan bukanlah fenomena yang aneh. Umat manusia sudah mengetahuinya lebih dari dua dasawarsa, tepatnya semenjak 1993 TU silam. Yakni semenjak wahana antariksa tak-berawak Galileo mengabadikan asteroid 243 Ida di kawasan sabuk asteroid dalam perjalanannya menuju planet Jupiter. Asteroid seukuran 50 kilometer itu diketahui dikawal oleh sebuah Bulan asteroid berdimensi hanya 2 kilometer, yang kemudian dinamakan Dactyl (lengkapnya 243 I Dactyl). Khusus untuk kelompok asteroid-dekat Bumi, kita mengetahui bahwa 16 % diantaranya (khususnya yang berdiameter 200 meter atau lebih) memiliki sedikitnya satu Bulan asteroid.

Selain kalangan profesional, asteroid (357439) 2004 BL86 juga menjadi target bidikan kalangan astronom amatir. Sebab sepanjang malam 26 dan 27 Januari 2015 TU itu asteroid (357439) 2004 BL86 bakal berbinar sebagai benda langit yang bergerak pelan dengan magnitudo +9. Sehingga sebuah binokuler berkualitas bagus, atau teleskop kecil, dapat digunakan untuk mengamatinya. Meski memang kampanye observasinya tak semassif dan seintens observasi benda-benda langit lainnya yang lebih populer. Sayangnya langit Indonesia tidak begitu mendukung pada malam itu, mendung menyebar dimana-mana. Sehingga perangkat teleskop dan radas yang telah saya siapkan di belakang rumah pun tak bisa digunakan dengan leluasa. Sejauh ini dari kawasan Asia tenggara hanya ada satu laporan observasi yang berhasil dari Malaysia. Observasi tersebut diselenggarakan oleh Kementerian Sains, Teknologi dan Inovasi bersama Badan Angkasa Negara di Observatorium Nasional Langkawi.

Kawah Antartika

Gambar 5. Struktur melingkar unik berdimensi sekitar 2.000 meter yang terletak di lepas pantai Putri Ragnhild, bagian dari daratan Ratu Maud, Antartika bagian timur. Diabadikan dari samping (kiri) dan atas (kanan) dengan pesawat Polar 6 milik Alfred Wegener Institute. Sumber: AWI, 2014.

Gambar 5. Struktur melingkar unik berdimensi sekitar 2.000 meter yang terletak di lepas pantai Putri Ragnhild, bagian dari daratan Ratu Maud, Antartika bagian timur. Diabadikan dari samping (kiri) dan atas (kanan) dengan pesawat Polar 6 milik Alfred Wegener Institute. Sumber: AWI, 2014.

Bersamaan waktunya dengan momen mendekatnya asteroid (357439) 2004 BL86, kabar misterius menyeruak dari Antartika. Selagi menumpang pesawat khusus yang bersiap mendarat di benua es tersebut bersama rombongan tim pakar kutub dan kelautan Alfred Wegener Institute (Jerman), mata tajam geofisikawan C. Muller bersirobok dengan pemandangan tak biasa. Kala menatap keluar jendela, sebuah struktur aneh pun nampak. Di tengah keluasan padang es, Muller melihat sebuah struktur melingkar yang aneh berukuran besar, yakni berdiameter sekitar 2.000 meter. Struktur semacam ini sangat tak biasa untuk hadir di padang es. Struktur tersebut terletak di koordinat 69°48′ LS 32°16′ BT. Ia terletak di landas es Raja Baudoin di lepas pantai Putri Ragnhild, bagian dari daratan Ratu Maud, Antartika timur.

Pemandangan tersebut mengingatkan Muller akan yang muncul hampir dua tahun silam di kawasan Chelyabinsk, Siberia (Rusia). Pada Jumat pagi 15 Februari 2013 TU waktu setempat, kawasan Chelyabinsk dan sekitarnya dikejutkan oleh kilatan cahaya benderang yang melebihi terangnya mentari. Disusul kemudian dengan suara dentuman keras, hempasan gelombang kejut, guncangan tanah dan terlihatnya pemandangan mirip kepulan asap pekat/awan yang lurus memanjang. Tak lama kemudian sebuah lubang aneh berukuran 6,5 meter ditemukan di permukaan Danau Cherbakul yang membeku menjadi es. Inilah peristiwa yang lantas dikenal sebagai Peristiwa Chelyabinsk 2013, dimana sebutir asteroid kecil (diameter 20 meter) dengan massa 13.000 ton hendak menumbuk Bumi. Atmosfer Bumi memang sanggup menahannya sehingga asteroid tersebut pecah berkeping-keping di ketinggian 27 kilometer dpl (dari paras laut rata-rata). Pemecahan ini mirip ledakan di udara (airburst), yang menghasilkan gelombang kejut kuat hingga terasakan ke paras Bumi menghasilkan kerusakan ringan hingga sedang di Chelyabinsk dan sekitarnya. Pemecahan melepaskan energi 500 kiloton TNT, 20 kali lipat bom nuklir Hiroshima, sekaligus menjadikan asteroid (yang telah berubah menjadi meteor besar) berkeping-keping menjadi puluhan ribu kepingan kecil. Namun masih ada satu kepingan besar yang tersisa, yang seberat sekitar 600 kilogram. Inilah pecahan yang kemudian jatuh terhempas di Danau Cherbakul dan menghasilkan lubang aneh di lapisan es.

Gambar 6. Kiri: struktur lingkaran (lubang) berdimensi 6 meter pada lapisan es setebal 70 cm di permukaan Danau Cherbakul, Cheylabinsk (Rusia). Sempat dianggap sebagai lubang buatan manusia, belakangan terungkap bahwa struktur lingkaran ini dibentuk oleh jatuhnya meteorit relatif besar ke Danau Cherbakul dalam Peristiwa Chelyabinsk 2013. Kanan: meteorit seberat ~600 kilogram yang bertanggung jawab atas munculnya struktur lingkaran di lapisan es Danau Cherbakul, setelah diangkat ke permukaan. Sumber: Popova, 2013.

Gambar 6. Kiri: struktur lingkaran (lubang) berdimensi 6 meter pada lapisan es setebal 70 cm di permukaan Danau Cherbakul, Cheylabinsk (Rusia). Sempat dianggap sebagai lubang buatan manusia, belakangan terungkap bahwa struktur lingkaran ini dibentuk oleh jatuhnya meteorit relatif besar ke Danau Cherbakul dalam Peristiwa Chelyabinsk 2013. Kanan: meteorit seberat ~600 kilogram yang bertanggung jawab atas munculnya struktur lingkaran di lapisan es Danau Cherbakul, setelah diangkat ke permukaan. Sumber: Popova, 2013.

Mengacu Peristiwa Chelyabinsk 2013 itu, Muller pun menduga struktur melingkar aneh tersebut pun adalah ‘luka’ yang ditinggalkan tumbukan asteroid ke Bumi. Karena masih tercetak jelas di permukaan lembaran es, peristiwanya mungkin terjadi dalam kurun waktu yang belum begitu lama. Maka begitu mendarat di stasiun penyelidikan Putri Elizabeth pada 20 Desember 2014 TU, Muller segera mengerjakan analisisnya. Perhatiannya sontak terfokus pada apa yang terjadi pada 3 September 2004 TU. Pada tanggal tersebut benua es Antartika memang sedang terguncang. Radas mikrobarometer di 6 stasiun infrasonik yang menjadi bagian jejaring pengawasan larangan ujicoba nuklir segala matra CTBTO (Comprehensive nuclear Test Ban Treaty Organization) dibawah payung PBB (Perserikatan Bangsa-Bangsa) merekam adanya penjalaran gelombang infrasonik khas pelepasan energi pemecah-belahan meteor besar di atas Antartika timur. Di saat yang sama sensor satelit mata-mata Amerika Serikat juga merekam kilatan cahaya khas pemecah-belahan meteor besar, juga di lokasi yang sama. Di daratan, sejumlah ilmuwan yang sedang berada di stasiun penelitian Davis (Australia) di Antartika timur juga melaporkan terlihatnya asap pekat nun tinggi di langit.

Analisis sebelumnya oleh para astronom yang berspesialisasi dalam kajian komet, asteroid dan meteor memperlihatkan bahwa peristiwa tersebut merupakan peristiwa masuknya asteroid mini dalam atmosfer sebagai Peristiwa Antartika 2004. Asteroid mini tersebut berubah menjadi meteor besar yang menyilaukan. Jika massa jenisnya 3,3 gram dalam tiap sentimeter kubiknya, garis tengah asteroid mini ini mungkin 9,5 meter. Sehingga massanya adalah 1.400 ton. Asteroid ini melejit ke dalam atmosfer Bumi pada kecepatan sekitar 45.000 km/jam. Energi kinetik yang diangkutnya mencapai 28 kiloton TNT atau 1,4 kali lipat lebih besar dari bom nuklir Hiroshima. Satelit mata-mata memperlihatkan ia mengalami pemecahan dan peristiwa mirip ledakan di udara hingga dua kali. Masing-masing pada ketinggian 32 kilometer dan 25 kilometer dpl. Berjam-jam kemudian satelit Aqua milik NASA dan pengukuran laser (LIDAR) dari daratan Antartika memperlihatkan adanya awan debu unik. Awan debu tersebut adalah kumpulan aerosol produk gerusan permukaan meteor dengan atmosfer. Pengukuran LIDAR memperlihatkan massa aerosol tersebut berkisar 1.100 ton. Sehingga sebagian besar materi meteor besar itu terlepas jauh tinggi di udara sebagai butir-butir aerosol debu. Sisanya mungkin jatuh ke Bumi sebagai keping-keping meteorit beragam ukuran

Gambar 7. Kiri: posisi stasiun-stasiun infrasonik CTBTO pada September 2004 TU. Stasiun yang mendeteksi terjadinya Peristiwa Antartika 2004 adalah stasiun yang ditandai dengan segitiga hitam. Secara keseluruhan terdapat 6 stasiun infrasonik yang mendeteksi peristiwa tersebut, yang terjauh di Italia (~13.000 kilometer dari lokasi). Kanan: hasil pengukuran LIDAR pada panjang gelombang 5.320 Angstrom dari stasiun penelitian Davis tepat setelah Peristiwa Antartika 2004. Terdeteksi aerosol dalam dua kelompok berbeda, dibatasi oleh ketinggian 30 kilometer dpl (garis putus-putus). Dua kelompok aerosol ini dibentuk oleh dua peristiwa pemecah-belahan yang berbeda. Sumber: Arrowsmith dkk, 2008 & Klekociuk dkk, 2005.

Gambar 7. Kiri: posisi stasiun-stasiun infrasonik CTBTO pada September 2004 TU. Stasiun yang mendeteksi terjadinya Peristiwa Antartika 2004 adalah stasiun yang ditandai dengan segitiga hitam. Secara keseluruhan terdapat 6 stasiun infrasonik yang mendeteksi peristiwa tersebut, yang terjauh di Italia (~13.000 kilometer dari lokasi). Kanan: hasil pengukuran LIDAR pada panjang gelombang 5.320 Angstrom dari stasiun penelitian Davis tepat setelah Peristiwa Antartika 2004. Terdeteksi aerosol dalam dua kelompok berbeda, dibatasi oleh ketinggian 30 kilometer dpl (garis putus-putus). Dua kelompok aerosol ini dibentuk oleh dua peristiwa pemecah-belahan yang berbeda. Sumber: Arrowsmith dkk, 2008 & Klekociuk dkk, 2005.

Jadi, struktur melingkar misterius itu diukir oleh Peristiwa Antartika 2004 ?

Tidak juga. Analisis lebih lanjut Muller dan para astronom secara terpisah memperlihatkan lokasi dimana meteorit-meteorit Peristiwa Antartika 2004 mendarat berjarak hampir 600 kilometer dari lokasi struktur melingkar itu. Dengan jarak sejauh itu, jelas tidak mungkin struktur melingkar tersebut dibentuk oleh Peristiwa Antartika 2004. Hal lain yang membuatnya kian meragukan adalah ukurannya. Struktur melingkar tersebut bergaris tengah sekitar 2.000 meter. Jauh lebih besar ketimbang lubang di permukaan es saat terjadi Peristiwa Chelyabinsk 2013. Maka ukuran meteorit yang membentuknya jelas harus lebih besar ketimbang meteorit Peristiwa Chelyabinsk 2013 yang jatuh ke Danau Cherbakul. Dengan meteorit lebih besar, maka energi tumbukannya pun bakal jauh lebih besar. Kawah tumbukan pun dapat terbentuk.

Gambar 8. Gambaran situasi dataran Ratu Maud dan sekitarnya di Antartika bagian timur. Nampak lintasan asteroid mini yang terlibat dalam Peristiwa Antartika 2004 sebagai gabungan garis putus-putus dan tak terputus. Garis tak terputus berpanah menandakan lintasan asteroid mini sebagai meteor besar saat teridentifikasi satelit mata-mata Amerika Serikat. Sementara garis putus-putus adalah lintasan saat sebagai meteoroid dan belum terdeteksi. Titik S adalah adalah titik saat meteor besar pertama kali terdeteksi satelit (ketinggian 75 km dpl). Sementara titik F1 dan F2 masing-masing adalah titik saat meteor besar mengalami pemecah-belahan pertama (ketinggian 32 km dpl) dan kedua (ketinggian 25 km dpl). Titik I adalah titik estrimasi jatuhnya keping-keping meteorit yang tersisa dari Peristiwa Antartika 2004. Antara titik I dan titik struktur melingkar yang ditemukan akhir 2014 TU lalu berselisih jarak hampir 600 kilometer. Sumber: Sudibyo, 2015 dengan data dari Klekociuk dkk, 2005 & Muller, 2014.

Gambar 8. Gambaran situasi dataran Ratu Maud dan sekitarnya di Antartika bagian timur. Nampak lintasan asteroid mini yang terlibat dalam Peristiwa Antartika 2004 sebagai gabungan garis putus-putus dan tak terputus. Garis tak terputus berpanah menandakan lintasan asteroid mini sebagai meteor besar saat teridentifikasi satelit mata-mata Amerika Serikat. Sementara garis putus-putus adalah lintasan saat sebagai meteoroid dan belum terdeteksi. Titik S adalah adalah titik saat meteor besar pertama kali terdeteksi satelit (ketinggian 75 km dpl). Sementara titik F1 dan F2 masing-masing adalah titik saat meteor besar mengalami pemecah-belahan pertama (ketinggian 32 km dpl) dan kedua (ketinggian 25 km dpl). Titik I adalah titik estrimasi jatuhnya keping-keping meteorit yang tersisa dari Peristiwa Antartika 2004. Antara titik I dan titik struktur melingkar yang ditemukan akhir 2014 TU lalu berselisih jarak hampir 600 kilometer. Sumber: Sudibyo, 2015 dengan data dari Klekociuk dkk, 2005 & Muller, 2014.

Perhitungan sederhana memperlihatkan agar bisa membentuk struktur melingkar seukuran 2.000 meter, meteorit pembentuknya harus berdiameter minimal 90 meter bila sifat-sifatnya sama dengan asteroid mini pada Peristiwa Antartika 2004. Energi yang dilepaskannya pun harusnya cukup besar, yakni 6.180 kiloton TNT atau 221 kali lipat lebih besar. Berbagai gejala yang diakibatkannya (seperti penurunan suhu dan pencahayaan Matahari) pun seharusnya dirasakan dalam lingkup regional hingga global. Mengingat kawah tumbukan bergaris tengah 2.000 meter itu bakal menghamburkan tak kurang dari 700 juta meter kubik material produk tumbukan. Volume material tersebut lima kali lipat lebih banyak ketimbang yang disemburkan Gunung Kelud dalam Letusan Kelud 2014.

Jadi, apa penyebab terbentuknya struktur melingkar unik di Antartika bagian timur itu? Sampai saat ini masih belum jelas.

Referensi:

NASA. 2015. Asteroid That Flew Past Earth Today Has Moon. NASA Jet Propulsion Laboratory, 26 Januari 2015.

Daily Mail. 2015. Mystery of the Mile-wide Ring in Antarctica: Enormous Scar may be Crater from House-sized Meteorite that hit Earth in 2004. Laman MailOnline, reportase Richard Gray, 12 Januari 2015.

Arrowsmith dkk. 2008. Global Detection of Infrasonic Signals from Three Large Bolides. Earth Moon Planet (2008) 102:357–363.

Klekociuk dkk. 2005. Meteoritic Dust from the Atmospheric Disintegration of a Large Meteoroid. Nature 436 (25 Agustus 2005), 1132-1135.

Popova dkk. 2013. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization. Science 432 (2013).

Kala Asteroid Sebesar Rumah Lewat di Atas Indonesia

Bagaimana perasaan anda jika mengetahui sebongkah batu besar, sebesar sebuah rumah kecil, melejit cepat laksana kilat dalam senyap di atas Indonesia dalam malam gelap gulita? Takjub? Terkaget-kaget? Atau malah menggigil ketakutan dan membayangkan bakal terjadi apa yang digambarkan Hollywood dalam film “Deep Impact” ?

Gambar 1. Asteroid 2014 UF56 (bintik redup di titik potong garis kuning horizontal dan vertikal), diabadikan pada 25 Oktober 2014 TU dengan teleskop reflektor 43 cm VirtualTelescope di Italia. Dua hari kemudian asteroid ini lewat dalam jarak yang cukup dekat dengan Bumi kita, dalam skala astronomi. Sumber: Gianluca Masi, 2014.

Gambar 1. Asteroid 2014 UF56 (bintik redup di titik potong garis kuning horizontal dan vertikal), diabadikan pada 25 Oktober 2014 TU dengan teleskop reflektor 43 cm VirtualTelescope di Italia. Dua hari kemudian asteroid ini lewat dalam jarak yang cukup dekat dengan Bumi kita, dalam skala astronomi. Sumber: Gianluca Masi, 2014.

Peristiwa tersebut benar-benar terjadi pada Senin 27 Oktober 2014 Tarikh Umum (TU) lalu, tepatnya di malam hari waktu Indonesia. Bongkahan batu besar itu adalah sebuah asteroid tanpa-nama yang diberi kode 2014 UF56. Diameternya 14 meter, dengan massa diperkirakan antara 2.900 hingga 5.800 ton. Ia baru ditemukan dua hari sebelumnya, tepatnya Sabtu 25 Oktober 2014 TU, lewat teleskop reflektor 180 cm (f-ratio 2,7) di Observatorium Kitt Peak, Arizona (Amerika Serikat) selagi menyisir langit dalam program penyigian Spacewatch. Segera diketahui asteroid 2014 UF56 ini adalah bagian dari asteroid yang gemar berdekat-dekat ke Bumi dalam skala astronomi, tepatnya asteroid dekat Bumi (ADB) kelas Apollo. Orbitnya melonjong dan melambung di antara orbit Venus hingga kawasan sabuk asteroid. Tepatnya dengan perihelion 0,87 SA (satuan astronomi) atau 130 juta kilometer dari Matahari dan aphelion 3,38 SA atau 506 juta kilometer dari Matahari. Ia membutuhkan waktu hingga 3,1 tahun lamanya guna mengelilingi Matahari sekali putaran.

Konfigurasi orbitnya demikian rupa sehingga pada Selasa 28 Oktober 2014 TU dinihari, tepatnya pada pukul 04:22 WIB, sang asteroid akan menempati titik terdekatnya ke Bumi dengan jarak ‘hanya’ 158.000 kilometer. Maka pada saat itu asteroid 2014 UF56 adalah 2,3 kali lipat lebih dekat ketimbang Bulan kita. Kala menempati titik terdekatnya ke Bumi, saat itu asteroid 2014 UF56 berada di atas Samudera Pasifik lepas pantai Peru, Amerika Selatan. Antara 9 hingga 7 jam sebelumnya, tepatnya pada Senin 27 Oktober 2014 TU pukul 19:00 hingga 21:00 WIB, asteroid 2014 UF56 praktis melayang di atas Indonesia. Saat itu ia melejit pada ketinggian mulai 457.000 hingga 382.000 kilometer di atas paras laut Indonesia, atau masih lebih jauh ketimbang Bulan. Ia melintas mulai dari di atas pulau Halmahera, pulau Sulawesi bagian utara, pulau Kalimantan hingga akhirnya keluar dari Indonesia setelah lewat di atas pulau Sumatra. Asteroid ini praktis lewat tepat di atas kepala penduduk kota Gorontalo dan Pontianak. Sejam setelah meninggalkan kepulauan Nusantara, barulah bongkahan asteroid ini mulai menempuh lintasan yang menjadikannya lebih dekat ke Bumi dibanding Bulan dan bertahan hingga berjam-jam kemudian.

Gambar 2. Peta proyeksi lintasan asteroid 2014 UF56 di Indonesia pada 27 Oktober 2014 mulai pukul 19:00 WIB. Asteroid bergerak ke arah barat. Garis putus-putus menunjukkan proyeksi lintasan yang diestimasikan. Nampak asteroid melintas di atas pulau Halmahera, Sulawesi, Kalimantan dan Sumatra. Disimulasikan dengan Starry Night Backyard 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Gambar 2. Peta proyeksi lintasan asteroid 2014 UF56 di Indonesia pada 27 Oktober 2014 mulai pukul 19:00 WIB. Asteroid bergerak ke arah barat. Garis putus-putus menunjukkan proyeksi lintasan yang diestimasikan. Nampak asteroid melintas di atas pulau Halmahera, Sulawesi, Kalimantan dan Sumatra. Disimulasikan dengan Starry Night Backyard 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Dimensi asteroid 2014 UF56 ini sekitar satu setengah kali lebih besar dibanding asteroid-tanpa-nama yang memasuki atmosfer Bumi dalam Peristiwa Bone (8 Oktober 2009 TU) di atas Sulawesi Selatan (Indonesia). Sebaliknya ukurannya pun satu setengah kali lebih kecil ketimbang asteroid-tanpa-nama lainnya yang juga menerobos atmosfer, kali ini dalam Peristiwa Chelyabinsk (13 Februari 2013 TU) di Siberia (Russia). Namun berbeda dengan keduanya, asteroid 2014 UF56 tidak memiliki potensi untuk jatuh ke Bumi setidaknya hingga 100 tahun mendatang. Ketiadaan potensi inilah yang membuat asteroid 2014 UF56 tak pernah tercantum dalam Sentry Risk Table NASA, sebuah tabel yang memeringkatkan seluruh asteroid-asteroid dekat Bumi yang sudah teramati berdasarkan peluang tumbukan, skala Palermo dan skala Torino-nya. Karena itu meski ia lewat pada jarak yang relatif cukup dekat ke Bumi kita, khususnya dalam skala astronomi, ia tidak mendatangkan petaka.

Apa yang akan terjadi jika asteroid 2014 UF56 mengalami nasib sebaliknya, yakni benar-benar jatuh ke Bumi?

Asteroid ini akan menjadi meteroroid dan selanjutnya menjadi meteor-terang (fireball) begitu menerobos masuk ke lapisan-lapisan udara Bumi kita. Namun ia takkan sampai ke daratan, kecuali hanya sebagian sangat kecil (kurang lebih 0,1 % massa awal). Selagi melesat cepat dalam atmosfer kita, ia akan memijar hingga pada puncaknya bakal seterang hingga dua kali lipat lebih terang dibanding Bulan purnama. Meteor-terang ini takkan sanggup menahan tekanan besar sajian atmosfer sehingga akan terfragmentasi (terpecah-belah) pada ketinggian antara 44 hingga 65 kilometer dpl (dari paras laut rata-rata). Selanjutnya pada ketinggian antara 22 hingga 30 kilometer dpl, mayoritas fragmen meteor-terang ini akan sangat terlambatkan hingga melepaskan hampir seluruh energi kinetiknya dalam peristiwa mirip ledakan di udara (airburst). Energi yang dilepaskan berkisar antara 91 hingga 182 kiloton TNT. Ini setara dengan 5 hingga 9 butir bom nuklir Hiroshima yang diledakkan serempak.

Gambar 3. Peta proyeksi lintasan asteroid 2014 UF56 dalam lingkup global semenjak 27 Oktober 2014 pukul 19:00 WIB hingga 13 jam kemudian. Asteroid bergerak ke arah barat melintasi Indonesia, Afrika bagian tengah dan Amerika Selatan. Tanda bintang (*) adalah proyeksi dimana asteroid 2014 UF56 mencapai titik terdekatnya ke Bumi kita, yakni 'hanya' sejauh 158.000 kilometer di atas paras Samudera Pasifik. Disimulasikan dengan Starry Night Backyar 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Gambar 3. Peta proyeksi lintasan asteroid 2014 UF56 dalam lingkup global semenjak 27 Oktober 2014 pukul 19:00 WIB hingga 13 jam kemudian. Asteroid bergerak ke arah barat melintasi Indonesia, Afrika bagian tengah dan Amerika Selatan. Tanda bintang (*) adalah proyeksi dimana asteroid 2014 UF56 mencapai titik terdekatnya ke Bumi kita, yakni ‘hanya’ sejauh 158.000 kilometer di atas paras Samudera Pasifik. Disimulasikan dengan Starry Night Backyar 3.0 berdasarkan data dari NASA Solar System Dynamics. Sumber: Sudibyo, 2014.

Apa dampaknya? Pelepasan energi setinggi 91 kiloton TNT pada ketinggian 30 kilometer dpl takkan berdampak ke daratan yang tepat berada dibawahnya. Namun pelepasan energi sebesar 182 kiloton TNT pada ketinggian yang lebih rendah, yakni 22 kilometer dpl, masih sanggup membuat kaca-kaca jendela pada bangunan di daratan yang tepat ada dibawahnya bergetar atau bahkan retak akibat hempasan gelombang kejutnya. Sekilas dampak ini mirip dengan apa yang terjadi dalam Peristiwa Bone. Jika mau dibandingkan lagi, dampaknya bakal jauh lebih ringan ketimbang Peristiwa Chelyabinsk yang melukai ribuan orang dan merusak ratusan bangunan dengan total kerugian puluhan milyar rupiah itu. Jadi, andaikata asteroid 2014 UF56 benar-benar jatuh ke Bumi, dampaknya relatif minimal.

Sukses deteksi asteroid 2014 UF56 merupakan bagian dari upaya umat manusia mengenali dan memitigasi potensi bencana dari langit dalam wujud tumbukan benda langit (komet dan asteroid). Kini lewat sistem-sistem penyigi langit, baik yang masih maupun yang pernah aktif, kita telah mampu memetakan sekurang-kurangnya 90 % populasi asteroid dekat Bumi yang diameternya melebihi 1.000 meter. Asteroid seukuran ini menjadi target untuk dipetakan karena potensi bahayanya yang mengerikan, dapat menyebabkan bencana dalam lingkup global di Bumi. Setelah asteroid besar ini relatif terpetakan, target selanjutnya adalah menyisir dan memetakan asteroid-asteroid yang lebih kecil. Yakni yang berukuran antara 140 meter hingga 1.000 meter. Sebab disadari asteroid yang berukuran menengah pun masih sanggup mendatangkan bencana dalam lingkup lokal hingga regional kala menubruk Bumi. Tantangannya cukup besar dan berat, mengingat jumlah asteroid berukuran menengah ini diestimasikan mencapai jutaan hingga puluhan juta butir. Dengan terpetakannya populasi asteroid besar maupun menengah, maka potensi bahaya dari mereka relatif dapat dideteksi secara lebih dini. Sehingga langkah-langkah mitigasi pun diharapkan dapat disusun dan dilaksanakan.

Referensi :

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.

2014 RC: Asteroid yang Mendekat Hingga 34.000 km

Bongkahan batu itu kira-kira sebesar rumah berukuran sedang berlantai tiga. Selama ini ia melayang-layang di kedalaman langit, beredar mengelilingi sang surya dalam tata surya kita. Lintasan peredarannya sungguh aneh untuk ukuran manusia karena begitu lonjong. Demikian lonjongnya sehingga pada suatu saat bongkahan batu tersebut akan lebih terpanggang bara mentari ketimbang Bumi kita karena posisinya yang lebih dekat ke Matahari. Sebaliknya di lain waktu bongkahan batu ini pun bisa menggigil kedinginan tatkala menempati lokasi yang demikian jauh, sehingga lebih jauh ketimbang jarak planet Mars ke Matahari. Tak hanya itu, konfigurasi orbitnya demikian rupa sehingga pada 7 dan 8 September 2014 ini bongkahan batu besar itu akan berposisi cukup dekat dengan Bumi kita. Demikian dekatnya sehingga ia bakal melesat hanya pada jarak 34.000 kilometer di atas kita. Namun jangan cemas, ia tak berpotensi memasuki selimut udara Bumi kita, apalagi hingga jatuh mencium daratan/lautan.

Gambar 1. Asteroid 2014 RC (tanda panah) diabadikan pada 5 September 2014 pukul 14:00 WIB dengan teleskop robotik reflektor astrograf 61 cm di Auberry, California (Amerika Serikat). Teleskop diarahkan untuk mengikuti gerak asteroid dan mencitra/memotret sebanyak 30 kali dengan masing-masing citra/foto dibuat lewat waktu penyinaran (paparan) 30 detik. Seluruh citra kemudian digabungkan menjadi satu lewat teknik stacking. Sehingga asteroid terlihat sebagai bintik cahaya, sementara bintang-bintang di latar belakang nampak sebagai garis-garis. Sumber: Remanzacco Observatory, 2014.

Gambar 1. Asteroid 2014 RC (tanda panah) diabadikan pada 5 September 2014 pukul 14:00 WIB dengan teleskop robotik reflektor astrograf 61 cm di Auberry, California (Amerika Serikat). Teleskop diarahkan untuk mengikuti gerak asteroid dan mencitra/memotret sebanyak 30 kali dengan masing-masing citra/foto dibuat lewat waktu penyinaran (paparan) 30 detik. Seluruh citra kemudian digabungkan menjadi satu lewat teknik stacking. Sehingga asteroid terlihat sebagai bintik cahaya, sementara bintang-bintang di latar belakang nampak sebagai garis-garis. Sumber: Remanzacco Observatory, 2014.

Bongkahan batu besar itu adalah asteroid. Ia sama sekali tak pernah dikenal sebelumnya. Hingga awal September 2014 ini, yakni kala sistem penyigi langit Catalina Sky Survey yang bersenjatakan teleskop reflektor Schmidt 68 cm di Observatorium Gunung Tucson, Arizona (Amerika Serikat) melihatnya untuk pertama kalinya pada 1 September 2014. Sistem penyigi langit semi-otomatis yang dirancang untuk mengenali benda langit tak dikenal khususnya yang berada di lingkungan dekat Bumi ini melihatnya sebagai sebintik cahaya yang amat sangat redup. Dengan magnitudo semu +20 praktis asteroid ini 250 kali lebih redup dibanding planet-kerdil Pluto. Di malam berikutnya, asteroid yang sama pun terlihat melalui sistem penyigi langit semi-otomatis yang lainnya, yakni Pan-STARRS (Panoramic Survey Telescope and Rapid Response Systems) yang berpangkalan di Gunung Haleakala, Kepulauan Hawaii (Amerika Serikat).

Saat orbit asteroid ini dibandingkan dengan basis data asteroid yang telah terobservasi sebelumnya, tak satupun yang memiliki identitas serupa. Maka jelas bahwa ia adalah asteroid baru, asteroid yang tak pernah dikenal sebelumnya. Sesuai aturan yang ditegakkan IAU (International Astronomical Union) maka asteroid baru ini tidak diberi nama. Namun ia diberi kode yang khas yakni 2014 RC, mengingat asteroid ini adalah asteroid ketiga (kode C) yang ditemukan pada paruh pertama bulan September (kode R) di tahun 2014 (kode 2014). Dengan magnitudo mutlak/absolut +26,8 maka asteroid 2014 RC ini berukuran sekitar 20 meter, jika dianggap berbentuk sferis (menyerupai bola). Jika massa jenisnya dianggap berada di antara 2 hingga 4 gram per sentimeter kubik, yakni massa jenis kebanyakan asteroid, maka asteroid 2014 RC ini bermassa antara 8.400 hingga 16.800 ton.

Observasi demi observasi memperlihatkan asteroid 2014 RC beredar mengeliling Matahari dalam orbit lonjong dengan titik terdekat ke Matahari (perihelion) sejarak 123 juta kilometer. Bandingkan dengan perihelion Bumi, yang masih sebesar 147,5 juta kilometer. Sebaliknya titik terjauhnya ke Matahari (aphelion) melambung hingga sejarak 270 juta kilometer. Bandingkan dengan orbit planet Mars, yang ‘hanya’ sejauh 228 juta kilometer dari Matahari (rata-rata). Jarak rata-rata orbit asteroid 2014 RC ke Matahari adalah sebesar 196 juta kilometer. Asteroid ini menempuh orbitnya dalam sekali putaran setiap 1,5 tahun. Dengan konfigurasi orbit demikian maka asteroid 2014 RC tergolong asteroid dekat Bumi (ADB) atau near earth asteroid (NEA) kelas Apollo, karena perihelionnya lebih kecil ketimbang orbit Bumi namun jarak rata-ratanya (dan juga periode revolusinya) lebih besar ketimbang Bumi.

Melintas Dekat

Gambar 2. Orbit asteroid 2014 RC di antara orbit planet-planet Merkurius, Venus, Bumi dan Mars. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Gambar 2. Orbit asteroid 2014 RC di antara orbit planet-planet Merkurius, Venus, Bumi dan Mars. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Selain sebagai asteroid dekat Bumi asteroid 2014 RC juga merupakan asteroid berpotensi bahaya. Sebuah asteroid digolongkan berpotensi bahaya jika ia pada suatu saat melintas dalam jarak maksimum 7,5 juta kilometer terhitung dari inti Bumi kita, atau setara dengan 19,5 kali lipat jarak rata-rata Bumi ke Bulan. Bagi asteroid 2014 RC, situasi tersebut terjadi saat ia melintas-dekat/berpapasan-dekat (near miss) dengan Bumi kita pada tahun 2014 dan 2017.

Khusus di tahun 2014 ini, perlintasan-dekatnya tergolong ekstrim karena asteroid akan melesat hanya sejarak 33.500 hingga 33.700 kilometer di atas paras Bumi. Situasi tersebut terjadi pada 7 September 2014 pukul 18:01 UTC, atau sama dengan 8 September 2014 pukul 01:01 WIB. Pada saat itu titik terdekat di permukaan Bumi ke asteroid tersebut berada di kawasan Oseania di Samudera Pasifik bagian tengah. Hunian terdekat berjarak sekitar 200 kilometer di sebelah tenggara, yakni pulau Pitcairn (Inggris). Pada jarak 33.500 hingga 33.700 kilometer tersebut praktis bongkahan batu sebesar rumah itu melesat dalam jarak lebih dekat ke Bumi ketimbang orbit geostasioner. Orbit geostasioner adalah orbit setinggi 35.782 kilometer di atas khatulistiwa yang disesaki oleh satelit-satelit komunikasi dan cuaca dalam jumlah bejibun sebagai penunjang kehidupan manusia modern. Namun demikian potensi tubrukan antara satelit-satelit buatan yang masih aktif di orbit geostasioner dengan asteroid 2014 RC ini adalah nol. Musababnya saat melintas di atas garis khatulistiwa, asteroid 2014 RC telah berjarak lebih besar ketimbang orbit geostasioner.

Selandia Baru menjadi kawasan yang mampu menikmati jam demi jam perjalanan asteroid 2014 RC saat hendak berpapasan-dekat dengan Bumi. Saat koordinat ekuatorial yang dilintasi asteroid ini dalam setiap jamnya diproyeksikan ke permukaan Bumi sebagai koordinat geografis, dijumpai pola unik. Awalnya titik-titik itu bergerak ke barat dari Samudera Pasifik menuju kepulauan Selandia Baru. Lalu proyeksi lintasan itu berbalik (retrograde), seakan-akan mengitari kepulauan Selandia Baru dari utara ke selatan untuk kemudian kembali bergerak ke timur menuju samudera. Di kawasan Oseania, proyeksi lintasan asteroid kembali berubah arah, kali ini ke utara hingga menyeberang khatulistiwa. Setelah kembali berubah arah ke barat di Samudera Pasifik bagian utara, titik-titik proyeksi itu selanjutnya melintas di Asia tenggara, tepatnya di ujung utara kepulauan Filipina dan akhirnya memasuki kawasan Indocina.

Gambar 3. Bumi dilihat dari asteroid 2014 RC pada 7 September 2014 20:01 WIB, atau 5 jam sebelum mencapai jarak terdekatnya ke Bumi. Nampak kawasan Antartika dan Australia, serta lokasi orbit geostasioner. Pada saat mencapai jarak terdekatnya, asteroid 2014 RC akan lebih dekat ke Bumi ketimbang satelit-satelit komunikasi dan cuaca di orbit geostasioner. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Gambar 3. Bumi dilihat dari asteroid 2014 RC pada 7 September 2014 20:01 WIB, atau 5 jam sebelum mencapai jarak terdekatnya ke Bumi. Nampak kawasan Antartika dan Australia, serta lokasi orbit geostasioner. Pada saat mencapai jarak terdekatnya, asteroid 2014 RC akan lebih dekat ke Bumi ketimbang satelit-satelit komunikasi dan cuaca di orbit geostasioner. Sumber: Sudibyo, 2014 dengan basis Starry Night Backyard 3.0 berdasar data NASA Solar System Dynamics.

Saat berada di titik terdekatnya di atas Oseania, asteroid 2014 RC bakal mengerjap dengan magnitudo semu sekitar +11,5. Dengan begitu ia takkan mungkin disaksikan oleh mata kita tanpa alat bantu apapun. Kita harus menggunakan teleskop dengan lensa atau cermin obyektif berdiameter minimal 16 cm untuk menyaksikannya. Tak hanya itu, teleskop tersebut pun harus disetel untuk selalu mengikuti pergerakan asteroid tersebut melanglang langit. Tantangan observasi bertambah besar mengingat langit malam pada saat itu dalam kondisi relatif benderang seiring kehadiran Bulan dengan fase sedang menuju purnama. Sehingga menyulitkan untuk menyaksikan benda-benda langit yang redup.

Dari Indonesia, asteroid ini akan berada di langit bagian tenggara berdekatan dengan bintang Formalhaut di rasi Piscis Austrinis pada Minggu 7 September 2014 saat Matahari terbenam. Dalam jam-jam berikutnya asteroid akan kian meninggi di langit sembari beringsut ke arah selatan dengan mengambil posisi di dekat bintang Ankaa (rasi Phoenix) pada pukul 22:00 WIB. Asteroid kemudian mulai menurun kembali sehingga dalam sejam kemudian ia telah berposisi di dekat bintang terang Archenar (rasi Eridanus). Dan akhirnya di sekitar tengah malam waktu WIB, asteroid bakal terbenam di langit tenggara. Namun demikian ia bakal muncul lagi di langit timur pada pagi harinya (Senin 8 September 2014) jelang fajar, berdekatan dengan planet Venus. Hanya saja pada saat itu ia telah demikian redup dan sangat sulit dilihat, bahkan dengan teleskop sekalipun.

Potensi Bahaya

Bukan kali ini saja sebuah asteroid melintas-dekat dengan Bumi. Dan asteroid 2014 RC bahkan tak memecahkan rekor sebagai asteroid pelintas-terdekat Bumi. Hingga kini rekor tersebut masih dipegang asteroid 2011 CQ1 (diameter 1 meter), yang melintas di atas Samudera Pasifik pada 5 Februari 2011 silam pada jarak hanya 5.480 kilometer saja di atas paras Bumi. Namun setiap kali peristiwa semacam ini terjadi, kita selalu dihadapkan pada pertanyaan. Apakah ia akan jatuh ke Bumi? Seberapa berbahayakah ia bagi peradaban kita saat ini?

Gambar 4. Proyeksi lintasan asteroid 2014 RC di permukaan Bumi semenjak 7 September 2014 pukul 17:0 WIB hingga 8 September 2014 pukul 11:00 WIB. Nampak lintasan asteroid seakan-akan mengelilingi kepulauan Selandia Baru. Tanda bintang (*) merupakan proyeksi titik terdekat asteroid ke Bumi. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Gambar 4. Proyeksi lintasan asteroid 2014 RC di permukaan Bumi semenjak 7 September 2014 pukul 17:0 WIB hingga 8 September 2014 pukul 11:00 WIB. Nampak lintasan asteroid seakan-akan mengelilingi kepulauan Selandia Baru. Tanda bintang (*) merupakan proyeksi titik terdekat asteroid ke Bumi. Sumber: Sudibyo, 2014 berdasar data NASA Solar System Dynamics.

Asteroid 2014 RC membawa energi yang bukan main. Melesat dengan kecepatan 9,99 km/detik, ia bakal secepat 15 km/detik (54.000 km/jam) bila jatuh menuju ke Bumi. Pada kecepatan tersebut asteroid 2014 RC membawa energi kinetik sebesar 225 hingga 450 kiloton TNT, atau setara dengan 11 hingga 23 kali lipat kekuatan bom nuklir Hiroshima. Energi kinetik sebesar itu harus mendapat perhatian serius. Apalagi setelah kawasan Chelyabinsk dan sekitarnya (Rusia) luluh lantak pada 15 Februari 2013 silam, kala sebuah asteroid tak-bernama dan tak-teridentifikasi melesat ke atmosfer dan melepaskan energi kinetik yang sedikit lebih besar dari energi kinetik asteroid 2014 RC ini. Ribuan orang luka-luka dan kerugian material mencapai milyaran rupiah.

Peristiwa Chelyabinsk membuat semua terkesiap, menyaksikan betapa rentannya peradaban manusia modern dalam berhadapan dengan kekuatan alam dari langit. Betapa tidak? Asteroid yang bertanggung jawab atas peristiwa Chelyabinsk adalah seukuran dengan asteroid 2014 RC ini, yang tergolong ‘asteroid kecil’ bagi astronomi. Selama ini hanya asteroid-asteroid berukuran besar (diameter lebih dari 100 meter) saja yang dianggap bakal mengganggu kenyamanan hidup kita di Bumi. Kita pun makin terkesiap setelah data terbaru menunjukkan ternyata asteroid lebih kerap berjatuhan ke Bumi dari semula diduga. Secara rata-rata tiap tahun terjadi sedikitnya 2 kali peristiwa masuknya asteroid ke atmosfer Bumi yang mengangkut energi kinetik minimal 1 kiloton TNT.

Mujurnya, meski melintas-relatif dekat asteroid 2014 RC ini hanya lewat saja. Ia tak punya potensi untuk jatuh ke permukaan Bumi. Evaluasi NASA Meteoroid Environment Office menunjukkan bahwa hingga satu abad mendatang, asteroid 2014 RC tidak memiliki peluang untuk menjatuhi Bumi, sekecil apapun. Karena itu asteroid 2014 RC pun telah dikeluarkan dari Sentry Table, yakni daftar yang memuat asteroid-asteroid yang memiliki peluang untuk berbenturan dengan Bumi meski nilai peluangnya kecil. Karena itu tak ada yang perlu dikhawatirkan.

Di sisi lain kesempatan melintas-dekatnya asteroid 2014 RC mendemonstrasikan bagaimana kemampuan sistem-sistem penyigi langit semi-otomatis terkini dalam mendeteksi benda langit yang berpeluang mendekati Bumi. Namun sistem tersebut belumlah sempurna. Terbatasnya jumlah observatorium yang berpartisipasi dan gangguan alamiah konfigurasi Bumi-Bulan (yang membuat malam-malam tertentu berhias Bulan terang hingga purnama) membuat sistem penyigi tersebut masih berlubang di sana-sini. Karena itu jangan heran meski asteroid 2014 RC telah terdeteksi dalam tujuh hari sebelum melintas-dekat, namun sistem yang sama gagal mendeteksi asteroid yang bertanggung jawab atas peristiwa Chelyabinsk (meski sama-sama berdiameter sekitar 20 meter). Inilah salah satu tantangan terbesar astronomi di era kontemporer, untuk membangun sebuah sistem penyigi langit semi-otomatis yang mampu bekerja dalam setiap saat dan setiap kondisi tanpa terkecuali sebagai bagian dari mitigasi. Pada saat yang sama, mitigasi potensi tumbukan benda langit pun harus mengenali karekteristik struktur dan komposisi komet/asteroid secara langsung. Inilah yang menjadi dasar sejumlah misi antariksa tak berawak spesifik ke asteroid/komet, seperti Rosetta. Semua itu dilakukan sebagai upaya agar kelak kita bisa mengelola ancaman dari langit dengan lebih baik. Dan agar tak bernasib mengenaskan seperti halnya yang dialami kawanan dinosaurus pada 65 juta tahun silam, hewan-hewan raksasa yang merajai Bumi namun punah akibat hantaman benda langit.

Referensi:

Guido, Howes & Niccolini. 2014. Close Approach of Asteroid 2014 RC. Remanzacco Observatory, Italia.

NASA. 2014. Jet Propulsion Laboratory Small-Body Database Browser: 2014 RC. NASA Solar System Dynamics, JPL, California.

Asteroid-Asteroid yang Berjatuhan dari Langit

Sekilat cahaya terang mendadak mengerjap cepat dari arah barat daya di langit malam negara bagian Alabama, Amerika Serikat, pada Sabtu 2 Agustus 2014 pukul 22:19 waktu musim panas setempat (Minggu 3 Agustus 2014 pukul 10:19 WIB). Detik demi detik kemudian, kilatan itu kian bertambah terang hingga bahkan berkali-kali lipat lebih benderang ketimbang Bulan purnama saat tiba di akhir perjalanannya. Namun semuanya hanya berlangsung sesaat. Sejurus kemudian langit pun menggelap lagi seiring dengan terdengarnya suara bergemuruh laksana petir di kejauhan.

Kehebohan sontak merebak. Polisi lokal dan layanan darurat 911 kebanjiran telepon dari warga yang menyaksikan langsung peristiwa tersebut. Pun demikian dengan Perhimpunan Meteor Amerika Serikat atau American Meteor Society (AMS). Sedikitnya 65 orang saksi mata dari Alabama dan berbagai negara bagian disekitarnya seperti Georgia, Tennessee, Kentucky dan Florida mengirimkan laporan tertulis secara online. Kesaksian tersebut amat mencukupi guna merekonstruksi apa yang sebenarnya terjadi malam itu di langit Alabama.

Asteroid

Gambar 1. Kilatan cahaya Alabama saat mencapai puncak kecemerlangannya, diabadikan oleh salah satu dari tiga kamera langit pelacak meteor milik NASA yang dipasang di Huntsville, Alabama (Amerika Serikat). Analisis memperlihatkan kilatan cahaya ini merupakan boloid yang semula adalah pecahan asteroid. Pecahan itu memiliki diameter sekitar 38 cm. Sumber: Cooke, 2014 dengan citra dari NASA, 2014.

Gambar 1. Kilatan cahaya Alabama saat mencapai puncak kecemerlangannya, diabadikan oleh salah satu dari tiga kamera langit pelacak meteor milik NASA yang dipasang di Huntsville, Alabama (Amerika Serikat). Analisis memperlihatkan kilatan cahaya ini merupakan boloid yang semula adalah pecahan asteroid. Pecahan itu memiliki diameter sekitar 38 cm. Sumber: Cooke, 2014 dengan citra dari NASA, 2014.

Tak ada keraguan kalau kilatan cahaya seterang Bulan purnama itu adalah meteor, tepatnya meteor-terang (fireball) atau bahkan mungkin boloid (bolide). Meteor terang adalah terminologi yang dilekatkan bagi meteor dengan magnitudo semu minimal -4, atau minimal setara dengan benderangnya planet Venus di kala fajar/senja. Sedangkan boloid adalah istilah bagi meteor-terang yang minimal 40 kali lebih benderang ketimbang Venus yang disertai terdengarnya suara gemuruh sebagai tanda melintasnya gelombang kejut (shockwave) produk pelepasan energi besar dalam tempo sangat singkat saat meteor-terang itu mengalami fenomena ledakan di ketinggian atmosfer (airburst) dan kemudian diikuti dengan guyuran meteorit ke permukaan tanah.

Namun pertanyaan yang menyeruak adalah, apakah kilatan cahaya Alabama ini sekedar meteor-terang ataukah boloid? Dan apakah ia terkait dengan hujan meteor Perseids yang memang sedang aktif pada saat ini? Hujan meteor Perseids memang dikenal sebagai salah satu hujan meteor yang paling produktif menghasilkan meteor-terang. Semenjak dimulai pada 26 Juli 2014 lalu, hingga sebelas hari kemudian telah terekam 90 meteor-terang yang dihasilkan hujan meteor ini, hanya di daratan Amerika Serikat saja.

Gambar 2. Rekonstruksi lintasan tiga-dimensi boloid Alabama oleh American Meteor Society berdasarkan laporan para saksi mata. Garis putih tebal putus-putus menandakan saat meteoroid belum berpijar. Garis putih tebal tak terputus adalah saat meteoroid berpijar cemerlang sebagai boloid. Sementara garis merah tak terputus menandakan lintasan sisa-sisa boloid (yang masih bertahan) kala menjalani tahap dark-flight. Sumber: AMS, 2014 dengan label oleh Sudibyo, 2014.

Gambar 2. Rekonstruksi lintasan tiga-dimensi boloid Alabama oleh American Meteor Society berdasarkan laporan para saksi mata. Garis putih tebal putus-putus menandakan saat meteoroid belum berpijar. Garis putih tebal tak terputus adalah saat meteoroid berpijar cemerlang sebagai boloid. Sementara garis merah tak terputus menandakan lintasan sisa-sisa boloid (yang masih bertahan) kala menjalani tahap dark-flight. Sumber: AMS, 2014 dengan label oleh Sudibyo, 2014.

Untungnya, badan antariksa Amerika Serikat (NASA) melalui NASA Meteoroid Environment Office telah memasang sejumlah kamera langit dengan medan pandang amat lebar (all sky camera) yang dipadukan dengan perangkat lunak khusus untuk menjejak dan melacak setiap meteor yang terekam. Kilatan cahaya Alabama terekam oleh tiga kamera tersebut secara simultan. Maka hakikatnya dapat dikuak dengan cepat. Sehingga astrofisikawan Bill Cooke di NASA Meteoroid Environment Office pun menyatakan kilatan cahaya tersebut berasal dari meteoroid yang berkemungkinan berbentuk bongkahan batu sangat berpori dengan massa sekitar 45 kg. Jika strukturnya demikian berpori sehingga memiliki masa jenis cukup rendah, diasumsikan hanya 1,6 gram per sentimeter kubiknya, maka meteoroid ini memiliki diameter sekitar 38 cm.

Meteoroid ini merupakan pecahan asteroid dan semula beredar mengelilingi Matahari dengan orbit lonjong yang melambung di antara orbit Venus hingga Mars. Terhadap bidang orbit Bumi mengelilingi Matahari (ekliptika), bidang orbit meteoroid ini membentuk sudut hingga 30 derajat. Namun ia berpotongan dengan orbit Bumi di satu titik nodal. Dan pada 3 Agustus 2014 lalu, baik Bumi maupun si meteoroid sama-sama menempati titik nodal tersebut, sehingga meteoroid pun memasuki atmosfer Bumi tanpa bisa dihindarkan lagi. Meteoroid pun melejit masuk ke dalam atmosfer Bumi pada kecepatan tinggi, yakni 26,02 km/detik (93.662 km/jam) relatif terhadap Bumi dengan lintasan membentuk sudut 24 derajat terhadap permukaan Bumi. Dengan kecepatan setinggi itu maka ia mengangkut energi kinetik yang cukup besar untuk ukuran manusia, yakni 15,6 GigaJoule atau setara 3,7 ton TNT. Dengan demikian energi yang dibawa meteoroid ini hampir sama dengan seluruh bom konvensional yang bisa diangkut oleh dua jet tempur F-16.

Gambar 3. Orbit meteoroid yang menjadi boloid Alabama digambar menggunakan Starry Night Backyard versi 3.0. dengan elemen orbit merujuk hasil analisis Bill Cooke dari NASA. Orbit meteoroid dan ketiga planet tetangga terdekat Bumi ditinjau dari atas kutub utara Matahari. Sumber: Sudibyo, 2014.

Gambar 3. Orbit meteoroid yang menjadi boloid Alabama digambar menggunakan Starry Night Backyard versi 3.0. dengan elemen orbit merujuk hasil analisis Bill Cooke dari NASA. Orbit meteoroid dan ketiga planet tetangga terdekat Bumi ditinjau dari atas kutub utara Matahari. Sumber: Sudibyo, 2014.

Bill Cooke memperlihatkan meteoroid ini mulai berpijar pada ketinggian 98 km dari paras (permukaan) Bumi sehingga berubah menjadi meteor dan kemudian terus berkembang menjadi meteor-terang. Simulasi sederhana memperlihatkan meteor-terang ini mulai terfragmentasi (terpecah-belah) pada ketinggian sekitar 78 km dari paras Bumi. Saat ia terus berusaha menembus atmosfer Bumi kita, gaya hambat yang dideritanya kian membesar. Sehingga pada suatu waktu di ketinggian tertentu, keping-keping meteor-terang ini akan sangat terlambatkan yang membuat mayoritas energi kinetiknya terlepas. Inilah fenomena airburst. Bill Cooke menunjukkan fenomena ini terjadi pada ketinggian 48 km. Pada saat itu kepingan-kepingan meteor masih melaju secepat 4,89 km/detik (17.600 km/jam). Ia lantas menghilang dari pandangan, memasuki apa yang disebut status dark-flight. Status dark-flight adalah kondisi dimana bagian yang tersisa dari sebuah meteor-terang/boloid yang telah terpecah-belah dan selanjutnya mengalami airburst terus melanjutkan perjalanannya ke Bumi, namun dalam kondisi tak lagi memancarkan cahaya.

CTBTO

Dengan magnitudo semu puncak melebihi benderangnya Bulan purnama sebagai konsekuensi massanya yang relatif besar, maka ada kemungkinan kilatan cahaya Alabama ini memproduksi meteorit. Sehingga kilatan cahaya tersebut jelas merupakan boloid. Pada umumnya, untuk boloid dengan massa yang kecil seperti boloid Alabama ini, bagian yang tersisa menjadi meteorit hanyalah 1 % dari massa awal. Maka dapat dikatakan boloid Alabama ini memproduksi sekitar 4,5 kg meteorit. Perhitungan mengindikasikan meteorit ini terserak dalam area berbentuk lonjong seluas 14,7 kilometer persegi, yakni pada ellips dengan sumbu panjang 3,3 km dan sumbu pendek 1,4 km.

Boloid Alabama sejatinya bukanlah peristiwa yang luar biasa ataupun jarang bila dipandang dari perspektif astronomi. Statistik memperlihatkan kejadian sejenis berulang setiap 2,3 hari sekali di Bumi. Hanya karena sebagian besar permukaan Bumi adalah lautan luas sementara sebagian besar daratan pun tak berpenghuni (baik sebagai gurun pasir, pegunungan maupun hutan lebat), maka ia seolah-olah menjadi jarang kita saksikan. Namun jika ditinjau dari perspektif dimensi meteoroid versus kekerapannya datang ke Bumi, memang terdapat situasi bahwa semakin besar ukuran meteoroidnya maka semakin jarang ia menghampiri Bumi. Statistik yang diterima para astrofisikawan sejagat pra-2014 memperlihatkan, meteoroid berdiameter 100 meter akan jatuh ke Bumi rata-rata setiap 2.900 tahun sekali. Sementara meteoroid bergaris tengah 1.000 meter jauh lebih jarang, karena rata-rata baru akan menjatuhi Bumi setiap 639.000 tahun sekali.

Gambar 4. Peta distribusi lokasi dan energi yang dilepaskan 25 dari 26 peristiwa airburst dalam kurun 2000 hingga 2013 berdasarkan rekaman pulsa infrasonik dari stasiun pemantau CTBTO. Dua peristiwa dengan pelepasan energi terbesar masing-masing adalah peristiwa Chelyabinsk (nomor 23) dan peristiwa Bone (nomor 19). Sumber: Sudibyo, 2014 berdasarkan data B612 Foundation.

Gambar 4. Peta distribusi lokasi dan energi yang dilepaskan 25 dari 26 peristiwa airburst dalam kurun 2000 hingga 2013 berdasarkan rekaman pulsa infrasonik dari stasiun pemantau CTBTO. Dua peristiwa dengan pelepasan energi terbesar masing-masing adalah peristiwa Chelyabinsk (nomor 23) dan peristiwa Bone (nomor 19). Sumber: Sudibyo, 2014 berdasarkan data B612 Foundation.

Namun bagaimana sesungguhnya kekerapan jatuhnya meteoroid ke Bumi, khususnya yang berasal dari pecahan asteroid maupun sang asteroidnya itu sendiri, belumlah benar-benar bisa dipahami dengan baik. Setidaknya hingga 2014 ini. Padahal bagaimana dampaknya ke Bumi telah bisa kita perkirakan, berdasarkan jejak-jejak kawah tumbukan yang terdapat di Bumi maupun di planet bebatuan (terestrial) lainnya. Sebutir asteroid bertipe karbon kondritik yang melesat ke Bumi pada kecepatan 20 km/detik mampu melubangi permukaan Bumi yang dihantamnya menjadi kawah berdiameter 12 km sembari melepaskan energi sebesar 63.800 megaton TNT. Sebagai pembanding, letusan bom nuklir Hiroshima pada 69 tahun silam (yang menewaskan hampir 140.000 jiwa penduduk kota itu) hanyalah berkekuatan 20 kiloton TNT. Sehingga kedahsyatan hantaman asteroid tersebut setara tiga juta butir bom nuklir Hiroshima. Padahal informasi akan kekerapan jatuhnya meteoroid/asteroid ke Bumi sangat penting bagi manusia, khususnya untuk menyusun strategi mitigasi dalam menghadapi ancaman dahsyat tersebut.

Cukup menarik bahwa saat astronomi masakini masih meraba dalam gelap dalam mengeksplorasi hal tersebut, ada pencerahan yang datang dari disiplin ilmu yang sama sekali berbeda, yakni fisika nuklir. Sebagai bagian dari penegakan larangan ujicoba nuklir di segala matra secara global dalam kerangka Comprehensive nuclear Test-ban Treaty Organization (CTBTO) di bawah payung Perserikatan Bangsa-Bangsa (PBB), maka didirikan sejumlah stasiun pengawas. Hingga kini telah berdiri 337 stasiun pengawas dalam jaringan International Monitoring Systems (IMS). Stasiun-stasiun ini terdiri dari stasiun seismik (untuk mengidentifikasi ujicoba nuklir bawah tanah), hidroakustik (mendeteksi ujicoba nuklir di dalam lautan), infrasonik (pendeteksi ujicoba nuklir di atmosfer baik pada ketinggian rendah maupun tinggi) dan radionuklida (mengendus partikel-partikel radioaktif khas ujicoba nuklir).

Meski memiliki fungsi utama sebagai pemantau ujicoba nuklir, namun stasiun IMS ini juga memiliki kegunaan lain khususnya dalam hal stasiun infrasoniknya. Gelombang infrasonik berbentuk pulsa memang selalu dihasilkan oleh ledakan nuklir di udara. Namun pulsa infrasonik yang mirip juga dapat dihasilkan oleh peristiwa lain, seperti letusan gunung berapi berkekuatan besar, tsunami berskala besar, ledakan bahan peledak/bahan bakar berkekuatan besar, aktivitas pesawat terbang dan juga airburst.

Sepanjang kurun 2000 hingga 2013 lembaga B612 Foundation, yakni yayasan nirlaba yang berspesialisasi dalam mitigasi bencana hantaman asteroid dan komet dari langit, menuturkan bahwa stasiun pengamat CTBTO mendeteksi terjadinya 26 peristiwa jatuhnya asteroid ke Bumi dengan pelepasan energi minimal 1 kiloton TNT. Pada energi tersebut, asteroid yang jatuh memiliki diameter 2,5 meter sehingga tergolong asteroid kecil (pada kecepatan awal 20 km/detik dan dari ketinggian 45 derajat). Seluruh asteoid kecil itu mengemuka sebagai peristiwa airburst di dalam atmosfer Bumi. Dengan demikian dapat dikatakan bahwa dalam setiap tahunnya, dua buah asteroid kecil dengan diameter minimal 2,5 meter memasuki atmosfer Bumi kita dan melepaskan energi minimal 1 kiloton TNT.

Gambar 5. Bongkahan terbesar meteorit Chelyabinsk, yakni meteorit yang ditinggalkan oleh peristiwa Chelyabinsk 15 Februari 2013, setelah diangkat dari dasar danau Cherbakul. Bongkahan bermassa hampir 600 kg ini merupakan bagian dari 4 hingga 6 ton meteorit yang diproduksi peristiwa tersebut, angka yang setara dengan hanya 0,03 hingga 0,05 % massa awal asteroid. Sumber: Popova, 2013.

Gambar 5. Bongkahan terbesar meteorit Chelyabinsk, yakni meteorit yang ditinggalkan oleh peristiwa Chelyabinsk 15 Februari 2013, setelah diangkat dari dasar danau Cherbakul. Bongkahan bermassa hampir 600 kg ini merupakan bagian dari 4 hingga 6 ton meteorit yang diproduksi peristiwa tersebut, angka yang setara dengan hanya 0,03 hingga 0,05 % massa awal asteroid. Sumber: Popova, 2013.

Dari 26 peristiwa tersebut, hanya 6 yang terjadi di atas daratan berpenduduk sehingga hanya enam itu saja yang dapat disaksikan manusia. Dan dari keenamnya, dua merupakan peristiwa airburst dengan pelepasan energi terbesar sepanjang sejarah CTBTO. Pelepasan energi terbesar pertama terjadi pada peristiwa Siberia atau peristiwa Chelyabinsk, yakni pada 15 Februari 2013 di atas wilayah Chelyabinsk (Rusia). Ia melepaskan energi 600 kiloton TNT dan menyebabkan aneka kerusakan ringan hingga berat pada kota-kota yang ada di bawahnya hingga melukai ribuan orang dengan angka kerugian hingga puluhan milyar rupiah. Sementara pelepasan energi terbesar kedua adalah peristiwa Bone pada 8 Oktober 2009 yang terjadi di atas wilayah Bone, Sulawesi Selatan (Indonesia) dengan pelepasan energi hingga 60 kiloton TNT. Tak ada kerusakan yang terjadi, namun seorang meninggal sebagai korban tak langsung akibat serangan jantung setelah terkejut mendengar ledakan tersebut.

Data CTBTO ini membikin gempar dunia astronomi. Betapa tidak, kekerapan jatuhnya asteroid kecil ternyata jauh lebih tinggi dibanding yang selama ini diduga. Sehingga secara umum asteroid ternyata lebih sering jatuh ke Bumi dibanding dengan apa yang telah kita pahami pada pra-2014. Di satu sisi kenyataan ini tentu menggelisahkan, mengingat betapa rentannya Bumi kita dalam berhadapan dengan ancaman dari langit. Namun di sisi yang lain, ini sekaligus memercikkan tantangan: sanggupkah umat manusia dengan keunggulan akal-budinya dibanding makhluk hidup lainnya mengatasi ancaman seperti ini? Terlebih dengan kian bertambahnya jumlah umat manusia, maka tingkat kerentanannya terhadap hantaman asteroid pun meningkat. Sehingga asteroid yang lebih kecil sekalipun kini mampu memberikan dampak signifikan, hal yang tak terbayangkan dalam kurun berabad-abad silam.

Referensi :

American Meteor Society. 2014. Alabama Fireball.

Schermier. 2013. Risk of Massive Asteroid Strike Underestimated, Meteor in Chelyabinsk Impact was Twice as Heavy as Initially Thought. Nature News, 6 November 2013.

B612 Foundation. 2013. List of Impacts from Impact Video.

Popova dkk. 2013. Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery and Characterization. Science no. 342 (2013).

Asteroid dan Komet yang Mendekat dalam Senyap

Tiga buah benda langit yang juga anggota minor dalam tata surya kita melintas dekat Bumi secara berturut-turut semenjak akhir Mei hingga pertengahan Juni 2014. Ketiganya adalah dua buah asteroid dan sebuah komet. Ulah ketiganya memang tak menimbulkan dampak apapun bagi Bumi kita, meski salah satu asteroid bahkan ibaratnya tinggal seujung kuku lagi memasuki selimut udara planet biru kita karena melintas ‘hanya’ dalam jarak 10.000 km dari permukaan Bumi.

Meski melintas dalam jarak yang tergolong sangat dekat dalam ukuran astronomi, ketiganya lewat begitu saja dalam senyap. Tentu, ini adalah tahun 2014. Bukan 2012, tahun yang heboh dengan desas-desus akhir zaman dalam segala rupa versinya. Kini isu kiamat telah jauh menyurut, berganti dengan kompleksitas kehidupan yang dianggap lebih menarik seperti misalnya isu suksesi kepemimpinan nasional di Indonesia. Namun demikian perlintasan-dekat yang senyap ini tetap merogoh perhatian astronomi. Selain guna memahami seluk-beluk asteroid dan komet dengan lebih baik, khususnya yang gemar melintas di dekat Bumi kita, peristiwa ini juga menjadi pijakan untuk pengembangan pengetahuan praktis guna menangkal bencana dari langit. Ya, lubang-lubang besar di permukaan Bumi dan Bulan kita menjadi bukti betapa sepanjang usia tata surya ini kawasan asteroid maupun komet tak hanya gemar melintas-dekat Bumi kita, namun tak jarang pula terjun bebas membentur wajah Bumi dengan dahsyatnya.

Gambar 1. Komet 209 P/LINEAR, diabadikan pada 26 Mei 2014 oleh Gianluca Masi. Komet diabadikan teleskop yang dikunci untuk mengikuti pergerakan komet tersebut dalam waktu tertentu. Citra demi citranya lantas ditumpuk (stack) menjadi satu lewat olah citra fotografis, sehingga bintang-bintang yang ada di latar belakangnya nampak seperti garis-garis lurus. Teknik olah citra ini dilakukan karena komet ini sangat redup, meski ia hendak melintas-dekat ke Bumi. Masi, 2014.

Gambar 1. Komet 209 P/LINEAR, diabadikan pada 26 Mei 2014 oleh Gianluca Masi. Komet diabadikan teleskop yang dikunci untuk mengikuti pergerakan komet tersebut dalam waktu tertentu. Citra demi citranya lantas ditumpuk (stack) menjadi satu lewat olah citra fotografis, sehingga bintang-bintang yang ada di latar belakangnya nampak seperti garis-garis lurus. Teknik olah citra ini dilakukan karena komet ini sangat redup, meski ia hendak melintas-dekat ke Bumi. Masi, 2014.

Telah banyak diceritakan betapa kawanan dinosaurus yang sempat merajai Bumi punah akibat dampak hantaman asteroid seukuran 10 km nun jauh di masa silam, tepatnya pada 65 juta tahun yang lalu. Kisah punahnya dinosaurus ini mungkin sulit kita bayangkan, karena waktunya yang sudah terlalu lama. Namun bagaimana remuk redamnya kawasan Chelyabinsk dan sekitarnya di Rusia pada Jumat 15 Februari 2013 silam menjadi gambaran terkini akan ulah asteroid yang tak terlupakan. Meski diameternya ‘hanya’ 20 meter, asteroid yang remuk dan melepaskan hampir seluruh energinya di udara Chelyabinsk pada ketinggian beberapa puluh kilometer itu mampu menghasilkan kerusakan luas dengan angka kerugian menyentuh US $ 30 juta (Rp 345 milyar, berdasar kurs US $ 1 = Rp. 11.500) selain melukai 1.643 orang.

Komet

Komet 209 P/LINEAR menjadi benda langit yang pertama melintas. Ia melintas hingga hanya sejauh 8,23 juta kilometer dari Bumi kita pada Kamis 29 Mei 2014 pukul 12:51 WIB silam. Dengan demikian pada saat itu komet 209 P/LINEAR masih berjarak 21,6 kali lipat jarak rata-rata Bumi ke Bulan kita. Dalam catatan sejarah, ini adalah perlintasan-terdekat sebuah komet terhadap Bumi dalam kurun tiga dasawarsa terakhir, terhitung sejak melintasnya komet IRAS-Araki-Alcock yang ‘hanya’ berjarak 5 juta kilometer dari Bumi. Dengan perlintasan-dekatnya di 29 Mei 2014 lalu, maka komet 209 P/LINEAR pun tercatat sebagai komet dari komet dekat Bumi (near-earth comets/NEC) sekaligus sebagai komet ke-17 yang pernah melintas-sangat dekat dengan Bumi kita sepanjang sejarah tercatat umat manusia.

Komet 209 P/LINEAR sempat memantik kegairahan astronomi seiring peranannya sebagai komet induk hujan meteor Camelopardalids. Inilah hujan meteor unik yang hanya akan terjadi di tahun 2014, tidak di tahun-tahun berikutnya maupun di tahun-tahun yang telah terlewat. Selain menjadi hujan meteor baru, Camelopardalids pun ditengarai akan cukup deras dengan intensitas antara 200 hingga 400 meteor/jamnya. Bahkan ada juga kemungkinan ia mencapai intensitas melebihi 1.000 meteor/jam sehingga bakal menyandang status badai meteor, meski peluang itu kecil.

Gambar 2. Kiri: salah satu meteor Camelopardalids sedang melintas di latar depan selempang Bima Sakti, diabadikan oleh Bob King di Minnessota (AS). Kanan: titik sumber (radian) sejumlah hujan meteor yang aktif seperti dipetakan tim CMOR pada 24 Mei 2014. Semakin cerah dan memerah warnanya menunjukkan semakin besar intensitas hujan meteornya. CAMS menandai lokasi titik sumber hujan meteor Camelopardalids, yang mencapai ratusan buah meteor per jamnya. Namun sebagian besar meteornya memiliki magnitudo +6 atau lebih redup lagi, sehingga mustahil dilihat secara kasat mata. Sumber: King, 2014; CMOR, 2014.

Gambar 2. Kiri: salah satu meteor Camelopardalids sedang melintas di latar depan selempang Bima Sakti, diabadikan oleh Bob King di Minnessota (AS). Kanan: titik sumber (radian) sejumlah hujan meteor yang aktif seperti dipetakan tim CMOR pada 24 Mei 2014. Semakin cerah dan memerah warnanya menunjukkan semakin besar intensitas hujan meteornya. CAMS menandai lokasi titik sumber hujan meteor Camelopardalids, yang mencapai ratusan buah meteor per jamnya. Namun sebagian besar meteornya memiliki magnitudo +6 atau lebih redup lagi, sehingga mustahil dilihat secara kasat mata. Sumber: King, 2014; CMOR, 2014.

Dalam kenyataannya hujan meteor Camelopardalids sempat mengecewakan semua yang menantinya penuh harap. Jangankan di Indonesia yang secara teoritis bukan bagin wilayah yang mampu mengamati hujan meteor ini, bahkan di lokasi terbaik seperti Amerika bagian utara pun jumlah meteor Camelopardalids yang bisa terdeteksi sangat sedikit. Pengamat meteor berpengalaman seperti astronom Carl Hergenrother saja hanya bisa mendapati 3 meteor Camelopardalids meski telah memelototi langit selama 2,17 jam penuh. Berdasarkan data observasi dari berbagai penjuru, International Meteor Organization (IMO) menyimpulkan intensitas hujan meteor Camelopardalids pada saat puncaknya hanyalah sebesar 27 meteor/jam. Puncak hujan meteor ini pun berlangsung 2 jam lebih awal dibanding prediksi semula, meski masih tetap berada dalam tanggal 24 Mei 2014. Maka sepertinya bukan hujan (meteor) deras apalagi badai (meteor) yang terjadi, melainkan hanya ada gerimis (meteor).

Namun kekecewaan pupus setelah tim Canadian Meteor Orbit Radar (CMOR) memublikasikan hasil observasinya yang berbasis gelombang radio frekuensi tinggi (HF) dan sangat tinggi (VHF). Ternyata memang ada ratusan meteor Camelopardalids per jam pada saat puncaknya, namun mayoritas mempunyai magnitudo +6 atau lebih redup lagi. Dengan ambang batas penglihatan mata manusia tanpa bantuan alat optik adalah pada magnitudo +6, demikian sebagian besar meteor itu mustahil bisa disaksikan. Pada kecepatan awal 17 km/detik tepat pada saat hendak memasuki atmosfer Bumi, tak terlihatnya sebagian besar meteor Camelopardalids secara visual memperlihatkan bahwa meteoroidnya adalah seukuran debu dengan diameter 1 mm atau lebih kecil lagi. Inilah cerita sukses terkini tentang bagaimana astronomi bekerja dalam memprediksi waktu dan intensitas sebuah hujan meteor tak biasa. Sebuahb pengetahuan yang di masa silam hanya ada di awang-awang.

Berselang lima hari setelah hujan meteor Camelopardalids, komet 209 P/LINEAR melintas di dekat Bumi kita. Meski berjarak relatif dekat, namun uniknya komet ini justru cukup redup. Pada saat berada di titik terdekatnya terhadap Bumi, komet 209 P/LINEAR hanya bersinar pada magnitudo +12 saja, alias hanya 6 kali lipat lebih terang dibanding planet kerdil Pluto. Akibatnya komet ini hanya bisa disaksikan dengan teleskop saja, itupun harus memiliki lensa/cermin obyektif berdiameter minimal 200 mm (20 cm). Jika teleskopnya lebih kecil dari itu, komet mustahil disaksikan meski kita mengerahkan kemampuan observasi hingga ke titik maksimum. Namun dekatnya jarak komet ke Bumi membuat observasi dengan teleskop non-visual menjadi memungkinkan. Di sinilah teleskop radio terbesar di dunia, yakni Teleskop Radio Arecibo (diameter 305 meter) di Puerto Rico, beraksi guna mengamati komet ini lewat gelombang radar.

Gambar 3. Tiga sekuens wajah inti komet 209 P/LINEAR seperti diabadikan oleh Teleskop Radio Arecibo dengan gelombang radar dari sudut pandang yang berbeda-beda seiring rotasinya. Nampak tonjolan-tonjolan membukit dengan lembah-lembah cekungan (kawah) diantaranya, yang kemungkinan terbentuk akibat benturan komet ini dengan benda langit lain nun jauh di masa purba. Sumber: Arecibo Observatory, 2014.

Gambar 3. Tiga sekuens wajah inti komet 209 P/LINEAR seperti diabadikan oleh Teleskop Radio Arecibo dengan gelombang radar dari sudut pandang yang berbeda-beda seiring rotasinya. Nampak tonjolan-tonjolan membukit dengan lembah-lembah cekungan (kawah) diantaranya, yang kemungkinan terbentuk akibat benturan komet ini dengan benda langit lain nun jauh di masa purba. Sumber: Arecibo Observatory, 2014.

Observasi dilakukan secara berulang-ulang dan beruntun antara 23 hingga 27 Mei 2014. Bagi Teleskop Radio Arecibo, komet 209 P/LINEAR bukanlah komet pertama yang disasar karena sebelumnya mereka pun pernah mengamati komet 103 P/Hartley 2 (tahun 2010), komet 8 P/Tuttle (tahun 2007 dan 2008) serta komet 73 P/Schwassmann-Wachmann 3 (tahun 2006). Namun begitu komet 209 P/LINEAR menjadi komet yang dibidik Teleskop Radio Arecibo pada resolusi tertinggi hingga sejauh ini. Arecibo memperlihatkan bahwa inti komet ini berbentuk bongkahan tak beraturan sepanjang 3 km dan lebar 2,4 km. Wajah inti komet ini dipenuhi dengan tonjolan-tonjolan membukit dengan cekungan-cekungan diantaranya, luka-luka yang dihasilkan dari benturan demi benturan dahsyat di masa silam. Yang cukup menarik, meski inti komet ini tergolong relatif besar, namun bagian aktifnya (yakni kawasan yang menyemburkan uap air bercampur debu dan pasir di permukaan inti komet secara kontinu) ternyata relatif sangat kecil, yakni hanya seluas sekitar 10.000 meter persegi. Dengan demikian bagian aktif komet 209 P/LINEAR hanya senilai kurang dari 1 %, angka yang sangat kecil bila dibandingkan dengan komet 1 P/Halley (10 %) maupun komet 103 P/Hartley 2 (50 %). Inilah jawaban kenapa komet 209 P/LINEAR cukup redup meski berada dalam jarak terdekatnya dengan Bumi, karena komet itu nyaris tidak aktif.

Asteroid

Kurang dari seminggu setelah komet 209 P/LINEAR, Bumi kita kembali dihampiri tamu dari bagian lain tata surya kita. Adalah asteroid tanpa nama dengan kode 2014 LY21 yang lewat di beranda planet kita pada Rabu 4 Juni 2014. Asteroid bergaris tengah 5 meter ini bahkan lewat dalam jarak cukup dekat, yakni hanya 10.000 meter dari permukaan Bumi yang terjadi pada pukul 05:27 WIB. Ia ditemukan untuk pertama kalinya hanya dalam 2 hari sebelumnya lewat mata tajam teleskop 150 cm Observatorium Gunung Lemmon, Arizona (AS) sebagai bintik cahaya amat sangat redup (magnitudo +21). Asteroid 2014 LY21 merupakan bagian dari keluarga asteroid Aten, karena jarak rata-ratanya ke Matahari lebih kecil dibanding jarak rata-rata Bumi ke Matahari. Orbit asteroid ini merentang di antara orbit Venus hingga orbit Bumi dengan periode revolusi hanya 210 hari (9,58 tahun).

Gambar 4. Proyeksi lintasan asteroid 2014 LY21 di atas permukaan Bumi pada 4 Juni 2014. Sebelum pukul 05:00 WIB dan setelah pukul 07:00 WIB, titik-titik kuning melambangkan proyeksi posisi asteroid setiap sejam sekali. Sebaliknya antara pukul 05:00 hingga 07:00 WIB, titik-titik kuning merupakan proyeksi posisi asteroid setiap 10 menit sekali. Tanda bintang (*) adalah titik proyeksi saat asteroid berada pada jarak terdekatnya dengan Bumi. Jelas terlihat bahwa asteroid 2014 LY21 melintas di atas Indonesia antara pukul 02:00 hingga 04:00 WIB. Sumber: Sudibyo, 2014 dengan data dari NASA Solar System Dynamics.

Gambar 4. Proyeksi lintasan asteroid 2014 LY21 di atas permukaan Bumi pada 4 Juni 2014. Sebelum pukul 05:00 WIB dan setelah pukul 07:00 WIB, titik-titik kuning melambangkan proyeksi posisi asteroid setiap sejam sekali. Sebaliknya antara pukul 05:00 hingga 07:00 WIB, titik-titik kuning merupakan proyeksi posisi asteroid setiap 10 menit sekali. Tanda bintang (*) adalah titik proyeksi saat asteroid berada pada jarak terdekatnya dengan Bumi. Jelas terlihat bahwa asteroid 2014 LY21 melintas di atas Indonesia antara pukul 02:00 hingga 04:00 WIB. Sumber: Sudibyo, 2014 dengan data dari NASA Solar System Dynamics.

Dengan jarak perlintasan hanya 10.000 km dari permukaan Bumi, praktis asteroid 2014 LY21 saat itu lebih dekat ke Bumi ketimbang satelit-satelit telekomunikasi dan cuaca di orbit geostasioner/geosinkron (6.782 km), ataupun orbit satelit-satelit navigasi seperti GPS atau Glonass (18.000 km). Namun dengan ukurannya yang relatif kecil, maka saat berada di titik terdekatnya pun asteroid ini hanya berbinar dengan magnitudo +11. Terlalu redup untuk terlihat secara kasat mata. Pada 4 Juni 2014 tersebut sebagian proyeksi lintasan asteroid 2014 LY21 ini melewati wilayah Indonesia, dengan titik terdekat yang dicapai asteroid ini tepat di atas Kazakhstan, di sisi timur Laut Kaspia.

Meski melintas-sangat dekat, orbit asteroid 2014 LY21 tidaklah berpotongan dengan orbit Bumi. Sehingga peluangnya jatuh ke Bumi adalah nol. Kalaupun orbit asteroid ini berpotongan dengan orbit Bumi, ia takkan berdampak ke kehidupan di permukaan Bumi. Saat memasuki atmosfer, asteroid ini akan melejit secepat 14,3 km/detik atau hampir 51.400 km/jam. Jika massa jenisnya antara 2 hingga 4 gram dalam tiap sentimeter kubiknya, maka energi potensialnya antara 3,2 hingga 6,4 kiloton TNT, alias 1/6 hingga 1/3 kekuatan bom nuklir Hiroshima. Asteroid dengan ukuran dan energi ini masih bisa ditangkal selimut udara yang menyelubungi Bumi kita. Simulasi menunjukkan ia akan hancur berkeping-keping dan melepaskan mayoritas energinya pada ketinggian antara 30 hingga 43 km dari permukaan Bumi. Sebelumnya ia akan sempat berpijar sangat terang sebagai meteor-terang (fireball) dengan perkiraan magnitudo antara -10 hingga -11. Dengan demikian andaikata asteoid 2014 LY21 benar-benar jatuh ke Bumi, ia akan keburu hancur di ketinggian atmosfer tanpa sempat mencium permukaan Bumi. Peristiwa ini akan menampilkan pemandangan mengesankan yang mirip Peristiwa Almahata Sitta (Sudan) pada 8 Oktober 2008 silam.

Gambar 5. Jejak asap yang mulai memudar dan terpahat hembusan angin di keremangan fajar Sudan utara, 8 Oktober 2008. Inilah jejak asap yang ditinggalkan Peristiwa Almahata Sitta, yakni masuknya sebongkah asteroid kecil yang lantas memijar menjadi meteor-terang lalu pecah berkeping-keping di atas Sudan utara sembari melepaskan energi antara 1 hingga 1,6 kiloton TNT. Andaikata asteroid 2014 LY21 memasuki atmosfer Bumi, ia akan menyajikan panorama yang mirip dengan energi yang dilepaskan 2 hingga 4 kali lipat lebih besar. Sumber: ElHasan, 2008.

Gambar 5. Jejak asap yang mulai memudar dan terpahat hembusan angin di keremangan fajar Sudan utara, 8 Oktober 2008. Inilah jejak asap yang ditinggalkan Peristiwa Almahata Sitta, yakni masuknya sebongkah asteroid kecil yang lantas memijar menjadi meteor-terang lalu pecah berkeping-keping di atas Sudan utara sembari melepaskan energi antara 1 hingga 1,6 kiloton TNT. Andaikata asteroid 2014 LY21 memasuki atmosfer Bumi, ia akan menyajikan panorama yang mirip dengan energi yang dilepaskan 2 hingga 4 kali lipat lebih besar. Sumber: ElHasan, 2008.

Empat hari kemudian, Bumi kembali dikunjungi oleh asteroid pelintas-dekat lainnya, yakni asteroid tanpa nama berkode 2014 HQ124. Asteroid ini jauh lebih besar, diameternya sampai 325 meter. Titik terdekatnya ke Bumi dicapainya pada Minggu 8 Juni 2014 pukul 12:56 WIB sejauh 1,25 juta kilometer dari Bumi atau 3,25 kali lebih jauh ketimbang jarak rata-rata Bumi-Bulan. Proyeksi lintasannya pada 8 Juni 2014 itu lagi-lagi melewati wilayah Indonesia, dengan titik terdekat ke Bumi terjadi tepat di atas Samudera Indonesia (Samudera Hindia) di lepas pantai barat pulau Sumatra. Salah satu media di Indonesia sempat mengulas perlintasan-dekat asteroid ini dan kaitannya dengan cahaya bergerak yang teramati di langit Jabodetabek 8 Juni 2014 senja. Meski kemudian terbukti cahaya tersebut hanyalah jejak pesawat. Pada saat berada di titik terdekatnya pun asteroid ini hanya berbinar dengan magnitudo +13 tepat di saat fajar. Ini terlalu redup untuk terlihat secara kasat mata.

Gambar 6. Proyeksi lintasan asteroid 2014 HQ124 di atas permukaan Bumi pada 8 Juni 2014. Titik-titik kuning melambangkan proyeksi posisi asteroid setiap sejam sekali, sementara tanda bintang (*) adalah titik proyeksi saat asteroid berada pada jarak terdekatnya dengan Bumi. Jelas terlihat bahwa asteroid 2014 HQ124 melintas di atas Indonesia antara pukul 09:00 hingga 13:00 WIB. Sumber: Sudibyo, 2014 dengan data dari NASA Solar System Dynamics.

Gambar 6. Proyeksi lintasan asteroid 2014 HQ124 di atas permukaan Bumi pada 8 Juni 2014. Titik-titik kuning melambangkan proyeksi posisi asteroid setiap sejam sekali, sementara tanda bintang (*) adalah titik proyeksi saat asteroid berada pada jarak terdekatnya dengan Bumi. Jelas terlihat bahwa asteroid 2014 HQ124 melintas di atas Indonesia antara pukul 09:00 hingga 13:00 WIB. Sumber: Sudibyo, 2014 dengan data dari NASA Solar System Dynamics.

Asteroid ini baru ditemukan pada 3 April 2014 silam lewat program NEOWISE, yakni program penyigian langit berbasis satelit WISE (Wide-field Infrared Survey Explorer) yang bekerja pada spektrum inframerah. Seperti halnya asteroid 2014 LY21, asteroid 2014 HQ124 ini tergolong keluarga asteroid Aten yang beredar mengelilingi Matahari dalam waktu 287 hari (0,79 tahun). Saat pertama kali dipublikasikan, sejumlah media (secara salah kaprah) menjulukinya sebagai Sang Monster. Julukan tersebut agaknya berpangkal dari perhitungan sederhana, bilamana asteroid ini jatuh ke Bumi maka ia akan melepaskan energi antara 2.558 hingga 2.766 megaton TNT (128.000 hingga 138.000 kali lipat lebih dahsyat dari bom nuklir Hiroshima). Pelepasan energi sebesar itu akan disertai dengan terbentuknya kawah tumbukan berukuran besar, dengan garis tengah antara 5 hingga 6 kilometer. Untungnya orbit asteroid 2014 HQ124 tidak bakal bersinggungan dengan orbit Bumi selama setidaknya 100 tahun ke depan, sehingga potensi tumbukannya terhadap Bumi adalah nihil.

Gambar 7. Tiga sekuens wajah asteroid 2014 HQ124 seperti diabadikan oleh Teleskop Radio Arecibo bersama dengan Teleskop Radio Goldstone dengan gelombang radar dari sudut pandang yang berbeda-beda seiring rotasinya. Nampak cekungan besar (diameter  100 meter) yang adalah jejak yang tersisa dari benturan asteroid ini dengan benda langit lain nun jauh di masa purba. Sumber: Arecibo Observatory, 2014.

Gambar 7. Tiga sekuens wajah asteroid 2014 HQ124 seperti diabadikan oleh Teleskop Radio Arecibo bersama dengan Teleskop Radio Goldstone dengan gelombang radar dari sudut pandang yang berbeda-beda seiring rotasinya. Nampak cekungan besar (diameter 100 meter) yang adalah jejak yang tersisa dari benturan asteroid ini dengan benda langit lain nun jauh di masa purba. Sumber: Arecibo Observatory, 2014.

Perhitungan menunjukkan bahwa jarak perlintasan asteroid 2014 HQ124 ke Bumi kali ini adalah jaraknya yang terdekat dan takkan terulang lagi hingga setidaknya 200 tahun mendatang. Karena dekatnya, maka ia menjadi target ideal observasi non-visual. Teleskop Radio Arecibo pun kembali dikerahkan, kali ini dipasangkan bersama Teleskop Radio Goldstone, California (AS) yang berdiameter 70 meter. Paduan ini bertujuan untuk memperoleh citra beresolusi lebih tinggi. Tekniknya, Goldstone mengirim sinyal radar ke asteroid, sementara Arecibo bertugas menerima sinyal pantulnya (yang dipantulkan 2014 HQ124). Kerja keras Goldstone dan Arecibo mengungkap wajah asteroid 2014 HQ124 ini lebih lanjut. Asteroid tersebut ternyata berbentuk seperti kacang tanah dan diduga berasal dari dua asteroid tua yang berbeda yang bertabrakan dan saling melekat satu dengan yang lain pada suatu waktu di masa lalu. Sebuah cekungan (kawah) besar berdiameter sekitar 100 meter nampak menghiasi salah satu sisi asteroid, sepertinya bekas tubrukan dengan asteroid lain jauh di masa silam pula. Asteroid ini berotasi dengan periode yang relatif lambat untuk ukurannya, yakni 20 jam.

Referensi :

Arecibo Observatory. 2014. High Resolution Radar at Arecibo Observatory Reveals Asteroid As a Beauty, Not a Beast, 12 Juni 2014.

King. 2014. Camelopardalid Meteor Show More a Trickle than a Storm. AstroBob, 24 Mei 2014.

King. 2014. Amazing Radar Images of 209P/LINEAR, The Comet Behind Last Week’s Meteor Shower. AstroBob, 29 Mei 2014.

NASA Solar System Dynamics. 2014.

Collins dkk. 2005. Earth Impact Effects Program : A Web–based Computer Program for Calculating the Regional Environmental Consequences of a Meteoroid Impact on Earth. Meteoritics & Planetary Science 40, no. 6 (2005), 817–840.